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Current-driven plasma instabilities in parallel quantum-wire systems
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Atheory of current-driven plasma instability in a double-quantum-wire system is presented. It is shown that,
if the wires carry steady currents in opposite directions, the quasi-one-dimen&joaal-1D plasma waves
propagating along the wires become unstable when the electron drift velocity falls between the phase velocities
of the acoustic and optical plasma modes of the Coulomb-coupled quantum wires. Such an instability occurs
at experimentally achievable drift velocities because of the softening of the plasma waves in 1D wires. The
condition for plasma instability in a lateral double-quantum-wire superlattice is also determined.
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Spurred by experimental achievements in quasi-oneinvolved, have been considered theoretically for a number of
dimensional(quasi-1D semiconductor structures, the study low-dimensional semiconductor structures such as planar
of collective plasma excitations in 1D electron systems hagjuantum wells and superlattices, single quantum wires as
been vigorously pursueld® The existence of 1D plasmons in well as other systenf$ Although the estimated threshold
guantum wires was well established experimentally bydrift velocities were found to be close to and somewhat
means of infrared spectroscdpgnd resonant inelastic light above realistic experimental possibilities, the primary ob-
scattering Their theoretical description in the random-phasestacle to achieving aufficientlylow threshold drift velocity
approximation(RPA) (Refs. 3 and #proved to be in quan- remains the higher plasmon phase velocities at the low wave
titative agreement with the experimental data. In addition tovectorsqg used experimentally. This is a consequence of low-
intrinsic physical interest, 1D quantum wire plasmon phe-dimensional plasmon dispersion lajus?cq (2D) (Ref. 10
nomenology may be of practical importance in regard to posandw?x<q?In q (1D) (Ref. 4 at smallq], with phase velocity
sible device applications based on the use of radiative plasr,= w/q diverging in the long wavelength limit. To avoid
mon decay in tunable solid-state sources of far-infraredhese difficulties, plasmon modes with lower frequencies are
electromagnetic radiatich. required.

The key element for experimental realization of a Further softening of low-dimensional plasma excitations
plasmon-based source of electromagnetic radiation is theccurs when two parallel layers of 2D electron gas or two
generation of a plasma instability that can be produced by parallel wires of 1D electron gas are brought close to each
strong steady current, with energy transferred from the curether®!! These systems have been realized experimentally in
rent to the growing plasma wave. Such current-drivendouble quantum wells of 2D electron dasnd, very re-
plasma instabilities are well known in gaseous plashas,  cently, in double quantum wire structurgs:* Coulomb in-
curing when the drift velocity of the carriers exceeds ateraction between degenerate plasmon modes in the indi-
threshold value. The same effect takes place in bulk solidvidual wells or wires splits the modes into high-frequency
state plasmas, but the required threshold drift velocities areptical and low-frequency acoustic branches. Such an acous-
very large and cannot be achieved experimentally because 6€ branch is a very promising candidate to accommodate
low electron mobilities in bulk semiconductors. plasma instability. Current-driven plasma instability in a

In low-dimensional electron semiconductor systems, condouble-layer system of 2D electron gas was considered in
ditions for the onset of current-driven plasma instabilities areRef. 9: in hydrodynamic approximation the threshold of in-
much more favorable. The threshold value of the drift veloc-stability was found to depend on separation of the layers, and
ity is of the order of the phase velocity of the plasmaunder appropriate conditionfow electron concentration,
wavest®9 Softening of the plasma modes in low- small separation between the layeitsnay approach experi-
dimensional systems in comparison to those of bulkmentally achievable values.
system& leads to a substantial reduction of the plasmon In this paper, we consider current-driven plasma instabil-
phase velocity. Given the relatively high electron mobilitiesity in a double-quantum-wire system, in which two parallel
in these systems and the capability of varying electron conguantum wires are coupled by Coulomb forces, but electron
centration over a very wide range, low-dimensional semicontunneling between them is taken to be negligible. We assume
ductor structures offer a very attractive vehicle for the ex-that the length of the wires is comparable with the elastic
perimental realization of tunable devices based on currentmean-free path for electrons, so the conditions of quasibal-
driven plasma instabilities. listic transport are met in both wires. Within the framework

Various aspects of the current-driven plasma instabilityof this model, we examine current-driven plasma instability
phenomenon, including determination of the energy transfewhen the individual wires carry different steady currents.
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Our calculations show that, for a given wave veaipplas- Addressing a weakly nonequilibrium situation with steady
mon instability arises when the drift velocity of the carriers currents, we denote the drift velocity in thth wire by v,(,'r)

vy lies in the intervab,_(q) <vg<v,(q) , wherev .. (Q) and assume the unperturbed electron distribution inithe
are the phase velocities of the opticat X and acoustic  wire to be a driftedequilibrium) Fermi function,f; = fy(k
(—) plasmon modes of the coupled quantum wires. The in—m*{)/%). This approximation is justified in the quasibal-
stability problem is also examined for a lateral double-|istic regime when electrons in the wires move in an envi-
quantum-wire superlattice consisting of two sublatticesyonment nearly free of scattering, with the drift velocity de-
shifted with respect to each other in the transverse directiofermined by an external circuif. The polarizability

and carrying .differefr_\t stea}dy currents. We gnalyze depgrﬂi(qx,w) at zero temperature is evaluated as
dence of the instability region on quantum wire characteris-

tics and geometry of the system. m* (w—qxv&?)z—(Eq —q,vE)?
To obtain the collective modes in a double-quantum-wire  II;(qgy,w)=———In 2 ‘ 5 (4
system with steady currents, we employ the standard RPA Th0x (0= 0wy) —(Eq +0xvE)

formulation of longitudinal plasmon dispersiéhWwithin this .
approach, the dispersion equation for plasmons in a two™Nere Eq,=hay/2m* and ve=fike/m* is the electron
component confined electron plasma was previously deriveffermi velocity. In the semiclassical limitii<kg) we have,
for isolated 2D electron layefsand 1D quantum wirds’ )
with the inclusion of two subbands, as well as for two spa- T, )= n Ox
tially separated Coulomb-coupled parallel 2D electron (O, @ m* (w—q U(i))z_qZUZ’
layers! and parallel 1D quantum wirésThe generalization X xF
of these results for a double-quantum-wire system withvheren= 2k /7 is the linear electron density in the wires.
steady currents is rather straightforward. The presence stubstituting Eq.(5) into Eq. (1) we obtain the following
currents only changes the electron distribution functions oflispersion equation:

the wires. For a system of two identical parallel wires with (h2 2.2 212 2.2

only their lowest lateral energy subbandg;, involved [(0—0we’) —axell(@—awe’) — ayvE]

(higher lateral energy subbands are taken to be energeticall _ 2.2r (112 Cn o (2N2_5n2. 2
ina%cessibl)aand no?r):terwire tunneling, the dispersiongequa- g 01toGil (@~ Q)™ (0= G dr) "~ 20,vF
#ion 4for coupled intrasubband plasmons has the familiar +(v3,—v2,)uggi=0, (6)
orm

®)

where ui=2ne*/m*¢,. With the new variablex=w
2¢? 2¢? 2e?\2 —a(vP+vP)/2, Eq.(6) reduces to a biquadratic equation
- vl 11,=0,

1= —vplly )| 1= —vpll, with the solution
(1) 2 22 2,2 2 2 2 2 2 2 4
thqXUdr+qX(UF+U11Uo)in\/4Udr(UF+U11Uo)+012UOv
where 7)
dk, fi(Bw —q)—Fi(Exx) where vg=|v P —v@|2. If vP=0P=0, Eq. (7) yields
Hi(Qxaw):fE FotEn g En | (2 known double-wire dispersion relatichéor optical (w.)

and acoustic ¢ _) plasmon branches as

and
ol =q[vE+ (viFv)Uug). (8)

Ull(qx):j dydy ¢§(y)¢§(y’)Ko(qx|y—y’|), (3a) It should be poin_ted out that these plasma mpdes_are not
Landau damped, in consequence of B). Instability arises

when x§<0. Using Eq.(7) one can easily show that this
012G = f dydy ¢3(y) 63y’ ~d)Ko(aly—y'). (3  neauality is satisfied fok— when

2 2_ " 2 2
In these equations the axis is taken in the wire direction. VoEt (V101 Up<va=<ve+ (vt ol (9)
Both wires are positioned in the plame: 0 and are separated Equation(9) determines the region of current-driven instabil-
by distanced. The wires are assumed to have finite width inity for double-wire plasma waves. When both wires carry the
the y direction and zero thickness in tiedirection. The  same current in opposite directions, i.e{)=—v@P=vy,
electron energy eigenvalues aIEqu= E,+ ﬁzkf(/Zm* and  we have

the corresponding unperturbed energy eigenfunctions of the

ith wire (i=1,2) areg, = (11/L,)€**¢;(y—di) x(2) with Vp- (0 <var<vp+ (A, (10
x2(2)=6(2) (d;=0d,=d); f,(E) is the electron distribu- wherev . = w.(0y)/dy are the phase velocities of the opti-
tion function in theith wire, g, is the background dielectric cal and acoustic plasmon branches given by (By.

constant, andKy(x) is the zeroth-order modified Bessel These results for the double-quantum-wire system can be
function of the second kind that arises from thd-ourier  easily generalized to the case of a lateral double-quantum-
transform of the Coulomb potential. wire superlatticgin x-y plane consisting of two sublattices,
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each of perioda, shifted with respect to each other by dis- 32
tanced in the transversg direction. As above, the wires are
along thex axis. We take the sublattices to carry different
steady currents and neglect tunneling. The energy eigenfunc-
tions for electrons in the lowest lateral subband in the wires

3.0+

2.8+

26+

can be constructed in the form of Bloch combinations for > 24
each sublattice as 5227
2.0
. oelkx g Nzl:z " 18]
(N =—— e'kyla —di—ja)x(z). 11
ikl ) \/L—X \/sz,le b1y i—Jja)x( ) ( ) 1_6_ 
1.4
Herei=1,2 is the sublattice index, is y component of the o 2 &4 & 8 10
electron wave vectok, — w/a<k,<w/a; N=L,/a is the q,(10°cm™)

number of quantum wires in each sublattice with periodic
boundary conditions. All other notations are the same as FIG. 1. Drift velocity boundaries of the instability region for a
above. double-quantum-wire system as a functiomygfatd=300 A Here
Using the wave functions of Eq11) as a basis set, the N=8.5x10° cm ', m*=0.067n,, ands,=13.
dispersion equation for plasma modes in this system can be
derived in a manner completely similar to that of the double-\/,,2 + 7 _ 7 [\y2<7. 24 Dy
quantum-wire systerh®°The result is still given by Eq1), \/UF+ (var=vsduo=vg= \/UF+ (vartlvsal) - 19
with only a superlattice modification of the Coulomb matrix  Equations (9), (10), and (15) defining the regions of
elements. These matrix elements of E¢l) are to be re-  cyrrent-driven plasma instability for a double-quantum-wire
placed as follows: system and a double-quantum-wire superlattice are the main
results of this paper. For simplicity, we consider the situation
- _ 2 2/, oy when both wiregsublattice$ carry the same current in op-
b1 011G y) J dydy ¢5(y) 1y IF (G by y =Y, posite directions. In this case the instability condition for a
(129 double-quantum-wire system is given by Ef0), i.e., insta-
bility occurs whenuv 4, lies between the phase velocities of
— . 2 2., the acoustic and optical plasmons for a gi A similar
Ulz_>|012(qx’qy)|_J’ dydy $a(y) iy’ —d) instability conditionp waspderived for a glﬁgr double 2D
layer system in Ref. 9. Since the phase velocity of a 1D
, (12  Plasmon—in particular, the 1D acoustic plasmon which de-
termines the threshold drift velocity for instability at given
g,—is much less than its 2D counterpart, the condition for
the onset of instability is more favorable in a double-

X F(qx !qy!y_y,)

where

. 2l ) quantum-wire system than in a planar double 2D layer sys-
T = e i@yt -y tem.
F(ax.ay.y—y')= a |:§—:w o\ 2 (13 To illustrate our results, we consider a double-quantum-
\/q2+ a+ l) wire system and rewrite Eq10) in the following form:
X y
a

V1+H (01— 0 1)re<vglvp< N1+ (vyitvirs, (16)
Employing Poisson’s summation formula in E4.3), Eq. (v~ vl s<varlve (vartvagrs

(12) take the form wherer =4m* e?/ mh?e ke is a dimensionless electron gas
density parameter. The lower and upper boundaries of the

_ * instability region in Eq(16) are shown as functions of in
v11(0x,Gy) =v11(0) +2 f dydy ¢3(y)3(y") Fig. 1. In this numerical calculation the Coulomb matrix el-
m=1 ements of Eqs.3) were evaluated assuming harmonic-
X Ko(ayly—y’ +ma|)cosma,a, (149  oscillator wave functions due to the confinement in the

direction. The wire widthb, defined as full width at half
o maximum of the ground-state Aharmonic—oscillator wave
iy = + 2 20y — function, was taken to be 150 A. Other parameters were
V1B Gy) = U1 % m§=:1 fdydy(ﬁl(y)(ﬁl(y D taken asn=8.5x10° cm 1, d=300 A,m*=0.067m,, s,
=13. For these parameters~0.93,E~10 meV, and the
separation between the lowest lateral subbands is about 15
XKo(ayly—y’—mal)]. (14b) meV. Our results show that the boundaries of the instability
o o region shift towards larges 4, and the region of instability
[It is readily verified from Eqs(14) thatv,;—v,; andvy,  €xpands as|, decreases. In the long wavelength limd, (
—v,, Whena—.] The region of instability is determined —0) the upper boundary diverges, going to infinity, whereas
by an inequality analogous to E), the threshold lower boundary approaches a finite Iinﬂt,

X [eMH*Ko(ayly—y’ +mal) +emb
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The value ofvg‘r can be found from Eq423) and (16). Em-

3 | avay imein

ploying the asymptotic behavior of the Bessel function, lv1ax.ay)|=2
Ko(X)=~—In(x2)—y asx—0, wherey=0.577-- - is Euler
constant, we obtain XKolayly—y’+(2m—1)d|]
X cog2m—1)q,d|. (18
" \/ 1.6d| 1 B
var=Uvr\ 1HTs '”( b | T2(rt2|. (A0 \whenq, -+ m/2d, we have|os) 0 and the width of the

instability interval reduces to zero.
In summary, we have presented a theory of current-driven
. lasma instability in a double-quantum-wire system, and also
For the parameters given abovey~1.65 . If Udr>.U:1hr’ Pn the lateral do{;ble-quantumqwire superlattize. We showed
plasmons with arbitrarily smati, are unstable. The width of nat if the wires carry steady currents, the quasi-1D plasma
the instability region for a givery, also depends on the \waves propagating along the wires become unstable when
separationd between the wires. Whedh increases the Cou- the electron drift velocity falls within clearly determined lim-
lomb coupling between the wires weak¢aee Eq(3b)], the  its. Double-quantum-wire plasmon instability has been
frequencies of acoustic and optical plasma modes in(8g. shown to occur at a lower drift velocity than that of planar
approach the same limiting value, and the width of the instadouble 2D layer plasmon instability, because of the softening
bility region determined by Eqg$9) or (10) decreases. of the plasma waves in 1D as compared to 2D systems. Fur-
A similar analysis is applicable to the lateral double-thermore, the effect of a superlattice on instability is mani-
quantum-wire superlattice. In this case the boundaries of thtested in a modulation of the instability boundaries depen-
instability region have an additional dependence on the waveéent on the component of the plasmon wave vector along the
vector g, [Egs.(14 and(15)]. The width of the interval of ~Superlattice axis.
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