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Three-dimensional analysis of the electronic structure of cylindrical vertical quantum dots
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We present a detailed analysis of single-electron charging effects in cylindrical vertical quantum dots
(CVQD's). Emphasis is placed on three-dimensiof3i)) device effects that induce appreciable features in the
guantized electron spectrum and in the addition energy spectrum of CVQD’s. A potential model based on a 3D
analytical solution of the Poisson equation provides intuitive physical insight into the variation of the
eigenspectrum as a function of the potential nonparabolicity. This analytical model is in good qualitative
agreement with a full 3D self-consistent quantum simulation of single-electron charging in quantized CVQD’s
based on the density-functional theory. Hence we show that the spin sequences realized in filling the third and
fourth electronic shells are a sensitive function of the potential nonparabolicity arising from the 3D CVQD
geometry, and varying with applied gate bias. Within this “atomic shell” model, the addition energy spectrum
reflects the influence of 3D device effects and is not necessarily a signature of a particular spin-filling
sequence.
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[. INTRODUCTION ate boundary conditions. From these analytical consider-
ations, we derive a more realistic 2D potential for the
Recent experiments on single-electron charging effects i€VQD, and perform a perturbation analysis of the Hamil-
cylindrical vertical quantum dotéCVQD's) have suggested tonian of a 2D circular oscillator. This approach provides
the existence of atomiclike properties of the confined elecphysical insight into the CVQD spectrum and enables us to
trons such as orbital motion, three-dimensional energy quarfierive general properties, independent of simulation results.
tization, shell structure, and even Hund’s riif.For these However, this model is of limited application for quantitative
reasons, CVQD’s are often called “artificial atom&:® comparison with experiments. In order to gain accuracy in
However, while in real atoms the confining potential arisingour approach, we carry out a comprehensive computer simu-
from the nucleus charge is characterized by a central synjation of the CVQD by taking into account the full device
metry, and varies as the inverse of the distance from thétructure, the effect of the equipotential, and many-body in-
center, in “artificial atoms” the potential is strongly confined teractions. We use the finite element solutions of coupled
in the vertical direction, while it is much weaker in the per- Poisson and Schdinger 3D equations within the density-
pendicular plane with a quasiharmonic profile. For this reafunctional .theory, suitable to simulate an arbitrary number of
son, the two-dimension&2D) harmonic oscillator model has €lectrons in the CVQD.
often been used for interpreting, with relative success, the 2D
atomiclike features O.bserV?d in eXperimelthg}(.)_l“HO\{V' Il. CYLINDRICAL VERTICAL QUANTUM DOT
ever, the 2D harmonic oscillator model is an ideal picture, STRUCTURES
that suffers from significant shortcomings such as an over-
estimation of the electron localization in the quantum dot Figure Xa) shows a schematic diagram of a CVQD simi-
(QD),%® and the perfect level degeneracy within 2D shells,lar to the device investigated by Austireg al'® The struc-
which is different from experimental observationé. ture consists of an undoped 12-nm G 9sAs well and
In this paper, we study the deviations of this approach byundoped A} ,,/Ga, ;gAs barriers of thicknesses 9 and 7.5 nm.
considering 3D effects introduced by the real device configuThe inclusion of indium in the well lowers the bottom of the
ration that includesi) the influence of the doping in the lead conduction band and circumvents the drawbacké-dbped
reservoirs(ii) the effect of depletion in the vertical direction Al,Ga _,As barriers of earlier devicé$.The lead on the
with applied bias, andiii) the effect of gate length on the side of the thinner(thicken tunnel barrier is made of
confining potential in the quantum well. All these effects n*GaAs and is referred to as tiseurce(drain). The differ-
have a significant influence on the single-particle eigenlevelgnce in the barrier thickness is required to facilitate an accu-
and the addition energy spectrum of the CVQD’s. Specifi-mulation of electrons in the dot when the device operates in
cally, we show that the confining potential of a real device isthe nonlinear regime, i.e., at a large drain-source bias. In this
not purely parabolic. Consequently, the eigenlevels within gaper, however, we will exclusively focus on a regime close
shell are no longer degenerate, which affects the chargintp equilibrium so that the electronic structure of the QD is
sequence of the dot. For this purpose, we use two differerinaffected by the drain-source bias. The doping is gradually
approaches. We model the device by considering a cylindrireduced fromNp=210/cm® at the source(drain to Np
cal classical charge distribution resulting from the doping=10'"/cm® at the double-barrier heterostructy@BH) over
and the layered structure around the CVQD for which wea distance of 4000 A. The DBH is etched to form a circular
analytically solve the 3D Poisson equation within appropri-mesa with a geometrical diameter of the top contact of
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a) b) * boundary conditions at=+z.. are such as the field is
m n+GaAs . _ _ .
- A - Y relaxed, |.e.,. Q¢/0Z)|i-zx—0, and ¢.S— #(R,z) is the
= InGaAs N Schottky barrier potential at the gate interface=R).
1 GaAs spacer - ke -
. melefigaie e 1. Intrinsic region (0<z<z,)
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7 e N3 We separate variables to solve Ed), and find, for the
T potential*®
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o, =0 S(r.2)=dst S Adolyar)(e PHem),  (2)

FIG. 1. (a) Schematic diagram of a cylindrical vertical quantum
dot tunneling heterostructure showing the different semiconductowhere y,=u,/R and u; is the jth zero of the zero-order
layers. The quantum dot, represented by the oval, lies in a 12-nnBessel function of the first kindy.
wide quantum well (1po=Ga g5AS) surrounded by two potential
barriers (Ap,/Ga 76As) whose thicknesses are 7.5 nm on the 2. N-doped region(z>z)
source side and 9 nm on the drain sidb) Cylindrical charge
model for the CVQD structure with boundary conditiohk; is the
ionized donor concentration, and, §,z) are the cylindrical coordi-

nates. $(r.2)= ds— K(RP=12)+ > BpJo( yar)en=(e” 1(* %)
n

By using the same technique as above, we find

0.5 um. A circular Schottky gate surrounding the mesa con- +em(z=2)) @)
trols the number of electrons in the dot. '

whereK =qN;/4e. The constant#,, andB,, are determined

ll. ANALYTICAL MODEL by matching the valueg andd¢/dz at z=z;, which yields
In order to investigate the effect of 3D geometry on the 2 .
confining potential in the dot and describe its deviations from = 2KR” Jo(pn) SNt yp(z-—2)] (4)

parabolicity, we model the CVQD as a cylindrical structure
[Fig. 1(b)] by taking into account macroscopic parameters
such as the doping of the source and the draim)( the and
radius of the deviceR), the pinning of the conduction band

ph Ji(wp) SN ypZe]

at the Schottky gate interface§), and the well width (2,), —2KR?%e™ "% J,(up,) Sini Ypzil
and include the effect of the third dimension. Bp= 2 2 in 7 ®)
M I (pp) SINHLYpZ::]
A. Potential model so that the potential inside the dot can be rewritten as
The model consists of an intrinsic region ferz;<z=<z 2 )
surrounded by two depleted regions faf>|z|, which ex- O(r.2)= o aNpR sint yn(z.—2)]
tends up t@= + z, where it becomes neutral. The structure ’ s € nA=o sinh(y,z.)
is assumed to be symmetric around 0, and the potential
= ¢(r,z) does not depend of. The dot is also assumed to Ja(pn)
o= on2) P X2 o yar )Ch(y2). ®)

be empty of electrons in order to capture only the structural
effects, as opposed to the many-body effects due to electron-
electron interactions on the confining potential. We obtain By taking the limitz— 0 in Eq.(6), we obtain the poten-
the confining potentiad by solving the 3D Poisson equation i) in the center of the dot. We make use of the power

expansion ofly(x) and invert the summations to obtain the

pad3(pan)

2 2 2
¢ 194 +£ ¢ +M __PF (1) following expression:
grz T ar 2 592 g7 €'
: : aNp r\ o,
wherep is a charge density such as ¢(r)=¢0—a—4 r-—A rIT (7
€

=0 (—z<z<z
p (—2 ) If we denote
and

:Sil’ll’[ Yn(Ze=2)] Jo(n)
Toosinynz)  B2(uy)

p=aNp (|z|>z). (8)

Heree is the dielectric constant. Sinee .~300 A is much
smaller than the sourderain-DBH distance (4000 A), the which is simply a structure factor depending on the problem
doping variation is neglected in the analytical model. Thegeometry, the first term
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FIG. 3. Comparison between the profiles of the conduction band
edge ¢=0) computed from self-consistent simulatioisslid) and
from our 3D cylindrical charge moddtlashed The dotted curve
shows a parabolic potential witk=qgNp/4e. The inset shows the
Ar? correction to the harmonic potential as a function réR,
whereR is the dot radius.
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prising since the solution of the 2D harmonic oscillator is

only a function of the doping level. The dependence can

100 150 (A)200 250 300 be understood by noting that, by increasing the width of the
i intrinsic (p=0) well, the field density, and thus the potential

&
Urks
—

a-parameter (dimensionless)
(=4
2

1 curvature in the longitudinal directiorz), decrease. In Fig.
(c) 2(b), we useR=2500 A, and we keep the depleted region
0.8 z.—z constant at 200 A in order to maintain the charge
constant. Thez,, dependence o (hereR=2500 A andz
0.6 =175 A) is strong because the variation of implies a
significant change in the charge of the depleted region,
0.4 which, via the Poisson equation, results in a strong variation
of the electrostatic potential curvature. It is worth emphasiz-
0.2 ing that Fig. Zc) reflects the 3D nature of the potential varia-
tion, with correlation between its curvature along the radial
Y0 200 600 800 1000 1200 and longitudinal directions. Figure 3 shows that the 2D har-
z_(A) monic oscillator(dotted curvé model, with a spring constant

K =qgNp/4e, overestimates the real potential curvature com-
pared with 3D models. This is consistent with thedepen-
dence of thea factor previously obtained since the 2D
harmonic-oscillator picture can be considered as the limit for
z;— 0 of the 3D problenjFig. 2(b)]. In practical problemsK

is a fitting parameté??°fudged with a power variation af,

FIG. 2. Variation of the form factos as a function ofa) the dot
radiusR, (z=175 A, z.~350 A), (b) the well width 2 (R
=2500 A, z.~350 A), and(c) the extension of the depletion
width z, (R=2500 A, z=175 A) in the vertical direction.

v v qNS R? s Cn g the electron density, but then it loses its physical meaning
oV Np) = s(Ve) — - ? 9 since it is unrelated to any of the nanostructure parameters.
n

The last term in Eq(7) is the 3D correction to the “quasi-

represents the potential in the bottom of the dot which de2D parabolic potential with

pends on the applied gate voltagge . The second term is

21+2
the harmonic term with the form facter==,C,,. We note Al — 2 E (—1)'*1 pan r 2
that this term does not scale directly with the dot radRis R 4eR2 = 22+21(1+2)172\R
nor with V. However, there is a hidden dependence on (10)

these factors through the parameter that is a function &

z, andz.,,, as shown on Fig. 2. Our model predicts a weakWe point out that, while retaining the cylindrical symmetry,
dependence on the radius of the struclBrig=ig. 2@] but a this term is structureN; ,C,) and geometryR) dependent;
strong dependence an and z,, [Figs. 2b) and Zc)]. In it is not necessarily negligible, grows witfiR, and could be
plotting the R dependence of thex factor, we usez positive or negative sincé, oscillates withu,,. The correc-
=175 A, according to device geometry, amg~350 A, tion Ar#is plotted as a function ofr(R) in the inset of Fig.
that is is extracted from the solution of our numerical model3. It is seen that the correction is small but not negligible at
presented here after. The weak dependenc® @annot sur-  a short distance from the origin.
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B. 2D eigenstates analysis

Since the effective dot radius is much smaller tiarhe
Ar# correction can be treated as a perturbation of a parabolic
potential in the quantum-mechanical problem of the determi-
nation of the eigenvalues and the eigenfunctions in the?)D.
Hence we consider the actuay potential profile to be given

by

¢(ra‘9):¢osc(r)+w(r10)v (11)

where ¢o{r)= ¢o—Kr? is the harmonic potential of Eq.
(7), andW is a perturbation which contains the correction
term and, for the sake of generality, depends and 6 [Fig.
1(b)]. If the confining potentialp retains cylindrical symme-
try, one can state the following

(1) ¢ commutes with the two-dimensional angular mo-
mentum operatorf{/i)(d/36). ThereforeH andH, have the
same eigenfunctionepnr M-

2 ®n, M and @n, ,—Mm Can be generated from one another

by rotation, i.e., ifR is a rotation operator with & axis,
Ren -mM=@n M- Therefore,gonr,M and @n,—M have the
same energye, |u-

Thus, as long as the perturbation is small with respect to
hw, the shell structure in CVQD’s is preserved. However,
within a shell, degeneracy is partially lifted, and subshell
levels, characterized by identical absolute values in their
guantum numbeM, emerge.

When the cylindrical symmetry is broken, by, for in-
stance, the electron occupation of n@wrbitals, deviations
from the circular shape of the dot and/or potential fluctua-
tions arising from the long-range Coulomb interaction of
ionized donors in GaAs, the eigenlevels are, in general, no
longer degenerate. We illustrate the consequences of broken '..
spatial symmetry by two examples of perturbations. Since '
the cylindrical symmetry is not preserved, quantum numbers
(n,,M) are, in general, no longer appropriate, although, as h
shown on Fig. 4, the eigenfunctions may, in some cases, (g) ( )
retain strong cylindrical symmetry features. To characterize
the perturbed eigenfunctions and eigenvalues, Waﬂ,-‘jsmd
e, wherei is the shell number anklis the appearance order
within a shell. In the perturbation analysis, th&'s will be
expanded on thfépnwny basis.

o~
) )
1

o

1. QW= A XY a
Here, X and)y are the position operators along thand ( ) (.])
y directions, respectively. This perturbation arises, for ex-

ample, from the electron charge due to the occupationf a

orbital, present in every shell. Expressing the operaf¥rs

and in terms of the annihilatior and creatiora’ opera-

tors, we find , )
FIG. 4. Wave-function contourplots for the four first shells of a

CVQD. (a) The first shell is nondegeneratelazlnd made up oBan
N statey. (b) and(c) Degenerate-like statesy;“ belonging to the
qW= T(ala;"'aiay"'axa;"'axay)' (12) second shell(d)—(f) Third-shell wave functions consisting of two
d-like statesy2? [(d) and (¢)] and ans-ike state 3 (f). (9)—(j)
The perturbation matrix in th¢+1 harmonic oscillator ~ Fourth shell composed of onklike subshelly3? [(g) and (h)] and
eigenfunction basisn(,n,) reads onep-like subshelly3* [(i) and (j)].
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TABLE I. Terms of the expansion of¥?)?) in term ofa’ and  bersn, and n,. Only contributions that conserve the total

a operators. quantum numben can affect the shell. We examine the ef-
fect of this perturbation on the second, third, and fourth
Term Effect onn, Effect onn, Effect on state  ghells, respectively.
aZa? > 9 none Second shellThe unperturbed second shell is made up of
a)zféN 1)) 5 0 none two p statesgg; and ¢q9. Expanding the perturbed wave
y X . )
a2 _s +2 third shell and function ¢, on the{eg1, 1o basis, we obtain
following heol\2/18v+3 0
(2N, +1)a 0 -2 none (Tw) 7 (o ¢1>)
(2N, +1)(2N,+1) 0 0 all 0 18v+37/) \(p1d ¥1)
a) %’ +2 -2 third shell and (@orl 1)
following =g, ) . 13
al 2(2Ny+1) +2 0 none (@1d 1)
aj ) ? +2 +2 none As predicted, the stategFigs. 4b) and 4c)] remain degen-
erate. Nevertheless, they are shifted by
n ho 2
0 \/J_ 0 Y 0 581:(18V+377)(7) . (14)
Vi 0 J(j-12 o0 0
o o o o S Consequently, th&V perturbation in this section does not
: _ |~ affect the 2D shell. Only deviations from cylindrical symme-
o ... V2(j-1) 0 try lift the degeneracy of this shell.
0 o 0 \/J‘ 0 Third shell The unperturbed third shell consists of three

degenerate stateg;;, ¢g1, and ¢,5. Expanding the per-

This matrix has j+1 distinct eigenvalues=j, *(j  turbed wave functions, on the{¢g,, @11, 920 basis, we find
—2), =*(j—3)....Thus aX perturbation completely

removes the degeneracy in all the shells. o2 42v+5n O 27 (@od o)
w

2. QU= () T+ ) + A2Y] (7 0 30+97 0 (eulv2)

27 0 42v+57/ \ (@20 2)

This perturbation arises from deviation from the circular
shape of the dot, or from a 3D geometry such as the {@od ¥2)
Ar“-correction in Eq(7) (»=2v), for instance. The details
of the expansion of this perturbation in terms of #leanda = de;| (pulva) |, (15)
operators are gathered in the first column of Tables | and II. (a0 th2)

As shown on the second and third columns, the coefficient&lith the following solutions:
either raise, lower, or maintain unchanged the quantum num- '

2
TABLE II. Terms of the expansion ofX*+ ) in term ofa’ 58%: (ﬁ_w) (42v+37), |¢%>:i(|¢02>_|¢20>)
anda operators. 2 J2
Term Effect onn,  Effect onn, Perturbed states 5 hw? )
B 5822(7) (30v+97m), [¥5)=|e11) (16)
a; —4 0 none
a;‘z 0 -4 none L2 .
+ — w
BN T : ) none 6s§=(7) (27, (4= (00l + o)
aZal 2 0 0 all
20 2 0 0 all The perturbed third sheJFigs. 4d), 4(e), and 4f)] now
(2N, +1)? 0 0 all is made up of one state (/3) and oned state (/3), that are
(2Ny+1)2 0 0 all linear combinations of two unperturbed states andabsiate
2(2N,+1)al 2 +2 0 none (473) identical togy;. In general, the threefold degeneracy is
2(2N,+ 1),31;52 0 +2 none completely lifted. It is worth noting that, even in the pure
al %a’ 0 0 third shell and  radial case, i.e.p=2v, which is the situation described by
following the Ar* correction seen in Eq7) of our analytical model,
a; 2a§ 0 0 third shell and the degeneracy is partially lifted, i.e., as explained above, the
following accidental degeneracy between tén, ,M)=(1,0)] and
al* +4 0 none p [(n,,M)=(0,£2)] states is lifted. Thuseven when the
a;‘l 0 14 none dot is empty we do not expect the third shell to remain

degenerate, as opposed to the prediction of the 2D harmonic-
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2

7 1007 s 654 Sel?= (%w) (66v+ 117+ \[1440%— 9607+ 2877).

2 Zg A (18

>} 3

E ol T The expression under the square root is always posigixe

~‘_§ cept for the trivial caser= »=0) so that the two subshells

5 601 never merge back. As seen in Fig$g¥ 4(h), 4(i), and 4j),

~ 50l the perturbed shell is made up ofpdike subshell and an
éﬁ f-like subshell. The effect of the perturbation is to lift the

B 401 accidental degeneracy between fhendf states, even for an

§ 30 empty dot, as opposed to the 2D harmonic-oscillator model
S [ predictions.

T 201

'Té' 104 . IV. NUMERICAL MODEL

5 0 In order to test the validity of our analytical model, we
4 ’ perform a full scale 3D self-consistent numerical analysis of

-1 25 T m the structure. The charge density in the QD is obtained by

considering the quantum-mechanical nature of the charge
carriers within the density functional theoffpFT) to de-

FIG. 5. Variation of the normalized perturbations of single- SCTib€ many-body effects among electrons in the*tion
particle eigenlevels of the third shebel/» (dotted, de2/» ~ Order to take into account the spin dependence on the
(dashed] 83/ v (solid) as a function ofv/ 5. The crossing point as €lectron-electron interaction, two Kohn-Sham equations, one
function of horizontal and vertical coordinates shows an inversiofOf spin-up and one for spin-down, are solved simulta-
of the state ordering sequence. neously:

oscillator model. Figure 5 shows a plot 83, 83, andde3 HI(yl(n=elyl(r), RO (D=glyi(r). 19

as a function ofyp/v. It is seen that the third level is very

sensitive to the perturbation and, depending on the sign ankdere €; and ¢; are the corresponding eigenenergies and
magnitude ofv and 7, can result in any ordering state se- eigenstates of the Hamiltoniat' andH*,

guence. Perturbations due to the electron occupancy of non-

s orbitals or weak elliptic deviations of the geometry result K2
in »>0 and 2< <3, i.e., the degeneracy between the tvo ~ H'V(r)=— SV -V —ag(n+AE+ o),
states is slightly lifted and the state is higher in energy. A m(r) 20

completely different situation would occur when a donor im-
purity is placed close to the center of the dot. Then, the 1/

hydrogenic potential changes the curvature in the bottom O\fvhere m*(r) is the position-dependent effective mass.
the dot, yieldingy<<0 and—3< < — 2, so that thes state is $(1) = bextt Pion T b IS the electrostatic potential which

now below the twod states. consists of three contributiongh.,; is the potential due to

. external applied biasg;,, is the potential resulting from
Fourth shell The unperturbed fourth shell is made_up of ionized donors, andb,, is the Hartree potential accounting
four degenerate states;,, ¢,1, @3, andezg. Expanding

the perturbed wave functiop; on the { \ for repulsive electron-electron interactiondE. is the
basig we obtain UE ?12,¢21, 30, P03 conduction-band offset between different materials, i.e., 181

meV for Aly,Ga6As/GaAs and 50 meV for
GaAs/In, oGay oAs, and (V) is the exchange and correla-

S4v+157 0 2\/577 0 tion potential energy for spin uplj and down () that is
Zw\2l 0 54y+157 0 2\/§,7 computed within the local-spin density approximation
(—) (LSDA) according to Perdew and Wang's formulatfon.
2 2\37 0 8ty 0 Hence our approach is spin unrestricted, i.e., allows for dif-
0 2\/§77 0 78+77 ferent orbitals for different spins. The LSDA approach to the
study of the electronic structure of quantum dots has been
(@12 ¥3) (P12 ¥3) well tested by many authof$-?’ It successfully explains the
quasi-two-dimensional shell structures and spin configura-
(ezilis) = ey (eails) , (17) tions of quantum dots and is in good agreement with 2D
(@ad th3) (@30l tr3) quantum Monte CarldQMC) simulationst?1328Moreover,
(@od th3) (@od th3) applications of the LSDA to few-electron atoms have shown

accuracies of the order of 1% in the calculations of the at-
which leads to two twofold degenerate subshells whosems ionization energs?
eigenlevels read The electron density in the QD reads
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B e

Np Ny
n(n=n'(N+nin=2 ¢+ [¢10) 21 | €12
i=1 i=1 N (Rt £.,.0)
. - i CNLLEO \S(IW \&
whereN; +N =N is the number of electrons in the dot. : E;

The electrostatic potentiab(r) is computed by solving
Poisson’s equation,

Energy Levels
!
o

VIe(nNVe(r)]=—p(r), (22) W Y W
wheree(r) is the position-dependent permittivity apdr) is
the total charge density which is given by FIG. 6. Schematic of the energy spectrum in the gate voltage
interval corresponding to successive charging of two electrons. The
p(r)zq[NS(r)—n(r)] (23) single-particle energy;(n;) is represented by the level indg®

and its electron occupatiom . Er andE, are the Fermi level and

wheren(r) and Ng(r) are the electron and ionized donors the addition energy, respectivel§.is the slope of the variation of
densities, respectively, at the position the e_igenlevel as a function of_ the gate_ voltage. _Side: variation of

Equations(19) and (22) are discretized by the finite- the eigenlevelg;(n;) as a function of their occupation numher.
element method, of which a detailed formulation has been ) i
published elsewher®. The numerical formulation of both WhereEr(N) is the total energy foN electrons in the dot,
equations leads to sparse linear systems. The discretizatigauo IS the lowest unoccupied orbital eigenvalue, dfdis
of the Poisson equation leads to a boundary value problefie Fermi energy. Equatid@4) is based on Janak's theorem,
for which we use a conjugate gradient approach, whereas the JE
discretization of Kohn-Sham equations leads to a generalized e :_T,
eigenvalue problem. For the latter, the first eigenvalues and an,

eigen_vectors are extracted by a subspace method. Finally, F%‘nich assumes an incremental and continuous variation of
algorithm used to self-consistently couple both problems $he electron occupation; of level i
; .

baf?i)dur?(rj]atrh ecﬁﬁmﬁ)nn_? ?(g)rhtshoen erreitt?ggt.atic otentalare Hence, upon populating, yo with 0.5 electron, a stable
Y P configuration ofN electrons is achieved in the dotB(N

chosen by imposing Dirichlet conditions at the source, dram,+1)>ET(N)’ ie., if the integral of Eq.24) is positive:

and lateral su.rflace's of the device. At the source and drain Stherwise there arli+ 1 electrons. It must be noted that the
flatband condition is assumed, agdis set up such that the o . . : . )
aeoproxmatlon made in Eq24) is valid only if €, o varies

net charge is zero in these regions. Along lateral surfaces, tr]lnearly with N.25

Schottky barriers heightg, are strongly influenced by sur- . L
face chemistry, so we use the experimental data of Gran The addition energy computation is based on @¢). By

(25

et al*® and Besf! On the gated surfaces, the Schottky bar- efinition,

riers are modified byps— Vg, whereVg is the gate bias. E —E (N+1)—Eo(N o6
Boundary conditions for the Schiimger equation are im- a=Er( )—Er(N), (26)

posed by assuming vanishing wave functions on any lateral E-(N)= Eq(N)— E(N—-1), -

surface of the device. Since the quantum dot is much smaller

than the physical dimensions of the device, the wave funcwhereE, is the addition energy anfl; is the total energy.
tions actually vanish much before reaching those boundarieg\lthough the term addition energy to dendig is somehow

In the direction perpendicular to the heterointerfaces, we alimproper—stricto sensuthe addition energy, i.e., the energy
low the wave functions to leak into the source and drainrequired to add one electron to the dot, is the electrochemical
regions. However, this leakage is very weak and is not takepotentia??>—we follow Likharev’® and Taruchzet al* and

into account in the computation of the charge in the sourcenaintain this denomination. Using Eq&4), (26), and(27),

and drain regions which is entirely determined using thewe obtain

Thomas-Fermi approximation. This assumption is reason-

able, since the weak leakage does not affect the charge in the E;=Eg(N+1) —E(N) (28
dot, and is negligible compared to the bulk charge in the
source and drain regions. =[E7(N+21)—E7(N)]+[Ef(N)—E+(N—=1)]

Because the quantum dot is weakly coupled to the source (29
and drain, electrons are completely localized in the dot. At
equilibrium, and for a given bias, the integer number of elec-  =&l\,o(1/2) — & ;3(1/2). (30)
tronsN minimizes the total energlf; of the dot. In order to )
determineN, we use the Slater formuf&: From Fig. 6, we have

Ea=(Va "= Votg(6) (31)

1
E+(N+1)—-E N=J n)dn~ 1/2) - Eg, )
( )~Er(N) 0 #uo(M) sLuo(1/2)~Ee if we assume that, foN electrons,e, yo=-¢;,1, and forN

(24) —1 electrong | yo=¢; . Here the upper script of gives the
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total number of electrons in the system, and the number be- N=0 2 6 12 20
tween brackets gives the occupancy of a single-particle level. j ) ) ) )
Let us now assume that is a bilinear function of; and 20
Vg, which, as we will see, is the case in our simulations, _
> 15}
[-!]
gi(n;,Vg)=an,+bVg+c, (32 £
wherea, b, andc are constant coefficients to be determined. ‘i 10r
Obviously, from Slater’'s formuldEq. (24)] and takingEg g
=0 as the energy reference, we have 5 5f
c
[
el(n; ,Vg)=an+b(Vg— V' —al2. (33 2 o
Thus
_s} . YR
N N-+1y __ M S P S T HEE A
er(n Vg )=an—al2 (34) 06 -05 -04 -03 -02 -0.1
and Vgs(V)
1 1 an? anl?! FIG. 7. Energy spectrum of the first four sets of eigenlevels
f siNd nizf (anj—al2)dn,= — -] =0 (solid curves: spin-up, dotted curves: spin-dowais a function of
0 0 2 2 0 the gate voltage/ (bottom horizontal axjsand number of elec-
i tronsN (top horizontal axis Er is the Fermi level.
—eN(12ViSY), (35) (top 5 Er

Wh|Ch confirms Slater’s rule. Moreover, using 364), one experiments’gy4 AVG! the Voltage increment for add|ng an
obtains electron in the dot, takes very unequal values, irregularly
distributed over the range &fg, because of the influence of
the quantization and quantum many-body effects during the
as illustrated in Fig. 6. It is therefore possible to test thecharging of the dotAV is large forN=2, 6, and 12, i.e.,
validity of Slater’s formula by simulating the dot atg after the complete filling of each shell because, in addition to
=ViG+1 and populatinge; with 0, 1/2, and 1 electrons to the energy required to overcome the electrostatic repulsion of
check if the shift ofe; is symmetric with respect t&q. In the electrons already present in the dot, an energy contribu-
our simulations, this test was systematically verified for alltion is needed to lower the next orbital below the Fermi level
numbers of electrons in the dot, excéypt1, which is be-  for admitting the next electron.

MV h=a2, eNovih=-al, (36)

yond the validity of Janak’s theoreffq. (25)] since then the We note that in the interval between the addition of two
electron variation from 0 to 1 is far from incremental. electronsg;(Vg) decreases monotonically wilig because
the overall potential energy of the system decreases as the
V. RESULTS AND DISCUSSION gate voltage is made more positive. This behavior is different

from the results of Nagarajat al.*® whose model did not

Figure 7 shows the single-particle eigenspectrum for theaccount for individual spin states. In that case, the single-
first ten orbitals in the CVQD as a function of the gate volt- particle eigenvalues were tangential to the Fermi level during
age Vg as obtained from the 3D computational model. Be-the charging of the whole orbital.
cause of their spatial symmetry and spin degeneracy, the or- During the charging process over the whole gate voltage
bitals are grouped into four sets of levels which, whenrange -0.62 V<Vg<—0.082 V), the four sets of levels
occupied by electrons, will form the first four shells. The (shell§ remain well separated, which indicates that the shell
upper horizontal scale indicates the number of electrons istructure is preserved. However, as predicted by the analyti-
the QD on a particular range &fg. On the vertical scale, cal model, the degeneracy of levels belonging to the same
the Fermi level is taken as the reference at zero. Balgw shell, even when nonoccupied, i.e., second, third, and fourth
=-0.62 V, all levels are empty and decrease monotonicallysets of levels for-0.522 V<Vz<—0.447 V, are partially
with Vg as the potential energy is lowered. lifted.

The variation of all eigenlevels; are piecewise linear Another interesting feature appears by considering the
with respect toVs . At each transition fronN to N+ 1 elec-  overall energy variation of the different shells during a single
trons, each curve;(Vg) is discontinuous with an upward shell charging. For instance, for —0.39 V<Vg
shift. This is a manifestation of the Coulomb blockade effect:<—0.285 V, i.e., during the third shell charging, the aver-
when a new electron enters the dot, it induces an upwardge energy of the two lower full shells is higher at the end of
shift of the whole spectrum because of the sudden increase dfe charging process than at the beginning. This is easily
the total electrostatic energy in the dot due to Coulomb inseen by drawing a line joining the middle of each disconti-
teraction. Here the first electron entering the dot occurs fonuity segment. For the two lower shells, the slope is positive,
Ve=—0.62 V. It must be noted that, the higher the shellwhich indicates an overall energy repulsion among these
being populated, the smaller the shifts, i.e., the smaller thehells. For the third filling shell, the slope is slightly nega-
charge increment. Unlike in orthodox Coulomb blockadetive, which means that the attractive energy of the gate field
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> R 4
o =
o 2
s 2 2
o 1 =
Ko e <
w 1,2 0
0 24 6 8 10121416 18 20
T 1 N
€ 5 (a)
—-0.5156 —0.5656 —0.4.956 —0.4856 FIG. 9. Comparison between computed addition energy spectra
V_ (V) (solid) for three different confining potentiats; > w,> w5 and the
G experimental spectrurtRef. 1) (dashed as a function of the num-
ber of electrons. Note that, by definitiorE,(N)=Eg(N+1)
15m r r r T —Eg(N), so that a value foN=j in this figure refers to the energy
(N=3) £~L o (N=4) needed to add theg ¢ 1)th electron in the dot.
1l 1,2 ! ~ .~
05 E \\\ This n~Y* renormalization was justified to maintain the elec-
s 1 ~
1

Eigenenergy €E.(meV)

tron concentration constant during charging of the dot, which
is readily obtained in our simulations.

During the filling of a particular shell, e.g., the second
shell (—0.522 W<Vg;<—0.447 V), the eigenlevel order-
ing within a shell is determined by Coulomb repulsion re-
sulting from wave-function overlap and exchange and corre-
lation effects that favor electrons with parallel spins. Ror

sT T =3 (—0.522 V<V;=-0.502 V), due to the circular
12 (b) e
. . . y . . symmetry of the potential in they plane, the electron has a
-0.515 -0.51 -0.505 -0.5 -0.495 -0.49 definite z angular momentum component. This requirement
Vi(V) is achieved by choosing the third electron orbitaf®as

In: ,M,s)=0,1,1) =1V +i 42 3" Here the spin symme-

FIG. 8. Single-particle energy spectrum three possible configug i proken due to the odd number of electrons with two
rations(a), (b), and(c) around theN=3—4 transition in the second spin-up () electrons and only one spin-dowi)( electron
shell(dashed: spin-down; solid: spin-ufhe insets show the twp F;] h P Its i | y h P d lati '
orbitals with the spin position and direction. Fr=3, the single which results in a largef-xc (exchange and correlatipn

energy than the -xc energy.

electron sits on the second lower state.
For N=4 (—-0.502 V<Vg=-0.467 V), the fourth

is just sufficient to overcome the electron repulsion energyglectron can either occupy th8,=1,/) or [0,—1,) state.
Finally, for the upper empty shell, the slope is negative beThese two configurations are shown in terms of the
cause, free of electron repulsion, the eigenstates only exp&igenspectrum as a function of the gate voltage atNhe
rience the attractive effect of the gate. =3—4 transition in Fig. 8. In the latter configuration, spin
We also notice the decrease of the intershell energy sepaolarization, for the third and fourth electrons, lowers the
ration asVg increases, as observed experimentalljnis ef-  total energy. This configuration is the favored one, as pre-
fect is generally interpreted as due to the Coulomb interacdicted by Hund’s first rule in atomic physiés.
tion between high-energy electrons with extended wave Addition energy measurements are the clearest way to
functions which weakens the confining potential. Howevershow the shell structure in CVQD's. Figure 9 shows the
our analytical model reveals that, in CVQD's, there is invariation of the addition energy with respect to the number of
addition a pure8D geometrical effedhat enhances the level electronsN, as measured in Tarucha’s experimédshed,
collapse wheV/¢ increase®ven if the dot is emptyndeed, and as computed in our simulations for three different con-
from Eg. (8), the quadratic terna in the potential depends fining potentialsw,> w,> w3 that correspond to 50-, 30-,
on the depletion region extensian . As z,, decreases when and 20-meV conduction-band offsetsE. between GaAs
V¢ is made more positive, so does(Fig. 2). Therefore, as and InGa,_,As, respectively. The band-offset variation is
Vg is swept, we expect the oscillator frequency to decreasaot unreasonable due to the fact that the GaAs conduction
and, thereby, the shell separation. This effect is at the origihand edge with a doping density of 1@m?® is simply not
of the renormalization of the harmonic-oscillator frequencywell defined, and this can result in an impurity fluctuation at
by the fourth root of the electron density, i.ex1/n** in  the well edge ¢=z;). Figure 9 shows very pronounced peak
models based on pure 2D parabolic confining potefitidl. for N=2, 6, and 12 reminiscent of the shell structure in the
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experimental curve as well as in the simulation curves for 0,2) 0,-2) (1,0)

w=w,; and w,. For o= w3, the confining potential is so (a)

weak that the shell structure begins to vanish. In this case, 1 3 2

charging the second shelN& 2) requires less energy than

overcoming the repulsive energy generated by the first elec- H H ‘1—1‘

tron (N=1), so thatE,(1)<E,(2). In the experimental

curve, there are also secondary peaksNer4, 9, and 16. 6 5

These peaks are interpreted as the manifestation of Hund’s

rule with parallel spin alignment for a half-filled shéii In 5

the simulation curve, we clearly obtain the peakNat 4 (b)

and 16, but not the peak &t=9, and have other secondary 1 2 ~T—l~
A

peaks aN=8, 10, 14, and 18.
If Hund’s rule governs the filling of the second shell, then, T I’ T I~ 6

necessarily, the addition energy spectrum will exhibit a peak 3 4

at N=4 surrounded by two minima &i=3 and 5, as de-

scribed in Sec. IV. Hence the third and fourth electrons, with

parallel spins {), access the emp{®,= 1,1} orbitals, maxi-

mize the exchange interaction, and induce a minimum for (©) 3

N=3. For N=4, the fifth electron, occupying th§9,1,|) 1 2
state, is the only| electron in the second shell, with no TP
additional exchange, i.eE,(4)>E,4(3). ForN=5, the sixth
electron in thg0,—1,] ) state induces exchange between the 4 5
sixth and fifth electrons, which loweis,(5)<E,(4), lead-
ing to a peak foN=4.
The idea that the peak &=9 is the manifestation of (d)
Hund’s rule originates from the 2D circular oscillator model 3 5

where the three states of the third shell are degengFige 1 T | ______ e T ‘
A,

10(a)]. In this case, the filling sequence would be

1/2 1 32 1 12 A0 e e JAl ...... | + 6
252+ 02+ —2"50 (37 4

leading to the configurationst2p*3d?3s?, by adopting a 2
terminology similar to atomic physics for representing the
eleqtronlc orbitals. Here thH’O’T(l.» (s-like) state 's. O.C' shell (see Fig. 7 for realistic configurationga) In a 2D circular
cupied befo[’e th¢0,=2,1(1)) (d-like) states to maximize oscillator configuration, with three degenerate levels-(®) and
t_he total orbital angular momentum. Consequently, the add'(l,O) and three spin alignments(b) Large separationA
tion energy forN=7 and 8 are low, since the exchange >.0.6 meVv between (&2) and (1,0) leading to the filling se-
interaction is maximized. In addition1,0,]) and|0,+2,7)  quence[Eq. (38)]. (c) Small separatiol<0.6 meV between (0,
overlap weakly, which reduces tlepulsive Hartree energy  +2) and (1,0) leading to the filling sequeniig. (37)]. (d) Total
Ey . ForN=9, the same argument as fd=4 applies, i.e., lifting of degeneracy with separations; and A,, respectively,
the tenth electron is the firgtelectron of the third shellno  leading to the usual pairing sequericg [Eqg. (39)].
exchange-correlatigrthat sits on an already occupied orbital
(large Hartreg producing a peak fol=9. However, it was

demonstrated earligiSec. 11l B) that the accidental degen- sequence38). We point out that these values fdr are in

eracy between the%_z and_sg is lifted in CVQD's. Hen_ce, . good agreement with experimental measurememéien A
instead of the configuration and sequence shown in Fig._q g 6y the third shell is filled with sequenta?), with
10(a), the configuration shown in Fig. #) with a separa- three parallel spins predicted by Hund’s rule, as represented

. _ 3 12 ; . ~ .
tion A=e3—¢p” is achieved. Foro=w;, we obtainA 5 riq "1¢). This result has been reproduced many times in

~1 meV, and the energetically most favorable sequence igr simulations, for various structure sizes and various gate
12 Al oll2 A0 L2 . AO lengths.

2720 =27 =000 (38) The w, and w3 addition energy spectra in Fig. 9, although
for which the electronic configuration for nine electrons isassociated with a filling sequence governed by three parallel
1s22p*3d3, with an incomplete spin alignment. Hence we spin electrons aN=9 [Fig. 10c)], exhibit a peak aN=8
see a peak dtl=8 for the fulfilment of Hund’s first rule in  instead ofN=9. Placing the ninth electron on ttestate
the lower subshell—a situation similar to the second sheltequires an additional enerdy, which increases the addition
with a peak atN=4, but also a peak ail=10 due to the energy forN=8. The tenth electron with antiparallel spin,
increment of energy needed to reach the second subshell. although deprived from exchange interaction, falls on one of

The reduction oAE., such asw= w,, leads to a reduc- thed states, which lowers the addition energy fo+=9. The
tion of A from 1 to 0.5 meV. According to our simulations, addition energy foN=10 and 11 depends on the interplay

FIG. 10. Schematic possible sequences for the filling of the third

whenA>0.6 meV, the third shell is also filled following the
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FIG. 11. Third shell addition energy spectrum of a quantum dot 1 2
perturbed by a remote Coulombic impurity placed in the well,
2000 A away from the center of the dot.
3 4
between exchange and Coulomb interaction for occupation
of the secondl state in the former, and the addition&lfor (©) 7
the latter in thes state. Hence the addition energy spectrum 5
shows only one peak &ai=8, with a magnitude which de- _T_l_
pends on the difference betwednandE,.. _T_l;
Clearly, a peak al=9 is not necessarily the signature of 8
three spin alignment in the third shell. In fact, this situation 6

model to reproduce the main experimental spectra is intrigu-
ing, but a key element is found in the addition energ\Nat
=7: all the theoretical values are consistently lower than the
value atN=5, whereas in the experimental dafg(7)
>E,(5), data which indicate weak exchan@gar strong di-
rect Coulomb interaction between the two electrons on the . .
degenerate gingle-particle states. This is surprising, since in‘+2) 1eading to the formation of two twofold-degenerate sub-
. . 2 shells.(c) Total lifting of degeneracy leading to the usual pairing
general DFT underestimates exchange interaction amon&quencal.
electrons. This higher experimental value kb+7 can only
be obtained with the lifting of the spatial degeneracy for the | js how possible to suggest an interpretation for the peak
d states, as shown in Fig. . This can be caused by ellip- 4N =16 in the fourth shell. Since the accidental degeneracy
tic deviations from the circular shape of the dot, or by po-paiyeen the|0,+3) and |1,+2) states is lifted in the
tential fluctuations arising from the long-range Coulomb in'CVQD’s (see Sec. IlIB1—here the spacing between the

teraction of ionized donors in the doped GaAs. For thisy,, gpshells is about 1.5 mev—a filling sequence predict-
purpose, simulations with a remote ionized donor placed Mng a four spin alignment up toi=16, as shown in Fig

the quantum well, 1000 A away from the center of the dOt'lz(a), seems unlikely. As foN=10, in sequencé38), the

have been performed. In this case, the third shell additio%eak atN=16 results from the excess energy required to

332:‘%’3 spectrum now corresponds to the usual pairing s iccess the second subshell in the fourth shell, as shown in

Fig. 12b). This figure also depicts the ordering sequence
obtained in our DFT simulations, i.e.,

3
1 %
was never achieved in our simulations. The failure of our % | 4
2

FIG. 12. Schematic possible sequences for the filling of the
fourth shell. (@) In a 2D circular oscillator with four degenerate
levels and four-spin alignment) Separation between (£3) and

1240 o120 _.AL2 O
27 =47 =27 =07 =07 =07, (39) 312Gl 312 ,00_,112 91 112 0 (40)

which is shown in Fig. 11. The high value Bf(7) is due to  for which the addition energy spectrum shows a jagged curve
the filling of the|0,2,]) state with an antiparallel spin elec- with alternative peaks and minima for even and odd numbers
tron. The peak aN=9 is due to a large Coulomb repulsion of electrons, respectivelfFig. 9). In sequencé&40), the sec-
when the tenth electron sits on ti&—2,1) state. The peak ondary peaks ail=14 and 18 result from the fulfillment of

is surrounded by two minima &=8 and 10 corresponding Hund’s rule with two parallel spins at midoccupation within
to a weak Coulomb repulsion when the ninth and eleventreach subshell. In order to explain the experimental spectrum
electron occupy two empty statf®—2,1) and|1,0,}). The  with a single peak al= 16, we again consider the complete
pairing sequencgEq. (39)] for the experimental third shell lifting of degeneracy caused by external static perturbations,
filling is validated by the data in Fig. 2 of Ref. 1, which as illustrated in Fig. 1&). The minima aiN=14 and 18 are
clearly indicates a spin sequence with no spin alignment ahen due to the filling of two empty staté8,—3,7) and
midshell, although the addition energy spectrum exhibits 41,—2,1). The intermediate value &= 13, 15, and 19 result
single peak alN=9. from the Coulomb repulsion due to the filling of the states
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|0,3,),10,—3,]), and|1,—2,] ), since their orbitals are very interaction between electrons. In particular, we have demon-
similar to]0,3,/ ), |0,—3,]), and|1,—2,] ), respectively. The strated that the third-shell filling sequence and addition en-
maximum atN=16, in this scenario, is also due to the en-ergy spectrum depend on the magnitude of the level separa-
ergy increment needed to access the second subshell, matiten A. We have recently shown that these findings are in

of the|1,=2) orbitals. good agreement with experimental resdftvoreover, the
existence of Hund’s rule with shell filling of CVQD’s is not
VI. CONCLUSION necessarily related to the observation of specific peaks in the

) addition energy spectrum.
We have demonstrated that, in CVQD’s, each shell degen-

eracy is lifted, even when the dot retains cylindrical symme-
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