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The universal anomalous diffusion scaling is obtained for the semiclassical quantum Hall transition, which
has been argued to describe samples with dissipation or correlated impurities. The results explain a discrepancy
between existing numerics and the expected scajin@x, = % which is violated because of a cancellation in
the scaling function. The crossover with increasing observation time from semiclassical to quantum scaling is
shown to explain a recent experiment which finds different scaling laws depending on how the localization
length is extracted.
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The electronic eigenstates of disordered systems at critica@inomalous diffusion exponent=3 which characterizes the
points such as the quantum Hall plateau transttimmmetal-  non-Gaussian correlation of critical states. This result differs
insulator transitiohare believed to have fractal structure de- from the valuen= 3 predicted by a simple scaling argument,
scribed by universal scaling laws, but analytic results forbecause the leading scaling term vanishes. The restricted
such scaling laws are quite scarce. This paper finds the exat@pen-walk” version of the problem, which is more conve-
anomalous diffusion scaling in a standard semiclassicaient for numerics,is shown analytically to havg=; with
model for the quantum Hall transition, extending previousdivergent logarithmic corrections resulting from a short-
numerical studied.Several authofs® have argued that this distance singularity in the associated polymer ensemble.
semiclassical limit is relevant to various experimental situa;Monte Carlo simulations are used to verify some of the pre-
tions, and it also shares some features with the spin quantudicted scaling behavior. Aside from their direct relevance to
Hall transitior® in disordered superconductors. Here thequantum Hall transitions, the results suggest possible fea-
semiclassical model is compared to recent experimentsures of other disordered electronic transitions: cancellations
which appear to show both “quantum” and “classical” lo- in scaling functions, logarithmic corrections, and slow decay
calization scaling laws in the same sample, depending onf finite-size effects.
how the localization length is extracted. The existence of anomalous scalifpnzeroy) for the

The semiclassical model has recently appeared in studiggdinary integer transition was shown by Chalker and
of how dissipative effects can modify the quantum Hall Daniell: in the scaling regime, w<1, the spectral function
transition®® Many experiments observe localization length has two distinct universal limits:
scalings more consistent with the classical value3 than s o .
the expected quantum value=2.35+ 0.051%1 By suppress- _ q°w if 9°<o
ing tunneling and introducing a finite dephasing length, dis- (0B )~ 0w "%q77? if > .
sipation increases the range of chemical potentials where a
semiclassical description applies, but causes simple diffusiomhis form satisfies the scaling lawS(q;E.,®)
over a nonzero range around the critical chemical potential= @~ 'f(g?/w) which follows from a homogeneity assump-
The main experimental results can be understood in a simpléon. S(g;E., ) is defined as the Fourier transform of
picture incorporating dissipation, without requiring a new
dissipation-dominated critical point other than diffusion. S(rE,,w)= < 2 S

The starting point of the analysis is a standard lattice e i
model for classical motion on percolation hulls or random
level surfaces; quantum mechanics only enters this model in v ¢i(0)¢i*(r)¢j(r)¢f(0)>- @

(1)

w w
Eit+ 5 —Ec|8| Ej~ 5 —Ec

properties like the density of states and conductivify
which count the number of trajectories. The random level ] ) ) _
surface problem was first introduced in the quantum HalWe now define the density-density correlation
context as a useful but quantitatively incorrect model for thelp(0,0)p(r 1)) at E=E. in the random level surface model,
integer transitiot>** Our approach uses a mapping to aWith scaling analogous to Eq2).
class of lattice polymets to find time-dependent correla- ~ Consider a classical charged particle moving in g
tions in the semiclassical random level surface problem anglane in a magnetic fiel8z and random potentiaf(x). For
resolve a disagreement between existing numerics and ana-smoothly varying potential, the particle velocity averaged
lytical work. over the fast cyclotron motion is= (E X B)/B?. The particle
The results improve upon Monte Carlo calculations ofvelocity is perpendicular to the potential gradient, and
Evers on the random level surface problem, which correctlythe particle moves along constant energy surfaces of the
found a deviation from simple scaling but did not reach therandom potential. For a uniformly distributed potential
extremely long paths %10* disorder correlation lengths V(x) e[ —1,1], the typical size of level surfaces at energy
where the true asymptotic scaling sets in. There is a univers&@l diverges asE—0. The connection to percolation comes
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universality class as the ordinagypoint. The critical expo-
nentsy andv,, defined through

2 R22—H
SAW’s of lengthN
2 27H~MNN y—1
SAW'’s of lengthN Z 2-H

SAW's of lengthN
=(R®)san~N?"", %)

take valuesy= 2, andv,= 3 for this class, ange=1 on the

hexagonal latticé® Here and in the followind )say denotes
FIG. 1. The dotted edges are self-contacts: the edge betwgen an average over self-avoiding walks, while denotes an

andV, is an antiparallel self-contact, while that betwagnandV,  average over disorder configurations in the random level sur-

is a parallel self-contact. This path is not allowed classically sincdface problem.

the walk passe¥, both on the right and on the left. The linear increase with time of the mean squared particle

displacement ak. follows from the values of polymer ex-

about because a level surface at endfgyeparates regions ponentsv, and y: (R*(N))xN?~1*2?s=N. Higher mo-

with V>E from those withV<E. The level surfaces are ments of the particle distribution function show nontrivial

closed non-self-intersecting loops, whose statistical properscaling laws:

ties are exactly the same as percolation hifllsr self-

interacting ring polymers at the critical point1® (RP'(N))orNY"INZM7o=NED7 - n=1, (6)
.The results from pe.rcola?ic')n and polymers used to study-5, random walkg R2"(N))<N". Higher moment lawg6)

this problem require discretizing the motion so that the paryefiect the nonintersection and memory properties of random

ticle moves on a regular lattice. From nume?i%fsi_t IS Jevel surfaces, which lead to a non-Gaussian distribution of
known that the particle has a nonzero mean velocity at thg , N

critical energy, so time can be discretized as well: the particle 'i'he. expressior(3) for the particle distribution function

takes one step on the lattice per time unit. The resultinggerN steps includes both SAW's and SAP’s. Since the sum
model on the hexagonal lattfte’? is depicted in Fig. 1. oyer SAP's contains not just loops of length but of all

There is an independent random potenidabn each face of = gpqrter lengths, this term contributes a large constant back-
the lattice. A particle of energf moves so that the potential 4round which is difficult to subtract numerically. The most

of faces to its left(right) is always greatefless thanE. comprehensive numerics have been performed on a reduced
Averaging over disorder, the probability to bebeafter N problem including only the average over self-avoiding

steps starting frona can be written as a w'eiglgted Sum OVer y|ks. It follows from simple properties of a polymer scaling
self-avoiding walks(SAW's) or loops(SAP'S.™ The result - nction that Monte Carlo numerics suggesting 0 for the

is (H is the number of different hexagons visited by the equced problem are not reaching the asymptotic regime: the

SAW or SAR actual value isy=3 with a logarithmic prefactor. Then a
similar argument gives)= 3 for the full problem(open and
f(r,N)e= 2 SN mod! qz*H closed polymers with no logarithmic corrections.
SAP'si througha andb, ’ The basic scaling law for polymers predicts that the par-
e D ticle distribution functionf, for the reduced problem has the
form
+ 2 Z_H. (3) —t—dv —v
SAW'’s] of lengthN fo(r.)=t"""H(rt %), (@)
o] S contacts whereH is normalized agH(x) d%=1. H is positive, falls

. - ff rapidl i h for th igi
Here each SAP should be summed twice, once with d|stanc\%hg2§p:_?(¥()Tﬁ;i}vﬁgi,@frﬁrﬁg beeri(g\?iztr :tr sfmeau?rilgm,

g and once with distance-q. The classical analogue of the
spectral functiorS(q, ) is the imaginary part ofpassing to
continuous timg

the simplest example of a polymer contact exponent: a criti-
cal exponent describes the scaling as the two ends of the
polymer approach each other. The value<(1)/v, can be
" derived from noting that as the ends approach each other; a
H(q'w)z—ij er dte i@refir t), (4) SAW becomes a SAP. This divergence at smalis the

0 source of the logarithmic corrections in the reduced problem.

For random walksII(q,®)>(w—iDg?) "%, and oIl is a It is convenient to isolate the divergenceHi{x),

function of g%/ w (diffusive scaling; such scaling is violated o1 —X212

at the semiclassical Hall transition, as seen below. Hx)=cx"e *HredX), ®)
The weight 2" in (3) is exactly that of thed’ model  wherec is a positive constant artd ¢, is some smooth func-

studied by Duplantier and Saletfrwhich is in the same tion (no longer necessarily positiveThe cutoff on the sin-
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TABLE I. Comparison of exact critical properties of semiclassical Hall transition with the ordinary
integer transitior(IQHT) and a spin transitiofSQHT). The critical conductivity is in units of?/h per spin.

v o n
CQHT 3 (Ref. 13 J3/4~0.433(Ref. 18 :
IQHT 2.35+0.05 (Ref. 11 0.5+0.1 (Ref. 19 0.38+0.04 (Ref. 1)
SQHT 2 (Ref. 8 J3/4 (Ref. 18 ?

gular part is arbitrary; a Gaussian is chosen for simplicity.the scaling function is shown below to vanish in the limit

The distribution function in momentum space is w—0. The next term is nonvanishing and gives Ilm
T~— 74

~oY’q~ " son=1/4. There are no logarithmic corrections,
. » , unlike in the open-walk case, because of thé'” damping
fo(q,t)ZJ e ' fo(r,t) dr of open walks.
As t—o the particle distribution function goes to a non-
* - limit,
=27-rf Jo(qnH(rt 4Nt dr=1,(qt*"). zero fimi
0
© H(r )= > 27HLL (12

closed paths including 0 and
The contribution of the regular paH ¢, to f(q,0) is

finite (possibly zerp as w—0: with =,f(r,)=1 andL is the path length. The background
contributes ad(w) part which is henceforth ignore@liffi-
B ® o /7 culty in separatingd(w) is the reason why Monte Carlo cal-
freg(Q,O):z”fo fo Jo(uqt")Hegu)u du dt culations are often performed on the reduced open-walk

problem. Definingf(r,N)=f(r,N) — f(r,=), some straight-
_7r(7/8)2\/\/§—1/ J‘ereg(u)

forward cancellations show thatyf(r,N)=0 for all r, so
2q7 34 duj. (10 for a g, in the continuum limitf3f(q,t)dt=0 and ImII
—0 asw—0.
For nonzeran<q’" the contribution of paths shorter than
o~ ! is nearly zero from the same cancellations; long paths
determine

0 wu

The singular part oH(x) gives a logarithmically divergent
contributionC as w—0:

1/7

|mn~f tYcoq wt— 1)g(qtdt~ —— . (13)
! q7

C=27rcf f e I (uqtyu" Ve u2y du dt
0Jo

=2mcl(7/8)27 %8 f e “'F(7/8,1-q’t¥2)dt
0
The upshot of the above results is that for neither the

201‘(7/8)2‘/\/5—1 open-walk case nor the full problem is the scaling trivial:
= [Iog(q”“/w) +.--], (11 logarithmic corrections appear in the open-walk case, and the
q” scaling function in the full problem vanishes for small argu-

ment, leading to the emergence of a power-law a3
where the omitted terms are finite as—~0 andF is the instead ofy=2x,=3%. A similar discrepancy between and
confluent hypergeometric function. the value of X; obtained from finite-size scaling for the

From Eq.(11), ImIl, scales asqy”"*=q 2”7 with »  integer Hall transition was noted in the original paper.
=%, with a logarithmically divergent prefactor resulting  An interesting question is whether the spin quantum Hall
from the polymer contact singularityl (x)~x~ 4 The sin-  transition(SQHT), which has the same and» as the semi-
gularity is easily missed numerically, since it only starts toclassical transitiorfTable ), assuming a simple relation be-
dominate the scaling function for small valuesxah dimen-  tween Landauer and Einstein conductan@ealso has the
sionless units, so extremely long walks wit=10* are re-  samez. Some sums over paths in the SQHT network model
quired for its observation. We have performed Monte Carlaare exactly equal to sums over percolation h#ifisbut indi-
simulations of walks up td&N=10° to verify the predicted vidual paths are not directly related to individual hulls, so it
increase oH(x) at smallx. is not clear thaty need be the same.

Now consider the average over dltlosed and open Several authofe proposed that the semiclassical limit
paths which gives Inl. After a long timet, only a fraction  discussed above may be relevant to the many experimental
t~ Y7 of paths are open, and most particles move on closedamples which fail to show simple~2.3 scaling down to
loops. A nave scaling predicts thatp=2x,=3, but low temperatures. The exponentis traditionally obtained
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by measuring two different combinations pfandz, where An area of current interest is how dissipation via coupling
the dynamical exponert s typically equal to 1 within ex- to low-energy excitations, such as weak_ly localized elec-
perimental error. The scaling of the width of the transitionrons, can modify quantum phase transmanSuph low-

region with temperature measures the produzt experi- energy excitations of unknown origin seem experimentally to

mental results on such scaling show variously scaling dow'generate a finite dephasmg length down to the Iovx_/est mea-
) 10 . sured temperatures in some samples. As the chemical poten-
to low temperature withvz~2.3;" scaling down to low tem-

. . tial nears the critical energy, power-law scaling of the local-
perature withvz~1.52 and a breakdown of scaling at low gy, P 9

o _ 20 ization length requires phase coherence on increasing length
temperature with high-temperature scaling~=1.5: and time scales. The physics of the quantum Hall fixed point

An alternate way to determine the localization length andyepends on both tunneling and phase coherence, which keeps
hencev directly, without measuring, is via variable-range  the states from being truly extended except at the critical
hopping in the localized regime far from the transition. Re-energy. Once the localization length is larger than the
cent experimen?sfound for three samples one scaling law dephasing length, the transport should be diffusifieite
for the plateau width, corresponding te<1.5 if z=1, and  ¢,,), as seen in some samples in a finite range around the
another corresponding to~2.3 for the localization length critical energy.
obtained from variable-range hopping at finite temperature. Another explanation for classical percolation scaling is
Other samples had plateau widthvalues ranging from 1.3 that a smooth disorder potenti@isorder correlation length
to 2.2. This surprising appearance of different power laws irflarger than the magnetic lengtishows a larger crossover
the same samples suggests either a nontrivial valuez for region where classical percolation applies than a sharp po-
#1 or that the two measurements are probing different phystential, because tunneling is reduced. However, this would
ics. The remainder of this paper discusses an interpretation Gt explain the breakdown in scaling of the plateau width at
these experiments based on quantum-mechanical tunneling?V {emperature observed in many samples, and would re-
between semiclassical states and a loss of phase cohererfidr® samples from similar growth runs to have very differ-

near the critical energy. Note that the single-particle motior€Nt impurity distributions. A possible direct test of whether

on percolation hulls discussed below is distinct from percoC@nges in dephasing length are indeed correlated with the
. : “ ” sample-dependent behavior would be the addition of a con-
lation of macroscopic quantum Hall “puddie$.

A possible explanation for the existence of two Sca“ngtrollable coupling to dissipation, as done for Id®vin Ref.
laws in the same samples is that the plateau width measure- Our main conclusion is that the semiclassical limit of the

ments,.taken at high current so that each electron st_ate .kﬁlantum Hall transition has a nontrivial mobility edge scal-
only briefly occupied, do not see the effects of the relatlvelymg which can be found exactly using results from the theory

slow quantum tunneling pro_ce_ss_es,.whmh C&?“SQ'?’ for o polymers or percolation. This limit can be experimentally
the true zero-temperature, infinite-time localization length. bserved in samples with dissipation or smooth potential

The effective localization length on short-time scales shouldy,.tyations and is closely related to the spin quantum Hall
then be described by the classical percolation expoment (. cition.

=3. In Ref. 9 the plateau width measurements were taken at
a conductivity o of order 10 %e?/h, while the variable-
range-hopping localization length was taken from data ove
the range 10**<oh/e?<10 °. This argument predicts that
the localization length extracted from plateau width scaling

should be shorter than obtained that from variable-range The author thanks I. Affleck, A. Green, I. Gruzberg, V.

Note addedAfter this paper was submitted, a prepfint
appeared which examines the anomalous scaling exponent at
fhe spin quantum Hall transition and also fings: .

hopping at low current. Gurarie, and A. Vishwanath for useful conversations.
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