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Admittance of a one-dimensional double-barrier resonant tunneling nanostructure
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We study the dynamic response of a one-dimensional double-barrier nanostructure to an ac bias. Combining
the Schro¨dinger equation, Poisson equation and the scattering theory, we calculate the internal potential, charge
density, and the ac conductance as well. The results show that the charge distribution is antisymmetric with
respect to the center of the double barrier, and depends crucially on the relative position of the Fermi level to
the resonant energies of the well. The diagonal emittance is found to have a similar dependence. It is negative
~inductive behavior! when the Fermi energy is very close to the resonant energies, and it reaches the negative
maximum at resonant energies, while it is always positive~capacitive behavior! when the Fermi energy is
within the barrier depth and far from resonance, and develops two peaks closely on both sides of the inductive
peak. This result is in agreement with that obtained from discrete model. In addition, we find that the capacitive
peaks correspond to the maxima of charge-density fluctuation, and inductive peaks to zero charge-density
distribution. Therefore, the sign and magnitude of emittance reflect how the charge piles up inside the device.

DOI: 10.1103/PhysRevB.65.235315 PACS number~s!: 72.10.2d
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I. INTRODUCTION

Double-barrier resonant tunneling nanostructu
~DBRTNS! have attracted great research interest becaus
their many potential device applications, and their sign
cance in the study of the physics of confined structures. B
dc and ac transport characteristics of the system have
studied extensively while most of the dc transport propert
such as the linear and nonlinear response, as well as
Kondo effect, have been made clear. The current rese
interest focuses on the ac transport properties, some of t
studies are based on simulation of a realistic device us
detailed numerical procedures,1,2 while others are based o
simple discrete models.3–15 However, the effect of time-
varying charge density on the systems is still a le
investigated problem, which is important in determining t
ac conductance.2,3,15,16While Ref. 17 discussed the pitfalls o
many existing ac conductance theories qualitatively, Bu¨ttiker
and co-workers15,16,18–21have formulated a theory of ac con
ductance in the linear response and low-frequency reg
that is applicable to mesoscopic structures with charging
fects, based on both continuous and discrete models.
effect of time-dependent charge density in and outside
well around the barriers is of importance in determining
dynamic conductance, because charge density and relate
ternal potential will be directly related to the charge a
current conservation, as well as the gauge invariance of c
ductance under an overall potential shift. Recently, with
help of the discrete models including some geometry cap
tances, some authors have studied ac conductance and c
ing effect of the DBRTS, as well as ac Kondo effect.14,22

By making use of the continuous model we study in t
paper the electronic properties of a DBRTNS such as
duced internal potential and charge-density distribution,
low-frequency conductance, to illustrate the role of the
duced internal potential and charge density and the influe
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of reservoir temperature on the ac transport of nanostruc
systems, extending the discussions in Ref. 23. As
DBRTNS is a typical resonant device, we study its electro
transport properties around and far from resonance, and
plore the difference between them. Our particular inter
focuses on the effect of temperature on these transport p
erties.

Our calculation of the internal potential and charge de
sity shows that when the transmission probability is sm
~far from resonance!, the antisymmetrical charge distributio
exists only around the double barrier under the influence
the applied ac voltage. For the case of near resonance w
large transmission probability~but us12u2,1), we find a con-
siderable amount of charge pile up in the well region as w
as on both sides beyond the double barrier. As for reson
case or when the incident energy of the carriers is m
higher than the barrier height, our results show that
charge distribution around the double barrier is almost ze
We find that the diagonal emittance~low-frequency term of
ac conductance! depends crucially on the relative energy
the Fermi level to the resonant energies. It is negative~re-
flecting inductive behavior! when the Fermi energy is ver
close to the resonant energies but within the barrier hei
and reaches the negative maximum~inductive peak! at reso-
nant energies, while it is always positive~reflecting capaci-
tive behavior! and develops two positive maxima~capacitive
peaks! near but on the both sides of the inductive peak wh
the Fermi energy is far from resonant energy. This result i
agreement with that in Ref. 15. In addition, we find that t
capacitive peaks correspond to the maxima of charge-den
fluctuation, and inductive peaks to zero charge-density
tribution. Therefore, the sign and magnitude of the emitta
reflect how the carriers pile up in the system under the
plication of an ac field, and how the temperature of the s
tem affects the carrier pileup and in turn affects the distrib
©2002 The American Physical Society15-1
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tion of the internal potential and the admittance. This is
accordance with the previous works by Bu¨ttiker and
co-workers.24

II. THEORY

The local partial density of states~LPDOS! is a very im-
portant concept in the scattering theory of quantum trans
in mesoscopic conductors.19 It originates from the displace
ment current that is the response of the long-range coulo
interaction to an ac perturbation in electron reservoirs. T
LPDOS is given by

dnab~x!

dE
5

21

4 p i E dES 2] f

]E D Fsab
† dsab

dU~x!
2

dsab
†

dU~x!
sabG ,

~1!

wherea, b are the leads indices, andsab are the elements o
the scattering matrix. We consider in this paper the tunne
model of a one-dimensional double-barrier potential c
nected to two leads with a finite cross-sectional area, wh
is assumed to be a constant. However, here we study only
case in which the Fermi levels in the left and right reserv
are equal so that the internal potential is due solely to the
perturbation in the electron reservoirs.

For a general one-dimensional scattering potential,
scattering matrix can be determined by partitioning the o
dimensional space into many narrow regions and using
transfer matrices between two neighboring regions. T
transfer matrix between two neighboring regions is obtain
by matching the wave functions and their derivatives at
boundary of the two regions. With the LPDOS defined in E
~1! the injectivity can be defined by

dna~x!

dE
5(

b

dnab~x!

dE
, ~2!

which describes the carrier density of states incident in
probe a regardless of which probe it goes out.16 This is
justified by the formula ofdna(x)/dE derived by Gasperian
et al.20

dna~x!

dE
5E dES 2] f

]E D 1

hva
uca~x!u2, ~3!

whereva is the incident velocity of the carriers andca(x) is
the scattering wave function.

In the presence of a small ac voltagevac applied to the
probe a (a51,2), the internal potentialU(x) is given by
U(x)5ua(x)evac , whereua is termed characteristic func
tion. The internal potential is caused by the charge distri
tion around the mesoscopic conductor under an ac volt
Using the Thomas-Fermi approximation, the characteri
function ua satisfies the Poisson equation:16,21

2¹2ua1
e2

«0

dn~x!

dE
ua~x!5

e2

«0

dna~x!

dE
~a51,2!, ~4!

wheredn(x)/dE5dn1(x)/dE1dn2(x)/dE is the total local
density of states. Under the Thomas-Fermi approxima
the second term in Eq.~4! is the induced charges in th
23531
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conductor and the third term is clearly the injected charg
For finite cross-sectional area of the leads, we should h
the transverse direction (y andz), and the formula~4! for the
injectivity should be multiplied byuf(y,z)u2, wheref(y,z)
is the wave function describing the confinement of the ca
ers in the transverse direction. If we assume thatua depends
on x only, we obtain the following equation by integratin
over y andz and using the fact that*dydzuf(y,z)u251:

2
d2ua~x!

dx2
1

e2

«0A

dn~x!

dE
ua~x!5

e2

«0A

dna~x!

dE
, ~4a!

whereA is the finite cross-sectional area of the left and rig
leads. It is noticed that the case of infinite cross-sectio
area has been considered by Zhaoet al.23

To solve Eq.~4a! for ua(x), we need the boundary value
of ua(x). In Ref. 23 the authors used the neutrality conditi
to determine the boundary values ofua(x):

u1~xL!5
dn1~xL!

dE Y dn~xL!

dE
,

u1~xR!5
dn1~xR!

dE Y dn~xR!

dE
,

u2~xL!5u1~xR!, u2~xR!5u1~xL!, ~5!

However, the authors only considered the zero-tempera
case (T50) where the injectivity is much simple to calcula

dna~xL!

dE
5

1

hva
uc~x!u2. ~38!

Equation ~38! implies immediately that u1(xL)5(1
1us11u2)/2 and u1(xR)5(12us11u2)/2 when T50. Physi-
cally, the pointxL (xR) is located somewhere in the le
~right! lead where the charge vanishes. In addition to
zero-temperature case we study in this paper also the
zero temperature case, which provokes Eq.~3! instead of Eq.
~38!. Accordingly, we have

u1~xL!55E dES 2] f

]E D11us11u2

hv Y E dES 2] f

]E D 2

hv
,

u1~xR!55E dES 2] f

]E D12us11u2

hv Y E dES 2] f

]E D 2

hv
.

~6!

With the quantities of LPDOS, injectivities and intern
potentials obtained, one can then proceed to calculate
admittance at low frequencies:15,19

gab~v!5gab~0!2 ive2Eab , ~7!

wherev is the frequency of the ac bias,gab(0) the dc con-
ductance, and

Eab5E dES 2] f

]E D E dxFdnab~x!

dE
2

dna~x!

dE
ub~x!G

~8!
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ADMITTANCE OF A ONE-DIMENSIONAL DOUBLE- . . . PHYSICAL REVIEW B 65 235315
is the emittance. The term*dxdnab(x)/dE is interpreted as
the global carrier density of states for those carriers injec
into leadb and going out leada. Thus the first term in Eq
~10! multiplied by e2vac , wherevac is a small ac bias ap
plied to probeb, gives the injected charges for those carrie
injected into leadb and going out leada. On the other hand
the second term in Eq.~8! multiplied bye2vac represents the
corresponding induced carrier density based on the Thom
Fermi model. Therefore, we conclude that the quan
e2Eabvac is equal to the net charge in the conductor cau
by those carriers injected into leadb ~by vac) and going out
leada. The chargee2Eabvac will be scattered to the contac
a. It is interpreted as the displacement charge.24 WhenE11 is
positive, e2E11 behaves like an effective capacitance. A
we have inductive behavior for the conductor whenE11 is
negative.24

For the convenience of numerical computation, we u
the double-barrier heightV0 as units of energy and the co
responding wave lengthl (52p/A2mV0 /\2) as units of
length. Hence we shall set the double barrierV0(x) to be of
unit height in the numerical computation for the scatter
wave functions and the scattering matrices. We denote
barrier width and well width bya and 2b, respectively.
Therefore in these new units of energy and length, the P
son equation~4a! reads

2
d2ua~x!

dx2
1s

dn~x!

dE
ua~x!5s

dna~x!

dE
, ~48!

where the parameters5e2h/(A2m«0A(V0)3/2). It is clear
that the parameters has considerable effect on the intern
potential. The expression ofs here tells us that it is inversel
proportional to the cross-sectional area of the leadsA and has
a nonlinear dependence on the barrier heightV0.

III. NUMERICAL RESULTS AND DISCUSSION

We study the internal potentialu(x) with various Fermi
levels m (5mL5mR) and temperaturesT. As aforemen-
tioned we useV0, the height of the double barrierV0(x), as
units of energy andl52p/A2mV0 /\2 as units of distance
Here we consider several cases of barrier widtha and well
width 2b. From Eq.~48!, we know that the number density o
electrons or charge-density distribution is given by

n~x!52
1

s

d2u

dx2
~x!, ~9!

where s5e2h/A2m«0A(V0)3/2. As an example, we setA
5100 nm2 ~the cross-section area of the left and right lea!
and V05100 meV, which means thats57.02. With this
value of s, we numerically solve the Poisson equation~48!
for u(x), and Eq.~9! for n(x). As for the points of neutrality
(xL andxR), we setxL524 andxR54.

In Fig. 1 we plotus21u2 against the incident energyE for
a51 andb52. In the regionE,1, one can find eight very
sharp peaks with unit height. These peaks correspond to
resonant states, which indicate eight quasibound states in
23531
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quantum well and which are related to the bound states of
isolated well. ForE.1, us21u2 approaches 1 asymptoticall
and wavily.

In Fig. 2 we present plots ofu(x) andn(x) at T50, for
various Fermi energiesm. Figure 2~a! corresponds to the
case ofa51, b52, andm50.1. In this case, the inciden
energy m50.7 is far from resonance. We see thatu(x)
51(0) on theleft ~right! side of the double barrier, and th
shape ofu(x) is almost a straight line inside the doub
barrier. This indicates that the charge distributionn(x) is
nonzero only around the left and right barriers, as is sho
by the curve~solid line!. It is noticed that the charge distri
bution is antisymmetric with respect to the center of t
double barrier (x50). This implies that the charges accum
lated around the left and right barriers are equal in magnit
but opposite in sign.

The parameters for Fig. 2~a! are a51, b52, m
50.826 927, andT50. The incident energym50.826 927
corresponds to a resonant state in the double barrier and
peak ofus21u2 is equal to one~high transmission!. The graph
of u(x) is confined to 0.5 with very small fluctuations. Th
value of 0.5 is equal to the boundary valuesu(xL) @5(1
1us11u2)/2# andu(xL) @5(12us11u2)/2# as us11u250 in this
case. The charge distributionn(x) is very small~near zero!
as indicated by the curve.

We seta51, b52, m51.5, andT50 in Fig. 2~c!. As the
incident energym51.5, the reflection probabilityus11u2
drops to 0.5. The curve ofu(x) has lots of fluctuations be
yond and within the double barrier. The charge distribution
large as shown by the charge-density curve~solid line! in this
figure. We note again that the charge distribution is antisy
metric with respect to the centerx50. For very large inci-
dent energym, say,m55, which is much higher than the un
barrier height@Fig. 2~d!#, the curve ofu(x) is strictly a con-

FIG. 1. Plots of transmission probabilityus21u2 against the inci-
dent energy of charge carriers.
5-3
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SHANGGUAN, AU YEUNG, YU, KAM, AND ZHAO PHYSICAL REVIEW B 65 235315
stant equal to 0.5@5u(xL)5u(xR) as us11u250#. We con-
clude that the charge distribution is zero around the dou
barrier.

Now let us make a comparison of the charge respon
among the situations of resonance, near resonance an
from resonance. In Fig. 3, we present the results of
charge response for the different chemical potentials.
start from the resonant casem50.826 927. Asm deviates
from the resonant energies the charge-density distribution
creases. However, as it deviates further, the charge-de
distribution begins to decrease after reaching a maxim
and tends to the case of Fig. 2~a!. So there is a maximum
charge response between resonant and low transmis
cases. Moreover, there are a lot of fluctuations in the curv
u(x) in the case of large charge response, and hence the
a large and antisymmetric charge distribution around
double barrier.

From the above results we can conclude that when
transmission probabilityus21u2 is small ~nonresonant case!,
the antisymmetrical charge distribution exists only arou
the double barrier as a response to the applied ac voltage
the charges from one side of the conductor is driven to
other side. As the transmission is low, the charges on
other side cannot penetrate through the double barrier

FIG. 2. The distribution of internal potential~dashed line! and
charge density~solid line! for a51, b52, andT50. ~a! The small-
transmission case,m50.7, ~b! The resonant case,m50.269 27,~c!
m51.5, above the barriers, and~d! m55, well above the barrier
height.
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leads to an antisymmetric charge distribution around the
barriers. On the other hand, for high transmission~resonant
case with large peak,us21u251) or the incident energy much
higher than the barrier height, the above results show tha
charge distribution around the double barrier is very sm
We also expect this because in this case the carriers
penetrate through double barrier easily, thus the charges
driven by the ac voltage through the conductor neither st
ing around the barrier regions nor inside the conductor.
nally, for the case of near resonance with a large transmis
probability butus21u2,1, we conclude from the above resul
that there is a considerable amount of charge distribution
the well region as well as on both sides beyond the dou
barrier. In this case the charges driven to the other side of
conductor can penetrate through the double barrier but wi
small transmission probability. As a result, there is a cons
erable amount of charges distributed in the well region
well as beyond the double barrier. We emphasize that the
that the charge distribution is antisymmetric is a result
overall charge conservation in the circuit. This point was a
mentioned in previous works.16,23,24

We next consider the temperature effect onu(x). First, we
consider the casea51, b52, m50.826 927~resonant! @Fig.
4~a! and 4~b!#. The curves ofu(x) are shown in Fig. 4~a! for
various temperaturesT. The T50 curve is fixed at 0.5, as
expected, the corresponding charge distribution is zero.
the temperatureT increases, the boundary values ofu(xL)
andu(xR), which are given by the integral formula Eq.~6!,
approaches asymptotically to 1 and 0, respectively. T
curves ofu(x) is roughly constant beyond the double barr
and they drops to 0.5 in the well region. As a result, we ha
a quite large amount of charge distribution around the bar
regions, but inside the well the charge distribution is s
small as in the caseT50 @Fig. 4~b!#. The effect of tempera-
ture on u(x) and n(x) is clearly due to the blurred Ferm

FIG. 3. A comparison of charge-density distribution among d
ferent Fermi energies.
5-4
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ADMITTANCE OF A ONE-DIMENSIONAL DOUBLE- . . . PHYSICAL REVIEW B 65 235315
distribution at high temperature. We also consider the t
nonresonant cases,m50.8262 and 0.7, which correspond th
state of near resonance and far from resonance. For the
of near resonance, Fig. 5~a! shows that the temperature has
slight effect onu(x), but Fig. 5~b! shows that it has a larg
effect on the charge distribution in the well. In Fig. 6, w
present the results ofu(x) and n(x) for the case far away
from resonance. Furthermore, from Figs. 4–6, we can
that at high temperature the difference of the internal pot

FIG. 4. The plots of internal potential~a!, and charge density
~b!, at different temperatures for resonant case (m50.826 927).

FIG. 5. The plots of internal potential~a!, and charge density
~b!, at different temperatures for the case of far from resona
(m50.7).
23531
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tial u(x) and charge densityn(x) between the three case
become small, and it tends to vanish as the temperature
creases further.

While the distribution of internal potential and charg
density reveal the information of the system under investi
tion, the ac conductance of the double-barrier device m
provide a result that is directly capable of being verified w
experimental data. We calculate the ac conductance u
Eqs.~7! and~8!. In Fig. 7 we present the diagonal emittan
E11 as a function of chemical potential fora51 andb52.
Figure 7~a! showsE11 at the neighborhood of the resona
energy m50.826 927 for three temperaturesT50,0.0001,
and 0.001. For zero and very low temperatures, the diago
element of the emittance is always positive~showing a ca-
pacitive behavior! when the Fermi energym is far from the
resonant energy, but it is negative~showing an inductive be-
havior! when the Fermi energy is very close to the reson
energy. This is in agreement with the results obtained
Prêtre and Thomas15 for a discrete model. Moreover, ou
results show that the capacitive peaks~positive maximum of
E11) correspond to the largest charge-density fluctuation~or
charge response!, and the inductive peak~negative maxi-
mum! to the resonant tunneling~zero charge fluctuation!.
This is in agreement with the work by Christen an
Büttiker.24 When temperature increases, both the capaci
and inductive peaks are smoothed and the amplitude ofE11
decreases sharply with the increasing temperature, and
capacitive peaks are pushed further away from the re
nance. In addition, in Fig. 7~b! and Fig. 7~c! we also present
the diagonal emittance near other resonant energies for
temperature, and find similar behavior as shown in Fig. 7~a!.
However, with the decrease of the resonant energies,
peaks become narrower and higher. This is due to the
that the resonant peak ofus12u2 is sharper for lower resonan
e

FIG. 6. The plots of internal potential~a!, and charge density
~b!, at different temperatures for the near resonant casem
50.8262).
5-5
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SHANGGUAN, AU YEUNG, YU, KAM, AND ZHAO PHYSICAL REVIEW B 65 235315
energies, which leads to sharper peaks for LPD
dnab(x)/dE. When kT50.001 (T.0.001 V0 /k.1 K,
where V05100 meV) the peak structure disappears ba
cally, andE11 shows a smooth dependence onm. This effect
originates from the blurred Fermi surface at finite tempe
ture. We expect whenkT&0.001 the temperatureT starts to
play a relevant role, and above this temperature there is
significant effect of temperature on the emittance. This
also be seen clearly from Figs. 9 and 10. On the other ha
as is well known, various scattering processes with the e
trons, for example, phonon scattering and defect scatter
can also suppress the resonant peaks. The authors of R
and 25 showed that the phonon scattering had a qualita
effect on ac conductance, but at high temperature it o
causes a minor modification quantitatively. So we expect
only at sufficiently low temperature those scatterings star
play an appreciable effect on the emittance, and hence
estimated temperature should be below 1 K. Above t
temperature those scatterings only play a quantitatively n
ligible effect on the emittance.

We present the diagonal emittanceE11 in Fig. 8 for the
case ofm.1, atT50 and 0.01, respectively. In this case, t

FIG. 7. The plots of the diagonal emittance elementE11 as a
function of chemical potentialm. ~a! Near the resonant energym
50.826 927 for different temperatures.~b! Near the resonant energ
m50.641 724 2 for different temperatures forT50. ~c! Near the
resonant energym50.475 357 0 for different temperatures forT
50.
23531
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Fermi energy is above the barrier height, but the emitta
still fluctuates. However, the amplitude of the fluctuation a
the peaks height are much smaller compared to the cas
m,1. Except aroundm51 and m51.14 the emittance is
positive and has capacitive peaks, while it is negative e
where, and for very large Fermi energy it tends to ze
slowly. As shown in the case ofm,1, when the temperature
increases the peaks aroundm51 are suppressed greatly, b
E11 in this region of largerm is affected slightly.

For a better display of the temperature dependence of
emittance E11, we plot E11 against temperature form
50.826 927~inductive peak! and m50.826 25 ~capacitive
peak! ~see Fig. 9!. We see in Fig. 9~a! that the inductive peak
drops very fast as temperature increases from zero, due t
blurred Fermi distribution that allowed the nonresonant ca
to contribute.E11 drops to zero for high temperature as e
pected. In Fig. 9~b!, we find that the capacitive peak drop
very fast as temperature increases from zero and becom
an inductive peak~negative maximum! for temperature
around 0.0005. This is an interesting point because the
tem undergoes a transition from capacitive behavior to
ductive behavior as temperature grows.

Finally, we study the temperature dependence of the e
trochemical capacitanceC, which determines the piled-up
charges for an applied ac voltagevac . Using Eq. ~8!, we
obtain

C5
e2

sV0
E

xL

0

dx
2d2u~x!

dx2

5
e2

sV0
S du~xL!

dx
2

du~0!

dx D . ~10!

We plot the electrochemical capacitanceC against the tem-
perature, form50.826 927, 0.826 25. For the resonant ca

FIG. 8. The plots of the diagonal emittance elementE11 for m
above the barriers andT50 and 0.01, respectively.
5-6
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ADMITTANCE OF A ONE-DIMENSIONAL DOUBLE- . . . PHYSICAL REVIEW B 65 235315
@Fig. 10~a!#, C is expressed in units ofe2/(sV0), and it is
very small atT50, as has been pointed out above. As
temperature increases,C rises to a peak and then it goes o
fast when the temperature increases further. The peak is
viously due to the blurred Fermi distribution function th
allows the nonresonant carriers to contribute. In Fig. 10~b!,
m50.826 25~large transmission probability butus21u2,1),
C is large atT50. This is expected as there is a considera
amount of piled-up charges on one side of the double bar
When T increases, the Fermi distribution is blurred andC
drops very fast to small value. By comparing Figs. 9 and
we conclude that generally the displacement chargesE11 and
the electrochemical capacitanceC are different from each
other. This is similar to the case of quantum point cont
discussed by Christen and Bu¨ttiker. in Ref. 24. However,
positive maximumE11 ~capacitive! corresponds to largestC,
while negative maximumE11 ~inductive! to very smallC.

It should be pointed out that our calculation is only for
one-dimensional system and the charge in contacts has
been taken into consideration, and, therefore, the variatio
the potential near the contacts is ignored. However, a re
tic device is always connected to two- or three-dimensio
contacts~electron reservoirs!, and the variation of the poten
tial near the contacts will give rise to charge distribution a
accumulation. As Bu¨ttiker and Christen26 noted, a more re-
alistic treatment for such device may lead to a capaci
contribution.

FIG. 9. The plots of the diagonal emittance elementE11 against
temperature for ~a! m50.826 927 ~inductive!, and ~b! m
50.826 25~capacitive!.
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IV. CONCLUSION

In conclusion, using the formalism developed by Bu¨ttiker
et al. and within the framework of a continuous model, w
have studied the dynamic response of the symmetric dou
barrier resonant tunneling nanostructures, including inter
potential, charge-density response and ac conductance.
results of the internal potential and the charge density sh
that the induced charge density has an antisymmetrical
tribution profile about the well center. When the transmiss
probability is small~far from resonance!, the antisymmetri-
cal charge distribution exists only around the barrier regio
as a response to the applied ac voltage. For the case of
resonance with a large transmission probability~but us21u2

,1), we find a considerable amount of charge distribution
the well region as well as on both sides beyond the dou
barrier. As for the resonant case or the incident energy m
higher than the barrier height, our results show that
charge distribution around the double barrier is almost ze
It is found from the ac conductance that the diagonal em
tance elementEaa has a crucial dependence on the Fer
level. When the Fermi energy is within the barrier height b
close to the resonant energies, the emittance is negative~in-
ductive behavior!, and it reaches an inductive peak at res
nant energies, while the Fermi energy is far from reson
energies, the emittance is positive~capacitive behavior!
showing two capacitive peaks around both sides of the
ductive peak. These results are in agreement with that in
15. In addition, we find that the capacitive peaks corresp
to the maxima of charge-density fluctuation, while the indu

FIG. 10. The plots of electrochemical capacitanceC against
temperature for~a! m50.826 27~inductive!, and ~b! m50.826 25
~capacitive!.
5-7



io

r
m
is
th

ow
n
to

ly
h
a
n

to
at
rg

tio

n-
n
o
rm

tial
are

ong

uch
on

ergy
l of
e
to

pre-
. In
le

ake

ng
o.
ity

SHANGGUAN, AU YEUNG, YU, KAM, AND ZHAO PHYSICAL REVIEW B 65 235315
tive peaks correspond to zero charge-density distribut
which agrees with the works of Christen and Bu¨ttiker.24 We
have also studied the effect of temperature on these
sponses, and found that the resonant effect of the syste
suppressed greatly as the temperature increases and it d
pears at sufficiently high temperature. So, only when
temperature is sufficient low~in our caseT51 K), the tem-
peratureT starts to play a relevant role. Our results also sh
that for the case of capacitive peaks, there is a rapid tra
tion from capacitive to inductive behavior for the conduc
as temperature increases.

Finally, we should point out that our calculation is on
for a one-dimensional system, and the charge in contacts
not been taken into account in our model. However, a re
istic device is always connected to two- or three-dimensio
~3D! contacts~electron reservoirs!, and the variation of the
potential from the wires to the contacts will give rise
charge distribution in the contacts. Our calculations indic
that the strong variation of the potential corresponds to la
charge fluctuation and results in large capacitive contribu
to the emittance. Therefore, as Bu¨ttiker and Christen have
pointed out,26 a more realistic treatment for such device i
cluding contacts may lead to a capacitive contributio
Whereas, our results for the 1D double barrier model sh
that the emittance exhibits an inductive peak when the Fe
C.
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energy is in resonance, where the variation of the poten
and the charge accumulation around the double barrier
almost zero. In this case, there is not any potential drop al
the wires, and the potential is constant:U(x)5dm/2, and
there is a potential drop ofdm/2 from the two contact to the
corresponding wires, resulting in the charge accumulation~in
the transition region from the contacts to the wires! and a
considerable capacitive contribution to the emittance. In s
situation the contact effect has a considerable influence
the measurement of ac conductance. When the Fermi en
is far from resonance, our results show that the potentia
the left wire isdm and that of the right wire is 0, so ther
would be almost zero potential drop from the two contacts
corresponding wires, and the contact effect has no ap
ciable influence on the measurement for ac conductance
general, for a high transmission probability of the doub
barrier, the potential variation near the contacts would m
a considerable capacitive contribution.
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