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Phonons and electron-phonon scattering in carbon nanotubes
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Electron-phonon scattering is studied within an effective-mass theory. A continuum model for acoustic
phonons is introduced and electron-phonon interaction due to modification of band structure is derived as well
as a normal deformation potential. In a metallic nanotube, the deformation potential does not participate in
electron scattering and a metallic nanotube becomes nearly a one-dimensional ballistic conductor even at room
temperature. A resistivity determined by small band-structure interaction depends on the chirality at low
temperatures. A magnetic field perpendicular to the axis induces electron scattering by the deformation poten-
tial, giving rise to huge positive magnetoresistance.
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I. INTRODUCTION

Carbon nanotubes~CN’s! are quasi-one-dimensional ma
terials made ofsp2-hybridized carbon networks.1 Electronic
structure of a single CN has been studied theoretically, wh
predicted that a CN becomes either metallic or semicond
ing depending on its chiral vector, i.e., boundary conditio
in the circumference direction.2–11 These predictions hav
been confirmed by Raman experiments12 and direct measure
ments of local density of states by scanning tunnel
spectroscopy.13–15Transport properties are particularly inte
esting because of their unique topological structures.16 In this
paper we focus on electron-phonon scattering as the m
origin of resistivity and reveal its chirality and magnetic-fie
dependence.

For impurity scattering, it was shown theoretically th
there is no backscattering for impurity potentials with
range larger than the lattice spacing in metallic CN’s.17 This
intriguing fact was related to Berry’s phase acquired by
rotation in the wave-vector space in the system described
a k•p Hamiltonian.18 The absence of backward scatteri
has been confirmed by numerical calculations in a tig
binding model.19 There have been some reports on expe
ments which seem to support this theoretical prediction.20,21

Effects of scattering by a lattice vacancy in armch
nanotubes have been studied within a tight-bind
model.22,23 It has been shown that the conductance at z
energy in the absence of a magnetic field is quantized
zero, one, or two times of the conductance quantume2/p\
for a vacancy consisting of threeB carbon atoms around anA
atom, of a singleA atom, and of a pair ofA and B atoms,
respectively.23 Numerical calculations were performed fo
about 1.53105 different kinds of vacancies and demo
strated that such quantization is quite general.24 This rule
was analytically derived in ak•p scheme later.25,26

Phonon scattering is another main origin of the resistiv
and gives dominant contributions usually at high tempe
ture. Phonons contributing to the electron scattering and
sistivity are those of long wavelengths which can be
scribed well by continuum models. Although electron
properties have been understood by those of the grap
plane using a periodic boundary condition, the phon
modes of nanotubes are not simply given by the zone-fol
0163-1829/2002/65~23!/235412~15!/$20.00 65 2354
h
t-
s

g

in

t

a
by

t-
i-

r
g
o
to

y
-

e-
-

ite
n
d

modes of planes because they fail to give breathing mod6

In this paper we shall construct a continuum model suita
for a correct description of long-wavelength acous
phonons.

A lattice deformation gives rise to a diagonal energy sh
called deformation potential in a matrixk•p Hamiltonian. In
addition to the deformation potential it causes small o
diagonal terms arising from a modification in the local ba
structure due to change in the bond-length between neigh
ing carbon atoms. In the absence of a magnetic field,
former deformation potential gives no backscattering and
resistivity is determined by the latter band-structure term
magnetic field changes the situation drastically and lead
an appreciable amount of backscattering due to the defor
tion potential. This leads to increase of the resistivity in
magnetic field, or positive magnetoresistance, in meta
CN’s.

In this paper, we shall calculate the phonon-limited res
tance of metallic CN’s and demonstrate a huge positive m
netoresistance. The case of semiconducting CN’s will
touched upon very briefly. In Sec. II a continuum model f
long-wavelength phonons is introduced and resulting mo
are compared with those of microscopic calculations. In S
III an effective Hamiltonian for electron-phonon interactio
is derived in ak•p or effective-mass approximation. In Se
IV the resistivity is calculated and in Sec. V the magneto
sistance is calculated. A discussion and short summary
given in Secs. VI and VII, respectively. Details of derivatio
of the effective continuum Hamiltonian for phonons a
electron-phonon interaction are provided in Appendixes
and B. A very preliminary account of a part of the results h
been published elsewhere.27,28

II. LONG-WAVELENGTH PHONON

As shown in Fig. 1, we choose thex axis in the circum-
ference direction,y in the axis direction, andz in the direc-
tion normal to the cylinder surface. The radius of the nan
tube is denoted asR and the circumferenceL, i.e., R
5L/2p. Acoustic phonons important in the electron scatt
ing are known to be described well by a continuum mod
Two-dimensional graphites show isotropic elasticity and
©2002 The American Physical Society12-1
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potential-energy functional for in-plane displacementu(r )
5(ux ,uy) is written as

U@u#5E dxdy
1

2
$B~uxx1uyy!

21m@~uxx2uyy!
214uxy

2 #%,

~2.1!

with strain tensors

uxx5
]ux

]x
, uyy5

]uy

]y
, 2uxy5

]ux

]y
1

]uy

]x
. ~2.2!

The parametersB5l1m and m denote the bulk modulus
and the shear modulus for a graphite sheet~l and m are
Laméconstants!.

It should be noted that the displacementu(r ) is not iden-
tical to that of the atom located atr and this is important for
quantitative evaluation of electron-phonon coupling althou
it has not been paid much attention to. This phenomenol
cal model can be derived also from a simple valence-for
field model as shown in Appendix A.

For CN’s, in-plane and out-of-plane modes are no lon
separate and the normal component of displacement sh
be considered on an equal footing. According to the theor
elasticity in the cylindrical coordinate system,29 the nonzero
curvature of the nanotube leads to

uxx5
]ux

]x
1

uz

R
, ~2.3!

whereuz is the displacement perpendicular to the cylind
surface. With this correction the potential-energy functio
~2.1! has full continuous symmetry for cylindrical geomet
and its absence breaks invariance to the uniform transla
in a direction normal to the tube axis as will be further d
cussed below.

The effect of a finite curvature of the nanotube can also
derived from a microscopic valence-force-field model. T
key point is to regardR21 as a small parameter in perturb
tive expansions as well as wave number. Long but straig
forward calculations reveal that the curvature effect gen

FIG. 1. The lattice structure of a 2D graphite. A unit cell co
tains two carbon atoms denoted asA andB and two primitive trans-
lation vectors are denoted asa andb. The coordinate system~x,y! is
chosen in such a way that they axis is along the tube axis and th
x axis is along the circumference. The chiral vector correspond
to a circumference of the tube is denoted asL and the chiral angle
h is that between the chiral vector and thex axis fixed on the 2D
graphite.
23541
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ates the above expression ofuxx within the second-order
perturbation in terms of wave number andR21.

The corresponding kinetic energy is written as

K@u#5E dxdy
M

2
@~ u̇x!

21~ u̇y!21~ u̇z!
2#, ~2.4!

whereM is the mass density given by the carbon mass
unit area,M53.8031027 kg/m2. The corresponding equa
tions of motion are given by

Müx5~B1m!
]2ux

]x2 1m
]2ux

]y2 1B
]2uy

]x]y
1

B1m

R

]uz

]x
,

Müy5B
]2ux

]x]y
1~B1m!

]2uy

]y2 1m
]2uy

]x2 1
B2m

R

]uz

]y
,

~2.5!

Müz52
B1m

R

]ux

]x
2

B2m

R

]uy

]y
2

B1m

R2 uz .

The phonon modes are specified by the wave vector al
the circumferencex(n)52pn/L and that along the axisq as

u~r !5unq exp@ ix~n!x1 iqy#. ~2.6!

When n50 and x50, in particular, the eigenequation be
comes

Mv2S ux

uy

uz

D 5S mq2 0 0

0 ~B1m!q2 2 i ~B2m!qR21

0 i ~B2m!qR21 ~B1m!R22
D

3S ux

uy

uz

D , ~2.7!

which has three eigenmodes called twisting, stretching,
breathing.

The twisting mode (uxÞ0,uy5uz50) is made of pure
circumference-directional deformation and its velocityvT is
equal to that of the TA mode of a graphite sheet

vT~q!5vTq, vT5vT
G5Am

M
. ~2.8!

In the long wavelength limitq50, the radial deformationuz
generates a breathing mode with a frequency

vB5AB1m

M

1

R
, ~2.9!

which is inversely proportional to the radiusR. In the case
uqRu!1, the deformation in the nanotube-axis direction ge
erates stretching modes. Whenv!vB , we have from the
last equation of Eq.~2.7!

uz'2 i
B2m

B1m
qRuy . ~2.10!

g
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Upon substitution of this into the second equation of E
~2.7! for uy , we have

wS5vSq, vS5A 4Bm

~B1m!M
. ~2.11!

The velocityvS is usually smaller than that of the LA mod
of the graphitevL

G5A(B1m)/M . From the parameters fo
bulk graphites as given in Appendix A, we setvL

G

521.0 km/s and vT
G512.3 km/s, and we obtainvS

519.9 km/s,vT512.3 km/s, and\vB52.0431022 eV, or
237 K for the so-called~10,10! armchair CN with R
56.79 Å.

The above model is too simple when dealing with mod
with nÞ0. In order to see this fact explicitly, we shall co
sider the case withq50. In this case there is a displaceme
given by

ux52
u

n
sin

2pnx

L
52

u

n
sin

nx

R
,

~2.12!

uz5u cos
2pnx

L
5u cos

nx

R
,

with arbitraryu. This displacement givesuxx50 identically
and alsouyy5uxy50, giving rise to the vanishing frequenc
For n561, this vanishing frequency is absolutely necess
because the displacement corresponds to a uniform shift
nanotube in a direction perpendicular to the axis. Forunu
.1, on the other hand, the displacement corresponds
deformation of the cross section of the nanotube as show
Fig. 2. Such deformations should have nonzero frequenc
actual graphite because otherwise CN cannot maintain a
lindrical form.

Actually, we have to consider the potential energy due
curvature change of the nanotube surface. Here, we introd
a phenomenological potential-energy functional ofu(r ).
There are two types of curvature characterizing deviati
from flatness of a surface: mean curvature and Gaus
curvature.30 The integration of the Gaussian curvature ov
entire surface gives a topological invariant number. The
fore, change of the mean curvature is a unique candidate
the effective potential as long as the topology of the na
tube remains fixed under lattice deformation.

By way of the standard procedure for a parametric surf
in the theory of differential geometry,31 the mean curvature
Hc@u# of a nanotube under deformationu is given by

FIG. 2. Some examples of deformation of the cross section
CN with n50, 61, and62.
23541
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2Hc@u#5
1

R
2S ]2

]x2 1
1

R2 1
]2

]y2Duz ~2.13!

up to the first-order term of displacement, whereR21 is the
mean curvature in the absence of displacement. We adop
square of its deviation from the equilibrium value as a p
tential and it is written as

Uc@u#5
1

2
a2JE dxdyF S ]2

]x2 1
1

R2 1
]2

]y2DuzG2

,

~2.14!

whereJ is a force constant for curvature deviation. For tw
dimensional~2D! graphites (R→`), this correctly repro-
duces the dispersion relation of out-of-plane modes. As
nanotubes, the presence of the termR22 guarantees that the
deformation withn561 given in Eq.~2.12! has a vanishing
frequency.

This curvature energy is of the order of the fourth pow
of the wave vector and therefore is much smaller thanU@u#
as long asqR!1 for n50 and61 but becomes appreciabl
for unu.1. After all, three parametersB, m, andJ are nec-
essary for describing long-wavelength acoustic phonons
CN’s and, in this paper, those of a bulk graphite determin
by its phonon dispersion relations are put into use as give
Appendix A.

Figure 3 shows phonon dispersions of a~10,10! armchair
CN calculated in this continuum model. The solid lines sh
the modes withn50, i.e., the twist mode with a linear dis
persion, and the stretch and breathing modes coupled
each other when crossing. When we ignore curvature eff
as shown in Fig. 3~a!, there are modes with frequency}q2

for all nonzeron. When curvature effects are taken into a
count as shown in Fig. 3~b!, on the other hand, the frequenc
of these modes becomes nonzero atq50 except for the
mode withn561.

This mode withn561 corresponds to bending motion o
a cylinder and should have aq2 dispersion. The modes with
n50 are essentially not affected by curvature effects exc
whenqR@1. The results with curvature effects are in go
agreement with the results of microscopic calculations.32 The
result for the bending mode given in Ref. 32 looks almo
linear as a function ofq and are likely to be caused by a
inappropriate choice of force-constant values.

III. ELECTRON-PHONON INTERACTION

A. Deformation potential

A long-wavelength acoustic phonon gives rise to an eff
tive potential called the deformation potential

V15g1~uxx1uyy!, ~3.1!

proportional to a local contraction or dilatationD(r )5uxx
1uyy . This term appears as a diagonal term in the ma
Hamiltonian in the effective-mass approximation. The co
pling constantg1 is called the deformation potential and i
very rough value can be estimated in a nearly free elec
model.

f
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Consider a square areaa3a. In the presence of a lattic
deformation, the areaS changes intoS1dS(r ) with dS(r )
5a2D(r ). Therefore, the ion density changes locally byn0
→n0@12D(r )#. The electron density should change in t
same manner due to the charge neutrality condition. C
sider a two-dimensional electron gas. The potential ene

FIG. 3. Frequencies of phonons for the~10,10! armchair CN
obtained in the continuum model.~a! Without out-of-plane curva-
ture effect and~b! with out-of-plane curvature effect.
23541
n-
y

d«(r ) corresponding to the density change should sat
d«(r )D(«F)5n0D(r ), whereD(«F) is the density of states
at the Fermi level. The density of states is independen
energy« for a two-dimensional electron gas and is given
D(«)5m/p\2, wherem is the free-electron mass. There
fore, n05D(«F)«F , leading to

d«~r !5«FD~r !. ~3.2!

This showsg15«F in contrast tog15( 2
3 )«F in three dimen-

sions. In the two-dimensional graphite, the electron g
model may not be so appropriate but can be used for a v
rough estimation ofg1 as the Fermi energy measured fro
the bottom of the valence bands~s bands!, i.e., 20–30 eV.
The deformation potentialg1 in the bulk graphite has bee
known to be about 16 eV.33

B. Bond-length change

A tight-binding equation of motion is given by

«cA~RA!52(
l

gRA ,RA2tl
cB~RA2r l !,

~3.3!

«cB~RB!52(
l

gRB ,RB1tl
cA~RB1tl !,

where the energy origin has been chosen at the energy
of the pz orbital, cA andcB are the amplitude at a carbonA
site RA and a B site RB , respectively, gRA ,RA2tl

and

gRB ,RB1tl
are the transfer integral between neighbori

atoms, t15(0,1/))a, t25(21/2,1/2))a, and t35(1/2,
21/2))a as shown in Fig. 1. LetuA(RA) anduB(RB) be a
lattice displacement atA andB sites, respectively. Then th
transfer integral between neighboring atoms atRA and RA
2tl becomes

gRA ,RA2tl
5g01dg, ~3.4!

with

dg52
bg0

b2 tl•@uA~RA!2uB~RA2tt l !#, ~3.5!

whereb5utl u5a/) and

b52
b

g0

]g0

]b
52

d ln g0

d ln0 b
. ~3.6!

As mentioned in the previous section, the displacem
uA(r ) and uB(r ) cannot be replaced byu~r ! which is the
effective displacement for acoustic modes, foruA(r )2uB(r
2tl) involves displacements of different sublattices and h
a contribution of optical modes as well as that of acous
modes. Apparently, we need technical calculations in orde
obtain electron-phonon interaction compatible w
effective-mass equations. In Appendix B, we give details
its derivation and, as a consequence, it turns out that
replacement mentioned above is not totally incorrect,
2-4
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rather, the following replacement with a reduction factork
gives correct interaction in a long-wavelength limit:

uA~r !2uB~r2tl !5k~tl•“ !u. ~3.7!

This factor is important for quantitative evaluation
electron-phonon interaction and depends on details of a
croscopic model of phonons.27 In a valence-force-field
model,34 k is given by

k5
1

&

m

B
~3.8!

and is approximated to be;1
3, smaller than unity, with pa-

rameters given in Appendix A. This reduction factor has be
pointed out independently by Woods and Mahan.35 It is
worth noting thatk50 in a model without shear modulusm.
In other words, models without force constants to bond-an
change give no scattering between electrons and aco
phonons.

Around theK andK8 points in the first Brillouin zone as
shown at the right side of Fig. 1, the effective Hamiltonia
become

HK5gS 0 k̂x2 i k̂y

k̂x1 i k̂y 0
D 1S V1 V2

V2* V1
D ,

~3.9!

HK85gS 0 k̂x1 i k̂y

k̂x2 i k̂y 0
D 1S V1 2V2*

2V2 V1
D ,

with

V25g2e3ih~uxx2uyy12iuxy!, ~3.10!

where

g25
3kb

4
g0 . ~3.11!

The band parameterg is given by)g0a/2. In the above
Hamiltonian the deformation potential has also been
cluded. Off-diagonal parts correspond to the previous res
given by Kane and Mele36 without the reduction factork. It
should be noted that the electron-phonon interaction depe
on the chiral angleh of CN’s although bare Hamiltonians fo
electrons and phonons do not. We discuss the possibilit
chirality-dependent transport due to this interaction in
next section.

Here, we evaluate the off-diagonal coupling constantg2 .
Usually, b;2 for the transfer integral betweenp orbitals
based on the correspondence between a tight-binding m
and a nearly free-electron model with a pseudopotentia34

For the transfer integralg0 , we use that of a graphite she
g053.0 eV. Consideringk; 1

3 , we obtaing2;g0/2 or g2
;1.5 eV. In Ref. 37,b has been calculated to be 3.6, whi
givesg252.7 eV. In a recent experiment,38 b is estimated to
be 1.1, which is smaller than theoretical estimations abo
In any way, this off-diagonal coupling constant is mu
smaller than the deformation potential constantg1;30 eV.
23541
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IV. RESISTIVITY

In CN’s, the velocity of acoustic phonons is much smal
than that of electrons and elastic-scattering approximatio
applicable. Then, what should be considered is only
backward scattering between a right-going state and a
going state at the Fermi energy. The wave function of sta
in the vicinity of the Fermi level in metallic nanotubes
given by

Fsk
K 5

1

AAL
exp~ iky!us,k),

~4.1!

us,k)5
1

&
S 2 is~k/uku!

1 D ,

wheres511 for the conduction band and21 for the va-
lence band, andk.0 andk,0 for the right- and left-going
waves, respectively. This wave function corresponds to
state with the vanishing wave vector in the circumferen
direction and therefore phonon modes withn50 can con-
tribute to the scattering. The matrix element of the backw
scattering is given apart from the spatial part by

Fs,2ukuUS V1 V2

V2* V1
DUs,1ukuG52 i ReV2 . ~4.2!

This means that the diagonal deformation-potential te
does not contribute to the backward scattering as in the c
of impurities17,18 and only the real part of the much small
off-diagonal term contributes to the backward scattering.

We have

ReV25g2@~uxx2uyy!cos 3h22uxy sin 3h#. ~4.3!

In armchair nanotubes withh5p/6, we have

ReV2522g2uxy , ~4.4!

and only shear or twist waves contribute to the scattering
zigzag nanotubes withh50, on the other hand,

ReV25g2~uxx2uyy!, ~4.5!

and only stretching and breathing modes contribute to
scattering.

In this study, we calculate resistivity which is defined
the inverse of the Boltzmann conductivity s
54e2gth /p\2 within the relaxation time approximation
where the factor 4 comes from the electron spin and
degeneracy ofK and K8 points. The relaxation timeth is
given by

1

th
5

2A

\g K U 1

AL E dxdy~ReV2!ei2kyU2L
T

, ~4.6!

where^A@u#&T denotes the thermal average of the function
A@u# with regard to the phonon system. Because cross te
}2uxy(uxx2uyy) vanish identically for modesn50, we
have
2-5
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1

th
5

1

tA
sin2 3h1

1

tZ
cos2 3h, ~4.7!

wheretA andtZ are the relaxation time for an armchair an
zigzag CN with the sameR. This leads to

rh~T!5rA~T!sin2 3h1rZ~T!cos2 3h, ~4.8!

whererA andrZ are the resistivity of an armchair and zigza
CN.

In an armchair nanotube the breathing mode does not
tribute to the scattering and therefore we can safely emplo
high-temperature approximation for the phonon distribut
function for a whole temperature range and have

rA~T!5
h

e2

1

L

g2
2kBT

2g2m
, ~4.9!

where kB is the Boltzmann constant. When a hig
temperature approximation is adopted for phonon distri
tion function, we have the equipartition law

K U 1

AL E dxdy~2uxy!e
i2kyU2L

T

5 K U 1

AL E dxdy~uxx2uyy!e
i2kyU2L

T

, ~4.10!

because (2uxy)
2 and (uxx2uyy)

2 are equivalent in the
Boltzmann weight if the small potential for curvature chan
is neglected. Therefore, at temperatures much higher
TB5\vB /kB the resistivity of a zigzag nanotube becom
same as that of an armchair nanotube with sameR or L, i.e.,

rZ~T!5rA~T!. ~4.11!

Therefore, the resistivity of a CN becomes independent o
chirality at high temperature.

Except in armchair nanotubes, the breathing mode c
tributes to the scattering and their Bose-Einstein distribut
starts to manifest itself at temperatures lower thanTB . At a
low temperature where the breathing mode does not con
ute to the scattering and therefore the resistivity of a zig
nanotube becomes smaller than that of an armchair nano
with same radius, i.e.,

rZ~T!5rA~T!
B

B1m
5rA~T!

l1m

l12m
. ~4.12!

Figure 4 shows calculated temperature derivative of
resistivity. Because of the small coupling constantg2 the
absolute value of the resistivity is much smaller than tha
bulk 2D graphite dominated by much larger deformatio
potential scattering. The resistivity of an armchair CN is t
same as that obtained previously except thatk51 has been
assumed in the expression ofg2 .39

The mean free pathL at high temperature is given by

L5
ma2

3kBTk2b2 L. ~4.13!
23541
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Using the parameters in this study, we obtainL;L36
3102 at room temperature. The mean free path is larger t
1 mm for thin ~10,10! armchair nanotubes and increases
proportion toL with the increase ofL. This strongly supports
the fact that a metallic CN becomes a one-dimensional
listic conductor even at room temperature.

Doped semiconducting CN’s can also show metallic b
havior, but they have large resistivity dependent on the Fe
energy. The electron density per unit lengthne determines
the Fermi wave number as

kF5
pne

4
. ~4.14!

For the reason of particle-hole symmetry, the Fermi energ
assumed to be positive in this paper. The correspond
Fermi velocity is given by

vF5U]«s~k!

\]k U
kF

5
g

\

3kFR

A11~3kFR!2
, ~4.15!

as long as the Fermi level lies in the lowest conduction ba
In contrast to metallic CN’s, the diagonal deformation pote
tial g1 causes electron scattering in semiconducting CN’s

Figure 5 shows resistivity of semiconducting CN’s f
systems with different ratios ofg1 to g2 in units of the resis-
tivity of an armchair CN which is always metallic. At sma
kFR, resistivity scales as (kFR)22 as shown in Fig. 5. This
originates from the fact that the resistivity is inversely pr

FIG. 4. Temperature derivative of resistivity of armchair~solid
line!, chiral ~dotted line!, and zigzag~broken line! nanotubes in
units of drA(TB)/dT which is the temperature derivative of resi
tivity of the armchair nanotube atT5TB , andTB denotes the tem-
perature of the breathing mode,TB5\vB /kB .
2-6
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portional to the square of the Fermi velocityvF ~proportional
to kFR for small kFR!. As kFR increases, the dispersion o
semiconducting CN’s approaches that of metallic CN’s a
so does the wave function. Accordingly, the electron scat
ing due to the deformation potential becomes smaller w
kFR. However, the result forg1 /g2510 shows that the de
formation potential dominates resistivity and off-diagon
potential g2 can be neglected completely even if electro
are heavily doped up to the bottom of the next subband.

When we consider only a single band around a Fe
point, kFR should be less than 1 for a metallic CN, and 1/)
for a semiconducting CN. For largerkFR, it is necessary to
solve the Boltzmann transport equation taking scattering
tween subbands into account.40,41 For CN’s with electron-
phonon scattering, the increase of the number of conduc
modes gives no enhancement of electronic conduction wi
the Boltzmann transport theory, because the intersubb
scattering becomes increasingly more important than
number of conducting modes. This is the case with the
purity scattering.40

Within elastic-scattering approximation, we can solve
Boltzmann transport equation which can be deformed i
the equation in terms of mean free path for each subban
quasi-one-dimensional systems.42,40 Figure 6 shows Ferm
energy dependence of conductivity for metallic and semic
ducting CN’s. It is clear that the constant relaxation-tim
approximation is broken and that the conductivity decrea
in spite of the increasing number of conducting modes
mentioned above.

For metallic nanotubes, in particular, the conductivity

FIG. 5. Electron-density dependence of resistivity for semic
ducting CN’s with g1 /g2510 ~solid line!, 5 ~dotted line!, and 1
~broken line! in units of rA denoting the resistivity of an armcha
CN which is independent of electron density~thin solid line!.
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strongly reduced by intersubband scattering at the Fermi
ergy above the bottom of the first excited conduction ba
Around«F;0, the diagonal potentialg1 causes no backward
scattering between two bands with linear dispersion, a
smaller off-diagonal potentialg2 determines resistivity, or
conductivity. However, when the Fermi energy becom
higher and the number of subbands increases,g1 dominates
the conductivity due to intersubband scattering. This is w
the conductivity changes drastically depending on the Fe
energy. On the other hand, such a drastic change disapp
for semiconducting CN’s and smaller conductivity compar
to that of a metallic CN shows dominance of the diago
potential independent of the Fermi energy.

V. POSITIVE MAGNETORESISTANCE

In the presence of a magnetic fieldH perpendicular to the
tube axis as shown in Fig. 1, we can use the gauge

A5S 0,
LH

2p
sin

2px

L D , ~5.1!

and the effective field for electrons in a CN is given by t
component perpendicular to the surface, i.e.,

H~x!5H cosS 2px

L D . ~5.2!

The parameter characterizing its strength is given by

- FIG. 6. Fermi-energy dependence of conductivity for meta
~solid line! and semiconducting~broken line! CN’s with g1 /g2

510 in units ofsA(0) denoting the conductivity of an armchair C
with «F50.
2-7
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a5S L

2p l D
2

, ~5.3!

wherel is the magnetic length defined byl 5Ac\/eH. In the
casea!1, the field can be regarded as a small perturbat
while in the casea@1, Landau levels are formed on th
cylinder surface. Now, plane waves in a circumference dir
tion are not eigenstates and wave functions around thK
point are written as

Fsk
K 5

1

A2A
S Fsk

KA~x!

Fsk
KB~x! Dexp~ iky!, ~5.4!

wheres511 and21 for the conduction and valence ban
respectively.

The energy levels and wave functions are analytically
tained for«50:43

Fsk
KA~x!52 is~k/uku!F2~x!,

~5.5!
Fsk

KB~x!5F1~x!,

with

F6~x!5
1

ALI 0~2a!
expS 6a cos

2px

L D , ~5.6!

whereI 0(z) is the modified Bessel function of the first kin
defined as

I 0~z!5E
0

p du

p
exp~z cosu!. ~5.7!

The corresponding eigenenergies are given by«s(k)
5sguku/I 0(2a), which gives the group velocityv
5g/\I 0(2a), and the density of statesD(0)5I 0(2a)/pg.

We should note that

I 0~2a!'H 11a21¯ ~a!1!,

e2a/A4pa ~a@1!.
~5.8!

This means that the group velocity for states at«50 de-
creases and consequently the density of states increase
ponentially with the increase of the magnetic field in t
high-field regime. In high magnetic fields (a@1), F2(x) is
localized aroundx56L/2, i.e., at the bottom side of th
cylinder andF1(x) is localized around the top sidex50.
The wave function for theK8 point can be obtained in a
similar manner.

In the presence of magnetic fields,V1 and ImV2 also con-
tribute to the matrix element of electron-phonon scatter
and, as a result, to the relaxation time. In this section,
consider high temperature and neglect the potential for
vature change. In this case, the relaxation time and the re
tivity become independent of the chirality. The relaxati
time is given by
23541
n,

-

-

ex-

g
e
r-
is-

1

t
5

kBT

\2vF
Fg1

2

B E dxuFs,2kF

KA ~x!* Fs,kF

KA ~x!

1Fs,2kF

KB ~x!* Fs,kF

KB ~x!u2

12
g2

2

m E dx~ uFs,2kF

KA ~x!* Fs,kF

KB ~x!u2

1uFs,2kF

KB ~x!* Fs,kF

KA ~x!u2!G . ~5.9!

At «F50, after analytical solutions are substituted into t
above, we obtain

r~H !5
h

8e2

2kBT

g2L S g1
2

B
@ I 0~4a!21#12

g2
2

m D . ~5.10!

The rapidly increasing functionI 0(4a) with regard to the
magnetic field clearly shows that huge magnetoresistanc
induced by the diagonal electron-phonon scattering poten
g1 . For the system with nonzero doping (kFR.0), wave
functions are numerically solved.

Figure 7 shows resistivityr(H) determined by the diag
onal potentialg1 . Electrons are not back scattered at all
the absence of a magnetic field but this absence of b
scattering disappears in magnetic fields, leading to the h
positive magnetoresistance. This is understood by the a

FIG. 7. Resistivity with a fixed electron density in magne
fields determined by the diagonal deformation potential. The u
rg1 is defined so thatr(H) becomesrg1@ I 0(4a)21# for kFR50
as given in Eq.~5.10!.
2-8
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PHONONS AND ELECTRON-PHONON SCATTERING IN . . . PHYSICAL REVIEW B65 235412
ogy with the scattering by the long-range impuri
potential.17 This magnetoresistance decreases with the
crease of the doping.

On the other hand, the resistivity due to the off-diago
interactiong2 is independent of the magnetic field witho
doping (kFR50) as shown in Fig. 8. With the increase of th
doping, it starts to exhibit a negative magnetoresistance.
reduction of scattering in magnetic fields for nonzerokF for
bothg1 andg2 is caused by the change of the wave functi
resulting in the decrease of overlap between the initial
final states.43,40

In a realistic system,g1 is much larger thang2 as men-
tioned in Sec. III Figure 9 shows the total magnetoresista
for g1 /g2510 in a low magnetic field regime. The larg
positive magnetoresistance is apparent particularly forkFR
50 and decreases gradually with the increase ofkFR.

This behavior in a low magnetic field is understood fro
the perturbative expansion in terms of smalla5(R/ l )2.
Wave functions are obtained up to the second order ofa and
magnetoresistance is given by

r~H !2r0

r0
52FmB S g1

g2
D 2

24~kFR!2Ga2. ~5.11!

Thus, the magnetoresistance decreases as the dopin
creases because a small negative magnetoresistance ap
for nonzerokFR for the component determined byg2 .

Within the high-temperature approximation, the magn
toresistance due to the phonon scattering is independe
temperature. However, because the deformation potenti
generated by stretching and breathing modes, the magne

FIG. 8. Resistivity with a fixed electron density in magne
fields determined by the off-diagonal term. The unitr0 is the resis-
tivity at H50.
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sistance becomes dependent on temperature at tempera
comparable to or lower thanTB . This will not be discussed
further.

The huge positive magnetoresistance predicted here
be observed experimentally in multiwall CN’s. For examp
the conditiona5(R/ l )250.25 is realized in outer shells o
the multiwall CN with R526 Å whenH525 T. Then, the
magnetoresistance reaches aboutDr/r0;1.0 at H510 T
and Dr/r0;6.7 at H525 T. For a~10,10! nanotube with
R56.79 Å, we havea5(R/ l )251.731022 even at H
525 T and therefore the magnetoresistance remains alm
negligible.

Figure 10 shows magnetoresistance of semiconduc
CN’s with)kFR50.1, 0.5, and 1.0. Doped semiconductin
CN’s show positive magnetoresistance which slightly d
pends onkFR. Clearly, it is much smaller than that of me
tallic CN’s given by the thin line in Fig. 10. This is becaus
the deformation potential scatters electrons in semicond
ing CN’s even without magnetic fields as mentioned in t
previous section, and the magnetic field does not cause
drastic change of scattering as in metallic CN’s.

VI. DISCUSSION

There exist several theoretical studies on the dispers
relation of phonons in a CN with small radius though
experimental observation is still difficult. Our continuum e
fective model for acoustic phonons demonstrates the bre
ing mode with the energy proportional toR21 and the exis-
tence of four zero modes which cannot be reproduced by
zone-folding method to phonons of a graphite sheet. Ther

FIG. 9. Calculated magnetoresistance in a low-magnetic-fi
region.
2-9
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HIDEKATSU SUZUURA AND TSUNEYA ANDO PHYSICAL REVIEW B65 235412
a R22 correction to the breathing mode from the potent
term due to curvature change, but it is very small even
the ~10,10! armchair CN and negligible for CN’s with larg
radius. These results agree with those of the pioneering s
in Ref. 32. The energy of the lowest Raman-active mode
been predicted in Ref. 32 to be almost proportional toR22.
This corresponds to the modes atqR50 andn562 with
frequencyv/vB'0.12 for the~10,10! armchair CN in Fig.
4~b!. This nonzero frequency originates from the poten
for curvature change and therefore scales asR22, and the
absolute value of the frequency also shows a good ag
ment.

As mentioned in Sec. II, the dispersion of the bend
modes is proportional toq2 in contrast to the result of Ref
32. Thisq2 dispersion is consistent with the elastic theory
bending of cylinders,29 more recent results ofab initio
calculations,44 and results of a lattice-dynamical model.45

Elasticity of a cylindrical shell with nonzero thicknes
was studied long ago,46 and an in-plane part represented
Eq. ~2.1! is well reproduced in the limit of thin shell.47,48 In
such a sense, it can be said that the continuum descriptio
twisting, stretching, and breathing modes should be a w
known fact. However, other terms containing higher-ord
derivatives are so complicated that it is no longer clear wh
term is indispensable for stability of nanotubes to the de
mation of cross section. Apart from the theory for thre
dimensional media, we have considered elasticity of a sh
with no thickness. From a microscopic valence-force-fi
model, we obtained an effective continuum model for
plane modes corresponding with the above well-kno

FIG. 10. Magnetoresistance of semiconducting CN’s w
)kFR50.1 ~solid line!, 0.5 ~dotted line!, and 1.0~broken line!.
The thin solid line shows magnetoresistance of an armchair
with )kFR51.
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model and this is important for the derivation of electro
phonon interaction. For out-of-plane modes, we have p
nomenologically proposed a simple but relevant potential
curvature deformation which maintains full continuous sy
metry of the cylindrical surface.

There are only a few experimental studies reporting n
mal metallic behavior of the temperature dependence
CN’s.49 With the present experimental technique it see
quite difficult to measure the resistivity of one metall
single-walled CN for which the chirality is identified. Th
resistivity of samples containing various CN’s shows t
temperature dependence of metallic nanotubes reflecting
distribution of chirality as long as Ohmic contact is realiz
because semiconducting nanotubes with large resisti
make little contributions to electron transport in su
samples.

As for magnetoresistance, several experimental res
have been reported.50,51 At low temperature, negative mag
netoresistance has been observed and explained by qua
effects due to weak localization. In contrast, the results
Ref. 50 show positive magnetoresistance at high tempera
and this is consistent with our theory as electron-phon
scattering is considered to contribute to scattering mainly
a high-temperature regime.

It should be noted that the two-dimensional lattice is th
modynamically unstable.52 For example,̂ ux

2&T is divergent
though^(]ux /]x)2&T has a finite value. Therefore, we shou
consider some environments with three-dimensionality o
finite tube length to cut off such a divergence. In fact, CN
usually form bundles, mats, and so on. A single CN used
experiments always has a finite length and is put on a cer
substrate material or attached to a metallic contact. Th
effects may drastically change phonon modes with sm
wave number. It is possible that electron-phonon scatte
in a CN with«F;0 shows singular behavior. Clarification o
such effects is left for a future study.

VII. SUMMARY AND CONCLUSION

We have studied electron-phonon scattering in meta
CN’s. A continuum elastic model with only three constan
has been proposed for long-wavelength acoustic modes p
ing a major role in electron-phonon scattering. Electro
phonon interaction has been derived based on the effec
mass theory for conducting electrons. The conventio
diagonal deformation potential does not contribute to ba
ward scattering and therefore gives rise to no resistanc
metallic nanotubes in the absence of a magnetic field. Th
fore, we have to consider a small and chirality-depend
off-diagonal potential due to local modification of ban
structure.

In metallic CN’s, only the off-diagonal potential scatte
electrons in the absence of a magnetic field. For armc
CN’s, only a twisting mode causes scattering. On the ot
hand, stretching and breathing modes contribute to scatte
for zigzag CN’s. At high temperature, contribution from bo
modes in a zigzag CN is equal to that from a twisting mo
in an armchair CN. The breathing mode with finite ener
gap is hardly excited and causes little scattering at temp

N

2-10
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PHONONS AND ELECTRON-PHONON SCATTERING IN . . . PHYSICAL REVIEW B65 235412
tures lower than its energy. As a result the resistivity o
metallic CN is dependent on the chirality.

In a magnetic field electron scattering is induced even
metallic CN’s by the diagonal deformation potential which
much larger than the off-diagonal potential, leading to a hu
positive magnetoresistance. This can be observed easily
metallic CN with large radius.
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APPENDIX A: MICROSCOPIC PHONON MODELS

In this Appendix, we derive a continuum model for lon
wavelength phonons of a two-dimensional graphite sh
based on a valence-force-field model. For a graphite sh
in-plane and out-of-plane modes are decoupled. For in-p
modes, two force constants are introduced for restor
forces to bond-stretching and bond-angle change in the
plest approximation.35,53

The equations of motion are given by
nd

23541
a
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e
a

r
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et
et,
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g
-

MV0v~k!2U~k!5Hph~k!U~k!, ~A1!

with

U~k!5S uA
x ~k!

uA
y ~k!

uB
x ~k!

uB
y ~k!

D . ~A2!

Here, the dynamical matrix is given by

Hph~k!5Hbs~k!1Hba~k!, ~A3!

with

Hbs~k!5K1S 3
2 0 h1~k! h2~k!

0 3
2 h2~k! h3~k!

h1~k!* h2~k!* 3
2 0

h2~k!* h3~k!* 0 3
2

D
~A4!

and
Hba~k!5K2S h4~k! h5~k! 6h3~k! 2)h2~k!*

h5~k!* h6~k! 2)h2~k!* 6h1~k!

6h3~k!* 2)h2~k! h4~k! h5~k!

2)h2~k! 6h1~k!* h5~k!* h6~k!

D , ~A5!
whereK1 andK2 are force constants for bond stretching a
bond-angle change, respectively, and

h1~k!52
3

2
eikya/2) cos

kxa

2
,

h2~k!52 i
)

2
eikya/2) sin

kxa

2
,

h3~k!52eikya/)2
1

2
eikya/2) cos

kxa

2
,

~A6!

h4~k!571sin2
kxa

2
12 cos

kxa

2
cos
)

2
kya,

h5~k!52) ie) ikya/2 sin
kxa

2
1 i
)

2
sinkxa,

h6~k!5923 sin2
kxa

2
,

We expand this matrixHph(k) in terms ofkxa andkya as
follows:

Hph~k!5H ~0!1H ~1!1H ~2!1¯ ,

with

H ~0!5
3

2
~K116K2!S 1 0 21 0

0 1 0 21

21 0 1 0

0 21 0 1

D , ~A7!

H ~1!5 i
)

4
~K126K2!aS 0 0 2ky 2kx

0 0 2kx ky

ky kx 0 0

kx 2ky 0 0

D ,

~A8!

and
2-11
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H ~2!5K1a2S 0 0 ~1/16!~3kx
21ky

2! ~1/8!kxky

0 0 ~1/8!kxky ~1/16!~kx
213ky

2!

~1/16!~3kx
21ky

2! ~1/8!kxky 0 0

~1/8!kxky ~1/16!~kx
213ky

2! 0 0

D
1K2a2S 2~3/4!ky

2 ~3/4!kxky ~3/8!~kx
213ky

2! 2~3/4!kxky

~3/4!kxky 2~3/4!kx
2 2~3/4!kxky ~3/8!~3kx

22ky
2!

~3/8!~kx
213ky

2! 2~3/4!kxky 2~3/4!ky
2 ~3/4!kxky

2~3/4!kxky ~3/8!~3kx
21ky

2! ~3/4!kxky 2~3/4!kx
2

D . ~A9!
ex
g

on

ergy

xist
ns.

two

al
have
be

es.
een
ed

a to
ano-

w-
We solve the eigenvalue problem with the perturbative
pansion in the long wavelength limit. Then, the followin
variables u(r )5(ux ,uy) and v(r )5(vx ,vy) enable us to
treat acoustic and optical phonons separately,

u5
1

&
~uA1uB!2k8D

1

&
~uA2uB!1¯ ,

~A10!

v5
1

&
~uA2uB!2k8D

1

&
~uA1uB!1¯ ,

with

k85
K126K2

4)~K116K2!
~A11!

and

D5aS ]

]y

]

]x

]

]x
2

]

]y

D . ~A12!

This linear transformation gives two sets of eigenequati
up to the second order of wave numbers

MV0v~k!2u~k!5Hac~k!u~k!,
~A13!

MV0v~k!2v~k!5Hop~k!v~k!,

with

Hac5
1

8
K1a2S kx

2 kxky

kykx ky
2 D

1
3

2

K1K2

K116K2
a2S kx

21ky
2 0

0 kx
21ky

2D ~A14!

and
23541
-

s

Hop53~K116K2!S 1 0

0 1D
1S 2

1

8
K11

3

2
K2Da2S kx

2 kxky

kykx ky
2 D

2
3

2

K113K2

K116K2
K2a2S kx

21ky
2 0

0 kx
21ky

2D . ~A15!

In a real-space representation, we obtain the potential-en
functional foru(r ) which is given by Eq.~2.1! with strains
defined as Eq.~2.2!. Laméconstants are defined as

l5
1

4)

K126K2

K116K2
K1 ,

~A16!

m5)
K1K2

K116K2
.

Next, we estimate parameters in our model. There e
two parameters for in-plane modes of acoustic phono
What is necessary for our continuum elastic model are
elastic constantsB andm, and it is of no importance which
microscopic model is originally adopted unless optic
phonons are concerned. Such parameters of nanotubes
not yet been settled by existing studies. They can also
determined by the velocity of twisting and stretching mod
However, the sound velocity of such modes has not not b
obtained experimentally and has not uniquely been fix
theoretically, either. Therefore, it seems to be a good ide
use the data of graphites because our elastic model for n
tubes is based on that for graphite sheets.

By neglecting interlayer interactions, we adopt the follo
ing parameters for bulk graphites:54

B/M52.903108 m2/s2,

m/M51.513108 m2/s2, ~A17!

J/M56.193106 m2/s2.
2-12



e
a

ula

de
h

a
e
e
as

t,

it
.e

s

a

-
as

PHONONS AND ELECTRON-PHONON SCATTERING IN . . . PHYSICAL REVIEW B65 235412
An extensive study for phonons of a single graphite sh
has been given by Ref. 55 and the same model with sm
corrections due to the curvature has been used to calc
the phonon dispersion of nanotubes.32 However, the obtained
sound velocities are not compatible with the elastic mo
because they give a negative Poisson ratio which is hig
improbable.

APPENDIX B: ELECTRON-PHONON INTERACTION

In the following we shall derive an effective-mass equ
tion following the procedure given in Ref. 56. First, w
should note that for states in the vicinity of the Fermi lev
«50 of the 2D graphite, the total wave function is written

cA~RA!5a~RA!1FA~RA!,
~B1!

cB~RB!5b~RB!1FB~RB!,

with

a~RA!15~eiK•RA eiheiK8•RA!,
~B2!

b~RB!15~2veiheiK•RB eiK8•RB!,

and

FA5S FA
K

FA
K8D , FB5S FB

K

FB
K8D , ~B3!

whereFA
K , FB

K , FA
K8 , andFB

K8 are slowly varying envelope
functions. In this Appendix,v represents a cubic roo
exp(i2p/3).

Introduce a smoothing functiong(r ) which varies
smoothly in the rangeur u&a and decays rapidly forur u@a.
It should satisfy the conditions

(
RA

g~r2RA!5(
RB

g~r2RB!51 ~B4!

and

E drg~r2RA!5E drg~r2RB!5V0 , ~B5!

whereV0 is the area of a unit cell given byV05)a2/2. The
functiong(r2R) can be replaced by a delta function when
is multiplied by a smooth function such as envelopes, i
g(r2R)'V0d(r2R).

We substitute Eq.~B1! into Eq.~3.3!. Consider the first of
such equations. Multiply it byg(r2RA)a(RA) and then sum
it over RA . The term in the left-hand side becomes

(
RA

g~r2RA!a~RA!«cA~RA!5«S FA
K~r !

FA
K8~r !

D . ~B6!

The term proportional tog0 in the right hand side become
23541
et
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.,

2g0(
RA

g~r2RA!a~Ra!(
l

cB~RA2tl !

5gS eih~ k̂x2 i k̂y! 0

0 e2 ih~ k̂x1 i k̂y!
D S FB

K~r !

FB
K~r ! D ,

~B7!

Finally, the term proportional todg in the right hand side of
the first equation of Eq.~3.3! is calculated as

bg0

b2 (
l

S 2veihe2 iK•tl 0

0 e2 ihe2 iK8•tl
D

3tl•@uA~r !2uB~r2tl !#FB~r !, ~B8!

whereu(r ) is the slowly varying lattice displacement as
function of the continuous valuabler .

BecauseuA(r )2uB(r2tl) involves displacements of dif
ferent sublattices, it has a contribution of optical modes
well as that of acoustic modes and in generaluA(r )2uB(r
2tl)Þu(r )2u(r2tl). Solving Eq.~A10! inversely, we ob-
tain

uA5
1

&
~u1v!1k8D

1

&
~u1v!1¯ ,

~B9!

uB5
1

&
~u2v!2k8D

1

&
~u2v!1¯ ,

and, retaining only contributions from acoustic modes,

uA~r !2uB~r2tl !5
1

&
~tl•“ !u1&k8Du1¯ .

~B10!

We obtain Eq.~3.7! with k51/& when only the first terms
in the right hand side are taken into consideration.

Now, we shall substitute Eq.~3.7! into Eq. ~B8! and use
the identity

(
l

e2 iK•tlS ~t l
x!2

t l
xt l

y

~t l
y!2

D 5
v21

4
a2S 21

2 i
11

D ~B11!

and

(
l

e2 iK8•tlS ~t l
x!2

t l
xt l

y

~t l
y!2

D 5
1

4
a2S 21

1 i
11

D . ~B12!

Then, we have
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3kb

4
g0S eihS ]

]x
1 i

]

]yD ~ux1 iuy! 0

0 2e2 ihS ]

]x
2 i

]

]yD ~ux2 iuy!
D . ~B13!
te
a

ra

e

-
non
gle
rce
for
in-

ub-

d
ne
as

, in
rest-
the
nd-

fact,

an
ere-
The above quantities are those in the coordinate sys
fixed onto the graphite sheet and become in the coordin
system defined in the nanotube

ux6 iuy→e6 ih~ux6 iuy!,

]

]x
6 i

]

]y
→e6 ihS ]

]x
6 i

]

]yD , ~B14!

k̂x6 i k̂y→e6 ih~ k̂x6 i k̂y!.

Similar expressions can be obtained forFB and the effective-
mass equations in the presence of electron-phonon inte
tion become

HKFK~r !5«FK~r !, HK8F
K8~r !5«FK8~r ! ~B15!

and the Hamiltonians are given by Eq.~3.9!.
In a similar way, the second terms of Eq.~B10! can be

evaluated and make the following contribution to th
electron-phonon interaction around theK point:

2
bg0

b2 veih&k8a(
l

e2 iK•tl@2t l
xuxy1t l

y~uxx2uyy!#

523A3

2
bg0eihk8@~uxx2uyy!1 i2uxy#, ~B16!

which gives nothing but a correction tok. Therefore, Eq.
~3.7! is justified andk is given by
ec
.

.

tt.

h

B

v

hy

ev

. B

23541
m
te

c-

k5
1

&
24A3

2
k85

1

&

12K2

K116K2
. ~B17!

As mentioned in Sec. III,k is proportional to the force con
stant for bond-angle change and therefore electron-pho
interaction vanishes without restoring force to bond-an
change. This is the case with models containing more fo
constants as long as restoring force between atom pairs
radial displacement are considered and force constants
volving three or more atoms are completely neglected. S
stituting these parameters in Appendix A into Eq.~3.8!, k
becomes 0.369, or approximately;1

3.
Lamé constants defined by Eq.~A16! gives another rep-

resentation ofk as Eq.~3.8!. Here, we should bear in min
that thisk cannot be determined by the elastic theory alo
but depends on the original valence-force-field model
shown above. Nonetheless, Eq.~B17! is approximately valid
for models containing higher-order interactions because
the electron-phonon interaction due to change of the nea
neighbor transfer integral, there is no correction from
bond-stretching and bond-angle change for the seco
nearest-neighbor atoms at the same sublattice. In
K2 /K150.0565, and, as a result,k50.358 in the model of
Ref. 57 in which more force constants were introduced th
the present two-parameter valence-force-field model. Th
fore, our choicek; 1

3 is likely to be quite reasonable.
.
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