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Three-dimensional analysis of the electronic structure of cylindrical vertical quantum dots
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We present a detailed analysis of single-electron charging effects in cylindrical vertical quantum dots
~CVQD’s!. Emphasis is placed on three-dimensional~3D! device effects that induce appreciable features in the
quantized electron spectrum and in the addition energy spectrum of CVQD’s. A potential model based on a 3D
analytical solution of the Poisson equation provides intuitive physical insight into the variation of the
eigenspectrum as a function of the potential nonparabolicity. This analytical model is in good qualitative
agreement with a full 3D self-consistent quantum simulation of single-electron charging in quantized CVQD’s
based on the density-functional theory. Hence we show that the spin sequences realized in filling the third and
fourth electronic shells are a sensitive function of the potential nonparabolicity arising from the 3D CVQD
geometry, and varying with applied gate bias. Within this ‘‘atomic shell’’ model, the addition energy spectrum
reflects the influence of 3D device effects and is not necessarily a signature of a particular spin-filling
sequence.
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I. INTRODUCTION

Recent experiments on single-electron charging effect
cylindrical vertical quantum dots~CVQD’s! have suggested
the existence of atomiclike properties of the confined el
trons such as orbital motion, three-dimensional energy qu
tization, shell structure, and even Hund’s rule.1–4 For these
reasons, CVQD’s are often called ‘‘artificial atoms.’’4–9

However, while in real atoms the confining potential arisi
from the nucleus charge is characterized by a central s
metry, and varies as the inverse of the distance from
center, in ‘‘artificial atoms’’ the potential is strongly confine
in the vertical direction, while it is much weaker in the pe
pendicular plane with a quasiharmonic profile. For this r
son, the two-dimensional~2D! harmonic oscillator model ha
often been used for interpreting, with relative success, the
atomiclike features observed in experiments.1–4,10–14How-
ever, the 2D harmonic oscillator model is an ideal pictu
that suffers from significant shortcomings such as an ov
estimation of the electron localization in the quantum d
~QD!,15 and the perfect level degeneracy within 2D she
which is different from experimental observations.1–4

In this paper, we study the deviations of this approach
considering 3D effects introduced by the real device confi
ration that includes~i! the influence of the doping in the lea
reservoirs,~ii ! the effect of depletion in the vertical directio
with applied bias, and~iii ! the effect of gate length on th
confining potential in the quantum well. All these effec
have a significant influence on the single-particle eigenlev
and the addition energy spectrum of the CVQD’s. Spec
cally, we show that the confining potential of a real device
not purely parabolic. Consequently, the eigenlevels withi
shell are no longer degenerate, which affects the charg
sequence of the dot. For this purpose, we use two diffe
approaches. We model the device by considering a cylin
cal classical charge distribution resulting from the dop
and the layered structure around the CVQD for which
analytically solve the 3D Poisson equation within approp
0163-1829/2002/65~23!/235323~12!/$20.00 65 2353
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ate boundary conditions. From these analytical consid
ations, we derive a more realistic 2D potential for t
CVQD, and perform a perturbation analysis of the Ham
tonian of a 2D circular oscillator. This approach provid
physical insight into the CVQD spectrum and enables us
derive general properties, independent of simulation resu
However, this model is of limited application for quantitativ
comparison with experiments. In order to gain accuracy
our approach, we carry out a comprehensive computer si
lation of the CVQD by taking into account the full devic
structure, the effect of the equipotential, and many-body
teractions. We use the finite element solutions of coup
Poisson and Schro¨dinger 3D equations within the density
functional theory, suitable to simulate an arbitrary number
electrons in the CVQD.

II. CYLINDRICAL VERTICAL QUANTUM DOT
STRUCTURES

Figure 1~a! shows a schematic diagram of a CVQD sim
lar to the device investigated by Austinget al.16 The struc-
ture consists of an undoped 12-nm In0.05Ga0.95As well and
undoped Al0.22Ga0.78As barriers of thicknesses 9 and 7.5 nm
The inclusion of indium in the well lowers the bottom of th
conduction band and circumvents the drawbacks ofd-doped
Al xGa12xAs barriers of earlier devices.17 The lead on the
side of the thinner~thicker! tunnel barrier is made o
n1GaAs and is referred to as thesource~drain!. The differ-
ence in the barrier thickness is required to facilitate an ac
mulation of electrons in the dot when the device operate
the nonlinear regime, i.e., at a large drain-source bias. In
paper, however, we will exclusively focus on a regime clo
to equilibrium so that the electronic structure of the QD
unaffected by the drain-source bias. The doping is gradu
reduced fromND521018/cm3 at the source~drain! to ND
51017/cm3 at the double-barrier heterostructure~DBH! over
a distance of 4000 Å. The DBH is etched to form a circu
mesa with a geometrical diameter of the top contact
©2002 The American Physical Society23-1
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0.5 mm. A circular Schottky gate surrounding the mesa co
trols the number of electrons in the dot.

III. ANALYTICAL MODEL

In order to investigate the effect of 3D geometry on t
confining potential in the dot and describe its deviations fr
parabolicity, we model the CVQD as a cylindrical structu
@Fig. 1~b!# by taking into account macroscopic paramet
such as the doping of the source and the drain (ND), the
radius of the device (R), the pinning of the conduction ban
at the Schottky gate interface (fS), and the well width (2zi),
and include the effect of the third dimension.

A. Potential model

The model consists of an intrinsic region for2zi<z<zi
surrounded by two depleted regions foruzu.uzi u, which ex-
tends up toz56z` where it becomes neutral. The structu
is assumed to be symmetric aroundz50, and the potentia
f5f(r ,z) does not depend onu. The dot is also assumed t
be empty of electrons in order to capture only the structu
effects, as opposed to the many-body effects due to elect
electron interactions on the confining potential. We obt
the confining potentialf by solving the 3D Poisson equatio

]2f

]r 2
1

1

r

]f

]r
1

1

r 2

]2f

]u2
1

]2f

]z2
52

r

e
, ~1!

wherer is a charge density such as

r50 ~2zi,z,zi !

and

r5qND
1 ~ uzu.zi ! .

Heree is the dielectric constant. Sincez6`'300 Å is much
smaller than the source~drain!-DBH distance (4000 Å), the
doping variation is neglected in the analytical model. T

FIG. 1. ~a! Schematic diagram of a cylindrical vertical quantu
dot tunneling heterostructure showing the different semicondu
layers. The quantum dot, represented by the oval, lies in a 12-
wide quantum well (In0.05Ga0.95As) surrounded by two potentia
barriers (Al0.22Ga0.78As) whose thicknesses are 7.5 nm on t
source side and 9 nm on the drain side.~b! Cylindrical charge
model for the CVQD structure with boundary conditions.ND

1 is the
ionized donor concentration, and (r ,u,z) are the cylindrical coordi-
nates.
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boundary conditions atz56z` are such as thez field is
relaxed, i.e., (]f/]z)u6z`

50, and fS5f(R,z) is the

Schottky barrier potential at the gate interface (r 5R).

1. Intrinsic region „0ÏzÏzi…

We separate variables to solve Eq.~1!, and find, for the
potential,18

f~r ,z!5fS1(
n

AnJ0~gnr !~e2gnz1egnz!, ~2!

where gn5mn /R and m j is the j th zero of the zero-orde
Bessel function of the first kindJ0.

2. N-doped region„zÌzi…

By using the same technique as above, we find

f~r ,z!5fS2K~R22r 2!1(
n

BnJ0~gnr !egnz`~e2gn(z2z`)

1egn(z2z`)!, ~3!

whereK5qND
1/4e. The constantsAn andBn are determined

by matching the valuesf and]f/]z at z5zi , which yields

Ap5
2KR2

mn
2

J2~mn!

J1
2~mp!

sinh@gp~z`2zi !#

sinh@gpz`#
~4!

and

Bp5
22KR2e2gpz`

mn
2

J2~mn!

J1
2~mp!

sinh@gpzi #

sinh@gpz`#
~5!

so that the potential inside the dot can be rewritten as

f~r ,z!5fs2
qND

1R2

e (
n50

sinh@gn~z`2zi !#

sinh~gnz`!

3
J2~mn!

mn
2J1

2~mn!
J0~gnr !ch~gnz!. ~6!

By taking the limitz→0 in Eq. ~6!, we obtain the poten-
tial in the center of the dot. We make use of the pow
expansion ofJ0(x) and invert the summations to obtain th
following expression:

f~r !5f02a
qND

1

4e
r 22LS r

RD r 4. ~7!

If we denote

Cn5
sinh@gn~z`2zi !#

sinh~gnz`!

J2~mn!

J1
2~mn!

, ~8!

which is simply a structure factor depending on the probl
geometry, the first term

or
-
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f0~VG ,ND
1!5fS~VG!2

qND
1R2

e (
n

Cn

mn
2

~9!

represents the potential in the bottom of the dot which
pends on the applied gate voltageVG . The second term is
the harmonic term with the form factora5(nCn . We note
that this term does not scale directly with the dot radiusR,
nor with VG . However, there is a hidden dependence
these factors through thea parameter that is a function ofR,
zi and z` , as shown on Fig. 2. Our model predicts a we
dependence on the radius of the structureR @Fig. 2~a!# but a
strong dependence onzi and z` @Figs. 2~b! and 2~c!#. In
plotting the R dependence of thea factor, we usezi
5175 Å, according to device geometry, andz`'350 Å,
that is is extracted from the solution of our numerical mo
presented here after. The weak dependence onR is not sur-

FIG. 2. Variation of the form factora as a function of~a! the dot
radius R, (zi5175 Å, z`'350 Å), ~b! the well width 2zi (R
52500 Å, z`'350 Å), and~c! the extension of the depletio
width z` (R52500 Å, zi5175 Å) in the vertical direction.
23532
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prising since the solution of the 2D harmonic oscillator
only a function of the doping level. Thezi dependence can
be understood by noting that, by increasing the width of
intrinsic (r50) well, the field density, and thus the potenti
curvature in the longitudinal direction (z), decrease. In Fig.
2~b!, we useR52500 Å, and we keep the depleted regio
z`2zi constant at 200 Å in order to maintain the char
constant. Thez` dependence ofa ~hereR52500 Å andzi
5175 Å) is strong because the variation ofz` implies a
significant change in the charge of the depleted regi
which, via the Poisson equation, results in a strong varia
of the electrostatic potential curvature. It is worth emphas
ing that Fig. 2~c! reflects the 3D nature of the potential vari
tion, with correlation between its curvature along the rad
and longitudinal directions. Figure 3 shows that the 2D h
monic oscillator~dotted curve! model, with a spring constan
K5qND

1/4e, overestimates the real potential curvature co
pared with 3D models. This is consistent with thezi depen-
dence of thea factor previously obtained since the 2
harmonic-oscillator picture can be considered as the limit
zi→0 of the 3D problem@Fig. 2~b!#. In practical problems,K
is a fitting parameter19,20 fudged with a power variation ofn,
the electron density, but then it loses its physical mean
since it is unrelated to any of the nanostructure paramet

The last term in Eq.~7! is the 3D correction to the ‘‘quasi
2D’’ parabolic potential with

LS r

RD5
qND

1

4eR2 (
n50

`

Cn(
l 50

`

~21! l 11
mn

2l 12

22l 12@~ l 12!! #2 S r

RD 2l

.

~10!

We point out that, while retaining the cylindrical symmetr
this term is structure (ND

1 ,Cn) and geometry~R! dependent;
it is not necessarily negligible, grows withr /R, and could be
positive or negative sinceJ2 oscillates withmn . The correc-
tion Lr 4 is plotted as a function of (r /R) in the inset of Fig.
3. It is seen that the correction is small but not negligible
a short distance from the origin.

FIG. 3. Comparison between the profiles of the conduction b
edge (z50) computed from self-consistent simulations~solid! and
from our 3D cylindrical charge model~dashed!. The dotted curve
shows a parabolic potential withK5qND/4e. The inset shows the
Lr 4 correction to the harmonic potential as a function ofr /R,
whereR is the dot radius.
3-3
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B. 2D eigenstates analysis

Since the effective dot radius is much smaller thanR, the
Lr 4 correction can be treated as a perturbation of a parab
potential in the quantum-mechanical problem of the deter
nation of the eigenvalues and the eigenfunctions in the Q21

Hence we consider the actualxy potential profile to be given
by

f~r ,u!5fosc~r !1W~r ,u!, ~11!

where fosc(r )5f02Kr 2 is the harmonic potential of Eq
~7!, andW is a perturbation which contains theL correction
term and, for the sake of generality, depends onr andu @Fig.
1~b!#. If the confining potentialf retains cylindrical symme-
try, one can state the following

~1! f commutes with the two-dimensional angular m
mentum operator (\/ i )(]/]u). Therefore,H andH0 have the
same eigenfunctionswnr ,M .

~2! wnr ,M andwnr ,2M can be generated from one anoth

by rotation, i.e., ifR is a rotation operator with az axis,
Rwnr ,2M5wnr ,M . Therefore,wnr ,M and wnr ,2M have the

same energy:«nr ,uM u .
Thus, as long as the perturbation is small with respec

\v, the shell structure in CVQD’s is preserved. Howev
within a shell, degeneracy is partially lifted, and subsh
levels, characterized by identical absolute values in th
quantum numberM, emerge.

When the cylindrical symmetry is broken, by, for in
stance, the electron occupation of non-s orbitals, deviations
from the circular shape of the dot and/or potential fluctu
tions arising from the long-range Coulomb interaction
ionized donors in GaAs, the eigenlevels are, in general,
longer degenerate. We illustrate the consequences of br
spatial symmetry by two examples of perturbations. Sin
the cylindrical symmetry is not preserved, quantum numb
(nr ,M ) are, in general, no longer appropriate, although,
shown on Fig. 4, the eigenfunctions may, in some ca
retain strong cylindrical symmetry features. To character
the perturbed eigenfunctions and eigenvalues, we usec i

k and
« i

k , wherei is the shell number andk is the appearance orde
within a shell. In the perturbation analysis, thecn

k’s will be
expanded on thewnx ,ny

basis.

1. qWÄl\vXY
Here,X andY are the position operators along thex and

y directions, respectively. This perturbation arises, for
ample, from the electron charge due to the occupation ofp
orbital, present in every shell. Expressing the operatorsX
andY in terms of the annihilationa and creationa† opera-
tors, we find

qW5
l\v

2
~ax

†ay
†1ax

†ay1axay
†1axay!. ~12!

The perturbation matrix in thej 11 harmonic oscillator
eigenfunction basis (nx ,ny) reads
23532
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FIG. 4. Wave-function contourplots for the four first shells of
CVQD. ~a! The first shell is nondegenerate and made up of as
statec0. ~b! and ~c! Degeneratep-like statesc1

1,2 belonging to the
second shell.~d!–~f! Third-shell wave functions consisting of tw
d-like statesc2

1,2 @~d! and ~e!# and ans-like statec2
3 ~f!. ~g!–~j!

Fourth shell composed of oned-like subshellc3
1,2 @~g! and~h!# and

onep-like subshellc3
3,4 @~i! and ~j!#.
3-4
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S 0 Aj 0 . . . 0

Aj 0 A~ j 21!2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . A2~ j 21! 0 Aj

0 . . . 0 Aj 0

D .

This matrix has j 11 distinct eigenvalues6 j , 6( j
22), 6( j 23) . . . . Thus aXY perturbation completely
removes the degeneracy in all the shells.

2. qWÄ„\v…

2
†n„X4¿Y4

…¿hX2Y2
‡

This perturbation arises from deviation from the circu
shape of the dot, or from a 3D geometry such as
Lr 4-correction in Eq.~7! (h52n), for instance. The details
of the expansion of this perturbation in terms of thea† anda
operators are gathered in the first column of Tables I and
As shown on the second and third columns, the coefficie
either raise, lower, or maintain unchanged the quantum n

TABLE I. Terms of the expansion of (X2Y2) in term ofa† and
a operators.

Term Effect onnx Effect onny Effect on state

ax
2ay

2 22 22 none
ax

2@2Ny11)] 22 0 none
ax

2ay
† 2 22 12 third shell and

following
(2Nx11)ay

2 0 22 none
(2Nx11)(2Ny11) 0 0 all
ax

† 2ay
2 12 22 third shell and

following
ax

† 2(2Ny11) 12 0 none
ax

† 2ay
† 2 12 12 none

TABLE II. Terms of the expansion of (X41Y4) in term of a†

anda operators.

Term Effect onnx Effect onny Perturbed states

ax
4 24 0 none

ay
4 0 24 none

2ax
2(2Nx11) 22 0 none

2ay
2(2Ny11) 0 22 none

ax
2ax

† 2 0 0 all
ay

2ay
† 2 0 0 all

(2Nx11)2 0 0 all
(2Ny11)2 0 0 all
2(2Nx11)ax

† 2 12 0 none
2(2Ny11)ay

† 2 0 12 none
ax

† 2ax
2 0 0 third shell and

following
ay

† 2ay
2 0 0 third shell and

following
ax

† 4 14 0 none
ay

† 4 0 14 none
23532
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bers nx and ny . Only contributions that conserve the tot
quantum numbern can affect the shell. We examine the e
fect of this perturbation on the second, third, and fou
shells, respectively.

Second shell. The unperturbed second shell is made up
two p statesw01 and w10. Expanding the perturbed wav
function c1 on the$w01,w10% basis, we obtain

S \v

2 D 2S 18n13h 0

0 18n13h D S ^w01uc1&

^w10uc1&
D

5d«1S ^w01uc1&

^w10uc1&
D . ~13!

As predicted, thep states@Figs. 4~b! and 4~c!# remain degen-
erate. Nevertheless, they are shifted by

d«15~18n13h!S \v

2 D 2

. ~14!

Consequently, theW perturbation in this section does no
affect the 2D shell. Only deviations from cylindrical symm
try lift the degeneracy of this shell.

Third shell. The unperturbed third shell consists of thr
degenerate statesw11, w01, and w20. Expanding the per-
turbed wave functionc2 on the$w02,w11,w20% basis, we find

S \v

2 D 2S 42n15h 0 2h

0 30n19h 0

2h 0 42n15h
D S ^w02uc2&

^w11uc2&

^w20uc2&
D

5d«2S ^w02uc2&

^w11uc2&

^w20uc2&
D , ~15!

with the following solutions:

d«2
15S \v

2 D 2

~42n13h!, uc2
1&5

1

A2
~ uw02&2uw20&)

d«2
25S \v

2 D 2

~30n19h!, uc2
2&5uw11& ~16!

d«2
35S \v

2 D 2

~42n17h!, uc2
3&5

1

A2
~ uw02&1uw20&).

The perturbed third shell@Figs. 4~d!, 4~e!, and 4~f!# now
is made up of ones state (c2

3) and oned state (c2
1), that are

linear combinations of two unperturbed states and oned state
(c2

2) identical tow11. In general, the threefold degeneracy
completely lifted. It is worth noting that, even in the pu
radial case, i.e.,h52n, which is the situation described b
the Lr 4 correction seen in Eq.~7! of our analytical model,
the degeneracy is partially lifted, i.e., as explained above,
accidental degeneracy between thes@(nr ,M )5(1,0)# and
p @(nr ,M )5(0,62)# states is lifted. Thus,even when the
dot is empty, we do not expect the third shell to rema
degenerate, as opposed to the prediction of the 2D harmo
3-5
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oscillator model. Figure 5 shows a plot ofd«2
1, d«2

2, andd«2
3

as a function ofh/n. It is seen that the third level is ver
sensitive to the perturbation and, depending on the sign
magnitude ofn and h, can result in any ordering state s
quence. Perturbations due to the electron occupancy of
s orbitals or weak elliptic deviations of the geometry res
in n.0 and 2,h,3, i.e., the degeneracy between the twod
states is slightly lifted and thes state is higher in energy. A
completely different situation would occur when a donor i
purity is placed close to the center of the dot. Then, ther
hydrogenic potential changes the curvature in the bottom
the dot, yieldingn,0 and23,h,22, so that thes state is
now below the twod states.

Fourth shell. The unperturbed fourth shell is made up
four degenerate statesw12, w21, w03, andw30. Expanding
the perturbed wave functionc3 on the $w12,w21,w30,w03%
basis, we obtain

S \v

2 D 2S 54n115h 0 2A3h 0

0 54n115h 0 2A3h

2A3h 0 78n17h 0

0 2A3h 0 78n17h

D
3S ^w12uc3&

^w21uc3&

^w30uc3&

^w03uc3&

D 5d«3S ^w12uc3&

^w21uc3&

^w30uc3&

^w03uc3&

D , ~17!

which leads to two twofold degenerate subshells wh
eigenlevels read

FIG. 5. Variation of the normalized perturbations of sing
particle eigenlevels of the third shelld«2

1/n ~dotted!, d«2
2/n

~dashed!, d«2
3/n ~solid! as a function ofn/h. The crossing point as

function of horizontal and vertical coordinates shows an invers
of the state ordering sequence.
23532
nd
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d«3
1,25S \v

2 D 2

~66n111h6A144n2296nh128h2!.

~18!

The expression under the square root is always positive~ex-
cept for the trivial casen5h50) so that the two subshell
never merge back. As seen in Figs. 4~g!, 4~h!, 4~i!, and 4~j!,
the perturbed shell is made up of ap-like subshell and an
f-like subshell. The effect of the perturbation is to lift th
accidental degeneracy between thep andf states, even for an
empty dot, as opposed to the 2D harmonic-oscillator mo
predictions.

IV. NUMERICAL MODEL

In order to test the validity of our analytical model, w
perform a full scale 3D self-consistent numerical analysis
the structure. The charge density in the QD is obtained
considering the quantum-mechanical nature of the cha
carriers within the density functional theory~DFT! to de-
scribe many-body effects among electrons in the dot.22 In
order to take into account the spin dependence on
electron-electron interaction, two Kohn-Sham equations,
for spin-up and one for spin-down, are solved simul
neously:

H↑~r!c i
↑~r!5« i

↑c i
↑~r!, H↓~r!c i

↓~r!5« i
↓c i

↓~r!. ~19!

Here « i and c i are the corresponding eigenenergies a
eigenstates of the HamiltonianH↑ andH↓,

H↑(↓)~r!52
\2

2
¹F 1

m* ~r!
¹G2qf~r!1DEc1fxc

↑(↓)~n!,

~20!

where m* (r) is the position-dependent effective mas
f(r)5fext1f ion1fH is the electrostatic potential whic
consists of three contributions:fext is the potential due to
external applied bias,f ion is the potential resulting from
ionized donors, andfH is the Hartree potential accountin
for repulsive electron-electron interactions.DEc is the
conduction-band offset between different materials, i.e., 1
meV for Al0.22Ga0.78As/GaAs and 50 meV for
GaAs/In0.05Ga0.95As, andfxc

↑(↓) is the exchange and correla
tion potential energy for spin up (↑) and down (↓) that is
computed within the local-spin density approximatio
~LSDA! according to Perdew and Wang’s formulation23

Hence our approach is spin unrestricted, i.e., allows for
ferent orbitals for different spins. The LSDA approach to t
study of the electronic structure of quantum dots has b
well tested by many authors.24–27It successfully explains the
quasi-two-dimensional shell structures and spin configu
tions of quantum dots and is in good agreement with
quantum Monte Carlo~QMC! simulations.12,13,28Moreover,
applications of the LSDA to few-electron atoms have sho
accuracies of the order of 1% in the calculations of the
oms ionization energy.22

The electron density in the QD reads

n

3-6
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n~r!5n↑~r!1n↓~r!5(
i 51

N↑
uc i

↑
„r )u21(

i 51

N↓
uc i

↓
„r )u2, ~21!

whereN↑1N↓5N is the number of electrons in the dot.
The electrostatic potentialf(r) is computed by solving

Poisson’s equation,

¹@e~r!¹f~r!#52r~r!, ~22!

wheree(r) is the position-dependent permittivity andr(r) is
the total charge density which is given by

r~r!5q@ND
1~r!2n~r!# ~23!

wheren(r) and ND
1(r) are the electron and ionized dono

densities, respectively, at the positionr.
Equations ~19! and ~22! are discretized by the finite

element method, of which a detailed formulation has be
published elsewhere.29 The numerical formulation of both
equations leads to sparse linear systems. The discretiz
of the Poisson equation leads to a boundary value prob
for which we use a conjugate gradient approach, whereas
discretization of Kohn-Sham equations leads to a general
eigenvalue problem. For the latter, the first eigenvalues
eigenvectors are extracted by a subspace method. Finally
algorithm used to self-consistently couple both problems
based on the Newton-Raphson method.

Boundary conditions for the electrostatic potentialf are
chosen by imposing Dirichlet conditions at the source, dra
and lateral surfaces of the device. At the source and dra
flatband condition is assumed, andf is set up such that the
net charge is zero in these regions. Along lateral surfaces
Schottky barriers heightsfs are strongly influenced by sur
face chemistry, so we use the experimental data of G
et al.30 and Best.31 On the gated surfaces, the Schottky b
riers are modified byfs2VG , whereVG is the gate bias.

Boundary conditions for the Schro¨dinger equation are im
posed by assuming vanishing wave functions on any lat
surface of the device. Since the quantum dot is much sma
than the physical dimensions of the device, the wave fu
tions actually vanish much before reaching those bounda
In the direction perpendicular to the heterointerfaces, we
low the wave functions to leak into the source and dr
regions. However, this leakage is very weak and is not ta
into account in the computation of the charge in the sou
and drain regions which is entirely determined using
Thomas-Fermi approximation. This assumption is reas
able, since the weak leakage does not affect the charge i
dot, and is negligible compared to the bulk charge in
source and drain regions.

Because the quantum dot is weakly coupled to the sou
and drain, electrons are completely localized in the dot.
equilibrium, and for a given bias, the integer number of el
tronsN minimizes the total energyET of the dot. In order to
determineN, we use the Slater formula:32

ET~N11!2ET~N!5E
0

1

«LUO~n!dn'«LUO~1/2!2EF,

~24!
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whereET(N) is the total energy forN electrons in the dot,
eLUO is the lowest unoccupied orbital eigenvalue, andEF is
the Fermi energy. Equation~24! is based on Janak’s theorem

« i5
]ET

]ni
, ~25!

which assumes an incremental and continuous variation
the electron occupationni of level i.

Hence, upon populatingeLUO with 0.5 electron, a stable
configuration ofN electrons is achieved in the dot ifET(N
11).ET(N), i.e., if the integral of Eq.~24! is positive;
otherwise there areN11 electrons. It must be noted that th
approximation made in Eq.~24! is valid only if eLUO varies
linearly with N.25

The addition energy computation is based on Eq.~24!. By
definition,

Ea5EF~N11!2EF~N!, ~26!

EF~N!5ET~N!2ET~N21!, ~27!

whereEa is the addition energy andET is the total energy.
Although the term addition energy to denoteEa is somehow
improper—stricto sensu, the addition energy, i.e., the energ
required to add one electron to the dot, is the electrochem
potential5,26—we follow Likharev33 and Taruchaet al.1 and
maintain this denomination. Using Eqs.~24!, ~26!, and~27!,
we obtain

Ea5EF~N11!2EF~N! ~28!

5@ET~N11!2ET~N!#1@ET~N!2ET~N21!#
~29!

5«LUO
N ~1/2!2«LUO

N21~1/2!. ~30!

From Fig. 6, we have

Ea5~VG
N112VG

N!tg~u! ~31!

if we assume that, forN electrons,«LUO5« i 11, and forN
21 electrons«LUO5« i . Here the upper script of« gives the

FIG. 6. Schematic of the energy spectrum in the gate volt
interval corresponding to successive charging of two electrons.
single-particle energy« i(ni) is represented by the level index~i!
and its electron occupationni . EF andEa are the Fermi level and
the addition energy, respectively.u is the slope of the variation o
the eigenlevel as a function of the gate voltage. Side: variation
the eigenlevels« i(ni) as a function of their occupation numberni .
3-7
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total number of electrons in the system, and the number
tween brackets gives the occupancy of a single-particle le

Let us now assume that« i is a bilinear function ofni and
VG , which, as we will see, is the case in our simulations

« i~ni ,VG!5ani1bVG1c, ~32!

wherea, b, andc are constant coefficients to be determine
Obviously, from Slater’s formula@Eq. ~24!# and takingEF
50 as the energy reference, we have

« i
N~ni ,VG!5ani1b~VG2VG

N11!2a/2. ~33!

Thus

« i
N~ni ,VG

N11!5ani2a/2 ~34!

and

E
0

1

« i
Ndni5E

0

1

~ani2a/2!dni5Fani
2

2
2

ani

2 G
0

1

50

5« i
N~1/2,VG

i 11!, ~35!

which confirms Slater’s rule. Moreover, using Eq.~34!, one
obtains

« i
N~1,VG

i 11!5a/2, « i
N~0,VG

i 11!52a/2, ~36!

as illustrated in Fig. 6. It is therefore possible to test
validity of Slater’s formula by simulating the dot atVG

5VG
i 11 and populating« i with 0, 1/2, and 1 electrons to

check if the shift of« i is symmetric with respect toEF . In
our simulations, this test was systematically verified for
numbers of electrons in the dot, exceptN51, which is be-
yond the validity of Janak’s theorem@Eq. ~25!# since then the
electron variation from 0 to 1 is far from incremental.

V. RESULTS AND DISCUSSION

Figure 7 shows the single-particle eigenspectrum for
first ten orbitals in the CVQD as a function of the gate vo
ageVG as obtained from the 3D computational model. B
cause of their spatial symmetry and spin degeneracy, the
bitals are grouped into four sets of levels which, wh
occupied by electrons, will form the first four shells. Th
upper horizontal scale indicates the number of electron
the QD on a particular range ofVG . On the vertical scale
the Fermi level is taken as the reference at zero. BelowVG
520.62 V, all levels are empty and decrease monotonic
with VG as the potential energy is lowered.

The variation of all eigenlevels« i are piecewise linea
with respect toVG . At each transition fromN to N11 elec-
trons, each curve« i(VG) is discontinuous with an upwar
shift. This is a manifestation of the Coulomb blockade effe
when a new electron enters the dot, it induces an upw
shift of the whole spectrum because of the sudden increas
the total electrostatic energy in the dot due to Coulomb
teraction. Here the first electron entering the dot occurs
VG520.62 V. It must be noted that, the higher the sh
being populated, the smaller the shifts, i.e., the smaller
charge increment. Unlike in orthodox Coulomb blocka
23532
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experiments,34 DVG , the voltage increment for adding a
electron in the dot, takes very unequal values, irregula
distributed over the range ofVG , because of the influence o
the quantization and quantum many-body effects during
charging of the dot.DVG is large forN52, 6, and 12, i.e.,
after the complete filling of each shell because, in addition
the energy required to overcome the electrostatic repulsio
the electrons already present in the dot, an energy contr
tion is needed to lower the next orbital below the Fermi le
for admitting the next electron.

We note that in the interval between the addition of tw
electrons,« i(VG) decreases monotonically withVG because
the overall potential energy of the system decreases as
gate voltage is made more positive. This behavior is differ
from the results of Nagarajaet al.,35 whose model did not
account for individual spin states. In that case, the sing
particle eigenvalues were tangential to the Fermi level dur
the charging of the whole orbital.

During the charging process over the whole gate volta
range (20.62 V,VG,20.082 V), the four sets of levels
~shells! remain well separated, which indicates that the sh
structure is preserved. However, as predicted by the ana
cal model, the degeneracy of levels belonging to the sa
shell, even when nonoccupied, i.e., second, third, and fo
sets of levels for20.522 V,VG,20.447 V, are partially
lifted.

Another interesting feature appears by considering
overall energy variation of the different shells during a sing
shell charging. For instance, for 20.39 V,VG
,20.285 V, i.e., during the third shell charging, the ave
age energy of the two lower full shells is higher at the end
the charging process than at the beginning. This is ea
seen by drawing a line joining the middle of each discon
nuity segment. For the two lower shells, the slope is positi
which indicates an overall energy repulsion among th
shells. For the third filling shell, the slope is slightly neg
tive, which means that the attractive energy of the gate fi

FIG. 7. Energy spectrum of the first four sets of eigenlev
~solid curves: spin-up, dotted curves: spin-down! as a function of
the gate voltageVG ~bottom horizontal axis! and number of elec-
tronsN ~top horizontal axis!. EF is the Fermi level.
3-8
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THREE-DIMENSIONAL ANALYSIS OF THE . . . PHYSICAL REVIEW B 65 235323
is just sufficient to overcome the electron repulsion ene
Finally, for the upper empty shell, the slope is negative
cause, free of electron repulsion, the eigenstates only e
rience the attractive effect of the gate.

We also notice the decrease of the intershell energy s
ration asVG increases, as observed experimentally.1 This ef-
fect is generally interpreted as due to the Coulomb inter
tion between high-energy electrons with extended w
functions which weakens the confining potential. Howev
our analytical model reveals that, in CVQD’s, there is
addition a pure3D geometrical effectthat enhances the leve
collapse whenVG increaseseven if the dot is empty. Indeed,
from Eq. ~8!, the quadratic terma in the potential depend
on the depletion region extensionz` . As z` decreases when
VG is made more positive, so doesa ~Fig. 2!. Therefore, as
VG is swept, we expect the oscillator frequency to decre
and, thereby, the shell separation. This effect is at the or
of the renormalization of the harmonic-oscillator frequen
by the fourth root of the electron density, i.e.,v}1/n1/4, in
models based on pure 2D parabolic confining potential.19,20

FIG. 8. Single-particle energy spectrum three possible confi
rations~a!, ~b!, and~c! around theN53→4 transition in the second
shell~dashed: spin-down; solid: spin-up!. The insets show the twop
orbitals with the spin position and direction. ForN53, the single
electron sits on the second lower state.
23532
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This n21/4 renormalization was justified to maintain the ele
tron concentration constant during charging of the dot, wh
is readily obtained in our simulations.

During the filling of a particular shell, e.g., the secon
shell (20.522 V,VG,20.447 V), the eigenlevel order
ing within a shell is determined by Coulomb repulsion r
sulting from wave-function overlap and exchange and co
lation effects that favor electrons with parallel spins. ForN
53 (20.522 V,VG520.502 V), due to the circular
symmetry of the potential in thexy plane, the electron has
definite z angular momentum component. This requireme
is achieved by choosing the third electron orbital a36

unr ,M ,s&5u0,1,↑&5c1
1(↑)1 ic1

2(↑).37 Here the spin symme
try is broken due to the odd number of electrons with tw
spin-up (↑) electrons and only one spin-down (↓) electron,
which results in a larger↑-xc ~exchange and correlation!
energy than the↓-xc energy.

For N54 (20.502 V,VG520.467 V), the fourth
electron can either occupy theu0,61,↓& or u0,21,↑& state.
These two configurations are shown in terms of t
eigenspectrum as a function of the gate voltage at theN
53→4 transition in Fig. 8. In the latter configuration, sp
polarization, for the third and fourth electrons, lowers t
total energy. This configuration is the favored one, as p
dicted by Hund’s first rule in atomic physics.1

Addition energy measurements are the clearest way
show the shell structure in CVQD’s. Figure 9 shows t
variation of the addition energy with respect to the number
electronsN, as measured in Tarucha’s experiment~dashed!,
and as computed in our simulations for three different c
fining potentialsv1.v2.v3 that correspond to 50-, 30-
and 20-meV conduction-band offsetsDEc between GaAs
and InxGa12xAs, respectively. The band-offset variation
not unreasonable due to the fact that the GaAs conduc
band edge with a doping density of 1017/cm3 is simply not
well defined, and this can result in an impurity fluctuation
the well edge (z5zi). Figure 9 shows very pronounced pea
for N52, 6, and 12 reminiscent of the shell structure in t

-

FIG. 9. Comparison between computed addition energy spe
~solid! for three different confining potentialsv1.v2.v3 and the
experimental spectrum~Ref. 1! ~dashed! as a function of the num-
ber of electrons. Note that, by definition,Ea(N)5EF(N11)
2EF(N), so that a value forN5 j in this figure refers to the energ
needed to add the (j 11)th electron in the dot.
3-9
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PHILIPPE MATAGNE AND JEAN-PIERRE LEBURTON PHYSICAL REVIEW B65 235323
experimental curve as well as in the simulation curves
v5v1 and v2. For v5v3, the confining potential is so
weak that the shell structure begins to vanish. In this ca
charging the second shell (N52) requires less energy tha
overcoming the repulsive energy generated by the first e
tron (N51), so thatEa(1),Ea(2). In the experimental
curve, there are also secondary peaks forN54, 9, and 16.
These peaks are interpreted as the manifestation of Hu
rule with parallel spin alignment for a half-filled shell.1–3 In
the simulation curve, we clearly obtain the peaks atN54
and 16, but not the peak atN59, and have other seconda
peaks atN58, 10, 14, and 18.

If Hund’s rule governs the filling of the second shell, the
necessarily, the addition energy spectrum will exhibit a pe
at N54 surrounded by two minima atN53 and 5, as de-
scribed in Sec. IV. Hence the third and fourth electrons, w
parallel spins (↑), access the emptyu0,61,↑& orbitals, maxi-
mize the exchange interaction, and induce a minimum
N53. For N54, the fifth electron, occupying theu0,1,↓&
state, is the only↓ electron in the second shell, with n
additional exchange, i.e.,Ea(4).Ea(3). ForN55, the sixth
electron in theu0,21,↓& state induces exchange between
sixth and fifth electrons, which lowersEa(5),Ea(4), lead-
ing to a peak forN54.

The idea that the peak atN59 is the manifestation o
Hund’s rule originates from the 2D circular oscillator mod
where the three states of the third shell are degenerate@Fig.
10~a!#. In this case, the filling sequence would be

21/2→21→03/2→21→21/2→00 ~37!

leading to the configuration 1s22p43d23s1, by adopting a
terminology similar to atomic physics for representing t
electronic orbitals. Here theu1,0,↑(↓)& (s-like! state is oc-
cupied before theu0,62,↑(↓)& (d-like! states to maximize
the total orbital angular momentum. Consequently, the a
tion energy forN57 and 8 are low, since the exchang
interaction is maximized. In addition,u1,0,↑& and u0,62,↑&
overlap weakly, which reduces the~repulsive! Hartree energy
EH . For N59, the same argument as forN54 applies, i.e.,
the tenth electron is the first↓-electron of the third shell~no
exchange-correlation! that sits on an already occupied orbit
~large Hartree!, producing a peak forN59. However, it was
demonstrated earlier~Sec. III B! that the accidental degen
eracy between the«2

1,2 and «2
3 is lifted in CVQD’s. Hence,

instead of the configuration and sequence shown in
10~a!, the configuration shown in Fig. 10~b! with a separa-
tion D5«2

32«2
1,2 is achieved. Forv5v1, we obtain D

'1 meV, and the energetically most favorable sequenc

21/2→01→21/2→00→01/2→00, ~38!

for which the electronic configuration for nine electrons
1s22p43d3, with an incomplete spin alignment. Hence w
see a peak atN58 for the fulfillment of Hund’s first rule in
the lower subshell—a situation similar to the second sh
with a peak atN54, but also a peak atN510 due to the
increment of energy needed to reach the second subshe

The reduction ofDEc , such asv5v2, leads to a reduc-
tion of D from 1 to 0.5 meV. According to our simulations
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whenD.0.6 meV, the third shell is also filled following th
sequence~38!. We point out that these values forD are in
good agreement with experimental measurements.1 WhenD
,0.6 meV, the third shell is filled with sequence~37!, with
three parallel spins predicted by Hund’s rule, as represen
in Fig. 10~c!. This result has been reproduced many times
our simulations, for various structure sizes and various g
lengths.

Thev2 andv3 addition energy spectra in Fig. 9, althoug
associated with a filling sequence governed by three par
spin electrons atN59 @Fig. 10~c!#, exhibit a peak atN58
instead ofN59. Placing the ninth electron on thes-state
requires an additional energyD, which increases the additio
energy forN58. The tenth electron with antiparallel spin
although deprived from exchange interaction, falls on one
thed states, which lowers the addition energy forN59. The
addition energy forN510 and 11 depends on the interpla

FIG. 10. Schematic possible sequences for the filling of the th
shell ~see Fig. 7 for realistic configurations! ~a! In a 2D circular
oscillator configuration, with three degenerate levels (0,62) and
(1,0) and three spin alignments.~b! Large separationD
.0.6 meV between (0,62) and (1,0) leading to the filling se
quence@Eq. ~38!#. ~c! Small separationD,0.6 meV between (0,
62) and (1,0) leading to the filling sequence@Eq. ~37!#. ~d! Total
lifting of degeneracy with separationsD1 and D2, respectively,
leading to the usual pairing sequence↑↓ @Eq. ~39!#.
3-10
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between exchange and Coulomb interaction for occupa
of the secondd state in the former, and the additionalD for
the latter in thes state. Hence the addition energy spectru
shows only one peak atN58, with a magnitude which de
pends on the difference betweenD andExc .

Clearly, a peak atN59 is not necessarily the signature
three spin alignment in the third shell. In fact, this situati
was never achieved in our simulations. The failure of o
model to reproduce the main experimental spectra is intr
ing, but a key element is found in the addition energy atN
57: all the theoretical values are consistently lower than
value at N55, whereas in the experimental dataEa(7)
.Ea(5), data which indicate weak exchange~or strong di-
rect Coulomb! interaction between the two electrons on t
degenerated single-particle states. This is surprising, since
general DFT underestimates exchange interaction am
electrons. This higher experimental value forN57 can only
be obtained with the lifting of the spatial degeneracy for
d states, as shown in Fig. 10~d!. This can be caused by ellip
tic deviations from the circular shape of the dot, or by p
tential fluctuations arising from the long-range Coulomb
teraction of ionized donors in the doped GaAs. For t
purpose, simulations with a remote ionized donor placed
the quantum well, 1000 Å away from the center of the d
have been performed. In this case, the third shell addi
energy spectrum now corresponds to the usual pairing
quence

21/2→40→21/2→00→01/2→00, ~39!

which is shown in Fig. 11. The high value ofEa(7) is due to
the filling of the u0,2,↑& state with an antiparallel spin elec
tron. The peak atN59 is due to a large Coulomb repulsio
when the tenth electron sits on theu0,22,↑& state. The peak
is surrounded by two minima atN58 and 10 corresponding
to a weak Coulomb repulsion when the ninth and eleve
electron occupy two empty statesu0,22,↑& and u1,0,↑&. The
pairing sequence@Eq. ~39!# for the experimental third shel
filling is validated by the data in Fig. 2 of Ref. 1, whic
clearly indicates a spin sequence with no spin alignmen
midshell, although the addition energy spectrum exhibit
single peak atN59.

FIG. 11. Third shell addition energy spectrum of a quantum
perturbed by a remote Coulombic impurity placed in the we
2000 Å away from the center of the dot.
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It is now possible to suggest an interpretation for the pe
at N516 in the fourth shell. Since the accidental degener
between theu0,63& and u1,62& states is lifted in the
CVQD’s ~see Sec. III B 1!—here the spacing between th
two subshells is about 1.5 meV—a filling sequence pred
ing a four spin alignment up toN516, as shown in Fig.
12~a!, seems unlikely. As forN510, in sequence~38!, the
peak atN516 results from the excess energy required
access the second subshell in the fourth shell, as show
Fig. 12~b!. This figure also depicts the ordering sequen
obtained in our DFT simulations, i.e.,

31/2→61→31/2→00→11/2→21→11/2→00, ~40!

for which the addition energy spectrum shows a jagged cu
with alternative peaks and minima for even and odd numb
of electrons, respectively~Fig. 9!. In sequence~40!, the sec-
ondary peaks atN514 and 18 result from the fulfillment o
Hund’s rule with two parallel spins at midoccupation with
each subshell. In order to explain the experimental spect
with a single peak atN516,1 we again consider the complet
lifting of degeneracy caused by external static perturbatio
as illustrated in Fig. 12~c!. The minima atN514 and 18 are
then due to the filling of two empty statesu0,23,↑& and
u1,22,↑&. The intermediate value atN513, 15, and 19 resul
from the Coulomb repulsion due to the filling of the stat

t
,

FIG. 12. Schematic possible sequences for the filling of
fourth shell. ~a! In a 2D circular oscillator with four degenerat
levels and four-spin alignment.~b! Separation between (0,63) and
(1,62), leading to the formation of two twofold-degenerate su
shells.~c! Total lifting of degeneracy leading to the usual pairin
sequence↑↓.
3-11
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u0,3,↓&, u0,23,↓&, andu1,22,↓&, since their orbitals are very
similar to u0,3,↓&, u0,23,↓&, andu1,22,↓&, respectively. The
maximum atN516, in this scenario, is also due to the e
ergy increment needed to access the second subshell,
of the u1,62& orbitals.

VI. CONCLUSION

We have demonstrated that, in CVQD’s, each shell deg
eracy is lifted, even when the dot retains cylindrical symm
try, due to 3D device effects and electron-electron interac
in the dot. All these predictions are confirmed by numeri
self-consistent simulations, and shed light on the elect
charging sequence of CVQD’s: far from being just the res
of spatial degeneracy of electronic states within a sin
shell, the basic physical conditions for the different possi
ways of filling electrons in the shells of a CVQD is a com
plicated interplay between symmetry breaking and Coulo
L
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interaction between electrons. In particular, we have dem
strated that the third-shell filling sequence and addition
ergy spectrum depend on the magnitude of the level sep
tion D. We have recently shown that these findings are
good agreement with experimental results.38 Moreover, the
existence of Hund’s rule with shell filling of CVQD’s is no
necessarily related to the observation of specific peaks in
addition energy spectrum.
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