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Admittance of a one-dimensional double-barrier resonant tunneling nanostructure
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We study the dynamic response of a one-dimensional double-barrier nanostructure to an ac bias. Combining
the Schrdinger equation, Poisson equation and the scattering theory, we calculate the internal potential, charge
density, and the ac conductance as well. The results show that the charge distribution is antisymmetric with
respect to the center of the double barrier, and depends crucially on the relative position of the Fermi level to
the resonant energies of the well. The diagonal emittance is found to have a similar dependence. It is negative
(inductive behaviorwhen the Fermi energy is very close to the resonant energies, and it reaches the negative
maximum at resonant energies, while it is always positragpacitive behavigrwhen the Fermi energy is
within the barrier depth and far from resonance, and develops two peaks closely on both sides of the inductive
peak. This result is in agreement with that obtained from discrete model. In addition, we find that the capacitive
peaks correspond to the maxima of charge-density fluctuation, and inductive peaks to zero charge-density
distribution. Therefore, the sign and magnitude of emittance reflect how the charge piles up inside the device.
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[. INTRODUCTION of reservoir temperature on the ac transport of nanostructure
systems, extending the discussions in Ref. 23. As the
Double-barrier  resonant tunneling nanostructureDBRTNS is a typical resonant device, we study its electronic
(DBRTNS) have attracted great research interest because efansport properties around and far from resonance, and ex-
their many potential device applications, and their signifi-plore the difference between them. Our particular interest
cance in the study of the physics of confined structures. Botfocuses on the effect of temperature on these transport prop-
dc and ac transport characteristics of the system have beenties.
studied extensively while most of the dc transport properties, Our calculation of the internal potential and charge den-
such as the linear and nonlinear response, as well as thty shows that when the transmission probability is small
Kondo effect, have been made clear. The current researgfar from resonanoethe antisymmetrical charge distribution
interest focuses on the ac transport properties, some of theggists only around the double barrier under the influence of
studies are based on simulation of a realistic device usinghe applied ac voltage. For the case of near resonance with a
detailed numerical procedur&$,while others are based on |arge transmission probabiligput |s;,2<1), we find a con-

. . 15 .
simple discrete modefs:'® However, the effect of time-  gigeraple amount of charge pile up in the well region as well

varying charge density on the systems is still a lessyq oy poth sides beyond the double barrier. As for resonant
investigated problem, which is important in determining the

. . . case or when the incident energy of the carriers is much
ac conductancé®>while Ref. 17 discussed the pitfalls of 9y

e . IR higher than the barrier height, our results show that the
many existing ac conductance theories qualitativelytfiBer o o
16.18—2 charge distribution around the double barrier is almost zero.
and co-workers1618-2lhave formulated a theory of ac con-

ductance in the linear response and low-frequency regim}é\/e find that the diagonal emittanéiw-frequency term of

that is applicable to mesoscopic structures with charging ef2C conductangedepends crucially on the relative energy of

fects, based on both continuous and discrete models. TH® Fermi level to the resonant energies. It is negatree

effect of time-dependent charge density in and outside thd€cting inductive behavigrwhen the Fermi energy is very
well around the barriers is of importance in determining theCl0Se to the resonant energies but within the barrier height,
dynamic conductance, because charge density and related #?d reaches the negative maximdmductive peak at reso-
ternal potential will be directly related to the charge andnant energies, while it is always positiveeflecting capaci-
current conservation, as well as the gauge invariance of coriive behavioy and develops two positive maxinteapacitive
ductance under an overall potential shift. Recently, with thepeaks near but on the both sides of the inductive peak when
help of the discrete models including some geometry capacihe Fermi energy is far from resonant energy. This result is in
tances, some authors have studied ac conductance and chaagreement with that in Ref. 15. In addition, we find that the
ing effect of the DBRTS, as well as ac Kondo eff&tt? capacitive peaks correspond to the maxima of charge-density
By making use of the continuous model we study in thisfluctuation, and inductive peaks to zero charge-density dis-
paper the electronic properties of a DBRTNS such as intribution. Therefore, the sign and magnitude of the emittance
duced internal potential and charge-density distribution, andeflect how the carriers pile up in the system under the ap-
low-frequency conductance, to illustrate the role of the in-plication of an ac field, and how the temperature of the sys-
duced internal potential and charge density and the influenceem affects the carrier pileup and in turn affects the distribu-
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tion of the internal potential and the admittance. This is inconductor and the third term is clearly the injected charges.
accordance with the previous works by tBker and For finite cross-sectional area of the leads, we should have
co-workers?* the transverse directiory (@andz), and the formuld4) for the
injectivity should be multiplied by¢(y,z)|?, where ¢(y,z)
Il. THEORY is the wave function describing the confinement of the carri-
) ) ) ) ers in the transverse direction. If we assume thatlepends
The local partial density of stat¢sPDOS is a very im- 5y only, we obtain the following equation by integrating

portant concept in the scattering theory of quantum transpogvery andz and using the fact thatdydZ ¢(y,z)|2=1:
in mesoscopic conductotS It originates from the displace- ’

ment current that is the response of the long-range coulomb d2u (x) €* dn(x) e2 dn,(x)

interaction to an ac perturbation in electron reservoirs. The — Uy (X)= — . (43
LPDOS is given by dx?  &A dE goA dE

dn, 0 -1 T P Sst whereA is the finite cross-sectional area of the left and right
B = - f dE( ) s g af __"aB wp leads. It is noticed that the case of infinite cross-sectional
dE 4 i dE || T¥PsU(x)  dU(x) area has been considered by Zteal >

@ To solve Eq.(4a for u,(x), we need the boundary values
wherea, B are the leads indices, asg, are the elements of of u,(x). In Ref. 23 the authors used the neutrality condition
the scattering matrix. We consider in this paper the tunnelingo determine the boundary values wf(x):
model of a one-dimensional double-barrier potential con-

nected to two leads with a finite cross-sectional area, which Uy (x)= dny(x) / dn(x.)

is assumed to be a constant. However, here we study only the dE dE ’
case in which the Fermi levels in the left and right reservoir
are equal so that the internal potential is due solely to the ac dny(xg) / dn(xg)
perturbation in the electron reservoirs. Ui(Xr) = —4E dE
For a general one-dimensional scattering potential, the
scattering matrix can be determined by partitioning the one- Us(X,) =U1(XR), Us(Xg)=U1(XL), (5)

dimensional space into many narrow regions and using the )
transfer matrices between two neighboring regions. Thélowever, the authors only considered the zero-temperature
transfer matrix between two neighboring regions is obtaine@@S€ T=0) where the injectivity is much simple to calculate

by matching the wave functions and their derivatives at the

boundary of the two regions. With the LPDOS defined in Eq. dna(x.) = i|z,/f(x)|2. 3)
(1) the injectivity can be defined by dE hv,
Equation (3') implies immediately that ui(x.)=(1
d d Xy
r:jaéX) => n;BE(X), (2  +[s1H2 and uy(xg)=(1—]s14%)/2 when T=0. Physi-
B

cally, the pointx, (xg) is located somewhere in the left

which describes the carrier density of states incident in thdfight) lead where the charge vanishes. In addition to the
probe @ regardless of which probe it goes dtThis is zero-temperature case we study in this paper also the non-

justified by the formula ofin,(x)/dE derived by Gasperian 270 temperature case, which provokes @ginstead of Eg.
et al 20 (3'). Accordingly, we have

dng(x) —af| 1 L — 9| 1+[sy? (—_61‘)3
T:de<¥)h—|%<x>|2' @ ““XL)“de( e/ | o

UO(
wherev , is the incident velocity of the carriers anig,(x) is —af\1—|sy4? —of\ 2
the scattering wave function. Ui (xg)= =f dE( a_E)T f dE(a_E)E'

In the presence of a small ac voltagg, applied to the (6)
probe « (a=1,2), the internal potentidl(x) is given by
U(X)=u,(x)ev,., Whereu, is termed characteristic func-  With the quantities of LPDOS, injectivities and internal
tion. The internal potential is caused by the charge distribupotentials obtained, one can then proceed to calculate the
tion around the mesoscopic conductor under an ac voltagedmittance at low frequencié®®
Using the Thomas-Fermi approximation, the characteristic

function u,, satisfies the Poisson equatittt! Jap(©) =00p(0) i we’E 4, (7)
e? dn(x) e2 dn,(x) wherew is the frequency of the ac biag, ;(0) the dc con-
—Vou,+ — ——u,(X)=— (e=1,2, (4  ductance, and
€p dE €0 dE
wheredn(x)/dE=dn,;(x)/dE+dn,(x)/dE is the total local E :f dE —of f dngg(x)  dny(x) Ua(X)
density of states. Under the Thomas-Fermi approximation ap JE dE de #
the second term in Eq4) is the induced charges in the (8)
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is the emittance. The terffidxdn,g(x)/dE is interpreted as ' ' ' ' '

: ) S 1.0h
the global carrier density of states for those carriers injected
into lead 8 and going out leadv. Thus the first term in Eq.
(10) multiplied by e?v,., wherev,. is a small ac bias ap- 08

plied to probeg, gives the injected charges for those carriers
injected into leag3 and going out lead. On the other hand,
the second term in E48) multiplied by e?v . represents the
corresponding induced carrier density based on the Thomas- 0.6 .
Fermi model. Therefore, we conclude that the quantity o 1 b2
ezEalgvaC is equal to the net charge in the conductor caused o | a=1,b=

by those carriers injected into legl(by v,.) and going out 4l 4
lead . The charg&aZEanac will be scattered to the contact

a. Itis interpreted as the displacement chaté/henE; is

positive, e’E,; behaves like an effective capacitance. And 0.2
we have inductive behavior for the conductor whep is
negative?*

For the convenience of numerical computation, we use
the double-barrier height, as units of energy and the cor-
responding wave length (=27/\2mV,/#%?) as units of 0 1 2 3 4 5
length. Hence we shall set the double barkig(x) to be of E
unit height in the numerical computation for the scattering o I, ) o
wave functions and the scattering matrices. We denote the ©!G: 1. Plots of transmission probabilifg,,|* against the inci-
barrier width and well width bya and 2, respectively. €Nt €nergy of charge carriers.

Therefore in these new units of energy and length, the Pois-

o

son equatior(4a) reads quantum well and which are related to the bound states of the
isolated well. ForE>1, |s,,|? approaches 1 asymptotically
d?u,(x)  dn(x) dn,(x) , and wavily.
T To—gg YelX)=0—g () In Fig. 2 we present plots af(x) andn(x) at T=0, for

various Fermi energieg. Figure Za) corresponds to the
where the parameter=e?h/(y2meoA(Vy)¥?. It is clear case ofa=1, b=2, andu=0.1. In this case, the incident
that the parametes has considerable effect on the internal energy ©=0.7 is far from resonance. We see thaix)
potential. The expression of here tells us that it is inversely =1(0) on theleft (right) side of the double barrier, and the
proportional to the cross-sectional area of the leadsd has shape ofu(x) is almost a straight line inside the double

a nonlinear dependence on the barrier helght barrier. This indicates that the charge distributiofx) is
nonzero only around the left and right barriers, as is shown
I1l. NUMERICAL RESULTS AND DISCUSSION by the curve(solid line). It is noticed that the charge distri-

) ) ) ) ~ bution is antisymmetric with respect to the center of the
We study the internal potentiai(x) with various Fermi qoyple barrier x=0). This implies that the charges accumu-

levels u (=g =pg) and temperatured. As aforemen- 510 around the left and right barriers are equal in magnitude
tioned we use/y, the height of the double barriéfy(x), as ¢ opposite in sign.

units of energy and = 2/\2mV, /42 as units of distance. ; _ _
Here we congs}i/der several case:g of barrier wilthnd well ~ _ OTg§6 Sg;argﬁgri Ofo;_h eF I?n c(ig)en?rzn:g;;,=g:3§é 9’;7
width 2b. From Eq.(4"), we know that the number density of ' X : )

- T corresponds to a resonant state in the double barrier and the
electrons or charge-density distribution is given by

peak of|s,|? is equal to onéhigh transmission The graph
) of u(x) is confined to 0.5 with very small fluctuations. The
n(x)=— ld_u(x) 9) value of 0.5 is equal to the boundary valueg,) [=(1
odx2 +(s142)/2] andu(x,) [=(1—]s11?)/2] as|s;4/?=0 in this
case. The charge distribution(x) is very small(near zerp
where o=e?h/\2me,A(Vo)*?% As an example, we sek  as indicated by the curve.
=100 nnf (the cross-section area of the left and right léads ~ We seta=1, b=2, u=1.5, andT=0 in Fig. 2c). As the
and V=100 meV, which means that=7.02. With this incident energyu=1.5, the reflection probability|s,,|?
value of o, we numerically solve the Poisson equati@h) drops to 0.5. The curve af(x) has lots of fluctuations be-
for u(x), and Eq.9) for n(x). As for the points of neutrality yond and within the double barrier. The charge distribution is
(X, andxg), we setx, = —4 andxg=4. large as shown by the charge-density cuisaid line) in this
In Fig. 1 we plot|s,,|? against the incident enerdyfor  figure. We note again that the charge distribution is antisym-
a=1 andb=2. In the regionE<1, one can find eight very metric with respect to the centegr=0. For very large inci-
sharp peaks with unit height. These peaks correspond to thaent energyx, say,u=5, which is much higher than the unit
resonant states, which indicate eight quasibound states in thrrier heigh{Fig. 2(d)], the curve ofu(x) is strictly a con-
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00— 00
02l

-0.2

1.0¢ ()| 10} o Id

a=ib=2p=15T=0 | | T wy @
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0.4}
0.4f X

02 FIG. 3. A comparison of charge-density distribution among dif-
0.0 0.2 ferent Fermi energies.
02| 0.0 leads to an antisymmetric charge distribution around the two

barriers. On the other hand, for high transmissimsonant
case with large peaks,;|?=1) or the incident energy much
higher than the barrier height, the above results show that the
X X charge distribution around the double barrier is very small.
FIG. 2. The distribution of internal potentiéiashed ling and We also expect this because. In thls. case the carriers can
charge densitysolid line) for a=1, b=2, andT=0. () The small- penetrate through double barrier easily, thus the qharges are
transmission casey=0.7, (b) The resonant casg,=0.269 27,(c) _drlven by the ac vol_tage th_rough th? C_Onductor neither stay-
=15, above the barriers, arid) x=>5, well above the barrier N9 around the barrier regions nor |ns_|de the conducto_r. El-
height. nally, for the case of near resonance with a large transmission
probability but|s,;|>< 1, we conclude from the above results
stant equal to 0.5=u(x,)=u(xg) as|s;;|?>=0]. We con- that there is a considerable amount of charge distribution in
clude that the charge distribution is zero around the doubléhe well region as well as on both sides beyond the double
barrier. barrier. In this case the charges driven to the other side of the
Now let us make a comparison of the charge responsesonductor can penetrate through the double barrier but with a
among the situations of resonance, near resonance and famall transmission probability. As a result, there is a consid-
from resonance. In Fig. 3, we present the results of therable amount of charges distributed in the well region as
charge response for the different chemical potentials. Wavell as beyond the double barrier. We emphasize that the fact
start from the resonant cage=0.826 927. Asu deviates that the charge distribution is antisymmetric is a result of
from the resonant energies the charge-density distribution ineverall charge conservation in the circuit. This point was also
creases. However, as it deviates further, the charge-densitgentioned in previous works:?24
distribution begins to decrease after reaching a maximum, We next consider the temperature effectgw). First, we
and tends to the case of Fig(a® So there is a maximum consider the case=1, b=2, x=0.826 927(resonant[Fig.
charge response between resonant and low transmissidifa) and 4b)]. The curves ofi(x) are shown in Fig. é) for
cases. Moreover, there are a lot of fluctuations in the curve ofarious temperatures. The T=0 curve is fixed at 0.5, as
u(x) in the case of large charge response, and hence thereéxpected, the corresponding charge distribution is zero. As
a large and antisymmetric charge distribution around thehe temperaturd increases, the boundary values ugix, )
double barrier. andu(xg), which are given by the integral formula E@®),
From the above results we can conclude that when thapproaches asymptotically to 1 and 0, respectively. The
transmission probabilitys,,|? is small (nonresonant cage curves ofu(x) is roughly constant beyond the double barrier
the antisymmetrical charge distribution exists only aroundand they drops to 0.5 in the well region. As a result, we have
the double barrier as a response to the applied ac voltage, aadquite large amount of charge distribution around the barrier
the charges from one side of the conductor is driven to theegions, but inside the well the charge distribution is still
other side. As the transmission is low, the charges on themall as in the cas€=0 [Fig. 4(b)]. The effect of tempera-
other side cannot penetrate through the double barrier thatire onu(x) and n(x) is clearly due to the blurred Fermi

) 1| U [ | ¥ ) E O S S S R
4 -3-2-1012 3 4 4 3 -2-101 2 3 4
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FIG. 4. The plots of internal potenti&h), and charge density FIG. 6. The plots of internal potentigh), and charge density
(b), at different temperatures for resonant cage=0.826 927). (b), at different temperatures for the near resonant case (
=0.8262).

distribution at high temperature. We also consider the tWC{. .
_ : ial u(x) and charge densitp(x) between the three cases

nonresonant casea,=0.8262 and 0.7, which correspond the come small, and it tends to vanish as the temperature in-

state of near resonance and far from resonance. For the Cacr%eases furthe,r P

of near resonance, Fig(@ shows that the temperature has a ,

: ; ; While the distribution of internal potential and charge
slight effect onu(x), buF F|_g. “U?b) S.hOWS that it has_ a large density reveal the information of the system under investiga-
effect on the charge distribution in the well. In Fig. 6, we

present the results af(x) andn(x) for the case far away tion, the ac conductance of the double-barrier device may

from resonance. Eurthermore. from Fias. 4—6. we can ﬁné)rovide a result that is directly capable of being verified with
that at high tem. erature the d,ifferencegof. the iﬁternal oten(_axperimental data. We calculate the ac conductance using
9 P P Egs.(7) and(8). In Fig. 7 we present the diagonal emittance
E,; as a function of chemical potential far=1 andb=2.
' ' ' ' (a)l Figure {a) showsE,; at the neighborhood of the resonant

energy u=0.826 927 for three temperaturds=0,0.0001,

1.0
0.8

. and 0.001. For zero and very low temperatures, the diagonal
PR S N element of the emittance is always positihowing a ca-
% 0.4 pacitive behaviorwhen the Fermi energy is far from the
02l resonant energy, but it is negati(owing an inductive be-
- havior) when the Fermi energy is very close to the resonant
e energy. This is in agreement with the results obtained by
4 2 0 2 4 Prare and Thomds for a discrete model. Moreover, our
08— results show that the capacitive pedgssitive maximum of
sl —Te0 (b) 1 E,1) correspond to the largest charge-density fluctuat@mn
“[ charge respongeand the inductive peaknegative maxi-
0.1 mum) to the resonant tunnelin¢gzero charge fluctuation
= 00l This is in agreement with the work by Christen and

Biittiker.?* When temperature increases, both the capacitive

< 01 i ] and inductive peaks are smoothed and the amplitude, pf
02k a=1, b=2, p=0.7 _ decreases sharply with the increasing temperature, and the
O capacitive peaks are pushed further away from the reso-

4 3 2 1 0 1 2 3 4 nance. In addition, in Fig.(®) and Fig. 7c) we also present

the diagonal emittance near other resonant energies for zero

temperature, and find similar behavior as shown in Fig).7
FIG. 5. The plots of internal potenti&h), and charge density However, with the decrease of the resonant energies, the

(b), at different temperatures for the case of far from resonancgeaks become narrower and higher. This is due to the fact

(n=0.7). that the resonant peak {s;,|° is sharper for lower resonant

X
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10000 |- () -
[ ] 1
0
_-10000 [ - FIG. 8. The plots of the diagonal emittance elemgpf for u
W 20000 | ] above the barriers anti=0 and 0.01, respectively.
30000 a=1,b=2,T=0 1
i [ ] Fermi energy is above the barrier height, but the emittance
-40000 - ] still fluctuates. However, the amplitude of the fluctuation and
-50000 5 47'50 : 5 47'52 : 5 47'54 : o 47I56 : 04753 the peaks height are much smaller compared to the case of
: : ' : : u<1l. Except aroundu=1 and u=1.14 the emittance is
18 positive and has capacitive peaks, while it is negative else-

where, and for very large Fermi energy it tends to zero
FIG. 7. The plots of the diagonal emittance elemEqt as a  slowly. As shown in the case @f<1, when the temperature
function of chemical potentigk. (a) Near the resonant energy  increases the peaks aroupd- 1 are suppressed greatly, but
=0.826 927 for differgnt temperatureéb) Near the resonant energy E,, in this region of largem is affected slightly.
n=0.6417242 for different temperatures for=0. (c) Near the For a better display of the temperature dependence of the
resonant energy,=0.4753570 for different temperatures for o ittance E,,, we plot E;; against temperature fop
=0. =0.826 927 (inductive peak and u=0.826 25 (capacitive
peak (see Fig. 9. We see in Fig. @) that the inductive peak
energies, which leads to sharper peaks for LPDOSIrops very fast as temperature increases from zero, due to the
dn,g(x)/dE. When kT=0.001 (T=0.001V,/k=1 K, blurred Fermi distribution that allowed the nonresonant cases
where V,=100 meV) the peak structure disappears basito contribute.E,; drops to zero for high temperature as ex-
cally, andE;; shows a smooth dependence@nThis effect  pected. In Fig. ), we find that the capacitive peak drops
originates from the blurred Fermi surface at finite temperavery fast as temperature increases from zero and becoming
ture. We expect whekRT=0.001 the temperaturE starts to  an inductive peak(negative maximum for temperature
play a relevant role, and above this temperature there is n@round 0.0005. This is an interesting point because the sys-
significant effect of temperature on the emittance. This caifem undergoes a transition from capacitive behavior to in-
also be seen clearly from Figs. 9 and 10. On the other handluctive behavior as temperature grows.
as is well known, various scattering processes with the elec- Finally, we study the temperature dependence of the elec-
trons, for example, phonon scattering and defect scatteringtochemical capacitanc€, which determines the piled-up
can also suppress the resonant peaks. The authors of Refscigarges for an applied ac voltagg.. Using Eq.(8), we
and 25 showed that the phonon scattering had a qualitativebtain
effect on ac conductance, but at high temperature it only
causes a minor modification quantitatively. So we expect that e (o —d%u(x)
only at sufficiently low temperature those scatterings start to C= aVo f Xde dx2
play an appreciable effect on the emittance, and hence the
estimated temperature should be below 1 K. Above this g2 (du(xL) du(0)
temperature those scatterings only play a quantitatively neg- = -

o . oV dx dx
ligible effect on the emittance.
We present the diagonal emittanEg, in Fig. 8 for the  We plot the electrochemical capacitar€eagainst the tem-
case ofu>1, atT=0 and 0.01, respectively. In this case, the perature, fom=0.826 927, 0.826 25. For the resonant cases

(10
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FIG. 9. The plots of the diagonal emittance elemEpt against
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=0.826 25(capacitive.

In conclusion, using the formalism developed byttiker

[Fig. 10@)], C is expressed in units a#?/(aV,), and it is et al. and within the framework of a continuous model, we
very small atT=0, as has been pointed out above. As thehave studied the dynamic response of the symmetric double-
temperature increase8,rises to a peak and then it goes off barrier resonant tunneling nanostructures, including internal
fast when the temperature increases further. The peak is opotential, charge-density response and ac conductance. The
viously due to the blurred Fermi distribution function that results of the internal potential and the charge density show
allows the nonresonant carriers to contribute. In FigbL0 that the induced charge density has an antisymmetrical dis-
w=0.82625(large transmission probability bys,;|2<1),  tribution profile about the well center. When the transmission
Cis large afT=0. This is expected as there is a considerableprobability is small(far from resonande the antisymmetri-
amount of piled-up charges on one side of the double barriecal charge distribution exists only around the barrier regions
When T increases, the Fermi distribution is blurred a@d as a response to the applied ac voltage. For the case of near
drops very fast to small value. By comparing Figs. 9 and 10resonance with a large transmission probabilityt |s,,|?
we conclude that generally the displacement chakgggand  <1), we find a considerable amount of charge distribution in
the electrochemical capacitan€z are different from each the well region as well as on both sides beyond the double
other. This is similar to the case of quantum point contacbarrier. As for the resonant case or the incident energy much
discussed by Christen and fBiker. in Ref. 24. However, higher than the barrier height, our results show that the
positive maximunE,; (capacitive corresponds to large§,  charge distribution around the double barrier is almost zero.
while negative maximunie,, (inductive to very smallC. It is found from the ac conductance that the diagonal emit-

It should be pointed out that our calculation is only for atance elemengE,, has a crucial dependence on the Fermi
one-dimensional system and the charge in contacts has nistvel. When the Fermi energy is within the barrier height but
been taken into consideration, and, therefore, the variation aflose to the resonant energies, the emittance is negative
the potential near the contacts is ignored. However, a realisductive behavior and it reaches an inductive peak at reso-
tic device is always connected to two- or three-dimensionahant energies, while the Fermi energy is far from resonant
contacts(electron reservoijs and the variation of the poten- energies, the emittance is positideapacitive behavigr
tial near the contacts will give rise to charge distribution andshowing two capacitive peaks around both sides of the in-
accumulation. As Btiker and Christeff noted, a more re- ductive peak. These results are in agreement with that in Ref.
alistic treatment for such device may lead to a capacitivel 5. In addition, we find that the capacitive peaks correspond
contribution. to the maxima of charge-density fluctuation, while the induc-
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tive peaks correspond to zero charge-density distributiongnergy is in resonance, where the variation of the potential
which agrees with the works of Christen andt@ieer?* We  and the charge accumulation around the double barrier are
have also studied the effect of temperature on these realmost zero. In this case, there is not any potential drop along
sponses, and found that the resonant effect of the system filse wires, and the potential is constatt(x)= du/2, and
suppressed greatly as the temperature increases and it disaipere is a potential drop afu/2 from the two contact to the
pears at sufficiently high temperature. So, only when thecorresponding wires, resulting in the charge accumuldtion
temperature is sufficient lown our caseT=1 K), the tem-  the transition region from the contacts to the wiresd a
peratureT starts to play a relevant role. Our results also showconsiderable capacitive contribution to the emittance. In such
that for the case of capacitive peaks, there is a rapid transsituation the contact effect has a considerable influence on
tion from capacitive to inductive behavior for the conductorthe measurement of ac conductance. When the Fermi energy
as temperature increases. is far from resonance, our results show that the potential of
Finally, we should point out that our calculation is only the left wire isSu and that of the right wire is 0, so there
for a one-dimensional system, and the charge in contacts hagould be almost zero potential drop from the two contacts to
not been taken into account in our model. However, a realeorresponding wires, and the contact effect has no appre-
istic device is always connected to two- or three-dimensionatiable influence on the measurement for ac conductance. In
(3D) contacts(electron reservoijs and the variation of the general, for a high transmission probability of the double
potential from the wires to the contacts will give rise to barrier, the potential variation near the contacts would make
charge distribution in the contacts. Our calculations indicate considerable capacitive contribution.
that the strong variation of the potential corresponds to large
charge flugtuation and results in large capacitiv_e contribution ACKNOWLEDGMENTS
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