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Phonons and electron-phonon scattering in carbon nanotubes
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Electron-phonon scattering is studied within an effective-mass theory. A continuum model for acoustic
phonons is introduced and electron-phonon interaction due to modification of band structure is derived as well
as a normal deformation potential. In a metallic nanotube, the deformation potential does not participate in
electron scattering and a metallic nanotube becomes nearly a one-dimensional ballistic conductor even at room
temperature. A resistivity determined by small band-structure interaction depends on the chirality at low
temperatures. A magnetic field perpendicular to the axis induces electron scattering by the deformation poten-
tial, giving rise to huge positive magnetoresistance.
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[. INTRODUCTION modes of planes because they fail to give breathing mbdes.
In this paper we shall construct a continuum model suitable
Carbon nanotube€CN's) are quasi-one-dimensional ma- for a correct description of long-wavelength acoustic
terials made o6 p?-hybridized carbon networksElectronic ~ phonons.
structure of a single CN has been studied theoretically, which A lattice deformation gives rise to a diagonal energy shift
predicted that a CN becomes either metallic or semiconductalled deformation potential in a matrkx p Hamiltonian. In
ing depending on its chiral vector, i.e., boundary conditionsaddition to the deformation potential it causes small off-
in the circumference directio.'* These predictions have diagonal terms arising from a modification in the local band
been confirmed by Raman experiméftnd direct measure-  structure due to change in the bond-length between neighbor-
ments of local density of states by scanning tunnelingng carbon atoms. In the absence of a magnetic field, the
spectroscopy”~**Transport properties are particularly inter- former deformation potential gives no backscattering and the
esting because of their unique topological structdfés.this  resistivity is determined by the latter band-structure term. A
paper we focus on electron-phonon scattering as the maimagnetic field changes the situation drastically and leads to
Origin Of I’eSiStiVity a.nd reVeaI |tS Ch|ral|ty and magnetic-ﬁeld an appreciab'e amount of backscattering due to the deforma-
dependence. tion potential. This leads to increase of the resistivity in a
For impurity scattering, it was shown theoretically that magnetic field, or positive magnetoresistance, in metallic
there is no backscattering for impurity potentials with acy's.
range larger than the lattice spacing in metallic CN'ghis In this paper, we shall calculate the phonon-limited resis-
intriguing fact was related to Berry’s phase acquired by &ance of metallic CN's and demonstrate a huge positive mag-
rotation in the wave-vector space in the system described byetoresistance. The case of semiconducting CN’s will be
a k-p Hamiltonian!® The absence of backward scattering touched upon very briefly. In Sec. Il a continuum model for
has been confirmed by numerical calculations in a tightijong-wavelength phonons is introduced and resulting modes
binding modef:® There have been some reports on experi-are compared with those of microscopic calculations. In Sec.
ments which seem to support this theoretical predicféi. || an effective Hamiltonian for electron-phonon interaction
Effects of scattering by a lattice vacancy in armchairis derived in ak-p or effective-mass approximation. In Sec.
nanotubes have been studied within a tight-bindingjy the resistivity is calculated and in Sec. V the magnetore-
model??* It has been shown that the conductance at zergjstance is calculated. A discussion and short summary are
energy in the absence of a magnetic field is quantized intgjven in Secs. VI and VII, respectively. Details of derivation
zero, one, or two times of the conductance quanedimri  of the effective continuum Hamiltonian for phonons and
for a vacancy consisting of thré®carbon atoms around @ electron-phonon interaction are provided in Appendixes A

atom, of a 33i”9|€A atom, and of a pair oA andB atoms,  and B. A very preliminary account of a part of the results has
respectively?> Numerical calculations were performed for peen published elsewhet&?®

about 1.5<10° different kinds of vacancies and demon-
strated that such quantization is quite genétafhis rule
was analytically derived in &-p sch'emellagte?rf?'26 o L. LONG-WAVELENGTH PHONON

Phonon scattering is another main origin of the resistivity
and gives dominant contributions usually at high tempera- As shown in Fig. 1, we choose theaxis in the circum-
ture. Phonons contributing to the electron scattering and reference directiony in the axis direction, and in the direc-
sistivity are those of long wavelengths which can be detion normal to the cylinder surface. The radius of the nano-
scribed well by continuum models. Although electronictube is denoted afR and the circumferencd, i.e., R
properties have been understood by those of the graphite L/27r. Acoustic phonons important in the electron scatter-
plane using a periodic boundary condition, the phonoring are known to be described well by a continuum model.
modes of nanotubes are not simply given by the zone-foldedwo-dimensional graphites show isotropic elasticity and the
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ates the above expression of, within the second-order
Armchair (n=7/6) perturbation in terms of wave number aRd ®.
/ The corresponding kinetic energy is written as

M
KLl [ dxdysy ()7 0%+ (7], (2.4

whereM is the mass density given by the carbon mass per
unit area,M =3.80x 10"’ kg/n?. The corresponding equa-

FIG. 1. The lattice structure of a 2D graphite. A unit cell con- tions of motion are given by

tains two carbon atoms denotedfAandB and two primitive trans-

2 2 2

. . . +
lation vectors are denoted asindb. The coordinate systef,y) is Mil,=(B+ u) J U2X + J sz +B J”Uy + Btu %
chosen in such a way that tlyeaxis is along the tube axis and the 2 aay Ixady R ox
x axis is along the circumference. The chiral vector corresponding
to a circumference of the tube is denotedLaand the chiral angle L r92ux &Zuy r92uy B—u du,
7is that between the chiral vector and thaxis fixed on the 2D Mu, =B IXdy +(B+u) ay? T X2 + R W
graphite. (2.5
potential—gnergy functional for in-plane displacemei(t) M= B+udu, B—mdu, B+pu
=(uy,uy) is written as U=~ R xR ay Rz Yz

The phonon modes are specified by the wave vector along

1
— _ 2 _ 2 2
U[u]—f dXdyz{B(uXX+ Uyy) “F [ (U= Uyy) “+ AU I}, the circumferencg(n) =2xn/L and that along the axigas

(2.1 _ .
. . u(r)=unqgexdix(n)x+iqy]. (2.6
with strain tensors } ) ) .
Whenn=0 and y=0, in particular, the eigenequation be-
AUy duy 5 AUy N auy 2.2 comes
Ugx=—, Uyy=——, 2Uy=——+—. .
X (9y (9y JX u, MqZ 0 0
The parameter8=\+u and u denote the bulk modulus  Me?| u,|=( O (B+u)g? —i(B—p)qR?t
and the shear modulus for a graphite sheetand n are u 0 i(B— RL B+ )R 2
Lame constants ’ I(B=w)g (B+w)
It should be noted that the displacemeit) is not iden- Uy
tical to that of the atom located atand this is important for x| uy |, (2.7)

guantitative evaluation of electron-phonon coupling although
it has not been paid much attention to. This phenomenologi-
cal model can be derived also from a simple valence-forcewhich has three eigenmodes called twisting, stretching, and
field model as shown in Appendix A. breathing.

For CN's, in-plane and out-of-plane modes are no longer The twisting mode §,# O,u,=u,=0) is made of pure
separate and the normal component of displacement shoutdrcumference-directional deformation and its veloaityis
be considered on an equal footing. According to the theory oéqual to that of the TA mode of a graphite sheet
elasticity in the cylindrical coordinate systeththe nonzero

curvature of the nanotube leads to G M
or(q)=vrd, vr=vy="\/{r (2.9
duy, U,
U=+ R (2.3 In the long wavelength limig=0, the radial deformation,

generates a breathing mode with a frequency

whereu, is the displacement perpendicular to the cylinder
surface. With this correction the potential-energy functional ~ [Btul
(2.1) has full continuous symmetry for cylindrical geometry @B~ M R’
and its absence breaks invariance to the uniform translation
in a direction normal to the tube axis as will be further dis-Which is inversely proportional to the radiés In the case
cussed below. |gR|<1, the deformation in the nanotube-axis direction gen-

The effect of a finite curvature of the nanotube can also b&rates stretching modes. When<wg, we have from the
derived from a microscopic valence-force-field model. Thelast equation of Eq(2.7)
key point is to regardR ™! as a small parameter in perturba-
tive expansions as well as wave number. Long but straight- B~

forward calculations reveal that the curvature effect gener- Uz~ B+pu aRY,. (210

(2.9
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PRI, B 2 1 2
{ } 2H[u]l=¢ O,,—Xz+R7+W u, (2.13
up to the first-order term of displacement, wh&®e! is the
N e mean curvature in the absence of displacement. We adopt the
n=0 n=+1,-1 n=+2 -2 square of its deviation from the equilibrium value as a po-

2

tential and it is written as
FIG. 2. Some examples of deformation of the cross section of
U 1, f dxd ? 1 9P
=-a= X —+ ==+ —-—|Uu
c[u] 2 (9X2 RZ (9y2 z

CN with n=0, =1, and*+2.
Upon substitution of this into the second equation of Eq. (2.14
(2.7) for uy, we have

whereZ= is a force constant for curvature deviation. For two-

1B dimensional(2D) graphites R—®), this correctly repro-
Ws=vsl, vs= —'u_ (2.1 duces the dispersion relation of out-of-plane modes. As for
’ B+u)M ~
(B+u nanotubes, the presence of the téRT? guarantees that the

, . deformation withn= =1 given in Eq.(2.12 has a vanishing
The velocityv g is usually smaller than that of the LA mode frequency.

of the graphitev®=(B+x)/M. From the parameters for  This curvature energy is of the order of the fourth power
bulk graphites as given in Appendix A, we set’  of the wave vector and therefore is much smaller tbdn]
=21.0km/s and v$€=12.3km/s, and we obtainvs as long agziR<1 for n=0 and=1 but becomes appreciable
=19.9 km/s,v;=12.3 km/s, andiwg=2.04<10 2 eV, or  for |n|>1. After all, three parametei®, x, and = are nec-
237 K for the so-called(10,10 armchair CN with R essary for describing long-wavelength acoustic phonons in
=6.79 A. CN'’s and, in this paper, those of a bulk graphite determined
The above model is too simple when dealing with modesby its phonon dispersion relations are put into use as given in
with n=#0. In order to see this fact explicitly, we shall con- Appendix A.
sider the case witlq=0. In this case there is a displacement Figure 3 shows phonon dispersions ofl®,10 armchair

given by CN calculated in this continuum model. The solid lines show
the modes witm=0, i.e., the twist mode with a linear dis-
u  2mnx u  nx persion, and the stretch and breathing modes coupled with
Uy=— ﬁsin . ﬁSinE, each other when crossing. When we ignore curvature effects

2 as shown in Fig. @), there are modes with frequeneyg?
(212 for all nonzeron. When curvature effects are taken into ac-

2mwnXx nx count as shown in Fig.(B), on the other hand, the frequency
U= U cos——=ucosg of these modes becomes nonzerogatO except for the
mode withn==*1.
with arbitraryu. This displacement gives,,=0 identically This mode withn= =1 corresponds to bending motion of

and alsau,y= u,,=0, giving rise to the vanishing frequency. a cylinder and should haveqt dispersion. The modes with
Forn= =1, this vanishing frequency is absolutely necessaryn=0 are essentially not affected by curvature effects except
because the displacement corresponds to a uniform shift ofwhengR>1. The results with curvature effects are in good
nanotube in a direction perpendicular to the axis. fgr  agreement with the results of microscopic calculatiiEhe
>1, on the other hand, the displacement corresponds to rgsult for the bending mode given in Ref. 32 looks almost
deformation of the cross section of the nanotube as shown ilinear as a function of} and are likely to be caused by an
Fig. 2. Such deformations should have nonzero frequency ifappropriate choice of force-constant values.

actual graphite because otherwise CN cannot maintain a cy-

lindrical form. _ _ IIl. ELECTRON-PHONON INTERACTION
Actually, we have to consider the potential energy due to _ )
curvature change of the nanotube surface. Here, we introduce A. Deformation potential
a phenomenological potential-energy functional wffr). A long-wavelength acoustic phonon gives rise to an effec-

There are two types of curvature characterizing deviationsive potential called the deformation potential

from flatness of a surface: mean curvature and Gaussian

curvature®® The integration of the Gaussian curvature over V1= 01 (UgytUyy), (3.1

entire surface gives a topological invariant number. There-

fore, change of the mean curvature is a unique candidate fgroportional to a local contraction or dilatatia¥(r) =u,,

the effective potential as long as the topology of the nano-+uy,. This term appears as a diagonal term in the matrix

tube remains fixed under lattice deformation. Hamiltonian in the effective-mass approximation. The cou-
By way of the standard procedure for a parametric surfacgling constantg; is called the deformation potential and its

in the theory of differential geometfy,the mean curvature very rough value can be estimated in a nearly free electron

H.[u] of a nanotube under deformatienis given by model.
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o(g)/wg

o(q)/wg

(b) aR

FIG. 3. Frequencies of phonons for ti#0,10 armchair CN
obtained in the continuum moddl) Without out-of-plane curva-
ture effect andb) with out-of-plane curvature effect.

Consider a square ar@ax<a. In the presence of a lattice
deformation, the are& changes intd5+ 6S(r) with 8S(r)
=a?A(r). Therefore, the ion density changes locally riyy

PHYSICAL REVIEW B65 235412

oe(r) corresponding to the density change should satisfy
0e(r)D(eg) =ngA(r), whereD(eg) is the density of states
at the Fermi level. The density of states is independent of
energye for a two-dimensional electron gas and is given by
D(e)=m/7h2, wherem is the free-electron mass. There-
fore,ng=D(eg)eg, leading to

Se(r)=egA(r). (3.2

This showsg; =& in contrast tog; = (%) in three dimen-
sions. In the two-dimensional graphite, the electron gas
model may not be so appropriate but can be used for a very
rough estimation ofj; as the Fermi energy measured from
the bottom of the valence bands bands, i.e., 20—30 eV.
The deformation potentiaj; in the bulk graphite has been
known to be about 16 e%

B. Bond-length change
A tight-binding equation of motion is given by

8¢A(RA):_§|: YRpRa—7¥B(RA—T1),
(3.3
8¢B(RB):_E| YRy Rg+7¥a(Ret 7)),

where the energy origin has been chosen at the energy level
of the p, orbital, ¢/, and g are the amplitude at a carbén

site Ry and a B site Rg, respectively, yg, r,—5 and

YRg Rg+7 are the transfer integral between neighboring
atoms, 7, =(0,1¢3)a, m=(—1/2,1/2/3)a, and m=(1/2,
—1/2v3)a as shown in Fig. 1. Letia(R4) andug(Rg) be a
lattice displacement &k andB sites, respectively. Then the
transfer integral between neighboring atomsRat and R,

— 7 becomes

YR, .Ry—7= Yot 87, (3.4
with

5’)/:—%ﬂ'[UA(RA)_UB(RA_ﬂl)]’ (35)

whereb=|7|=a/v3 and

b&’yo_ dln’}/o
v db  dingb”

(3.6

As mentioned in the previous section, the displacement
ua(r) andug(r) cannot be replaced by(r) which is the
effective displacement for acoustic modes, f(r) — ug(r
— 7)) involves displacements of different sublattices and has
a contribution of optical modes as well as that of acoustic
modes. Apparently, we need technical calculations in order to
obtain electron-phonon interaction compatible with

—ng[1—A(r)]. The electron density should change in theeffective-mass equations. In Appendix B, we give details of
same manner due to the charge neutrality condition. Conits derivation and, as a consequence, it turns out that the
sider a two-dimensional electron gas. The potential energyeplacement mentioned above is not totally incorrect, or
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rather, the following replacement with a reduction fackor IV. RESISTIVITY

gives correct interaction in a long-wavelength limit: In CN's, the velocity of acoustic phonons is much smaller

_ o — ) than that of electrons and elastic-scattering approximation is

UalF) — Ug(r = @) = k(7 V)U. @D applicable. Then, what should be considered is only the

This factor is important for quantitative evaluation of backward scattering between a right-going state and a left-

electron-phonon interaction and depends on details of a mgoing state at the Fermi energy. The wave function of states
croscopic model of phonorfé. In a valence-force-field in the vicinity of the Fermi level in metallic nanotubes is

model®* « is given by given by
1p k_ L :
v (3.9 Fok= T exmliky)[s.k).
and is approximated to be 3, smaller than unity, with pa- 1 . “.
rameters given in Appendix A. This reduction factor has been |s,k) = _( —is(k/| kl))
pointed out independently by Woods and Mafiart is 2 1 ’

worth noting thatc=0 in a model without shear modulus .
In other words, models without force constants to bond-anglé/heres=+1 for the conduction band and1 for the va-

change give no scattering between electrons and acoustgnce band, ané>0 andk<0 for the right- and left-going
phonons. waves, respectively. This wave function corresponds to the

Around theK andK' points in the first Brillouin zone as State with the vanishing wave vector in the circumference
shown at the right side of Fig. 1, the effective Hamiltoniansdiréction and therefore phonon modes witk=0 can con-
become tribute to the scattering. The matrix element of the backward

scattering is given apart from the spatial part by

0 k,—ik VvV, V
Hk=17| . . ) Y+ i 2), Vi V, .
ik, 0 Vi Vi S—Ikll| s . || FIKI[=—1Revz. (42
2 1
(3.9
0 ﬁx+|;2y Vi -V This means that the diagonal deformation-potential term
Her=y . . + \ does not contribute to the backward scattering as in the case
x— 1Ky 0 Va2 Vi of impurities"*8and only the real part of the much smaller
with off-diagonal term contributes to the backward scattering.
We have
V=03 7(Uy,— Uyy+ 2iUyy), (3.10 .
2= 028" (U™ Uyy xy ReV,= g (Uxy— Uyy)€OS 37— 2U,y Sin37]. (4.3
h . .
where In armchair nanotubes witly= 77/6, we have
3kpB
gZZT Y0- (3.11 ReV,= - 292uxy: (4.4

o and only shear or twist waves contribute to the scattering. In
The band parametey is given byv3+yya/2. In the above zigzag nanotubes witly=0, on the other hand,
Hamiltonian the deformation potential has also been in-

cl_uded. Off-diagonal parts (_:orrespond to thg previous results ReV,=g(Ux—Uyy), (4.5)

given by Kane and Mefé without the reduction factok. It

should be noted that the electron-phonon interaction dependsd only stretching and breathing modes contribute to the

on the chiral angle; of CN'’s although bare Hamiltonians for scattering.

electrons and phonons do not. We discuss the possibility of In this study, we calculate resistivity which is defined as

chirality-dependent transport due to this interaction in thethe inverse of the Boltzmann conductivity o

next section. =4e277-,7/7-rh2 within the relaxation time approximation,
Here, we evaluate the off-diagonal coupling consgint  where the factor 4 comes from the electron spin and the

Usually, B~2 for the transfer integral betweem orbitals ~ degeneracy oK and K’ points. The relaxation time-,, is

based on the correspondence between a tight-binding modgiven by

and a nearly free-electron model with a pseudopotetitial.

For the transfer integray,, we use that of a graphite sheet 1 2A/|1 -

vo=3.0 eV. Consideringc~ 3, we obtaing,~ yo/2 or g, 7-_7]_ﬁ_y< HJ dxdy(ReV;)e" "

~1.5eV. In Ref. 378 has been calculated to be 3.6, which

givesg,=2.7 eV. In a recent experimefft,3 is estimated to where(A[u]) denotes the thermal average of the functional

be 1.1, which is smaller than theoretical estimations aboveA[ u] with regard to the phonon system. Because cross terms

In any way, this off-diagonal coupling constant is much «2u,(u.,—uy,) vanish identically for modesi=0, we

smaller than the deformation potential constgpt-30 eV. have

2
> , (4.9
T
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1 1 1
—=—sir3p+ —cog 37, 4.7
T7] TA Tz
wherer, and 7, are the relaxation time for an armchair and 1.0 S
zigzag CN with the sam®. This leads to l:ﬁ v
. 0 ", y /
p,(T)=pa(T)sir? 3n+p;(T)cos 37, 48 = Ly
© - 1
wherep, andp; are the resistivity of an armchair and zigzag |— /'
CN. B '.." /
In an armchair nanotube the breathing mode does not con- & e - ;
tribute to the scattering and therefore we can safely employ a:c_’ 08 |- / -
high-temperature approximation for the phonon distribution 3 I/
function for a whole temperature range and have = !
2 ! /
h 1 g5kgT = S
= —— = — ’/
pA(T) e2 L 272,“ ’ (49) E{: o
=2 n
where kg is the Boltzmann constant. When a high- © 0.6 |- /6 (Armchair)
temperature approximation is adopted for phonon distriou- | /12 (Chiral)
tion function, we have the equipartition law ;
—————— 0 (Zigzag)
1 2 ol e ]
. -1 0 1
< Hf dxdy(2u,y,)e'?<Y > 10 10 10
T T/Mg
2
:< if dxdy(Uy—u )ei2ky > ’ (4.10 FIG. 4. Temperature derivative of resistivity of armch@olid
AL i T line), chiral (dotted ling, and zigzag(broken ling nanotubes in

units of dpa(Tg)/dT which is the temperature derivative of resis-
because (Qxy)2 and (Uyx— Uyy)2 are equivalent in the ity of the armchair nanotube at=Tg, andT denotes the tem-
Boltzmann weight if the small potential for curvature changeperature of the breathing modez = wg /Kg.
is neglected. Therefore, at temperatures much higher than
Tg=hwg/kg the resistivity of a zigzag nanotube becomesUsing the parameters in this study, we obtain-L X6

same as that of an armchair nanotube with s&weL, i.e., X 10? at room temperature. The mean free path is larger than
1 pm for thin (10,10 armchair nanotubes and increases in
pz(T)=pa(T). (4.1)  proportion toL with the increase of. This strongly supports

he fact that a metallic CN becomes a one-dimensional bal-
Istic conductor even at room temperature.

Doped semiconducting CN’s can also show metallic be-
avior, but they have large resistivity dependent on the Fermi
energy. The electron density per unit length determines
ghe Fermi wave number as

Therefore, the resistivity of a CN becomes independent of it
chirality at high temperature.

Except in armchair nanotubes, the breathing mode con-
tributes to the scattering and their Bose-Einstein distributio
starts to manifest itself at temperatures lower tign At a
low temperature where the breathing mode does not contri

ute to the scattering and therefore the resistivity of a zigzag n
nanotube becomes smaller than that of an armchair nanotube ke= 7 = (4.19
with same radius, i.e.,
For the reason of particle-hole symmetry, the Fermi energy is
_ _ At u assumed to be positive in this paper. The corresponding
pz(T)=pa(T) B+u =pa(T) ANt2u” 412 cormi velocity is given by
Figure 4 shows calculated temperature derivative of the deg(K) 0 3keR
resistivity. Because of the small coupling constaggt the UFT a0k | A 2’ (4.19
ke V1+(3keR)

absolute value of the resistivity is much smaller than that in
bulk 2D graphite dominated by much larger deformation-as long as the Fermi level lies in the lowest conduction band.
potential scattering. The resistivity of an armchair CN is thein contrast to metallic CN’s, the diagonal deformation poten-
same as that obtained previously except thatl has been tial g; causes electron scattering in semiconducting CN’s.
assumed in the expression @f.>° Figure 5 shows resistivity of semiconducting CN’s for
The mean free pati at high temperature is given by systems with different ratios af; to g, in units of the resis-
tivity of an armchair CN which is always metallic. At small
keR, resistivity scales ask¢R) 2 as shown in Fig. 5. This
originates from the fact that the resistivity is inversely pro-

pa’

N ST

(4.13
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FIG. 5. Electron-density dependence of resistivity for semicon- FIG. 6. Fermi-energy dependence of conductivity for metallic
ducting CN’s withg, /g,=10 (solid ling), 5 (dotted ling, and 1  (solid line) and semiconductingbroken ling CN's with g,/g,
(broken ling in units of p, denoting the resistivity of an armchair =10 in units ofo4(0) denoting the conductivity of an armchair CN
CN which is independent of electron densitiiin solid ling. with eg=0.

portional to the square of the Fermi velocity (proportional  strongly reduced by intersubband scattering at the Fermi en-
to keR for smallkgR). As kiR increases, the dispersion of ergy above the bottom of the first excited conduction band.
semiconducting CN'’s approaches that of metallic CN’s an%roundsp~0, the diagonal potenti@, causes no backward
SO does the wave functiqn. Accordingly, the electron scatterscattering between two bands with linear dispersion, and
ing due to the deformation potential becomes smaller withymgjler off-diagonal potentiadj, determines resistivity, or
keR. However, the result fog, /g, =10 shows that the de- conductivity. However, when the Fermi energy becomes
formation potential dominates resistivity and of“f—diagonalhigher and the number of subbands increagegjominates
potentialg, can be neglected completely even if electronsthe conductivity due to intersubband scattering. This is why
are heavily doped up to the bottom of the next subband.  the conductivity changes drastically depending on the Fermi
When we consider only a single band around a Fermgnergy. On the other hand, such a drastic change disappears
point, keR should be less than 1 for a metallic CN, and3l/  for semiconducting CN’s and smaller conductivity compared
for a semiconducting CN. For larg&gR, it is necessary to o that of a metallic CN shows dominance of the diagonal

solve the Boltzmann transport equation taking scattering bepotential independent of the Fermi energy.
tween subbands into accoffif!! For CN’s with electron-

phonon scattering, the increase of the number of conducting
modes gives no enhancement of electronic conduction within

scattering becomes increasingly more important than the,pe axis as shown in Fig. 1, we can use the gauge
number of conducting modes. This is the case with the im-
purity scattering’® LH  2mx
Within elastic-scattering approximation, we can solve the A=<0,—sin—
Boltzmann transport equation which can be deformed into 2m L
;hueagi?gr?g?dr;r:lr:a;iri?rf alofsr;Setg[\ﬁgg (Ia:igitrr:a fc6)r ser? g\t]vssulzl:);?nr}d Ide the effective fiel_d for electrons in a C_N is given by the
energy dependence of conductivity for metallic and semicon(}Omloonent perpendicular to the surface, i.e.,
ducting CN's. It is clear that the constant relaxation-time
approximation is broken and that the conductivity decreases H(X)=H cos( ZLX) (5.2
in spite of the increasing number of conducting modes as L/’ '
mentioned above.
For metallic nanotubes, in particular, the conductivity is The parameter characterizing its strength is given by

V. POSITIVE MAGNETORESISTANCE

: (5.1
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L \2 25
“:(z—ﬂ) | 63 [
wherel is the magnetic length defined by yc#/eH. In the ‘
casea<1, the field can be regarded as a small perturbation, 20 [~
while in the casea>1, Landau levels are formed on the ___ I
cylinder surface. Now, plane waves in a circumference direc- &
tion are not eigenstates and wave functions aroundkthe & |
point are written as 8 15 |
KA § :
1 F k (X)) S L
FK :—( p exp(iky), 5.4
sk ’_ZA FSKI?(X) pliky) (5.9 _.__>>__'s |
2 10 |
wheres=+1 and—1 for the conduction and valence band, % I
respectively. &’ 3
The energy levels and wave functions are analytically ob- s
tained fore =0:% 5|
Fse0)=—is(k/[k)F - (x), [
(5.9 ol
KB L L L
Fsic(})=F . (x), 0.0 1.0 2.0
with Magnetic Field: (R/1)2

FIG. 7. Resistivity with a fixed electron density in magnetic

Fo(x)= 1 exd =+ a cosZTrX (5.6) fields determined by the diagonal deformation potential. The unit
- JLIo(2a) - L /)’ ' pg1 is defined so thap(H) becomespy[lo(4a)—1] for kkR=0
as given in Eq(5.10.
wherel y(2) is the modified Bessel function of the first kind
defined as 1 kT gi ‘A A
do = W 8 00" FE 0
IO(Z):L 7exp(zcos€). (5.7 +F§§kF(X)*FsK,EF(X)|2
2
The corresponding eigenenergies are given &yk) %J KA % KB 2
=sylk|/Io(2a), which gives the group velocityv 2 n dx(lFkaF(X) FS’kF(X)|
=vylhly(2«), and the density of statd3(0)=1y(2a)/77y.
We should note that
shed +[FEB, O0*FER ([?)]. (5.9

1+a?+- (a<l),

|0(2a)ﬁ~v[e2a/ ,_4’7761’ (a>1)

This means that the group velocity for statessat0 de-

(5.8 At e =0, after analytical solutions are substituted into the

above, we obtain

creases and consequently the density of states increases ex- h 2kaT [ o2 2
ponentially with the increase of the magnetic field in the P(H)Z—zTB(%UoMa)—l]JFZ% . (5.10
high-field regime. In high magnetic fieldse& 1), F_(x) is 8e” yL \ B M

localized aroundx==*=L/2, i.e., at the bottom side of the
cylinder andF . (x) is localized around the top side=0.  The rapidly increasing functiohy(4«) with regard to the
The wave function for theK’ point can be obtained in a magnetic field clearly shows that huge magnetoresistance is
similar manner. induced by the diagonal electron-phonon scattering potential
In the presence of magnetic fields, and ImV, also con-  g,. For the system with nonzero doping-R>0), wave
tribute to the matrix element of electron-phonon scatteringunctions are numerically solved.
and, as a result, to the relaxation time. In this section, we Figure 7 shows resistivitp(H) determined by the diag-
consider high temperature and neglect the potential for curenal potentialg,. Electrons are not back scattered at all in
vature change. In this case, the relaxation time and the resishe absence of a magnetic field but this absence of back
tivity become independent of the chirality. The relaxationscattering disappears in magnetic fields, leading to the huge
time is given by positive magnetoresistance. This is understood by the anal-
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FIG. 8. Resistivity with a fixed electron density in magnetic ~ FIG. 9. Calculated magnetoresistance in a low-magnetic-field
fields determined by the off-diagonal term. The ysjtis the resis-  region.
tivity at H=0.

, ) ) _sistance becomes dependent on temperature at temperatures
ogy with the scattering by the long-range impurity ¢omparable to or lower thafig. This will not be discussed
potential.” This magnetoresistance decreases with the ing iher.
crease of the doping. o _ The huge positive magnetoresistance predicted here can
_ On the other hand, the resistivity due to the off-diagonalyg gphserved experimentally in multiwall CN's. For example,
interactiong; is independent of the magnetic field without 4 conditiona = (R/1)2=0.25 is realized in outer shells of
doping kgR=0) as shown in Fig. 8. With the increase of the the multiwall CN with R=26 A whenH =25 T. Then, the
doping, it starts to exhibit a negative magnetoresistance. Thﬁ]agnetoresistance reaches abdyt/p,~1.0 at H=10T
reduction of scattering in magnetic fields for nonz&gofor and Ap/py~6.7 atH=25T. For a(10,10 nanotube with
bothg, andg, is caused by the change of the wave functiong_ g 79 A, we havea=(R/I)2=1.7x10"2 even atH

resuiting iglgtﬂ)e decrease of overlap between the initial and_ 55 1 anq therefore the magnetoresistance remains almost
final states.”

- . negligible.
_In a realistic systemg, is much larger tham, as men- Figure 10 shows magnetoresistance of semiconducting
tioned in Sec. Ill Figure 9 shows the total magnetoresistanceg:\;s yith V3keR=0.1, 0.5, and 1.0. Doped semiconducting

for g,/9,=10 in a low magnetic field regime. The large cnys show positive magnetoresistance which slightly de-
positive magnetoresistance is apparent particularlykfd® pends orkeR. Clearly, it is much smaller than that of me-

=0 and decreases gradually with the increaskq®. tallic CN's given by the thin line in Fig. 10. This is because
This behavior in a low magnetic field is understoodzfromthe deformation potential scatters electrons in semiconduct-
the perturbative expansion in terms of smal=(R/)®. g cN's even without magnetic fields as mentioned in the
Wave functions are obtained up to the second orderafid  ,eyious section, and the magnetic field does not cause such
magnetoresistance is given by drastic change of scattering as in metallic CN's.
p(H)—po  _[m(01)? o]
o 2B _2> AkeR)%a® (51D V1. DISCUSSION

Thus, the magnetoresistance decreases as the doping in-There exist several theoretical studies on the dispersion
creases because a small negative magnetoresistance appeatsation of phonons in a CN with small radius though its
for nonzerokgR for the component determined loy . experimental observation is still difficult. Our continuum ef-
Within the high-temperature approximation, the magne{ective model for acoustic phonons demonstrates the breath-
toresistance due to the phonon scattering is independent afg mode with the energy proportional R ! and the exis-
temperature. However, because the deformation potential ignce of four zero modes which cannot be reproduced by the
generated by stretching and breathing modes, the magnetorsene-folding method to phonons of a graphite sheet. There is
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200 ——r—r—r————— model and this is important for the derivation of electron-
phonon interaction. For out-of-plane modes, we have phe-
nomenologically proposed a simple but relevant potential for
S ) curvature deformation which maintains full continuous sym-
metry of the cylindrical surface.

There are only a few experimental studies reporting nor-
mal metallic behavior of the temperature dependence of
CN's*® With the present experimental technique it seems
quite difficult to measure the resistivity of one metallic
single-walled CN for which the chirality is identified. The
resistivity of samples containing various CN's shows the
temperature dependence of metallic nanotubes reflecting the
distribution of chirality as long as Ohmic contact is realized
because semiconducting nanotubes with large resistivity
make little contributions to electron transport in such
samples.

As for magnetoresistance, several experimental results
have been reported:®' At low temperature, negative mag-
netoresistance has been observed and explained by quantum
effects due to weak localization. In contrast, the results of
Ref. 50 show positive magnetoresistance at high temperature
0.0 '10' ' ol '20 and th?s is_ consi_stent with our_theory as elegtron-phonon

) ) ) scattering is considered to contribute to scattering mainly in
Magnetic Field: (R/)2 a high-temperature regime.

It should be noted that the two-dimensional lattice is ther-
modynamically unstabl& For example(u2); is divergent
ﬁhough((aux/ax)zh has a finite value. Therefore, we should
consider some environments with three-dimensionality or a
finite tube length to cut off such a divergence. In fact, CN'’s
a R™2 correction to the breathing mode from the potentialusually form bundles, mats, and so on. A single CN used in
term due to curvature change, but it is very small even foexperiments always has a finite length and is put on a certain
the (10,10 armchair CN and negligible for CN's with large substrate material or attached to a metallic contact. These
radius. These results agree with those of the pioneering studffects may drastically change phonon modes with small
in Ref. 32. The energy of the lowest Raman-active mode hayave number. It is possible that electron-phonon scattering
been predicted in Ref. 32 to be almost proportionaR{c’. in a CN withe~0 shows singular behavior. Clarification of
This corresponds to the modes@R=0 andn==2 with  such effects is left for a future study.
frequencyw/wg~0.12 for the(10,10 armchair CN in Fig.
4(b). This nonzero frequency originates from the potential
for curvature change and therefore scalesRag, and the
absolute value of the frequency also shows a good agree- We have studied electron-phonon scattering in metallic
ment. CN'’s. A continuum elastic model with only three constants

As mentioned in Sec. Il, the dispersion of the bendinghas been proposed for long-wavelength acoustic modes play-
modes is proportional tg? in contrast to the result of Ref. ing a major role in electron-phonon scattering. Electron-
32. Thisq? dispersion is consistent with the elastic theory for phonon interaction has been derived based on the effective-
bending of cylinderé? more recent results ofb initio  mass theory for conducting electrons. The conventional
calculations** and results of a lattice-dynamical model. diagonal deformation potential does not contribute to back-

Elasticity of a cylindrical shell with nonzero thickness ward scattering and therefore gives rise to no resistance in
was studied long ag®, and an in-plane part represented by metallic nanotubes in the absence of a magnetic field. There-
Eq. (2.1) is well reproduced in the limit of thin sheéll:*®In  fore, we have to consider a small and chirality-dependent
such a sense, it can be said that the continuum description foiff-diagonal potential due to local modification of band
twisting, stretching, and breathing modes should be a wellstructure.
known fact. However, other terms containing higher-order In metallic CN’s, only the off-diagonal potential scatters
derivatives are so complicated that it is no longer clear whickelectrons in the absence of a magnetic field. For armchair
term is indispensable for stability of nanotubes to the deforCN’s, only a twisting mode causes scattering. On the other
mation of cross section. Apart from the theory for three-hand, stretching and breathing modes contribute to scattering
dimensional media, we have considered elasticity of a shedor zigzag CN's. At high temperature, contribution from both
with no thickness. From a microscopic valence-force-fieldmodes in a zigzag CN is equal to that from a twisting mode
model, we obtained an effective continuum model for in-in an armchair CN. The breathing mode with finite energy
plane modes corresponding with the above well-knowngap is hardly excited and causes little scattering at tempera-

-

[9)]

o
|

| Armchair (/3kgR=1.0)

100

Magnetoresistance: Ap/pg

(4]
o
!

FIG. 10. Magnetoresistance of semiconducting CN's with
v3keR=0.1 (solid line), 0.5 (dotted ling, and 1.0(broken line.
The thin solid line shows magnetoresistance of an armchair C
with v3keR=1.

VIl. SUMMARY AND CONCLUSION
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tures lower than its energy. As a result the resistivity of a MQOw(k)ZU(k):th(k)U(k), (A1)
metallic CN is dependent on the chirality.

In a magnetic field electron scattering is induced even irwith
metallic CN’s by the diagonal deformation potential which is

much larger than the off-diagonal potential, leading to a huge us (k)

positive magnetoresistance. This can be observed easily in a uY (k)
metallic CN with large radius. uk=| % (A2)

ug(k)
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APPENDIX A: MICROSCOPIC PHONON MODELS

3 0 hy(k) hy(k)

In this Appendix, we derive a continuum model for long- 0 3 ha(k) ha(k
wavelength phonons of a two-dimensional graphite sheet H (K=K 2 2(k) (k)
based on a valence-force-field model. For a graphite sheet, bdK) =K1 hy(K)*  hy(k)* 3 0
in-plane and out-of-plane modes are decoupled. For in-plane ! z z
modes, two force constants are introduced for restoring hy(k)*  hg(k)* 0 3
forces to bond-stretching and bond-angle change in the sim- (A4)
plest approximatiori>>3

The equations of motion are given by and

ha(k) hs(k) 6ha(k)  2v3hy(k)*

hs(k)* he(k)  2v3hy(k)*  6hy(k)
6ha(k)*  2v3hy(k)  hy(k) hs(k) [’
2v3hy(k)  Bhy(k)*  hg(k)* he(k)

Hpd K) =K (AS)

whereK; andK, are force constants for bond stretching and ~ We expand this matriki (k) in terms ofk,a andk,a as

bond-angle change, respectively, and follows:
hy (k)= — Eeikyalzﬁ coskx—a Hon(K)=HO+HD + H@ 4.
2 L
with
V3 k.a
ha(k)=—i - &2/ sin%, 1 0 -1 0
©_3 1 -
ha(k) = — ek Eeikya/Zx/i cos@ H =5 (K1 +6Ky) -1 0o 1 . (A7)
2 2 0o -1 1
k k V3 (A%
a a
h4(k)=7+sin2% +2 cos%cos? kya, 0 0 -k, —k
HD "/Z(K 6Ky) 00 kel
. ka v3 =1 (K1—bKy)a '
hs(k)=—v3ie"h@2sin—2 +i - sink,a, 4 ky k¢ 0 0
kk —k, 0 0
(A8)

ke
he(k)—9—3 SII”FT, and
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0 0 (1/16)(3k;+k?2) (1/8)kyky,
0 0 (1/8)kyk, (1/16)(kZ+3k2)
H®=K,a? ’
(1/16)(3KZ+k3) (L/8)kyk, 0 0
(1/8)kyky (1/16) (kZ+ 3k%) 0 0
—(3/4)kS (314)kyk, (3/8)(KZ+3K))  —(3/4)kyky
‘o (3/4)kyky —(3/4)k2 —(314kek,  (3/8)(3kE—K?) A9
251 (318 (K2+3KD)  —(3lkeky —(314)k] (3/4)kyk,
—(3/4)kyky  (3/8)(3KZ+KJ) (3/4)k,ky —(314)k2

We solve the eigenvalue problem with the perturbative ex-
pansion in the long wavelength limit. Then, the following Hop=3(Ky+ GKZ)(O 1)
variables u(r) = (uy,uy) and v(r)=(vy,v,) enable us to
treat acoustic and optical phonons separately, 5
+ 1K +3K 2 oy
: )~ k"D (Up—ug) 8727 gk K2
u=—(uptug)—k'D—(up—ug)+---,
‘/2( A B ‘/2 A B . ,
(A10) C3Kyt3Ky Ktk O (AL5)
2 K;+6K, 0 k§+k§ '

1 1
v=—(up—Ug)—k'D—(uptug)+---,
(Ua—Ug) 5 (UatUe)

V2 In a real-space representation, we obtain the potential-energy

functional foru(r) which is given by Eq(2.1) with strains

with . . X
defined as Eq(2.2). Lameconstants are defined as
K;—6K _
1 P2 (A11) )\:i K;—6K>
4\/§(K1+6K2) 4‘/:? K1+6K2
(A16)
and s KK,
PR KV K+ 6K,
_y ax Next, we estimate parameters in our model. There exist
D=a o |- (Al2)  two parameters for in-plane modes of acoustic phonons.
x @ What is necessary for our continuum elastic model are two

elastic constantB and u, and it is of no importance which
fnicroscopic model is originally adopted unless optical
phonons are concerned. Such parameters of nanotubes have
not yet been settled by existing studies. They can also be
determined by the velocity of twisting and stretching modes.

This linear transformation gives two sets of eigenequation
up to the second order of wave numbers

2 —
MQoa(k)“u(k)=Hadk)u(k), However, the sound velocity of such modes has not not been
(A13)  obtained experimentally and has not uniquely been fixed
MQow(k)2v(k)= Hop(K)V(K), theoretically, either. Therefore, it seems to be a good idea to
use the data of graphites because our elastic model for nano-
with tubes is based on that for graphite sheets.
By neglecting interlayer interactions, we adopt the follow-
1, ki kyky ing parameters for bulk graphités:
Hamg i, 12
e B/M=2.90x 10° m?/?,
L3 KK, Ki+ki 0
- - = — 2
+t3 K1+6K2a 0 K+ (A14) wIM=151x10° m?/<, (A17)
and E/IM=6.19x10° m?/s’.
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An extensive study for phonons of a single graphite sheet

has been given by Ref. 55 and the same model with small ~ %X g(f—RA)é\(Ra)z| Ye(Ra—m)

corrections due to the curvature has been used to calculate Ra

the phonon dispersion of nanotub$dowever, the obtained ek, —ik,) 0 FX(r)

sound velocities are not compatible with the elastic model = ( S L )( B )

because they give a negative Poisson ratio which is highly 0 e (ke +iky) Fg(r)

improbable. (B7)
APPENDIX B: ELECTRON-PHONON INTERACTION Finally, the term proportional téy in the right hand side of

In the following we shall derive an effective-mass equa-the first equation of E¢3.3 is calculated as

tion following the procedure given in Ref. 56. First, we S
should note that for states in the vicinity of the Fermi level BYo —we' e KT 0
e=0 of the 2D graphite, the total wave function is written as le 0 o ing iK' 7

Ya(Ra)=a(Ra) "Fa(Ry), X a-[Ua(r) —ug(r—m)]Fg(r), (BY)
ys(Re)=b(Rg) "Fa(Rg), (B1) where u(r) is the slowly varying lattice displacement as a
function of the continuous valuabte
with Becauseau,(r) —ug(r—7) involves displacements of dif-
ferent sublattices, it has a contribution of optical modes as
well as that of acoustic modes and in generg{r) — ug(r

— (alK-R inailK’'-R
a(Ra) "= (A elmelt R, —m)#u(r)—u(r—m). Solving Eq.(A10) inversely, we ob-

(B2)  tain
b(RB)+:(_weineiK-RB eiK'-RB)'
and 1 1
Uup=—(Uu+Vv)+k'D—(u+v)+---,
K K V2 V2
I:A FB
FA: = r, FB: FK/ s (BS) (Bg)
A B 1 o 1 )
whereFX, FX FX" andF§’ are slowly varying envelope UB_\Q(U V)~ \/j(u V) ’
functions. In this Appendix,» represents a cubic root,
exp(2m/3). and, retaining only contributions from acoustic modes,

Introduce a smoothing functiorg(r) which varies
smoothly in the rangér|<a and decays rapidly fojr|>a.

It shoul isfy th iti 1
t should satisfy the conditions uA(r)—uB(r—a-,)=5(71-V)u+\/iK’Du+---.

2 g(r=Ry=3 g(r—Rg)=1 (B4) (10
A B
We obtain Eq.(3.7) with xk=1#2 when only the first terms

and in the right hand side are taken into consideration.
Now, we shall substitute Eq3.7) into Eq. (B8) and use
f drg(r—Ra)= f drg(r—Rg)=0Q,,  (B5)  theidentity
where(), is the area of a unit cell given g ,=v3a%/2. The ()2 1 -1
functiong_(r—R) can be replaceq by a delta function wher_l it 2 e K| 77 | = “’_az —ij (B11)
is multiplied by a smooth function such as envelopes, i.e., [ ()2 +1
g(r—R)=Q0,8(r —R). !
We substitute Eq(B1) into Eq.(3.3). Consider the first of
such equations. Multiply it bg(r —R,)a(R,) and then sum and
it over R,. The term in the left-hand side becomes
(7)? -1
FA(T) > e KAl ' | =2a?| +i |, (B12)
2 9(r—RpaRpeya(R)=¢| ¢ | (BO) | ()2 +1
Ra Fa (1) !

The term proportional tey, in the right hand side becomes Then, we have
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: J
il @ .7 . 0
3k e (0X+| oy (uy+iuy) o1
4 70 0 N .
X I@ (ux—iuy)
|
The above quantities are those in the coordinate system 1 3 11X,

fixed onto the graphite sheet and become in the coordinate K= ——4\[§K’= K TeK. (B17)
system defined in the nanotube V2 v2 K1+6K;

U xiu,—e ' (ucxiuy),

As mentioned in Sec. lllx is proportional to the force con-
stant for bond-angle change and therefore electron-phonon
interaction vanishes without restoring force to bond-angle
change. This is the case with models containing more force
iniﬁyﬁerin(kxiiﬁy)_ constants as long as restoring force between atom pairs for
radial displacement are considered and force constants in-
volving three or more atoms are completely neglected. Sub-
gfituting these parameters in Appendix A into E8.8),

o0 e 0 oy
x oy T8 A\ ox T ay) (B14

Similar expressions can be obtained fgrand the effective-
mass equations in the presence of electron-phonon intera

tion become becomes 0.369, or approximatelys.
Koy — K K'(py— K Lame constants defined by EGA16) gives another rep-
HcFE(n)=eF2(r),  Hio P2 (r)=eF= (1) (B19) resentation ofk as Eq.(3.8). Here, we should bear in mind
and the Hamiltonians are given by H.9. that thisx cannot be determined by the elastic theory alone

In a similar way, the second terms of E@®10) can be put depends on the original valence-force-field model as
evaluated and make the following contribution to theshown above. Nonetheless, EB17) is approximately valid
electron-phonon interaction around tKepoint: for models containing higher-order interactions because, in

B the electron-phonon interaction due to change of the nearest-

_$weiv‘/j,(’az e*‘K"T[ZTf‘quJr 7V (Uyy— Uyy)] neighbor transfer integral, there is no correction from the

b ! bond-stretching and bond-angle change for the second-
3 nearest-neighbor atoms at the same sublattice. In fact,
= —3\[5,3%@ 7' [ (Ugx— Uyy) +i2Uyy ], (B16) K,/K;=0.0565, and, as a result=0.358 in the model of
Ref. 57 in which more force constants were introduced than
which gives nothing but a correction te Therefore, Eq. the present two-parameter valence-force-field model. There-
(3.7) is justified andx is given by fore, our choicex~ 3 is likely to be quite reasonable.
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