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Zero-bias anomaly in two-dimensional electron layers and multiwall nanotubes
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The zero-bias anomaly in the dependence of the tunneling density of statesn(e) on the energye of the
tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic
two-dimensional~2D! system the first-order interaction correction to density of states due to the plasmon
excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole
pairs, which is twice as small and has the opposite sign. For multilayered systems the total correction to the
density of states near the Fermi energy has the formdn/n05max(ueu,e* )/4eF , wheree* is the plasmon
energy gap of the multilayered 2D system. For a 2D system with finite-range interaction the particle-hole
contribution precisely cancels with the contribution of the zero-sound mode, in agreement with the Fermi
liquid theory. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean
free path exceeding the radius of the nanotube. The dependence of the tunneling density-of-states energy,
temperature and on the number of shells is found.
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I. INTRODUCTION

Electron-electron interaction results in a singular suppr
sion of the tunneling~single-particle! density of states at the
Fermi surface of low-dimensional metallic systems.1 The ef-
fect, known as the zero-bias anomaly, was first discusse
Altshuler and Aronov2 for diffusive systems with a short
range interaction, and by Altshuler, Aronov, and Lee3 for the
Coulomb interaction. In the two-dimensional~2D! case the
correction to the density of states~DOS! is double
logarithmic,3 dn/n0;(eFt)21 ln(ueut)ln(eF

4t3/e), where t is
the impurity scattering time,e is the energy of the tunneling
electron measured from the Fermi energyeF . Zuzin4 showed
that the second logarithm in this formula is cut off at lo
energies for the experimental setup of a 2D electron pl
screened by a metal shield. Rudin, Aleiner, and Glazm5

generalized the theory of the zero-bias anomaly to inc
porate the ballistic energiese.1/t, and argued that the
correction actually has the form, dn/n0

;2(eFt)21 ln(eF /ueu)ln(eF
4t3/e). Khveshchenko and Reizer6

analyzed the contribution of the collective electron exci
tions, 2D plasmons, to the tunneling DOS and obtained
additional correctiondn/n05(ueu2eF)/2eF . This correction
is less singular near the Fermi surface but is dominant in
wide range of energies and is present even in the absen
disorder.

In the present paper we consider the interaction correc
to the tunneling DOS of a different system, consisting o
number of identical periodically spaced two-dimension
electron layers. We also neglect the possibility of elect
tunneling between the layers. While analyzing such a se
we primarily have in mind high-Tc materials, which are at
tracting considerable interest with respect to the propertie
electron-electron interactions. The electron transport in th
materials is extremely anisotropic, and the interlayer tunn
ing amplitude in some crystals can be as weak as 0.05–27
0163-1829/2002/65~23!/235310~10!/$20.00 65 2353
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Even though the motion of electrons tunneling from the
of the tunneling electron microscope~TEM! is confined to
the outermost layer only, the presence of internal layer
important as they participate in the screening of the Coulo
interaction between electrons in the top layer.

We also consider a similar, yet slightly different, tunne
ing geometry that is realized in multi-wall carbon nanotub
~MWNT!. A typical MWNT consists of a few graphine
monolayer sheets rolled concentrically into cylinders w
radiusR;10 nm. At zero doping they can be either meta
or semiconductors, depending on the helical arrangemen
the carbon hexagons. In the measurements of the tunne
DOS the tunneling current propagates through the outerm
shell8,9 while the intershell tunneling is suppressed. Depe
ing on the degree of disorder the transport around the ela
mean-free pathl can be shorter or longer than the radius
the nanotube corresponding to the diffusive (l ,R) or ballis-
tic (R. l ) motion along the circumference of the nanotub
For energiese exceeding the inverse time of propagatio
around the circumference the zero-bias anomaly is descr
by 2D formulas. At lower energies a crossover to the regi
of a quasi-one-dimensional~quasi-1D! conductor is realized.

For diffusive quasi-1D conductors the interaction corre
tion to DOS in the lowest order of perturbation theory w
found to be more singular than in the 2D case,dn/n0

;21/Aueut.2 Working beyond the perturbation approxim
tion, Nazarov10 found that close to the Fermi surface DO
has an exponential behavior, ln(n/n0);ueu21 ~this result was
later obtained by Levitov and Shytov11 in a different way!.
Ballistic 1D conductors were studied by several authors12,13

and were shown to have a power-law behaviorn/n0;ueua of
the tunneling DOS. The crossover between diffusive and b
listic regimes as well as the temperature behavior of DOS
multiwall carbon nanotubes were recently studied in Ref.
under the assumption that electrons reside on the outerm
shell only.

Here we study the zero-bias anomaly due to dynamic
©2002 The American Physical Society10-1
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E. G. MISHCHENKO AND A. V. ANDREEV PHYSICAL REVIEW B65 235310
screened intershell and intrashell Coulomb interaction
two- and one-dimensional layered systems and its effect
the tunneling DOS. In Sec. II the system of two-dimensio
layers is analyzed, with both regimes of diffusive and bal
tic in-plane electron motion considered. In Sec. III we d
cuss the zero-bias anomaly in multiwall nanotubes assum
that the doping electrons are distributed uniformly across
shells.

II. SYSTEM OF TWO-DIMENSIONAL ELECTRON
LAYERS

We consider a semi-infinite system of identical condu
ing two-dimensional layers separated by the distanced, as in
Fig. 3 in Appendix A. The interlayer tunneling is neglecte
and the tunneling electron from the TEM propagates wit
the upper layer only. The properties of an isotropic tw
dimensional electron system are described by the in-p
Fermi velocity v and the electron-impurity scattering ra
1/t. The presence of internal layers is important as they c
tribute to the screening of the Coulomb interaction betwe
electrons in the top layer.

The first-order perturbation correction to the tunneli
DOS ~see Refs. 1,5,6! of the 2D conductor at zero temper
ture has the form

dn~e!

n0
5E

ueu

eF
dvV~v!, ~1!

V~v!5Im E
0

`qdq

2p2

~v1 i /t!U~v,q!G2~v,q!

@~v1 i /t!22q2v2#3/2
, ~2!

wheren0 is the thermodynamic two-dimensional density
statesn05m/p, counting both spin directions. The~inverse!
impurity-dressed vertex function is given by

G21~v,q!512
i /t

@~v1 i /t!22q2v2#1/2
. ~3!

The functionU(v,q) denotes the Coulomb interaction o
two electrons residing in the top plane and dynamica
screened by the infinite number of conducting layers be
it. To find this function, we consider the Coulomb potent
f(v,r ) created by the tunneling electron located in the o
ermost planez50. It satisfies the Poisson equation, that h
the following form in the Fourier representation with respe
to the in-plane coordinates:

S d2

dz2
2q214pe2P~q,v! (

n50

`

d~z2nd!D f~v,q,z!

54ped~z!, ~4!

where the last term in the brackets describes the polariza
charge induced in the system of 2D layers, and the polar
tion operator of a single 2D electron layer is

P~v,q!5n0

v1 i /t2@~v1 i /t!22q2v2#1/2

@~v1 i /t!22q2v2#1/22 i /t
. ~5!
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For the solution of Eq.~4! we refer the reader to Appendix A
We obtain,

U~v,q![2ef~v,q,0!5
4pe2 sinhqd

q~ekd2e2qd!
, ~6!

wherek is given by the solution of the equation

coshkd5coshqd2
2pe2

q
P~v,q!sinhqd, ~7!

having a non-negative real part Rek>0. When the wave-
length decreasesqd→`, Eq. ~6! gives

U~v,q!5
2pe2

q22pe2P~v,q!
, ~8!

and the conventional expression for the screened interac
in a single 2D layer is recovered. For static interactions
~8! gives U(v→0,q)52pe2/(q1k), wherek52pe2n0 is
the inverse static screening length. In what follows we
sume thatkd@1. This condition ensures that different laye
are~at least for low frequencies! weakly coupled. In the op-
posite limitkd!1 the system could be treated effectively
the 3d metal with the cylindric Fermi surface. This regime
beyond the scope of our paper.

Within the random-phase approximation electrons can
viewed as noninteracting but moving is a fluctuating elec
field whose propagator is given by Eq.~7!. In this picture
Eqs.~1!–~2! describes the suppression of the tunneling d
sity of states due to fluctuations of the electric field w
various frequenciesv and various momentaq.

A. Ballistic motion

First we consider the ballistic limit when the tunnelin
bias exceeds the scattering ratee@1/t. In this case the main
contribution to the integral in Eq.~2! comes from the electric
field fluctuations from two regions of the momentum spa
i! low-momentum region,qv!v, where the fluctuating elec
tric field has a plasmon resonance; ii! particle-hole con-
tinuum qv*v where the fluctuations of the electric fiel
decay due to Landau damping.15 We analyze the contribution
of the plasmon region in Sec. II A 1 and that of the partic
hole region in Sec. II A 2.

1. Plasmon region contribution

In the plasmon region,qv!v, the polarization operato
~5! may be approximated by

P~v,q!5
n0q2v2

2V2
, ~9!

where we introduced the notationV25v(v1 i /t). Solving
Eq. ~7! with respect toekd, we obtain
0-2
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ZERO-BIAS ANOMALY IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 235310
Vpl~v!5
1

4peFv2
Im E

0

qvdq

q
~e2qd21!

3@V22v1v22A~V22v1
2 !~V22v2

2 !#.

~10!

Here v6(q) represents the upper/lower boundaries of
continuum of plasmons with a fixed in-plane momentumq in
an infinite system of layersz50,61,62, . . . .Each member
of the continuum can be parametrized by the wave vectorq'

along thez direction,

v6
2 ~q!5k

qv2

2 Hcoth
qd

2

tanh
qd

2

J . ~11!

The modev1(q) corresponds to the uniform charge dist
bution across all layers,q'50, while the other mode
v2(q), describes the alternating charge in adjacent pla
(q'5p/d). The former mode has a frequency gape*
5v(k/d)1/2, and atqd→0 gives the usual three-dimension
plasmon~in an anisotropic metal!. At qd→`, both branches
tend to the usual plasmon spectrum of a two-dimensio
electron gas. This is illustrated by Fig. 1.

We chose the momentum cutoffqv in Eq. ~10! to be
larger than the characteristic momenta of the plasmon mo
but still less than the momentum of the particle-hole exc
tions, i.e., (v/kv2)max@v,e* #!qv!v/v.

When the frequency is higher than the plasmon gapv
.e* , the integral over the momentum is dominated by la
values ofq.1/d wherev1 andv2 converge exponentially

v6
2 5kqv2@ 1

2 6exp(2qd)#. Simple calculations give

FIG. 1. The plasmon spectra of an infinite number of 2D me
lic layers are shown. The frequencyv is plotted as a function of the
in-plane momentumq. The dashed line shows the plasmon sp
trum of a single 2D layer. Plasmons of different layers interact w
each other thus creating a band~inner area between solid lines!. The
upper solid line v5v1(q) represents the upper boundaryv
5v1(q) of the plasmon continuum, with the uniform charge d
tribution across the layers (q'50) while the lower solid line marks
the lower boundary corresponding to the alternating charge in a
cent layers (q'5p/d).
23531
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Vpl~v!52
1

2eF
2

1

2peFvt
ln

kqvv2

v2
. ~12!

2. Particle-hole region contribution

The region of high transferred momentaq*v/v@qv rep-
resents the contribution of particle-hole pairs. In this reg
propagating modes of the electromagnetic fluctuations
absent because of Landau damping.15 Under the condition
kd@1, the second term on the right-hand side of Eq.~7!
always exceeds the first term~screened interaction! and the
interaction takes the form

U~v,q!5
1

n0

A~v1 i /t!22q2v22 i /t

A~v1 i /t!22q2v22v2 i /t
. ~13!

Substituting Eqs.~13! and ~3! into Eq. ~2! and integrating
from qv to infinity we find

Vp-h~v!5
1

4eF
2

1

2peFvt
ln

v

qvv
. ~14!

We note that although this calculation for a finite scatter
rate is rather simple and straightforward, taking the lim
1/t→0 in the calculation should be done with care. Assu
ing 1/t50 in Eq. ~13!, and hence restricting oneself to th
principal part of the integral, leads to the incorrect answ
Vp-h(v)51/8eF that is twice as small as the correct res
~14!. One has to keep 1/t a positive infinitesimal to bypas
the square-root singularity atv5qv. We discuss this point in
greater detail in Appendix B.

3. Total density of states

Adding the contributions of the plasmon and the parti
hole regions~12! and ~14! we obtain the following expres
sion for the total spectral weight function:

V~v!5Vpl~v!1Vp-h~v!

52
1

4eF
2

1

2peFvt
ln

kv
v

, v.e* . ~15!

The results~12! and ~15! hold as long as the frequenc
exceeds the plasmon gape* 5v(k/d)1/2. In this large fre-
quency and large wave numberqd.1 region the plasmons
have virtually no dispersion along thez direction due to
weak interaction of electron densities on different layers.
lower frequencies and wave numbers,v,e* and qd,1,
electron densities on different layers interact strongly, a
the plasmon spectrum acquires a significant dispersion a
the z direction. In this region we may approximatev2

2

5kdq2v2/4, v1
2 5kv2/d, exp(2qd)5112qd, and take the

inverse interlayer distance as the momentum cutoffqv

;2/d. Taking the integral in Eq.~2! explicitly and extracting
the imaginary part, we find instead of Eq.~12!,

Vpl~v!52
1

4eF
2

1

2peFvt
ln

e*

v
. ~16!

l-

-

a-
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The high-momentum~particle-hole! contribution does not
depend~as long askd@1) on the distance between layer
This can be readily seen from Eq.~13! that does not contain
d. This is quite natural as the particle-hole pairs do not
duce long-range oscillations of electric field. Therefore,
can take the old expression~14! but with the new cutoffqv

;2/d, and obtain

V~v!52
1

2peFvt
ln

kv

e*
, v,e* . ~17!

Integrating the expressions~15! and~17! over the frequency
according to Eq.~1!, we found the perturbation correction t
the tunneling DOS in the ballistic regime

dnb~e!

n0
5

max~ ueu,e* !2eF

4eF

2
1

4peFt
lnF kv

max~ ueu,e* !
G lnFkv

e2
max~ ueu,e* !G .

~18!

We observe that the correction~18! is less singular near th
Fermi surface than in the case of a single 2D layer.

The suppression of the tunneling DOS for a single i
lated plane is given by thed→` (e* →0) limit of Eq. ~18!.
This differs from the result of Khveshchenko and Reizer,6 as
the leading contribution@the first term of Eq.~18!# is twice
as small as their result. The difference arises from the c
tribution of the particle-hole excitations,Vp-h(v) in Eq. ~15!
whose first term partially cancels the first term in the pl
mon contribution~12!. The overall sign of the DOS correc
tion remains unchanged~suppression!.

The contribution of the particle-hole region~15! arises
from the low-frequency regionv&vq where the interaction
is screened. It is, therefore, independent of the bare inte
tion between the particles. The contribution of the hig
frequency regionv@vq arises from the collisionless collec
tive modes that depend essentially on the bare interac
The overall correction to the tunneling DOS must rem
negative for an arbitrary interaction. Indeed,V(v) is related
to the retarded correlator of fluctuating electric field.16 There-
fore, its imaginary part is strictly negative forv.0, which
leads to the suppression of the tunneling density of states~1!.
We show in Sec. II A 4 in the case of the short-range int
actions the contribution of the particle-hole region~15! can-
cels the contribution of the collective modes in the hig
frequency regionv@vq. Thus, in order to reproduce th
results of the Fermi-liquid theory it is essential to take in
account the particle-hole contribution~15!.

4. Finite-range interaction

Let us consider a single conducting plane in the c
when the Coulomb interaction between electrons is scree
at some finite length scale 1/q0. We consider a relatively
long-range interaction,q0!k, when it can be treated within
the random-phase approximation. The screened interac
can then be written in the form
23531
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U~v,q!5
2pe2

q022pe2P~v,q!
. ~19!

For q0!k, like in the case of the Coulomb interaction co
sidered above, the main contribution to Eq.~2! comes from
two well separated regions of the momentum space:~i! the
collective excitation~zero sound! region, q;(q0 /k)v/v,
and ~ii ! the particle-hole region,q*v/v.

Following the procedure outlined above we introduce
momentum cutoffqv , such that (q0 /k)v/v!qv!v/v. In
the particle-hole regionq*v/v the first term in the denomi-
nator in Eq.~19! may be neglected~the interaction is com-
pletely screened!. Therefore, the contribution of this region
identical to that for the case of the Coulomb interaction, E
~15!. To evaluate the contributionVzs(v) of the zero sound
region,q<qv , we substitute the high-frequency asymptoti
of the polarization operator~9! into Eq. ~19! and use Eq.~2!
to obtain

Vzs~v!52
1

4eF
2

1

4peFvt
ln

kv2qv
2

2q0v2
. ~20!

Adding the particle-hole contribution~15! and using Eq.~1!
we obtain for the DOS correction

dn~e!

n0
52

1

4peFt
ln

k

2q0
ln

eF

e
. ~21!

Note that the linear in energyt-independent correction
which appears for the Coulomb interaction@first term in Eq.
~18!#, is now absent in agreement with the Fermi-liqu
theory. This comes about because the first term in the z
sound contribution~20! cancels with the first term in the
particle-hole contribution~15!. Thus, when considering th
interaction correction to the tunneling DOS for a tw
dimensional gas with a finite-range interaction, it is essen
to take into account the contribution of the particle-hole e
citations in order to obtain results consistent with the Fer
liquid theory.

B. Diffusive motion

Next we address the regime of strong impurity scatteri
e!1/t, when the motion of the tunneling electron is diffu
sive and the polarization operator has the form,P(v,q)
52n0Dq2/(Dq22 iv), whereD5v2t/2 is the diffusion co-
efficient.

The main contribution to the integral~2! comes from the
region of transferred momenta max$v/Dk,Av/Dkd%,q
,Av/D. In this region the interaction takes the form

U~v,q!52
iv

n0Dq2
,

and we obtain

V~v!52
1

4p2n0Dv
ln

Dk2

max~v,Dk/d!
. ~22!
0-4
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For a strongly disordered system,tDk/d,1, and for a rela-
tively high bias,ueu.Dk/d integration over the frequenc
gives the following DOS correction:

dnd~e!5
1

8p2D
lnS D2k4t

ueu D ln~ ueut!1dnbS 1

t D , ~23!

where the first term is the well-known double logarithm
correction of Altshuler, Aronov, and Lee3 and the second
term is the constant contribution of ballistic frequenciesv
.1/t given by Eq.~18!.

At lower bias,ueu,Dk/d, we have instead of Eq.~23!,

dnd~e!5dnbS 1

t D1
1

4p2D
S ln~kd!ln~ ueut!1

ln2
tDk

d

2
D .

~24!

For a relatively clean system withtDk/d.1 ~i.e., such
that l 2.d/k) the DOS correction is given by Eq.~24! with
the second term in the brackets absent.

Comparing Eq.~24! with the result by Zuzin4 for the DOS
correction for a 2D electron system screened by a bulk me
we observe that in the diffusive regime at low energies
role of an infinite set of 2D electron layersz
5d,2d,3d, . . . is equivalent to a bulk metal screen locat
at a distanced/2 from the outermost plane.

C. Interlayer tunneling

Throughout the analysis performed above we disregar
completely the possibility of tunneling electrons between d
ferent layers. We now consider the corrections to the den
of states originating from interlayer tunneling and establ
conditions for neglecting such processes. We treat them
turbatively, in the lowest-~second! order in the tunneling
Hamiltonian

Ĥt5
t

2 (
i
E d2p

~2p!2
@ĉ i 11

† ~p!1ĉ i 21
† ~p!#ĉ i~p!, ~25!

which conserves the in-plane momentum during tunneli
Having in mind mainly applications to the system wi
strong in-plane scattering~like high-Tc materials! we focus
here on the diffusive transport regimee!1/t. The correc-
tions to the density of states to the lowest order in the in
layer tunneling amplitudet are shown in Fig. 2. Of the six
diagrams drawn here the more important ones are Figs.~e!
and 2~f! that contain four diffusions each. They correspo
to the tunneling corrections to the screened Coulomb in
action rather than to corrections to Green’s function of
tunneling electron itself, which are given by Figs. 2~a!–2~d!.

To evaluate the contributions of these diagrams one ha
know the interactionUnm(v,q) between electrons residin
on arbitrary layersn and m. As finding such a general ex
pression seems to be quite a cumbersome task for a s
infinite system of layers, we utilize the corresponding e
pressions for the infinite system to obtain a qualitat
estimate of the effect. It has the form~see Appendix A!
23531
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Unm~v,q!5U00~v,q!e2un2mukd,

U00~v,q!5
2pe2 sinhqd

q sinhkd
. ~26!

Figures 2~e! and 2~f! are computed to yield for the tunnelin
correction,

Vt~v!5t2n0vt ReE qdq

2p2

U00
2 ~v,q!tanhkd/2

~Dq22 iv!4
. ~27!

If the frequency is large,v.Dk/d, the main contribution to
the integral in Eq.~27! arises from the interval 1/d,q
,v/kD, where we can approximateU00 tanhkd/2
.k2/n0

2q2, to obtain

dn t~e!

n0
5

e4t2n0t

e2
ln

ueud
Dk

. ~28!

For smaller frequenciesv,Dk/d, the leading contribution
comes from the integral 0,q,1/d and reads

dn t~e!

n0
52

e4t2n0td

2ueuDk
. ~29!

It is worth noting that the interlayer correction changes
sign around the pointueu;Dk/d and in fact leads to the
increasein the density of states forueu.Dk/d. Comparing
the expressions~28! and ~29! with the formulas~23! and
~24!, we observe that interlayer tunneling correction is sm
provided thatt!ueu/(eFt). This much stronger condition
than the one that might be naively expected (t!ueu) is due to

FIG. 2. The diagrammatic representation of the correction to
single-particle density of states from the interlayer tunneling p
cesses to the lowest order of perturbation theory in the tunne
amplitudet. The electron from the microscope probe tunnels in
white circles. Solid lines stand for the Green’s functions, wavy lin
denote the dynamically screened Coulomb interaction, black d
represent the tunneling matrix elements, and the dashed lines
the impurity ladders~diffusons!.
0-5
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the enhancement of the electron-electron interaction by
interlayer tunneling. When this condition is violated the su
mation of a wider class with all possible transitions of d
grams is necessary.

III. MULTIWALL NANOTUBES

In this section we consider the interaction suppression
the tunneling DOS in multiwall carbon nanotubes. A mul
wall nanotube is built up ofM concentric carbon tubes~or
shells! each of which can be obtained by rolling a graphi
sheet into a cylinder.

In tunneling experiments9 the tunneling current is be
lieved to propagate along the outermost shell only while
tunneling between the shells is largely suppressed. Thus
role of electrons in the inner shells is reduced to mer
screening the interaction between the outer shell electro

The electron band structure of a single metallic carb
nanotube consists ofN ~this number is usually of the order o
a few tens and depends on the doping level and gate volt!
conducting subbandsen(k) characterized by the Fermi ve
locities along the tube axisvn and around the circumferenc
v'n . Each of theM shells has, in general, its own ban
structureen(k). The electrons are scattered between differ
bands~but mostly within the same tube! by impurities, lattice
imperfections and incommensurate potential of ajacent tu
Not all the tubes are necessarily metallic, some of th
could well be insulating. Experimental evidence of the int
nal structure of MWNT is usually not easy to obtain a
leaves some room for speculation. The scenario when
dopants are situated outside the nanotube was consider
Ref. 14. In this case the doping electrons reside in the
ermost shell only to minimize their electrostatic energy, a
the screening of the interaction due to inner shells may
neglected.

Here we study the case when the dopant distribution
sults in a finite numberM of conducting shells. To simplify
the problem we consider an approximation in which allM
shells have the same band structure and the same do
level. In Sec. III A we obtain the first-order pertubative co
rection to the tunneling DOS~TDOS!. This correction di-
verges at low energies. Therefore, the study TDOS at
energies and temperatures requires a nonperturbative
proach. This regime is addressed in Sec. III B.

A. Perturbation theory

Unlike the case of the 2D conductors considered above
the one-dimensional wires the contribution of plasmon f
quencies v@qv, logarithmically exceeds that of th
electron-hole intervalv,qv. Therefore, the weight function
can be written in a simple form@compare this with Eqs.~2!
and ~3!#,

V~v!5
1

v2
Im (

qm

E
2`

` dq

2p2
U00~v,q,qm!, ~30!

where the sum is taken over the quantized transverse
mentum qm5m/R0 , m50,61,62, . . . The function
U00(v,q,qm) should be understood as the 00 element of
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matrix Ui j (v,q) that represents the dynamically screen
Coulomb interaction of an electron in shelli with an electron
in shell j and satisfies the matrix equation

Û~v,q!5V̂~q!1V̂~q!P̂~v,q!Û~v,q!, ~31a!

whereP i j (v,q,qm) is the polarization operator that, accor
ing to our assumptions, is proportional to the unit matrix a
in the plasmon regionv@qv has the form

P i j ~v,q,qm!5d i j P5d i j n1

q2v i
21qm

2 v'
2

v~v1 i /t!
. ~31b!

Here we introduced the one-dimensional density of sta
n15(n(pvn)21 and the average squares of the longitudin
v i

2 and the transverse,v'
2 electron velocities,

v i
25

(
n

vn

(
n

vn
21

, v'
2 5

(
n

vn
21v'n

2

(
n

vn
21

.

In Eq. ~31a! Vi j (q,m) denotes the bare Coulomb potentia

Vi j ~q,qm!5
2e2

p E
0

p

dfK0~qRi j !cosmf. ~31c!

In this equation we introduced the notationsRik
2 (f)5Ri

2

1Rk
222RiRk cosf, with Ri being the radii of concentric

shells forming the MWNT (i 50 is the external shell,i
5M21 the innermost shell!.

To proceed further with Eqs.~31! we assume that the
radius of thej th shell is a linear function of its numberRj
5R0(12 j j). In the long-range limitqR0!1, we obtain
from Eq. ~31c! for the bare interaction,

Vi j ~q,qm!

e2
55

1

umu S 12jmax~ i , j !

12jmin~ i , j ! D
umu

, mÞ0

ln
b

~qR0!2
12jmin~ i , j !, m50.

~32!

Here b54e22C.1.26, with C being the Euler constant
While the second line in Eq.~32! holds providedj!1, the
first line utilizes only the approximationqR0!1.

We use the set of eigenvectorswi
(k)(q) and eigenvalues

Vk(q,m) of the bare interaction matrix~31c! to write the
screened Coulomb interaction in the form

Ui j ~v,q,qm!5(
k

wi
(k)~m!wj

(k)~m!

Vk
21~q,qm!2P~v,q,qm!

. ~33!

The eigenvaluesVk(q,qm) determine the spectrum of collec
tive plasmon excitationsvm

(k)(q) through the poles of the
interactionUi j (v,q,qm) in Eq. ~33!, and the eigenvectors
wi

(k)(m) determine the distribution of charge between diffe
ent shells in these plasmon oscillations.
0-6
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Typically, MWNT’s exhibit ballistic transport around th
circumferencel[vt;10–100 nm.R. The plasmon modes
with mÞ0 have finite gaps, ranging betweenvAkj/R and
vAMk/R, wherek is the inverse 2D Debye screening leng
for one layer. These modes do not contribute to the spec
density~30! at frequenciesv below the corresponding gap
since their contribution to the imaginary part of the screen
interaction~33! vanishes. Therefore, the contribution of th
mÞ0 modes to the TDOS correction~1! is energy-
independent at low energies. Them50 plasmons, on the
other hand, are gapless. Their contribution to Eq.~30! con-
tinues to depend on frequency and leads to a singular co
tion to TDOS ate→0. Therefore, to study the energy depe
dence of TDOS ate→0 we can neglect the nonsingula
contribution of themÞ0 plasmons and retain only them
50 term in Eq.~30!.

The indexk labels the plasmon modes and is equal to
number of nodes in the charge distribution in thekth plas-
mon across the section of a multishell nanotube. The m
k50 is characterized by the uniform distribution of the o
cillating charge and corresponds to the logarithmic eig
value,V0(q).e2M ln(b/(qR0)

2), with wi
(0).1/AM . All other

M21 modes correspond toq-independent eigenvalues of th
bare interaction,Vk52je2ak and, therefore, have soundlik
spectrum. The coefficientsak are to be computed numer
cally. They range roughly from a few tenths to a few uni
e.g., for M510 we obtain ak510.0;2.6;1.2;0.72;
0.50;0.38;0.31;0.28;0.26. The componentsw0

(k) of the eigen-
vectors are also computed numerically. As the eigenvalue
the matrix~33! depend~at most! only logarithmically on the
momentumq, we can perform the integral in Eq.~30! taking
these eigenvalues at characteristic plasmon momentaq2

;v(v1 i /t)/NMv2,

V~v!52Ag

N
f M~v!Re

Av1 i /t

v3/2
, ~34!

where we defined the average Fermi velocityv̄5(nvn /N
and the dimensionless coupling strengthg5e2/(2p v̄) in a
single channel. The functionf M(e) is given by the
00-element of the matrixV̂1/2,

f M~v!5(
k

~w0
(k)!2AVk/2e2

5
1

AM
ln1/2

ANMv̄

RAuv~v1 i /t21!u
1gMAj, ~35!

the last term representing the contribution of theM21
soundlike plasmons, with values ofgM given in the table.

M 1 2 3 5 10
gM 0 0.35 0.60 0.84 1.38

The contribution of thek50 plasmon decreases with th
number of tubesM due to the screening by internal shel
while the contribution of soundlike plasmons increas
23531
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roughly linearly withM. Since the number of shells may no
exceed 1/j the second term in Eq.~35! is never greater than
the first one, and at most becomes comparable to it aM
'1/j. The approximationv.qv used above assumes th
the case of strong interaction is realized,jak.1/4e2n1
;1/4N. This is equivalent to the condition that the two
dimensional Debye screening length for one layer be sho
than the spacing between the shells,kRj.1.

Substituting the expression~34! into Eq. ~30! and evalu-
ating the frequency integral we obtain the following pertu
bation correction to the tunneling DOS of anM-shell multi-
wall nanotube,

dnM~e!

n1
52Ag

N 5 S A2

Aueut
f M~ ueu!1 f M~t21!ln

ANMv̄t

R D ,

f M~e!ln
ANMv̄

ueuR
,

ueu,1/t
ueu.1/t.

~36!

If a metallic gate is present at a distanceD@R from the
nanotube the long-range Coulomb interaction is screene
long wavelengths,4 and the first term in the functionf M(ueu),
Eq. ~35!, should be replaced by 1/AM ln1/2D/R. Then Eq.
~36! reproduces the lowest-order interaction correction~i! for
a diffusive wire with a short-range interaction1 at e.1/t, and
~ii ! for a Luttinger liquid in the ballistic regime ate.1/t. In
the absence of the screening gate the correction~36! exhibits
an additional ln1/2ueu dependence on energy in comparison
the case of a finite-range interaction.

B. Tunneling DOS at low energies

We now discuss how the results obtained for multiw
nanotubes can be extended to the very vicinity of the Fe
surface where the perturbation correction~36! diverges and
the nonperturbative approach is required. This question
addressed for a single-wall metallic nanotube in Ref. 14 t
utilized the phase approximation first proposed by Nazaro10

and further developed in Ref. 16. Here we concentrate on
dependence of the DOS on the number of shellsM, skipping
the derivation that could be found in Ref. 14.

At zero temperature the tunneling DOS can be expres
through the spectral densityV(v) in the form16

n~e!

n1
5ReE

2`

` dt sinueut
pt

expH E
0

`

dvV~v!~12e2 ivt!J .

~37!

At low energies thet integration in Eq.~37! can be carried
out in the saddle-point approximation. The saddle point l
on the imaginary axis at2 i t * and corresponds to the imag
nary time that the particle spends under the Coulomb bar
in the approach of Ref. 11.

Using the spectral density~34! we obtain that in the bal-
listic regime the saddle point is given byt* ;Ag/(NM)/e
,t, and thus corresponds to energiese.(ANMt)21, and
not to e.1/t as may be naively expected. This is related
the fact that the characteristic plasmon velocity is prop
0-7
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tional to the square root of the number of channelsANM. In
the ballistic regime the tunneling density of states is given
the exponential of the perturbative correction~36!,

n~e!}expH 2Ag

N
ln

v̄
RueuSA 1

M
ln

v̄
Rueu

1gMAj D J .

~38!

In the regime of strong diffusive suppression of DO
ueu,g/(NMt), the integral in Eq.~37! can again be evalu
ated in the saddle-point approximation. The saddle poin
given by t* ;g/(NMe2t), and we obtain

n~e!}expH 2
e0

ueu SA 1

M
ln

v̄
Rueu

1gMAj D 2J , ~39!

wheree05pg/2Nt. This result holds provided that the arg
ment of the exponential is large.

At finite temperature the nonperturbative expression
the tunneling DOS can be obtained using Eq.~14! of Ref. 14.
At low energies,e2/e0,T,e, this equation gives

n~T!}expH 21.07Ae0

T SA 1

M
ln

v̄

RATe0

1gMAj D 2J .

~40!

At higher energies,e2/e0.T, the tunneling DOS in the dif-
fusive regime,e,g/(NMt), is given by the zero tempera
ture result~39!.

In the case when the Coulomb interaction is screened
metal gate it is straighforward to show following Ref. 14 th
in the crossover region between the high-energy, Eq.~39!,
and the low-energy, Eq.~40!, regimes the tunneling DOS
depends on energy only through the dimensionless vari
ueu/Ae0T, see Eqs.~16! and ~17! in Ref. 14.

IV. DISCUSSION

We considered the zero-bias anomaly in the tunne
density of states in layered 2D and quasi-1D materials w
dynamically screened Coulomb interaction. The theory p
sented above is applicable to high-Tc materials and semicon
ductor heterostructures as well as to the multiwall carb
nanotubes. We showed that the presence of many condu
shells in 2D systems weakens the singularity in the D
correction at the Fermi level: for energies belowkD/d in
diffusive systems or below the plasmon gapv(k/d)1/2 in
ballistic systems the DOS correction becomes logarith
} lnueu, rather than double logarithmic} ln2ueu as in the case
of a single layer.

In addition to the logarithmic terms mentioned above t
originate from the broad region of the transferred freque
and momentum there are also terms coming from the reg
around the plasmon and particle-hole singularities. Th
contribute correction to DOS max(ueu,e* )/4eF that is not
singular but dominant in the wide range of energiesueu
. ln(eFt)/t. The contribution of the particle-hole continuu
is especially interesting in 2D ballistic systems. It turns o
that the contribution of the particle-hole continuum to t
23531
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DOS correction, which corresponds to the regionv<qv in
the interaction frequency/momentum transfer, of the sa
order as the contribution originating rom the plasmon p
but has adifferentsign. Namely, the particle-hole continuum
increasesthe density of states. For the long-range Coulom
interaction the total effect is still a suppression of DOS
low energies as the plasmon contribution larger than tha
the particle-hole continuum~twice as large for a single 2D
layer!. For a finite-range interaction and for a single 2D lay
the contribution of the particle-hole continuum exactly ca
cels that of the collective~zero-sound mode! nullifying the
linear in ueu correction to TDOS in agreement with the Ferm
liquid theory.

The validity condition for neglecting the intershell tunne
ing was found for the diffusive regime. It was shown th
instead of the naively expected requirement of the tunne
time t21 being greater than the characteristic measurem
time e21, the much more stringent conditiont21@eFt/e
@e21 must be satisfied.

With respect to multiwall carbon nanotubes our analy
was concentrated on the dependence of DOS on the num
M of coaxial shells for both the regimes of perturbative a
strong suppression. We found that this dependence ca
described by a single functiongM found numerically. The
energy and temperature dependence of DOS found in Re
for a nanotube with a single conducting shell is preserved
an arbitrary number of shells. When comparing our resu
with experiments it is important to bear in mind the th
crossover between the ballistic~38! and the diffusive~39!
behavior of the tunneling DOS in multichannel wires occu
not at e;1/t but at much lower energiese;A(g/NM)/t.
This is related to the fact that the plasmon velocity in
multichannel wire is proportional to the square root of t
total number of channels;vANM.
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APPENDIX A: SOLUTION OF THE POISSON EQUATION

To solve the Poisson equation~5! we first derive the
Green function for the infinite stack of layers,

S d2

dz2
2q214pe2P (

n52`

`

d~z2nd!D G~z,z8!5d~z2z8!,

~A1!

with the boundary conditionG(z,z8)→0 when uz2z8u
→`. The homogeneous solutions of Eq.~A1! are easily
written in terms of quasiperiodic Bloch functions,
0-8
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c6~z!5e6knd
„sinh@q~z2~n11!d#2e6kd

3sinh@q~z2nd!#…, nd,z,~n11!d ~A2!

with k given by the solution of the equation

coshkd5coshqd2
2pe2P

q
sinhqd, ~A3!

having a positive real part, Rek>0. This choice means tha
the function c2(z) decreases and the functionc1(z) in-
creases withz increasing. The Green function can then
written in the conventional form

G~z,z8!52
1

2q sinhqd sinhkd H c2~z!c1~z8!, z.z8

c1~z!c2~z8!, z,z8.
~A4!

To find the solution for the semi-infinite problem, Eq.~4!,
we impose a fictitious chargeQ located atz52d/2 ~see Fig.
3!. This charge has to be found from the condition that
total potential of the electronic charge2e and the fictitious
chargeQ,

f~z!54p@eG~z,0!2QG~z,2d/2!#, ~A5!

contain only the exponenteqz for the negative values of th
coordinate,2d/2,z,0.

This condition ensures that the electric field in the outs
region (z,0) decays exponentially with the distance fro
the outermost plane, with the fictitious charge, therefore, t
ing care of the absent (z52dn, n51,2, . . . ) planes. We
obtain the following value of the fictitious charge:

FIG. 3. The crystal consisting of a semi-infinite system of 2
metallic layers (z50,d,2d, . . . ) is shown. The thin solid line atz
52d/2 hosts a fictitious~image! chargeQ that accounts for the
absentz52d,22d, . . . layers.
23531
e

e
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Q5e
c2~0!

c1~2d/2!

ekd2eqd

e2kd2eqd
. ~A6!

Substituting Eq.~A6! into Eq. ~A5! and making use of Eqs
~A2! and ~A4!, we obtain the final expression~6!.

In Sec. II C the formula for interactionUnm of two elec-
trons residing at different layersz5nd and z5md in an
infinite system is used. To obtain it one can writeUnm
524pe2G(nd,md), which leads to the expression~26!.

APPENDIX B: PARTICLE-HOLE CONTRIBUTION
IN THE CLEAN LIMIT 1 Õt\0

The particle-hole contribution to the spectral density~2!
in the clean limit has the form@see Eq.~13!#

V2~v!5
v

2p2n0

Im E
0

` qdq

~v1 ih!22q2v2

3
1

A~v1 ih!22q2v22v2 ih
, ~B1!

where the lower limit could be extended to zero. Making t
substitutionz5Aq2v22(v1 ih)2 we write it in the form

V2~v!52
v

2p2n0

Im E
iv

` dz

z~ iz2v!
. ~B2!

The integrand in this expression does not have singular
in the upper half plane. We can, therefore, deform the in
gration contour as shown in Fig. 4. The integral along
imaginary axis is real and does not contribute toV2. The
integral aroundz50 point and the integral along the re
axis give 1/4eF each. We, therefore, establish the first term
the expression~14!.

FIG. 4. The contour of integration in the complex planez.
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