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Mobility-edge scaling at semiclassical and dissipative Hall transitions

Joel E. Moore
Department of Physics, University of California, Berkeley, California 94720

~Received 28 March 2002; published 4 June 2002!

The universal anomalous diffusion scaling is obtained for the semiclassical quantum Hall transition, which
has been argued to describe samples with dissipation or correlated impurities. The results explain a discrepancy
between existing numerics and the expected scalingh52x15

1
2 , which is violated because of a cancellation in

the scaling function. The crossover with increasing observation time from semiclassical to quantum scaling is
shown to explain a recent experiment which finds different scaling laws depending on how the localization
length is extracted.

DOI: 10.1103/PhysRevB.65.241309 PACS number~s!: 73.43.Nq, 72.20.Ee
tic

e-
fo
x
ic
u

ua
tu

he
nt
-
o

di
al
th

is
re
sio
tia
p
w

ic
m
l

ve
a

th
a

-
an
an

o
tly
th

rs

ers
t,
cted
-

rt-
ble.
re-
to

fea-
ons
ay

nd

-

n
l,

ed

nd
the
al
y
s

The electronic eigenstates of disordered systems at cri
points such as the quantum Hall plateau transition1 or metal-
insulator transition2 are believed to have fractal structure d
scribed by universal scaling laws, but analytic results
such scaling laws are quite scarce. This paper finds the e
anomalous diffusion scaling in a standard semiclass
model for the quantum Hall transition, extending previo
numerical studies.3 Several authors4–6 have argued that this
semiclassical limit is relevant to various experimental sit
tions, and it also shares some features with the spin quan
Hall transition7,8 in disordered superconductors. Here t
semiclassical model is compared to recent experime9

which appear to show both ‘‘quantum’’ and ‘‘classical’’ lo
calization scaling laws in the same sample, depending
how the localization length is extracted.

The semiclassical model has recently appeared in stu
of how dissipative effects can modify the quantum H
transition.4,5 Many experiments observe localization leng
scalings more consistent with the classical valuen5 4

3 than
the expected quantum valuen'2.3560.05.10,11By suppress-
ing tunneling and introducing a finite dephasing length, d
sipation increases the range of chemical potentials whe
semiclassical description applies, but causes simple diffu
over a nonzero range around the critical chemical poten
The main experimental results can be understood in a sim
picture incorporating dissipation, without requiring a ne
dissipation-dominated critical point other than diffusion.

The starting point of the analysis is a standard latt
model for classical motion on percolation hulls or rando
level surfaces; quantum mechanics only enters this mode
properties like the density of states and conductivity3,12

which count the number of trajectories. The random le
surface problem was first introduced in the quantum H
context as a useful but quantitatively incorrect model for
integer transition.13,14 Our approach uses a mapping to
class of lattice polymers15 to find time-dependent correla
tions in the semiclassical random level surface problem
resolve a disagreement between existing numerics and
lytical work.

The results improve upon Monte Carlo calculations
Evers3 on the random level surface problem, which correc
found a deviation from simple scaling but did not reach
extremely long paths (>104 disorder correlation lengths!
where the true asymptotic scaling sets in. There is a unive
0163-1829/2002/65~24!/241309~4!/$20.00 65 2413
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anomalous diffusion exponenth5 1
4 which characterizes the

non-Gaussian correlation of critical states. This result diff
from the valueh5 1

2 predicted by a simple scaling argumen
because the leading scaling term vanishes. The restri
‘‘open-walk’’ version of the problem, which is more conve
nient for numerics,3 is shown analytically to haveh5 1

4 with
divergent logarithmic corrections resulting from a sho
distance singularity in the associated polymer ensem
Monte Carlo simulations are used to verify some of the p
dicted scaling behavior. Aside from their direct relevance
quantum Hall transitions, the results suggest possible
tures of other disordered electronic transitions: cancellati
in scaling functions, logarithmic corrections, and slow dec
of finite-size effects.

The existence of anomalous scaling~nonzeroh) for the
ordinary integer transition was shown by Chalker a
Daniell1: in the scaling regimeq,v!1, the spectral function
has two distinct universal limits:

S~q;Ec ,v!;H q2v22 if q2!v

v2h/2qh22 if q2@v.
~1!

This form satisfies the scaling law S(q;Ec ,v)
5v21f (q2/v) which follows from a homogeneity assump
tion. S(q;Ec ,v) is defined as the Fourier transform of

S~r ;Ec ,v!5K (
i , j

dS Ei1
v

2
2EcD dS Ej2

v

2
2EcD

3c i~0!c i* ~r !c j~r !c j* ~0!L . ~2!

We now define the density-density correlatio
^r(0,0)r(r ,t)& at E5Ec in the random level surface mode
with scaling analogous to Eq.~2!.

Consider a classical charged particle moving in thex-y
plane in a magnetic fieldBẑ and random potentialV(x). For
a smoothly varying potential, the particle velocity averag
over the fast cyclotron motion isv5(E3B)/B2. The particle
velocity is perpendicular to the potential gradient, a
the particle moves along constant energy surfaces of
random potential. For a uniformly distributed potenti
V(x)P@21,1#, the typical size of level surfaces at energ
E diverges asE→0. The connection to percolation come
©2002 The American Physical Society09-1
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about because a level surface at energyE separates region
with V.E from those withV,E. The level surfaces are
closed non-self-intersecting loops, whose statistical pro
ties are exactly the same as percolation hulls,13 or self-
interacting ring polymers at the criticalu point.16

The results from percolation and polymers used to st
this problem require discretizing the motion so that the p
ticle moves on a regular lattice. From numerics3,12 it is
known that the particle has a nonzero mean velocity at
critical energy, so time can be discretized as well: the part
takes one step on the lattice per time unit. The result
model on the hexagonal lattice15,12 is depicted in Fig. 1.
There is an independent random potentialVi on each face of
the lattice. A particle of energyE moves so that the potentia
of faces to its left~right! is always greater~less! thanE.

Averaging over disorder, the probability to be atb afterN
steps starting froma can be written as a weighted sum ov
self-avoiding walks~SAW’s! or loops~SAP’s!.15 The result
is (H is the number of different hexagons visited by t
SAW or SAP!

f ~r ,N!} (
SAP8s i througha andb,

l 5 length of SAP,
q5steps froma to b

dN mod l ,q22H

1 (
SAW8s j of lengthN

from a to b
no i self-contacts

22H. ~3!

Here each SAP should be summed twice, once with dista
q and once with distancel 2q. The classical analogue of th
spectral functionS(q,v) is the imaginary part of~passing to
continuous time!

P~q,v![2 i E drE
0

`

dt e2 i (q•r1vt) f ~r ,t !. ~4!

For random walksP(q,v)}(v2 iDq2)21, and vP is a
function of q2/v ~diffusive scaling!; such scaling is violated
at the semiclassical Hall transition, as seen below.

The weight 22H in ~3! is exactly that of theu8 model
studied by Duplantier and Saleur,16 which is in the same

FIG. 1. The dotted edges are self-contacts: the edge betweeV3

andV4 is an antiparallel self-contact, while that betweenV1 andV2

is a parallel self-contact. This path is not allowed classically si
the walk passesV2 both on the right and on the left.
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universality class as the ordinaryu point. The critical expo-
nentsg andnu , defined through

(
SAW8s of lengthN

22H;mNNg21

(
SAW8s of lengthN

R222H

(
SAW8s of lengthN

22H

5^R2&SAW;N2nu, ~5!

take valuesg5 6
7 , andnu5 4

7 for this class, andm51 on the
hexagonal lattice.16 Here and in the followinĝ &SAW denotes
an average over self-avoiding walks, while^ & denotes an
average over disorder configurations in the random level
face problem.

The linear increase with time of the mean squared part
displacement atEc follows from the values of polymer ex
ponentsnu and g: ^R2(N)&}Ng2112nu5N. Higher mo-
ments of the particle distribution function show nontrivi
scaling laws:

^R2n~N!&}Ng21N2nnu5N(8n21)/7, n>1. ~6!

For random walkŝ R2n(N)&}Nn. Higher moment laws~6!
reflect the nonintersection and memory properties of rand
level surfaces, which lead to a non-Gaussian distribution
f (r ,N).

The expression~3! for the particle distribution function
afterN steps includes both SAW’s and SAP’s. Since the s
over SAP’s contains not just loops of lengthN but of all
shorter lengths, this term contributes a large constant ba
ground which is difficult to subtract numerically. The mo
comprehensive numerics have been performed on a red
problem including only the average over self-avoidi
walks. It follows from simple properties of a polymer scalin
function that Monte Carlo numerics suggestingh'0 for the
reduced problem are not reaching the asymptotic regime:
actual value ish5 1

4 with a logarithmic prefactor. Then a
similar argument givesh5 1

4 for the full problem~open and
closed polymers!, with no logarithmic corrections.

The basic scaling law for polymers predicts that the p
ticle distribution functionf 0 for the reduced problem has th
form

f 0~r ,t !5t2dnuH~rt 2nu!, ~7!

whereH is normalized as*H(x) ddx51. H is positive, falls
off rapidly as x→`, and is smooth except for the origin
where H(x);x(g21)/nu5x21/4. This behavior at smallx is
the simplest example of a polymer contact exponent: a c
cal exponent describes the scaling as the two ends of
polymer approach each other. The value (g21)/nu can be
derived from noting that as the ends approach each othe
SAW becomes a SAP. This divergence at smallx is the
source of the logarithmic corrections in the reduced proble

It is convenient to isolate the divergence inH(x),

H~x!5cx21/4e2x2/21H reg~x!, ~8!

wherec is a positive constant andH reg is some smooth func-
tion ~no longer necessarily positive!. The cutoff on the sin-

e
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TABLE I. Comparison of exact critical properties of semiclassical Hall transition with the ordin
integer transition~IQHT! and a spin transition~SQHT!. The critical conductivity is in units ofe2/h per spin.

n s h

CQHT 4
3 ~Ref. 13! A3/4'0.433~Ref. 18! 1

4

IQHT 2.3560.05 ~Ref. 11! 0.560.1 ~Ref. 19! 0.3860.04 ~Ref. 1!
SQHT 4

3 ~Ref. 8! A3/4 ~Ref. 18! ?
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gular part is arbitrary; a Gaussian is chosen for simplic
The distribution function in momentum space is

f̂ 0~q,t !5E e2 iq•r f 0~r ,t ! d2r

52pE
0

`

J0~qr !H~rt 24/7!t28/7r dr[ f̂ 0~qt4/7!.

~9!

The contribution of the regular partH reg to f (q,v) is
finite ~possibly zero! asv→0:

f reg~q,0![2pE
0

`E
0

`

J0~uqt4/7!H reg~u!u du dt

5
7G~7/8!2AA221

2q7/4 S E
0

`H reg~u!

u3/4
duD . ~10!

The singular part ofH(x) gives a logarithmically divergen
contributionC asv→0:

C52pcE
0

`E
0

`

e2 ivtJ0~uqt4/7!u21/4e2u2/2u du dt

52pcG~7/8!221/8E
0

`

e2 ivtF~7/8,1,2q2t8/7/2!dt

5
2cG~7/8!2AA221

q7/4
@ log~q7/4/v!1•••#, ~11!

where the omitted terms are finite asv→0 and F is the
confluent hypergeometric function.

From Eq. ~11!, Im P0 scales asq27/45q221h with h
5 1

4 , with a logarithmically divergent prefactor resultin
from the polymer contact singularityH(x);x21/4. The sin-
gularity is easily missed numerically, since it only starts
dominate the scaling function for small values ofx in dimen-
sionless units, so extremely long walks withN>104 are re-
quired for its observation. We have performed Monte Ca
simulations of walks up toN5105 to verify the predicted
increase ofH(x) at smallx.

Now consider the average over all~closed and open!
paths which gives ImP. After a long timet, only a fraction
t21/7 of paths are open, and most particles move on clo
loops. A naı¨ve scaling predicts thath52x15 1

2 , but
24130
.

o

d

the scaling function is shown below to vanish in the lim
v→0. The next term is nonvanishing and gives ImP
;v1/7q27/4, soh51/4. There are no logarithmic correction
unlike in the open-walk case, because of thet21/7 damping
of open walks.

As t→` the particle distribution function goes to a no
zero limit,

f ~r ,`![ (
closed paths including 0 andr

22HL21, ~12!

with ( r f (r ,`)51 andL is the path length. The backgroun
contributes ad(v) part which is henceforth ignored~diffi-
culty in separatingd(v) is the reason why Monte Carlo ca
culations are often performed on the reduced open-w
problem!. Defining f̃ (r ,N)[ f (r ,N)2 f (r ,`), some straight-
forward cancellations show that(Nf̃ (r ,N)50 for all r, so
for all q, in the continuum limit*0

` f̃ (q,t)dt50 and ImP
→0 asv→0.

For nonzerov!q7/4 the contribution of paths shorter tha
v21 is nearly zero from the same cancellations; long pa
determine

Im P;E
v21

`

t21/7cos~vt21!g~qt4/7!dt;
v1/7

q7/4
. ~13!

The upshot of the above results is that for neither
open-walk case nor the full problem is the scaling trivi
logarithmic corrections appear in the open-walk case, and
scaling function in the full problem vanishes for small arg
ment, leading to the emergence of a power-law andh5 1

4

instead ofh52x15 1
2 . A similar discrepancy betweenh and

the value of 2x1 obtained from finite-size scaling for th
integer Hall transition was noted in the original paper.1

An interesting question is whether the spin quantum H
transition~SQHT!, which has the sames andn as the semi-
classical transition~Table I!, assuming a simple relation be
tween Landauer and Einstein conductances,12 also has the
sameh. Some sums over paths in the SQHT network mo
are exactly equal to sums over percolation hulls,8,17 but indi-
vidual paths are not directly related to individual hulls, so
is not clear thath need be the same.

Several authors4,5 proposed that the semiclassical lim
discussed above may be relevant to the many experime
samples which fail to show simplen'2.3 scaling down to
low temperatures. The exponentn is traditionally obtained
9-3
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by measuring two different combinations ofn andz, where
the dynamical exponentz is typically equal to 1 within ex-
perimental error. The scaling of the width of the transiti
region with temperature measures the productnz: experi-
mental results on such scaling show variously scaling do
to low temperature withnz'2.3,10 scaling down to low tem-
perature withnz'1.5,9 and a breakdown of scaling at low
temperature with high-temperature scalingnz'1.5.20

An alternate way to determine the localization length a
hencen directly, without measuringz, is via variable-range
hopping in the localized regime far from the transition. R
cent experiments9 found for three samples one scaling la
for the plateau width, corresponding ton'1.5 if z51, and
another corresponding ton'2.3 for the localization length
obtained from variable-range hopping at finite temperatu
Other samples had plateau widthn values ranging from 1.3
to 2.2. This surprising appearance of different power laws
the same samples suggests either a nontrivial value fz
Þ1 or that the two measurements are probing different ph
ics. The remainder of this paper discusses an interpretatio
these experiments based on quantum-mechanical tunn
between semiclassical states and a loss of phase cohe
near the critical energy. Note that the single-particle mot
on percolation hulls discussed below is distinct from per
lation of macroscopic quantum Hall ‘‘puddles.’’4

A possible explanation for the existence of two scali
laws in the same samples is that the plateau width meas
ments, taken at high current so that each electron sta
only briefly occupied, do not see the effects of the relativ
slow quantum tunneling processes, which causen'2.3 for
the true zero-temperature, infinite-time localization leng
The effective localization length on short-time scales sho
then be described by the classical percolation exponenn
5 4

3 . In Ref. 9 the plateau width measurements were take
a conductivity s of order 1024e2/h, while the variable-
range-hopping localization length was taken from data o
the range 10213<sh/e2<1025. This argument predicts tha
the localization length extracted from plateau width scal
should be shorter than obtained that from variable-ra
hopping at low current.
tt

y,
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An area of current interest is how dissipation via coupli
to low-energy excitations, such as weakly localized el
trons, can modify quantum phase transitions.5 Such low-
energy excitations of unknown origin seem experimentally
generate a finite dephasing length down to the lowest m
sured temperatures in some samples. As the chemical po
tial nears the critical energy, power-law scaling of the loc
ization length requires phase coherence on increasing le
and time scales. The physics of the quantum Hall fixed po
depends on both tunneling and phase coherence, which k
the states from being truly extended except at the crit
energy. Once the localization length is larger than
dephasing length, the transport should be diffusive~finite
sxx), as seen in some samples in a finite range around
critical energy.

Another explanation for classical percolation scaling
that a smooth disorder potential~disorder correlation length
larger than the magnetic length! shows a larger crossove
region where classical percolation applies than a sharp
tential, because tunneling is reduced. However, this wo
not explain the breakdown in scaling of the plateau width
low temperature observed in many samples, and would
quire samples from similar growth runs to have very diffe
ent impurity distributions. A possible direct test of wheth
changes in dephasing length are indeed correlated with
sample-dependent behavior would be the addition of a c
trollable coupling to dissipation, as done for lowB in Ref.
21.

Our main conclusion is that the semiclassical limit of t
quantum Hall transition has a nontrivial mobility edge sc
ing which can be found exactly using results from the the
of polymers or percolation. This limit can be experimenta
observed in samples with dissipation or smooth poten
fluctuations and is closely related to the spin quantum H
transition.

Note added:After this paper was submitted, a preprint22

appeared which examines the anomalous scaling expone
the spin quantum Hall transition and also findsh5 1

4 .

The author thanks I. Affleck, A. Green, I. Gruzberg,
Gurarie, and A. Vishwanath for useful conversations.
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