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Zero-bias anomaly in two-dimensional electron layers and multiwall nanotubes
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The zero-bias anomaly in the dependence of the tunneling density of s{ae®n the energye of the
tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic
two-dimensional(2D) system the first-order interaction correction to density of states due to the plasmon
excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole
pairs, which is twice as small and has the opposite sign. For multilayered systems the total correction to the
density of states near the Fermi energy has the féuiv,=max(e|,e*)/4e-, where e* is the plasmon
energy gap of the multilayered 2D system. For a 2D system with finite-range interaction the particle-hole
contribution precisely cancels with the contribution of the zero-sound mode, in agreement with the Fermi
liquid theory. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean
free path exceeding the radius of the nanotube. The dependence of the tunneling density-of-states energy,
temperature and on the number of shells is found.
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[. INTRODUCTION Even though the motion of electrons tunneling from the tip
of the tunneling electron microscog&@EM) is confined to
Electron-electron interaction results in a singular suppresthe outermost layer only, the presence of internal layers is
sion of the tunnelindsingle-particlg density of states at the important as they participate in the screening of the Coulomb
Fermi surface of low-dimensional metallic systehighe ef-  interaction between electrons in the top layer.
fect, known as the zero-bias anomaly, was first discussed by We also consider a similar, yet slightly different, tunnel-
Altshuler and Arono% for diffusive systems with a short- iNg geometry that is realized in multi-wall carbon nanotubes
range interaction, and by Altshuler, Aronov, and L&z the ~ (MWNT). A typical MWNT consists of a few graphine
Coulomb interaction. In the two-dimension@D) case the mo_nolayer sheets rolled conc_:entrlcally into cy!lnders with
correction to the density of state§DOS is double radlusR~ 10 nm. At zero d_opmg they can be either metals
logarithmic? 5v/vo~(epr)’lIn(Ielr)In(efiTB/e), where 7 is  ©F semiconductors, depending on the helical arrangement of
the impurity scattering times is the energy of the tunneling the carbon hexggons. In the measurements of the tunneling
. 2 DOS the tunneling current propagates through the outermost
electron measured from the Fermi eneegy Zuzin® showed

ot th d logarithm in this f o ot | shelP° while the intershell tunneling is suppressed. Depend-
that the second logarithm in this formula Is cut off at oW j,4 4 the degree of disorder the transport around the elastic

energies for the experimental setup of a 2D electron plang,ean-free path can be shorter or longer than the radius of
screened by a metal shield. Rudin, Aleiner, and Gla_fma”the nanotube corresponding to the diffusivecR) or ballis-
generalized the theory of the zero-bias anomaly to incorjc (R>1) motion along the circumference of the nanotube.
porate the ballistic energies>1/7, and argued that the For energiese exceeding the inverse time of propagation
correction  actually  has  the  form, ov/vy  around the circumference the zero-bias anomaly is described
~—(ep7) "tIn(er/|d)In(ile). Khveshchenko and Reier by 2D formulas. At lower energies a crossover to the regime
analyzed the contribution of the collective electron excita-of a quasi-one-dimensionéuasi-1D conductor is realized.
tions, 2D plasmons, to the tunneling DOS and obtained an For diffusive quasi-1D conductors the interaction correc-
additional correctiorSv/ vo= (| €| — €g)/2¢g . This correction tion to DOS in the lowest order of perturbation theory was
is less singular near the Fermi surface but is dominant in théound to be more singular than in the 2D cas®i/v,
wide range of energies and is present even in the absence of— 1/\/W.2 Working beyond the perturbation approxima-
disorder. tion, Nazarov® found that close to the Fermi surface DOS
In the present paper we consider the interaction correctiohas an exponential behavior, gy)~|el ! (this result was
to the tunneling DOS of a different system, consisting of alater obtained by Levitov and Shyttvin a different way.
number of identical periodically spaced two-dimensionalBallistic 1D conductors were studied by several auttors
electron layers. We also neglect the possibility of electrorand were shown to have a power-law behavibtry,~|e|* of
tunneling between the layers. While analyzing such a setufhe tunneling DOS. The crossover between diffusive and bal-
we primarily have in mind highF, materials, which are at- listic regimes as well as the temperature behavior of DOS in
tracting considerable interest with respect to the properties ahultiwall carbon nanotubes were recently studied in Ref. 14
electron-electron interactions. The electron transport in thesender the assumption that electrons reside on the outermost
materials is extremely anisotropic, and the interlayer tunnelshell only.
ing amplitude in some crystals can be as weak as 0.0522 K. Here we study the zero-bias anomaly due to dynamically
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screened intershell and intrashell Coulomb interaction irFor the solution of Eq(4) we refer the reader to Appendix A.
two- and one-dimensional layered systems and its effects owe obtain,
the tunneling DOS. In Sec. Il the system of two-dimensional

layers is analyzed, with both regimes of diffusive and ballis- 47e? sinhqd

tic in-plane electron motion considered. In Sec. Il we dis- U(w,q)=—-ed(»,q,0)= —————, (6)
cuss the zero-bias anomaly in multiwall nanotubes assuming q(ekd—ead)
that the doping electrons are distributed uniformly across the
shells. wherek is given by the solution of the equation
Il. SYSTEM OF TWO-DIMENSIONAL ELECTRON 2 e
LAYERS coshkd=coshqd— II(w,q)sinhqd, )

We consider a semi-infinite system of identical conduct-
ing two-dimensional layers separated by the distah@s in ~ having a non-negative real part Re0. When the wave-
Fig. 3 in Appendix A. The interlayer tunneling is neglected, length decreasegd— o, Eq. (6) gives
and the tunneling electron from the TEM propagates within
the upper layer only. The properties of an isotropic two-
dimensional electron system are described by the in-plane U(w,q)=——
Fermi velocityv and the electron-impurity scattering rate q-2me’ll(w,q)
1/7. The presence of internal layers is important as they con-
tribute to the screening of the Coulomb interaction betweerand the conventional expression for the screened interaction
electrons in the top layer. in a single 2D layer is recovered. For static interactions Eq.
The first-order perturbation correction to the tunneling(8) gives U(w—0,q)=2me?/(q+ k), where k=2me?v, is
DOS (see Refs. 1,5)60f the 2D conductor at zero tempera- the inverse static screening length. In what follows we as-
ture has the form sume thatd> 1. This condition ensures that different layers
are (at least for low frequenciésveakly coupled. In the op-

2me?

®

ov(e) _ fde v 1 posite limit kd<<1 the system could be treated effectively as
vo le] oW @), @ the 3d metal with the cylindric Fermi surface. This regime is
beyond the scope of our paper.
- =qdq (w+i/7)U(w,q)T2(w,q) _ Within the rz_indom-_phase appr(_)xim_ation electr_ons can pe
Vw)=Im | — , (2 viewed as noninteracting but moving is a fluctuating electric
027 [(w+il7)?—g??]%? field whose propagator is given by E€f). In this picture

Egs.(1)—(2) describes the suppression of the tunneling den-
sity of states due to fluctuations of the electric field with
various frequencies® and various momenta.

where v is the thermodynamic two-dimensional density of
statesvy=m/ 7, counting both spin directions. THaverse
impurity-dressed vertex function is given by

ilT A. Ballistic motion

Ffl(w,q)=1— - .
[(w+il7)?—q?v?]¥? First we consider the ballistic limit when the tunneling

. . . bias exceeds the scattering rate 1/7. In this case the main
The functionU(w,q) denotes the Coulomb interaction of contribution to the integral in Eq2) comes from the electric

two_electrons regd_m_g in the top plane gnd dynamlcallyfleld fluctuations from two regions of the momentum space:

screened by the infinite number of conducting layers below . .

. . : ) . 1) low-momentum regiongv < w, where the fluctuating elec-

it. To find this function, we consider the Coulomb potential ,”. ~ .. L

¢(w,r) created by the tunneling electron located in the out tric field has a plasmon resonance} particle-hole con-
’ y - g e . tinuum qu=w where the fluctuations of the electric field

ermost planeg=0. It satisfies the Poisson equation, that has

the following form in the Fourier representation with res ectdecay due to Landau dampifig\We analyze the contribution
. 9 ) ) P PECLof the plasmon region in Sec. Il A 1 and that of the particle-
to the in-plane coordinates:

hole region in Sec. Il A 2.

2 oo

d_zz_q +47T€2H(q,w) E 8(z—nd) | p(w,q,2) 1. Plasmon region contribution

d "o In the plasmon regionju < w, the polarization operator
=4m7ed(z), (4) (5 may be approximated by

where the last term in the brackets describes the polarization
charge induced in the system of 2D layers, and the polariza- voQv

tion operator of a single 2D electron layer is (w,q)= 202 ©
i _ H 2_ ~2,,271/2
H(w'q):,,owﬂh [(o+i/n)"=q7 ™" 5)  where we introduced the notatidd?= w(w+i/7). Solving
[(w+il7)2—q?v?|Y2—i/r Eq. (7) with respect toek9, we obtain
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2 — oy L 1| Kdu? 1
o/e* pll )= 2er 2merr | o? 12

T 2. Particle-hole region contribution

The region of high transferred momentz w/v>q, rep-
resents the contribution of particle-hole pairs. In this region
propagating modes of the electromagnetic fluctuations are
; qd/2 absent because of Landau dampifdnder the condition
00 : T ' ) : 3 xd>1, the second term on the right-hand side of Eq.
always exceeds the first ter(acreened interactiorand the
FIG. 1. The plasmon spectra of an infinite number of 2D metal-interaction takes the form
lic layers are shown. The frequeneyis plotted as a function of the

in-plane momentuny. The dashed line shows the plasmon spec- 1 /(w+i/7')z—qzvz— i/r
trum of a single 2D layer. Plasmons of different layers interact with U(w,q)= — — —. (13
each other thus creating a bafigher area between solid line§he Vo J(o+iln)*—qv —w—ilT

upper solid line w=w,(q) represents the upper boundasy
=w,(q) of the plasmon continuum, with the uniform charge dis-
tribution across the layerg)( =0) while the lower solid line marks
the lower boundary corresponding to the alternating charge in adja-

Substituting Egqs(13) and (3) into Eg. (2) and integrating
from g, to infinity we find

1
cent layers ¢, = 7/d). - _ _
: Vor(®) dep 2776,:«)7"” oV (149
e [ We note that although this calculation for a finite scattering
Vpl(w):ﬁlm fo F(e 9-1) rate is rather simple and straightforward, taking the limit
TEFW 1/7—0 in the calculation should be done with care. Assum-
X[0%—w, 0 — \/(Qz—wi)(ﬂz—wz_)]. ing 1/7=0 in Eq. (13), and hence restricting oneself to the

principal part of the integral, leads to the incorrect answer
(10 Y, (w)=1/8¢ that is twice as small as the correct result
(14). One has to keep /a positive infinitesimal to bypass
Here w.(q) represents the upper/lower boundaries of thethe square-root singularity at=qu. We discuss this point in
continuum of plasmons with a fixed in-plane momenmyim ~ greater detail in Appendix B.

an infinite system of layers=0,+=1,=2, ... .Each member )
of the continuum can be parametrized by the wave vegtor 3. Total density of states
along thez direction, Adding the contributions of the plasmon and the particle
hole regions(12) and (14) we obtain the following expres-
qd sion for the total spectral weight function:
qw? | "7 W)= V() + V(@)
1% w)— w -h\ W
0i(@)=rk—5 ad (- (1D P -
1 1 KU
tanh7 =———-——In—, ow>€". (15

The modew, (q) corresponds to the uniform charge distri- ~ The results(12) and (15) hold as long as the frequency
bution across all layersg, =0, while the other mode, exceeds the plasmon gagf =v(x/d)Y2 In this large fre-
w_(q), describes the alternating charge in adjacent planeguency and large wave numbgd>1 region the plasmons
(g, =m/d). The former mode has a frequency gap have virtually no dispersion along the direction due to
=v(«/d)*? and atgd— 0 gives the usual three-dimensional Weak interaction of electron densities on different layers. At
plasmon(in an anisotropic metalAt qd—, both branches lower frequencies and wave numbets<e* and qd<1,
tend to the usual plasmon spectrum of a two-dimensionaglectron densities on different layers interact strongly, and
electron gas. This is illustrated by Fig. 1. the plasmon spectrum acquires a significant dispersion along
We chose the momentum cutodf, in Eq. (10) to be the z direction. In this region we may approximate®
larger than the characteristic momenta of the plasmon modes kdq?v?/4, w? =«v?/d, exp(Zd)=1+2qd, and take the
but still less than the momentum of the particle-hole excitainverse interlayer distance as the momentum cutpjf
tions, i.e., @/kv?)max w,e*]<q,<wlv. ~2/d. Taking the integral in Eq2) explicitly and extracting
When the frequency is higher than the plasmon gap, the imaginary part, we find instead of Ed.2),
> ¢e*, the integral over the momentum is dominated by large
values ofg>1/d wherew, andw_ converge exponentially, 1 1 €*

w2 =kqu?[ 1 +exp(—qd)]. Simple calculations give Vel@)== g~ N (16
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The high-momentum(particle-holg contribution does not 2
depend(as long asxd>1) on the distance between layers. U(w,q)= 5 .
This can be readily seen from E(.3) that does not contain qo—2meIl(w,q)
d. This is quite natural as the particle-hole pairs do not in-
duce long-range oscillations of electric field. Therefore, wi
can take the old expressidf4) but with the new cutoffq,,
~2/d, and obtain

2me

(19

For gg<<«, like in the case of the Coulomb interaction con-

Csidered above, the main contribution to ER) comes from

two well separated regions of the momentum spéigethe

collective excitation(zero soung region, g~ (qq/«)w/v,

and (ii) the particle-hole regiomy= w/v.

Ww)=— 1 n—, w<e. 17) Following the procedure outlined above we introduce a
2TEFOT  ¢* momentum cutoffg,,, such that q/«) w/v<q,<w/v. In

. ] the particle-hole regiog= w/v the first term in the denomi-
Integrating the expressioris5) and(17) over the frequency nator in Eq.(19) may be neglectedhe interaction is com-
according to Eq(1), we found the perturbation correction to pjetely screened Therefore, the contribution of this region is

the tunneling DOS in the ballistic regime identical to that for the case of the Coulomb interaction, Eq.
. (15). To evaluate the contributiol,{ w) of the zero sound
Svp(€) _ max(| |, e*) — e region,q=d, , we substitute the high-frequency asymptotics
v dep of the polarization operatd®) into Eq.(19) and use Eq(2)
to obtain
1 | KU n Kvma)(| e)
dmerT : max| e[, %) €2 e 1 1 POR
Vdw)=——— In . (20)
(18 der AmerwrT 2q0w2
We observe that the correctigh8) is less singular near the Adding the particle-hole contributiofl5) and using Eq(1)
Fermi surface than in the case of a single 2D layer. we obtain for the DOS correction
The suppression of the tunneling DOS for a single iso-
lated plane is given by theé— (e*—0) limit of Eq. (18). ovie) 1 i 6F 21
This differs from the result of Khveshchenko and Refzas, vo  Amert n2_qo e @D

the leading contributiomithe first term of Eq(18)] is twice
as small as their result. The difference arises from the con- Note that the linear in energy-independent correction,
tribution of the particle-hole excitation¥,.,(w) in Eq. (15  which appears for the Coulomb interactifdirst term in Eq.
whose first term partially cancels the first term in the plas<{(18)], is now absent in agreement with the Fermi-liquid
mon contribution(12). The overall sign of the DOS correc- theory. This comes about because the first term in the zero
tion remains unchange@uppression sound contribution(20) cancels with the first term in the
The contribution of the particle-hole regioil5) arises particle-hole contributior(15). Thus, when considering the
from the low-frequency regiom=<uv(q where the interaction interaction correction to the tunneling DOS for a two-
is screened. It is, therefore, independent of the bare interaclimensional gas with a finite-range interaction, it is essential
tion between the particles. The contribution of the high-to take into account the contribution of the particle-hole ex-
frequency regionn>uv(q arises from the collisionless collec- citations in order to obtain results consistent with the Fermi-
tive modes that depend essentially on the bare interactiodiquid theory.
The overall correction to the tunneling DOS must remain
negative for an arbitrary interaction. Indeédw) is related B. Diffusive motion
to the retarded correlator of fluctuating electric fitldhere-
fore, its imaginary part is strictly negative far>0, which
leads to the suppression of the tunneling density of stajes
We show in Sec. Il A 4 in the case of the short-range inter
actions the contribution of the particle-hole regid®) can-
cels the contribution of the collective modes in the high-

. - The main contribution to the integré2) comes from the
frequency regionw>vq. Thus, in order to reproduce the .
results of the Fermi-liquid theory it is essential to take into'€9/0n_Of transferred momenta m@xD«, Jw/Dkd}<q

account the particle-hole contributids). <+ w/D. In this region the interaction takes the form

Next we address the regime of strong impurity scattering,
e<1/7, when the motion of the tunneling electron is diffu-
sive and the polarization operator has the folf(w,q)
=—p,Dg%/(Dg?>—iw), whereD=v27/2 is the diffusion co-
efficient.

4. Finite-range interaction _
e _ | U(w.0)=-——,
Let us consider a single conducting plane in the case voDq

when the Coulomb interaction between electrons is screeneézhd we obtain
at some finite length scale dy. We consider a relatively

long-range interactiorgy<<«, when it can be treated within D x2
the random-phase approximation. The screened interaction Ww)=— In K _
can then be written in the form 47D MaXw,D«x/d)

(22
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For a strongly disordered systerD «/d<<1, and for a rela-
tively high bias,|e|>D«/d integration over the frequency
gives the following DOS correction:

§
8

1 2kt
ov E:—|n<—)|n €l7)+ ov
(€)= S| =1 |indlel 7+ v,

1 O
- b
) 23 a) )

where the first term is the well-known double logarithmic
correction of Altshuler, Aronov, and L&eand the second
term is the constant contribution of ballistic frequencies
>1/7 given by Eq.(18).

B
b

At lower bias,|e|<D «/d, we have instead of E¢23), ¢ d
. In? Dk
Svy(e)= 6y, o +47T2D In(xd)In(| €| 7) + >
(29 e) f)

For a relatively clean system withD«/d>1 (i.e., such FIG. 2. The diagrammatic representation of the correction to the
that1>>d/«) the DOS correction is given by E¢4) with single-particle density of states from the interlayer tunneling pro-
the second term in the brackets absent. cesses to the lowest order of perturbation theory in the tunneling

Comparing Eq(24) with the result by Zuziffor the DOS  amplitudet. The electron from the microscope probe tunnels into
correction for a 2D electron system screened by a bulk metailyhite circles. Solid lines stand for the Green’s functions, wavy lines
we observe that in the diffusive regime at low energies thelenote the dynamically screened Coulomb interaction, black dots
role of an infinite set of 2D electron layerg represent the tunneling matrix elements, and the dashed lines are
=d,2d,3d, ... is equivalent to a bulk metal screen locatedthe impurity laddergdiffusons.
at a distancel/2 from the outermost plane.

Unm(waQ):UOO(qu)ei‘nimlkd,
C. Interlayer tunneling

_ _ 2e? sinhqd
Throughout the analysis performed above we disregarded Ugw, Q)= ———7 (26)

completely the possibility of tunneling electrons between dif- qsinhkd
ferent layers. We now consider the corrections to the densitgigures 2e) and f) are computed to yield for the tunneling
of states originating from interlayer tunneling and establishcorrection,

conditions for neglecting such processes. We treat them per-

turbatively, in the lowest{second order in the tunneling qdq USO(w,q)tanhkd/Z

Hamiltonian Vi(w)=t’v eref —
H 0 2m2  (DP—iw)*

If the frequency is largep>D «/d, the main contribution to
the integral in Eq.(27) arises from the interval dikq
<w/kD, where we can approximateU y,tanhkd/2
which conserves the in-plane momentum during tunneling~ KZ/,,qu, to obtain

Having in mind mainly applications to the system with

strong in-plane scatterin@ike high-T. material$ we focus Sw(e) e*t?vor |éeld
here on the diffusive transport reginee<1/7. The correc- o 2 HE-
tions to the density of states to the lowest order in the inter- 0 €

layer tunneling amplitude are shown in Fig. 2. Of the six For smaller frequencies<D«/d, the leading contribution
diagrams drawn here the more important ones are Fi@5. 2 comes from the integral @q< 1/d and reads
and Zf) that contain four diffusions each. They correspond

to the tunneling corrections to the screened Coulomb inter- Svi(€) e*t?vqrd
action rather than to corrections to Green'’s function of the Yo = 2[e[Dx - (29
tunneling electron itself, which are given by Fig$a)2-2(d).

To evaluate the contributions of these diagrams one has tib is worth noting that the interlayer correction changes its
know the interactiorld,,(w,q) between electrons residing sign around the pointe|~D«/d and in fact leads to the
on arbitrary layersn and m. As finding such a general ex- increasein the density of states fde|>D «/d. Comparing
pression seems to be quite a cumbersome task for a senthe expression$28) and (29) with the formulas(23) and
infinite system of layers, we utilize the corresponding ex-(24), we observe that interlayer tunneling correction is small
pressions for the infinite system to obtain a qualitativeprovided thatt<|e|/(eg7). This much stronger condition
estimate of the effect. It has the forfsee Appendix A than the one that might be naively expecteg|e|) is due to

ot d’p . ~ 5
Ams S f(:ZTp)Z[x,uLl(p)w?l(p)]wi(p), (29

(28)
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the enhancement of the electron-electron interaction by thgatrix Uij(w,q) that represents the dynamically screened
interlayer tunneling. When this condition is violated the sum-Coulomb interaction of an electron in shilkith an electron
mation of a wider class with all possible transitions of dia-in shellj and satisfies the matrix equation

grams is necessary.

U(w,q)=V(q)+V(T(0,q)U(w,q), (313

wherell;;(»,q,qm) is the polarization operator that, accord-
In this section we consider the interaction suppression ofng to our assumptions, is proportional to the unit matrix and
the tunneling DOS in multiwall carbon nanotubes. A multi- in the plasmon regiom>quv has the form
wall nanotube is built up oM concentric carbon tube®r
shell each of which can be obtained by rolling a graphine q%f+ahv?
sheet into a cylinder. I1ij(,9,0m) = 8 I1=4; "Colwtiln) (31b
In tunneling experimentsthe tunneling current is be-
lieved to propagate along the outermost shell only while theHere we introduced the one-dimensional density of states
tunneling between the shells is largely suppressed. Thus, the == ,(wv,) ! and the average squares of the longitudinal,
role of electrons in the inner shells is reduced to merelyu‘2 and the transverse? electron velocities,
screening the interaction between the outer shell electrons.
The electron band structure of a single metallic carbon

Ill. MULTIWALL NANOTUBES

nanotube consists &f (this number is usually of the order of 2 Un E Uﬁlvfn
a few tens and depends on the doping level and gate voltage Uﬁ: ! , Uf :n—,
conducting subbands,(k) characterized by the Fermi ve- E vl 2 po1
locities along the tube axis, and around the circumference no " no "

v, n. Each of theM shells has, in general, its own band )
structuree,(K). The electrons are scattered between differentn Ed. (31@ Vi;(q,m) denotes the bare Coulomb potential,
bands(but mostly within the same tub&y impurities, lattice
imperfections and incommensurate potential of ajacent tubes.
Not all the tubes are necessarily metallic, some of them
could well be insulating. Experimental evidence of the inter-
nal structure of MWNT is usually not easy to obtain andin this equation we introduced the notatioRg ()= R?
leaves some room for speculation. The scenario when the R2—2R,R, cos¢, with R; being the radii of concentric
dopants are situated outside the nanotube was considereddRells forming the MWNT (=0 is the external shellj
Ref. 14. In this case the doping electrons reside in the out=M —1 the innermost shall

ermost shell only to minimize their electrostatic energy, and To proceed further with Eqs(31) we assume that the
the screening of the interaction due to inner shells may beadius of thejth shell is a linear function of its numMbe;

neglected. =Ry(1—j&). In the long-range limitqR,<1, we obtain
Here we study the case when the dopant distribution refrom Eq. (31¢) for the bare interaction,
sults in a finite numbeM of conducting shells. To simplify

2e? (=
Vij(q,qm)=7jo dé¢Ko(qRj)cosme. (319

the problem we consider an approximation in which Mll 1 [1—émaxi,j)\!™

shells have the same band structure and the same doping W W) , m#0

level. In Sec. Il A we obtain the first-order pertubative cor- Vi (9,am) _ 2 32)
rection to the tunneling DOSTDOS). This correction di- @2 o

verges at low energies. Therefore, the study TDOS at low In >+2émin(i,j), m=0.
energies and temperatures requires a nonperturbative ap- (aRo)

proach. This regime is addressed in Sec. Il B. Here B=4e 2°=1.26, with C being the Euler constant.

While the second line in Eq32) holds providedé<1, the
first line utilizes only the approximatiogRy<1.

Unlike the case of the 2D conductors considered above, in  We use the set of eigenvectonék)(q) and eigenvalues
the one-dimensional wires the contribution of plasmon fre-v,(gq,m) of the bare interaction matri31c to write the
guencies w>qu, logarithmically exceeds that of the screened Coulomb interaction in the form
electron-hole intervab<<qu. Therefore, the weight function

A. Perturbation theory

can be written in a simple forfcompare this with Eq92) wi(")(m)w(")(m)
and(3)], Uij(@,0,0m) =2 =3 : . (33
K Vi 7(0,0m) — (®,9,0m)
Ww)= iz Im E d—iuoo(w,q,qm), (30)  The eigenvalue¥,(q,q,, determine the spectrum of collec-
w Im J—=2m tive plasmon excitationso{¥(q) through the poles of the
where the sum is taken over the quantized transverse mdnteractionU;;(w,q,qy,) in Eqg. (33), and the eigenvectors
mentum g,=m/R,, mM=0+1+2,... The function w®(m) determine the distribution of charge between differ-

Ugo(®,d,q,) should be understood as the 00 element of theent shells in these plasmon oscillations.
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Typically, MWNT’s exhibit ballistic transport around the roughly linearly withM. Since the number of shells may not
circumferencd=v 7~10-100 nm~>R. The plasmon modes exceed 1§ the second term in Eq35) is never greater than
with m#0 have finite gaps, ranging between'x&¢/R and  the first one, and at most becomes comparable to Mat
vM«k/R, wherex is the inverse 2D Debye screening length ~1/£. The approximationn>qv used above assumes that
for one layer. These modes do not contribute to the spectrdhe case of strong interaction is realizegiy, > 1/4e%v,
density(30) at frequencieso below the corresponding gaps ~1/4N. This is equivalent to the condition that the two-
since their contribution to the imaginary part of the screenedlimensional Debye screening length for one layer be shorter
interaction(33) vanishes. Therefore, the contribution of the than the spacing between the shekR&>1.

m#0 modes to the TDOS correctioril) is energy- Substituting the expressiai34) into Eqg. (30) and evalu-
independent at low energies. Tme=0 plasmons, on the ating the frequency integral we obtain the following pertur-
other hand, are gapless. Their contribution to Bf) con-  bation correction to the tunneling DOS of dtshell multi-
tinues to depend on frequency and leads to a singular corregall nanotube,

tion to TDOS ate— 0. Therefore, to study the energy depen-

dence of TDOS att—0 we can neglect the nonsingular V2 1., V\NMou 7
contribution of them++0 plasmons and retain only tha Sy (€) 9 meﬂdHfM(T )In R :

=0 term in Eq.(30). = _\[N

The indexk labels the plasmon modes and is equal to the *1 VNMv  |e|<1/r
number of nodes in the charge distribution in t#té plas- fu(e)ln le|R le|>1/7
mon across the section of a multishell nanotube. The mode (36)

k=0 is characterized by the uniform distribution of the os-

cillating charge and corresponds to the logarithmic eigen- If a metallic gate is present at a distaribe-R from the
value,Vo(q) =e>M In(B/(qRy)?), with w(®¥=1/\/M. All other  nanotube the long-range Coulomb interaction is screened at
M — 1 modes correspond tpindependent eigenvalues of the long wavelength$,and the first term in the functiofy(|€|),
bare interactiony, = 2£e2a, and, therefore, have soundlike Eq. (35), should be replaced by {M In¥?D/R. Then Eq.
spectrum. The coefficients, are to be computed numeri- (36) reproduces the lowest-order interaction correctipfior
cally. They range roughly from a few tenths to a few units,a diffusive wire with a short-range interactfoat > 1/, and
e.g., for M=10 we obtain «,=10.0;2.6;1.2;0.72; (ii) for a Luttinger liquid in the ballistic regime at>1/r. In
0.50:0.38:0.31:0.28:0.26. The componeng@ of the eigen-  the absence of the screening gate the corre¢86nexhibits
vectors are also computed numerically. As the eigenvalues @n additional 112 | dependence on energy in comparison to
the matrix(33) depend(at mos} only logarithmically on the the case of a finite-range interaction.

momentumg, we can perform the integral in E(30) taking

these eigenvalues at characteristic plasmon momegtta, B. Tunneling DOS at low energies

~ i 2
w(w+i/7)/NMv*, We now discuss how the results obtained for multiwall

Jotils nanotubes can be extended to the very vicinity of the Fermi
Ww)=— \/§fM( w)Re— T (34)  surface where the perturbation correcti@) diverges and
N w®? the nonperturbative approach is required. This question was

_ addressed for a single-wall metallic nanotube in Ref. 14 that
where we defined the average Fermi veloaity =,v,/N  utilized the phase approximation first proposed by Naz&rov
and the dimensionless coupling strength e?/(27v) in a  and further developed in Ref. 16. Here we concentrate on the
single channel. The functionfy(€) is given by the dependence of the DOS on the number of shdllskipping
00-element of the matri¥“2, the derivation that could be found in Ref. 14.

At zero temperature the tunneling DOS can be expressed
through the spectral density(w) in the formi®

fu(w)=2 (Wi J2e?
K v(e€) R fx dtsin €|t
= e —_—

ex OOde w)(1—e '@ht.

1 VNMv vy —w mt W’fo ()( )

= —In'? ——+yuVé (39 37)
M Ry|o(w+il/r™ 1)

the last term representing the contribution of thke—1

soundlike plasmons, with values ¢f, given in the table.

At low energies the integration in Eq(37) can be carried
out in the saddle-point approximation. The saddle point lies
on the imaginary axis atit* and corresponds to the imagi-
10 nary time that the particle spends under the Coulomb barrier
in the approach of Ref. 11.

Using the spectral densit{34) we obtain that in the bal-
listic regime the saddle point is given ¥ ~g/(NM)/e

The contribution of th&k=0 plasmon decreases with the <r, and thus corresponds to energies (VNM7) %, and
number of tubesV due to the screening by internal shells, not to e>1/7 as may be naively expected. This is related to
while the contribution of soundlike plasmons increaseshe fact that the characteristic plasmon velocity is propor-

M 1 2 3 5
Y™ 0 0.35 0.60 0.84 1.38
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tional to the square root of the number of chann@¥M. In DOS correction, which corresponds to the regios qu in
the ballistic regime the tunneling density of states is given bythe interaction frequency/momentum transfer, of the same

the exponential of the perturbative correcti@®), order as the contribution originating rom the plasmon pole
but has aifferentsign. Namely, the particle-hole continuum

g v 1 v increaseshe density of states. For the long-range Coulomb

v(e)xexp — N'”m v n er ymVE| (- interaction the total effect is still a suppression of DOS for

(39) low energies as the plasmon contribution larger than that of
the particle-hole continuurttwice as large for a single 2D
In the regime of strong diffusive suppression of DOS, layen. For a finite-range interaction and for a single 2D layer
|e|<g/(NM7), the integral in Eq(37) can again be evalu- the contribution of the particle-hole continuum exactly can-
ated in the saddle-point approximation. The saddle point i§€ls that of the collectivézero-sound modenullifying the
given byt* ~g/(NMe?7), and we obtain linear in| €| correction to TDOS in agreement with the Fermi
liquid theory.
p{ € ( [1 o )2] The validity condition for neglecting the intershell tunnel-
v(e)ocexp — — —In=—+ yM\/E , (39 ing was found for the diffusive regime. It was shown that
€l M R]el instead of the naively expected requirement of the tunneling
whereey= wg/2N 7. This result holds provided that the argu- time t~! being greater than the characteristic measurement

ment of the exponential is large. time e %, the much more stringent condition > eg7/e€
At finite temperature the nonperturbative expression fo>€e ' must be satisfied.
the tunneling DOS can be obtained using Bd)) of Ref. 14. With respect to multiwall carbon nanotubes our analysis
At low energies,e?/ e,<T<e, this equation gives was concentrated on the dependence of DOS on the number
M of coaxial shells for both the regimes of perturbative and

€o 1 v 2 strong suppression. We found that this dependence can be
v(T)ocex —1.07\/; Mln—+ yM\/E . described by a single functiofr, found numerically. The
RJT—‘EO energy and temperature dependence of DOS found in Ref. 14
for a nanotube with a single conducting shell is preserved for
At higher energiese?/e,>T, the tunneling DOS in the dif- an arbitrary number of shells. When comparing our results
fusive regime,e<g/(NMr), is given by the zero tempera- with experiments it is important to bear in mind the the
ture result(39). crossover between the ballisti88) and the diffusive(39)
In the case when the Coulomb interaction is screened by Behavior of the tunneling DOS in multichannel wires occurs
metal gate it is straighforward to show following Ref. 14 thatnot at e~ 1/7 but at much lower energies~ \(g/NM)/7.
in the crossover region between the high-energy, (B6), This is related to the fact that the plasmon velocity in a
and the low-energy, Eq40), regimes the tunneling DOS multichannel wire is proportional to the square root of the
depends on energy only through the dimensionless variabletal number of channels-v NM.
le|/JeoT, see Eqs(16) and(17) in Ref. 14.
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correction at the Fermi level: for energies belai/d in

diffusive systems or below the plasmon gapx/d)'? in BPENDIX A: SOLUTION OF THE POISSON EQUATION
ballistic systems the DOS correction becomes Iogarithmiéa‘ ' Q

«In|é|, rather than double logarithmicIn®¢ as in the case To solve the Poisson equatiof®) we first derive the

of a single layer. o . Green function for the infinite stack of layers,
In addition to the logarithmic terms mentioned above that

originate from the broad region of the transferred frequency , . o

and momentum there are also terms coming from the region 2 2 " ,
around the plasmon and particle-hole sir?gularities. Tgheses<d22 q+dme Hn;_m Az=nd) |G(z,2))=(z=2),
contribute correction to DOS map¢(,e*)/4er that is not (A1)
singular but dominant in the wide range of energjes

>In(e=7)/7. The contribution of the particle-hole continuum with the boundary conditionG(z,z')—0 when |z—Z'|
is especially interesting in 2D ballistic systems. It turns out—. The homogeneous solutions of EGA1l) are easily
that the contribution of the particle-hole continuum to thewritten in terms of quasiperiodic Bloch functions,
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-------------------- z=-2d
z=—d
z=—d/2
z=0

z=d

z=2d

z=3d

FIG. 3. The crystal consisting of a semi-infinite system of 2D

metallic layers ¢=0,d,2d, . ..) isshown. The thin solid line at
=—d/2 hosts a fictitiougimage chargeQ that accounts for the
absenz=—-d,—2d, ... layers.

Y+ (2)=e"K"YsinHq(z—(n+1)d]—e*kd
XsinHq(z—nd)]), nd<z<(n+1)d (A2)

with k given by the solution of the equation

2me?
coshkd=coshqd—

sinhqd, (A3)

having a positive real part, Rke=0. This choice means that
the function_(z) decreases and the functigh, (z) in-

creases withe increasing. The Green function can then be

written in the conventional form

G(z.2')= 1 Yy (¢ (2"), z>7
(2,20) == 5 sinhqdsinhkd | y.(2)y_(2'), z<Z'.
(Ad)

To find the solution for the semi-infinite problem, E4),
we impose a fictitious charg®@ located az= —d/2 (see Fig.

PHYSICAL REVIEW B 65 235310

im ¢

0 L)

FIG. 4. The contour of integration in the complex plane

-

ekd_ gad

AC)
TYL(—dI2) g kI gud’

Q (A6)
Substituting Eq(A6) into Eq. (A5) and making use of Egs.
(A2) and(A4), we obtain the final expressids).

In Sec. Il C the formula for interactiob,,,, of two elec-
trons residing at different layers=nd and z=md in an
infinite system is used. To obtain it one can wrltk,,
—47e’G(nd,md), which leads to the expressi¢h6).

APPENDIX B: PARTICLE-HOLE CONTRIBUTION
IN THE CLEAN LIMIT 1 /7—0

The particle-hole contribution to the spectral densy
in the clean limit has the forrfsee Eq.(13)]

[

")
0
1

>< 1
V(io+i n)z—qzvz—w—i 7

where the lower limit could be extended to zero. Making the

qdq
(@+in)?— g2’

2

Vo) = —
W)=
2 27y

(B1)

3). This charge has to be found from the condition that thegypstitutionz= /g% 2— (w+i 7)2 we write it in the form

total potential of the electronic chargee and the fictitious
chargeQ,

$(2)=4m[eG(z,00—QG(z,— d/2)], (A5)

Volw)=— — ’ (B2)
T Vo

oo

wZ(izZ—w)’

contain only the exponem®®” for the negative values of the The integrand in this expression does not have singularities

coordinate,— d/2<z<0.

in the upper half plane. We can, therefore, deform the inte-

This condition ensures that the electric field in the outsidegration contour as shown in Fig. 4. The integral along the

region <0) decays exponentially with the distance from

imaginary axis is real and does not contributeWtp The

the outermost plane, with the fictitious charge, therefore, takintegral aroundz=0 point and the integral along the real

ing care of the absentz& —dn, n=1,2,...) planes. We
obtain the following value of the fictitious charge:

axis give 1/4; each. We, therefore, establish the first term in

the expressiortl4).
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