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Current-driven plasma instabilities in parallel quantum-wire systems
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A theory of current-driven plasma instability in a double-quantum-wire system is presented. It is shown that,
if the wires carry steady currents in opposite directions, the quasi-one-dimensional~quasi-1D! plasma waves
propagating along the wires become unstable when the electron drift velocity falls between the phase velocities
of the acoustic and optical plasma modes of the Coulomb-coupled quantum wires. Such an instability occurs
at experimentally achievable drift velocities because of the softening of the plasma waves in 1D wires. The
condition for plasma instability in a lateral double-quantum-wire superlattice is also determined.
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Spurred by experimental achievements in quasi-o
dimensional~quasi-1D! semiconductor structures, the stud
of collective plasma excitations in 1D electron systems
been vigorously pursued.1–5The existence of 1D plasmons i
quantum wires was well established experimentally
means of infrared spectroscopy1 and resonant inelastic ligh
scattering.2 Their theoretical description in the random-pha
approximation~RPA! ~Refs. 3 and 4! proved to be in quan-
titative agreement with the experimental data. In addition
intrinsic physical interest, 1D quantum wire plasmon ph
nomenology may be of practical importance in regard to p
sible device applications based on the use of radiative p
mon decay in tunable solid-state sources of far-infra
electromagnetic radiation.6

The key element for experimental realization of
plasmon-based source of electromagnetic radiation is
generation of a plasma instability that can be produced b
strong steady current, with energy transferred from the c
rent to the growing plasma wave. Such current-driv
plasma instabilities are well known in gaseous plasmas,7 oc-
curing when the drift velocity of the carriers exceeds
threshold value. The same effect takes place in bulk so
state plasmas, but the required threshold drift velocities
very large and cannot be achieved experimentally becaus
low electron mobilities in bulk semiconductors.

In low-dimensional electron semiconductor systems, c
ditions for the onset of current-driven plasma instabilities
much more favorable. The threshold value of the drift velo
ity is of the order of the phase velocity of the plasm
waves.6,8,9 Softening of the plasma modes in low
dimensional systems in comparison to those of b
systems10 leads to a substantial reduction of the plasm
phase velocity. Given the relatively high electron mobiliti
in these systems and the capability of varying electron c
centration over a very wide range, low-dimensional semic
ductor structures offer a very attractive vehicle for the e
perimental realization of tunable devices based on curr
driven plasma instabilities.

Various aspects of the current-driven plasma instabi
phenomenon, including determination of the energy tran
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involved, have been considered theoretically for a numbe
low-dimensional semiconductor structures such as pla
quantum wells and superlattices, single quantum wires
well as other systems.6,8 Although the estimated threshol
drift velocities were found to be close to and somewh
above realistic experimental possibilities, the primary o
stacle to achieving asufficientlylow threshold drift velocity
remains the higher plasmon phase velocities at the low w
vectorsq used experimentally. This is a consequence of lo
dimensional plasmon dispersion laws@v2}q ~2D! ~Ref. 10!
andv2}q2ln q ~1D! ~Ref. 4! at smallq#, with phase velocity
vp5v/q diverging in the long wavelength limit. To avoid
these difficulties, plasmon modes with lower frequencies
required.

Further softening of low-dimensional plasma excitatio
occurs when two parallel layers of 2D electron gas or t
parallel wires of 1D electron gas are brought close to e
other.4,11These systems have been realized experimentall
double quantum wells of 2D electron gas12 and, very re-
cently, in double quantum wire structures.13,14 Coulomb in-
teraction between degenerate plasmon modes in the
vidual wells or wires splits the modes into high-frequen
optical and low-frequency acoustic branches. Such an ac
tic branch is a very promising candidate to accommod
plasma instability. Current-driven plasma instability in
double-layer system of 2D electron gas was considered
Ref. 9: in hydrodynamic approximation the threshold of i
stability was found to depend on separation of the layers,
under appropriate conditions~low electron concentration
small separation between the layers! it may approach experi-
mentally achievable values.

In this paper, we consider current-driven plasma insta
ity in a double-quantum-wire system, in which two paral
quantum wires are coupled by Coulomb forces, but elect
tunneling between them is taken to be negligible. We assu
that the length of the wires is comparable with the elas
mean-free path for electrons, so the conditions of quasi
listic transport are met in both wires. Within the framewo
of this model, we examine current-driven plasma instabi
when the individual wires carry different steady curren
©2002 The American Physical Society11-1
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Our calculations show that, for a given wave vectorq, plas-
mon instability arises when the drift velocity of the carrie
vdr lies in the intervalvp2(q),vdr,vp1(q) , wherevp6(q)
are the phase velocities of the optical (1) and acoustic
(2) plasmon modes of the coupled quantum wires. The
stability problem is also examined for a lateral doub
quantum-wire superlattice consisting of two sublattic
shifted with respect to each other in the transverse direc
and carrying different steady currents. We analyze dep
dence of the instability region on quantum wire characte
tics and geometry of the system.

To obtain the collective modes in a double-quantum-w
system with steady currents, we employ the standard R
formulation of longitudinal plasmon dispersion.15 Within this
approach, the dispersion equation for plasmons in a t
component confined electron plasma was previously der
for isolated 2D electron layers16 and 1D quantum wires4,17

with the inclusion of two subbands, as well as for two sp
tially separated Coulomb-coupled parallel 2D electr
layers11 and parallel 1D quantum wires.4 The generalization
of these results for a double-quantum-wire system w
steady currents is rather straightforward. The presence
currents only changes the electron distribution functions
the wires. For a system of two identical parallel wires w
only their lowest lateral energy subbands,E1, involved
~higher lateral energy subbands are taken to be energeti
inaccessible! and no interwire tunneling, the dispersion equ
tion for coupled intrasubband plasmons has the fami
form4

S 12
2e2

«b
v11P1D S 12

2e2

«b
v11P2D2S 2e2

«b
D 2

v12
2 P1P250,

~1!

where

P i~qx ,v!5E dkx

2p

f i~E1kx2qx
!2 f i~E1kx

!

\v1E1kx2qx
2E1kx

, ~2!

and

v11~qx!5E dydy8f1
2~y!f1

2~y8!K0~qxuy2y8u!, ~3a!

v12~qx!5E dydy8f1
2~y!f1

2~y82d!K0~qxuy2y8u!. ~3b!

In these equations thex axis is taken in the wire direction
Both wires are positioned in the planez50 and are separate
by distanced. The wires are assumed to have finite width
the y direction and zero thickness in thez direction. The
electron energy eigenvalues areE1kx

5E11\2kx
2/2m* and

the corresponding unperturbed energy eigenfunctions of
i th wire (i 51,2) arec ikx

5(1/ALx)e
ikxxf1(y2di)x(z) with

x2(z)5d(z) (d150,d25d); f i(E) is the electron distribu-
tion function in theith wire, «b is the background dielectric
constant, andK0(x) is the zeroth-order modified Bess
function of the second kind that arises from thex Fourier
transform of the Coulomb potential.
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Addressing a weakly nonequilibrium situation with stea
currents, we denote the drift velocity in thei th wire by vdr

( i )

and assume the unperturbed electron distribution in thei th
wire to be a drifted~equilibrium! Fermi function,f i5 f 0(kx

2m* vdr
( i )/\). This approximation is justified in the quasiba

listic regime when electrons in the wires move in an en
ronment nearly free of scattering, with the drift velocity d
termined by an external circuit.18 The polarizability
P i(qx ,v) at zero temperature is evaluated as

P i~qx ,v!5
m*

p\2qx

ln
~v2qxvdr

( i )!22~Eqx
2qxvF!2

~v2qxvdr
( i )!22~Eqx

1qxvF!2
, ~4!

where Eqx
5\qx

2/2m* and vF5\kF /m* is the electron

Fermi velocity. In the semiclassical limit (qx!kF) we have,

P i~qx ,v!5
n

m*

qx
2

~v2qxvdr
( i )!22qx

2vF
2

, ~5!

wheren52kF /p is the linear electron density in the wire
Substituting Eq.~5! into Eq. ~1! we obtain the following
dispersion equation:

@~v2qxvdr
(1)!22qx

2vF
2 #@~v2qxvdr

(2)!22qx
2vF

2 #

2v11u0
2qx

2@~v2qxvdr
(1)!21~v2qxvdr

(2)!222qx
2vF

2 #

1~v11
2 2v12

2 !u0
4qx

450, ~6!

where u0
252ne2/m* «b . With the new variable x5v

2qx(vdr
(1)1vdr

(2))/2, Eq.~6! reduces to a biquadratic equatio
with the solution

x6
2 5qx

2v̄dr
2 1qx

2~vF
21v11u0

2!6qx
2A4v̄dr

2 ~vF
21v11u0

2!1v12
2 u0

4,
~7!

where v̄dr5uvdr
(1)2vdr

(2)u/2. If vdr
(1)5vdr

(2)50, Eq. ~7! yields
known double-wire dispersion relations4 for optical (v1)
and acoustic (v2) plasmon branches as

v6
2 5qx

2@vF
21~v116v12!u0

2#. ~8!

It should be pointed out that these plasma modes are
Landau damped, in consequence of Eq.~8!. Instability arises
when x6

2 ,0. Using Eq.~7! one can easily show that thi
inequality is satisfied forx2 when

AvF
21~v112v12!u0

2, v̄dr,AvF
21~v111v12!u0

2. ~9!

Equation~9! determines the region of current-driven instab
ity for double-wire plasma waves. When both wires carry t
same current in opposite directions, i.e.,vdr

(1)52vdr
(2)[vdr

we have

vp2~qx!,vdr,vp1~qx!, ~10!

wherevp65v6(qx)/qx are the phase velocities of the opt
cal and acoustic plasmon branches given by Eq.~8!.

These results for the double-quantum-wire system can
easily generalized to the case of a lateral double-quant
wire superlattice~in x-y plane! consisting of two sublattices
1-2
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each of perioda, shifted with respect to each other by di
tanced in the transversey direction. As above, the wires ar
along thex axis. We take the sublattices to carry differe
steady currents and neglect tunneling. The energy eigenf
tions for electrons in the lowest lateral subband in the wi
can be constructed in the form of Bloch combinations
each sublattice as

c ik~r¢!5
eikxx

ALx

1

AN
(

j 52N/2

N/2

eikyjaf1~y2di2 ja !x~z!. ~11!

Here i 51,2 is the sublattice index,ky is y component of the
electron wave vectork,2p/a,ky,p/a; N5Ly /a is the
number of quantum wires in each sublattice with perio
boundary conditions. All other notations are the same
above.

Using the wave functions of Eq.~11! as a basis set, th
dispersion equation for plasma modes in this system ca
derived in a manner completely similar to that of the doub
quantum-wire system.4,5,19The result is still given by Eq.~1!,
with only a superlattice modification of the Coulomb matr
elements.4 These matrix elements of Eq.~1! are to be re-
placed as follows:

v11→ v̄11~qx ,qy!5E dydy8f1
2~y!f1

2~y8!F~qx ,qy ,y2y8!,

~12a!

v12→uv̄12~qx ,qy!u5U E dydy8f1
2~y!f1

2~y82d!

3F~qx ,qy ,y2y8!U, ~12b!

where

F~qx ,qy ,y2y8!5
p

a
(

l 52`

` e2 i (qy1
2p l

a
)(y2y8)

Aqx
21S qy1

2p l

a
D 2

. ~13!

Employing Poisson’s summation formula in Eq.~13!, Eq.
~12! take the form

v̄11~qx ,qy!5v11~qx!12 (
m51

` E dydy8f1
2~y!f1

2~y8!

3K0~qxuy2y81mau!cosmqya, ~14a!

v̄12~qx ,qy!5v12~qx!1 (
m51

` E dydy8f1
2~y!f1

2~y82d!

3@eimqyaK0~qxuy2y81mau!1e2 imqya

3K0~qxuy2y82mau!#. ~14b!

@It is readily verified from Eqs.~14! that v̄11→v11 and v̄12
→v12 when a→`.# The region of instability is determine
by an inequality analogous to Eq.~9!,
24131
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21~ v̄112uv̄12u!u0
2, v̄dr,AvF

21~ v̄111uv̄12u!u0
2. ~15!

Equations ~9!, ~10!, and ~15! defining the regions of
current-driven plasma instability for a double-quantum-w
system and a double-quantum-wire superlattice are the m
results of this paper. For simplicity, we consider the situat
when both wires~sublattices! carry the same current in op
posite directions. In this case the instability condition for
double-quantum-wire system is given by Eq.~10!, i.e., insta-
bility occurs whenvdr lies between the phase velocities
the acoustic and optical plasmons for a givenqx . A similar
instability condition was derived for a planar double 2
layer system in Ref. 9. Since the phase velocity of a
plasmon—in particular, the 1D acoustic plasmon which d
termines the threshold drift velocity for instability at give
qx—is much less than its 2D counterpart, the condition
the onset of instability is more favorable in a doubl
quantum-wire system than in a planar double 2D layer s
tem.

To illustrate our results, we consider a double-quantu
wire system and rewrite Eq.~10! in the following form:

A11~v112v12!r s,vdr /vF,A11~v111v12!r s, ~16!

wherer s54m* e2/p\2«bkF is a dimensionless electron ga
density parameter. The lower and upper boundaries of
instability region in Eq.~16! are shown as functions ofqx in
Fig. 1. In this numerical calculation the Coulomb matrix e
ements of Eqs.~3! were evaluated assuming harmoni
oscillator wave functions due to the confinement in they
direction. The wire widthb, defined as full width at half
maximum of the ground-state harmonic-oscillator wa
function, was taken to be 150 Å. Other parameters w
taken asn58.53105 cm21, d5300 Å,m* 50.067me , «b
513. For these parameters,r s'0.93,EF'10 meV, and the
separation between the lowest lateral subbands is abou
meV. Our results show that the boundaries of the instabi
region shift towards largervdr and the region of instability
expands asqx decreases. In the long wavelength limit (qx
→0) the upper boundary diverges, going to infinity, where
the threshold lower boundary approaches a finite limit,vdr

th .

FIG. 1. Drift velocity boundaries of the instability region for
double-quantum-wire system as a function ofqx at d5300 Å Here
n58.53105 cm21, m* 50.067me , and«b513.
1-3
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The value ofvdr
th can be found from Eqs.~3! and ~16!. Em-

ploying the asymptotic behavior of the Bessel functio
K0(x)'2 ln(x/2)2g asx→0, whereg50.577••• is Euler
constant, we obtain

vdr
th5vFA11r sF lnS 1.67d

b D1
1

2
~g1 ln 2!G . ~17!

For the parameters given above,vdr
th'1.65vF . If vdr.vdr

th ,
plasmons with arbitrarily smallqx are unstable. The width o
the instability region for a givenqx also depends on th
separationd between the wires. Whend increases the Cou
lomb coupling between the wires weakens@see Eq.~3b!#, the
frequencies of acoustic and optical plasma modes in Eq.~8!
approach the same limiting value, and the width of the ins
bility region determined by Eqs.~9! or ~10! decreases.

A similar analysis is applicable to the lateral doub
quantum-wire superlattice. In this case the boundaries of
instability region have an additional dependence on the w
vector qy @Eqs. ~14 and~15!#. The width of the interval of
vdr—in which plasmons having a givenqx are unstable—
takes its maximum value atqy50 and decreases asqy→
6

p

a
. In particular, fora52d ~equidistant wires!, we obtain

from Eq. ~14b!,
is,

n-

24131
,

-

e
ve

uv̄12(qx ,qy)u52U (
m51

` E dydy8f1
2(y)f1

2(y8)

3K0[qxuy2y81(2m21)du]

3cos~2m21!qydU. ~18!

When qy→6p/2d, we haveuv̄12u→0 and the width of the
instability interval reduces to zero.

In summary, we have presented a theory of current-dri
plasma instability in a double-quantum-wire system, and a
in the lateral double-quantum-wire superlattice. We show
that if the wires carry steady currents, the quasi-1D plas
waves propagating along the wires become unstable w
the electron drift velocity falls within clearly determined lim
its. Double-quantum-wire plasmon instability has be
shown to occur at a lower drift velocity than that of plan
double 2D layer plasmon instability, because of the soften
of the plasma waves in 1D as compared to 2D systems.
thermore, the effect of a superlattice on instability is ma
fested in a modulation of the instability boundaries dep
dent on the component of the plasmon wave vector along
superlattice axis.
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