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Coherent control of photon-assisted tunneling between quantum dots: A theoretical approach
using genetic algorithms
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We analyze theoretically the electron tunneling induced by an ultrashort pulse of electric field between two
metallic reservoirs coupled through a double quantum dot. We solve the equations of motion for the reduced
density matrix to determine the transferred charge, which is a functional of the external field. Then, we use
genetic algorithms to determine the optimal shape of the electric field that maximizes the transferred charge.
Results show that, due to the presence of Rabi oscillations, a sequence of pulses of different shapes is needed.
Such pulse sequence leads to a remarkable enhancement of the current with respect to(@asiisgian or
square pulse. We analyze the cases of interdot Coulomb repulsier® andU —co.
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[. INTRODUCTION tum dots via optimization of external control fields. We show
for a model system that measurable quantities, such as the

Coherent control of carrier dynamics in mesoscopic sysphoton-induced current, can be considerably enhanced if op-
tems using external ultrashort pulses of time-dependent fieldémized time-dependent electric fields are used.
has become a subject of active research in recent ye&hs. As model device we consider an electron pump based on
particular, the study of photon-induced and photon-resonant photon-assisted tunneling through a double quan-
suppressed quantum dynamical tunneling has attracted mué#m dot™™ A _perlOdIQ ext_ern_al field applied on t_h|s pump
attention due to the potential applications of these effects ifffduces spatial Rabi oscillations that make possible electron
quantum computing. Sequences of laser pulses of differerfi€localization and transport, otherwise inhibitédhis sys-

- it ondem shows interesting time-dependent tunneling dynafrics.
to perform some restricted manipulation of physical quanti- Tq achieve the pulse_ shapm.g or optimization of 'the exter-
ties. such as the photon-induced curreht nal fields we use genetic algorithms, as proposed in Ref. 10.

! P ) The genetic algorithniGA) belongs to a new generation of

On the other hand, in atomic and molecular physics, th i . . o : ;
advent of pulse-shaping and feed-back techniques for th?g:ie so-called intelligent global optimization techniques. First

) . oposed by Hollan@ in connection with his theory of adap-
modulation of amplitude and phase of ultrashort laser pulse e systems, it has been applied to numerous difficult opti-

has opened the possibility of going a step further and teach,i,ation problems, particularly in engineering and applied

the lasers to control occupations of electronic levels ingcienced” 8 This search method has been recently applied

atoms or to drive molecular reactions in real tifiel as o optimize the atomic structures of small clustéré and
proposed by Judson and RabitzThe idea consists in de- also to obtain ground-state functions of quantum

signing pulses or sequences of pulses having a given optimglstemg?22
shape(and phaseso that the desired nuclear wave-packet We show in this paper how the GA allows a fast and
dynamics is induced. For instance, in experiments using selkfficient search of the optimal time-dependent field. Our re-
learning algorithms on small clusters and molecules lasesults indicate that, due to the complex photon-assisted elec-
pulse profilegand phaseswere optimized in such a way that tron dynamics in the electron pump, involving Rabi oscilla-
certain fragmentation or ionization channels could be fations with frequencies changing in time, pulse sequences of
vored and others were suppres$etilt is still an open ques- complicated shape are needed to induce a maximal current.
tion whether such nice examples of laser manipulation of The paper is organized as follows. In Sec. Il we present
wave-packet dynamics can be also performed in mesoscoptbe theoretical model for both the description of the electron
systems. For such systems, not the nuclear but the electronpmimp and the pulse shaping. In Sec. 11l we show and discuss
degrees of freedom might offer the possibility of control by the results. Finally, in Sec. IV we present a summary and
pulse shaping. An important requirement for the control ofoutlook of further possible applications.
the wave-packet dynamics is the existence of phase coher-
ence over a time range comparable to the duration of the
pulse sequence. This condition is certainly fulfilled by meso- Il. THEORY
scopic systems such as quantum dots QD’s, which are char-
acterized by the spatial and temporal coherence of their elec-
tronic states! For this reason quantum dots are often We consider a device consisting in a double quantum dot
referred as “artificial atoms and double guantum dots as coupled to two metallic leadgeservoirs and configured as
“artificial molecules.”® an electron pump as described in Ref. 14. This device is
In this paper we provide a theoretical description of aillustrated in Fig. 1. The double quantum dot can be modeled
coherent manipulation of photon-assisted tunneling in quanby only two nondegenerated and weakly coupled electron

A. Model Hamiltonian and equations of motion
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— and the QD’s.U is the magnitude of the interdot electron-

€ 1o . gﬁ%{%%ltal electron repulsion, and the occupation operatorsand n,

= are given byn;=clc; andn,=clc,. For simplicity, spin is
KR neglected.
In the derivation of Eqs(3) we have performed the fol-

€1 T lowing approximation. We assume that the reservoir on the

Hr

right has a broadband of unoccupied states, so that once an
electron has jumped from the second quantum dot to the
reservoir it cannot jJump back any more. Thus, the time scale
for the tunneling process between the second dot and the
reservoir on the right is determined by a transfer rBte

=2mpgr(e)|Vkrl?, Wherepg is the density of states in the

FIG. 1. lllustration of the photon-assisted tunneling via optimi- right reservoir. Similarly, the transfer raté, is given by

_ 2
zation of the shape of the external electric pulse on an electroh 1= 27pL(&) Vi [*. _ _
pump. An external field of optimized shape excites a double QD [N order to describe the electron dynamics we use a

between two metallic contacts. The resulting charge-exchange prélensity-matrix approach similar to that derived in Ref. 24.
cess leads to a maximal current. Given the above Hamiltonians, the master equation for den-

sity matrix p, which describes the evolution of the system,

levels with energies; ande,. This simplification is allowed reads
in the resonant approximation. The quantum dot 1 is con- 9 )
nected to the reservoir on the left, and the second quantum i = p11=il1po+d(p12—p21),
dot is coupled to the right reservoir. The applied voltage is
biased in such a way that the chemical potential of the left . L
reservoiru, is lower than that on the right reservoir). I Grp2e= ~1Tap2t d(p2r=p1d), ©
Therefore, in absence of external perturbation the level 1 is J r
occupied whereas level 2 is empty. Since we also assume  jj —p = —j _2p12+ 2e1(t) p1ot+ d(poo—p1a),
that the coupling between the quantum dots is very weak, no ot 2
current flows in the absence of external fields. J r,

If the external resonant electric field is applied to the sys- ih i —i 5 part 2e5(1) partd(pao—p1)-
tem, it works as a pump: Rabi oscillations of the electron
occupations occur between the levels 1 and 2, and electroi&juations(3) allow one to investigate the case of zero and

can tunnel from the left to the right reservétr® infinite interdot Coulomb repulsiod by choosing the proper
The Hamiltonian of the double QD coupled to the exter-expression for the quantity,. For U=0 we write pg=1
nal field can be expressed as —p11, Whereas the casd—o requirespg=1—p11— poo,

which projects out double occupancféd.he initial situation

is p11=1, p»,=0, as can be inferred from Fig. 1. We con-
sider photon assisted tunneling when the resonance condition
hw=\(Ae)?+4d? is satisfied.

wherec! (c;) is the creation(annihilation operator for an From the integration of Eq$3) one can obtain the charge
electron on doti. &(t)=(—1)"/2 [Ae+A(t)coswt]. Ae  transferred from the left into the right reservoir due to the
=g,—e¢, is the energy difference between the on-site eneraction of the external field over the time intery&@,T]. For

gies of the quantum dots. The intradot interactions are aby,5¢ purpose we write the current operathtid/ﬁ(c{cz

sorbed in the on-site energies(t) cosat is the time-varying —clcy), which leads, in combination with Eq$3), to the
external field, which causes the on-site energies to OSC'"atﬁme-dependent average current

against each other. The amplitudét) is also time depen-

2
HDQD=§1 ei(t)clci+d(cle,+cley), (1)

dent and describes the pulse shape. The external field is ap- . dp(t) el,
plied only to the dotd# d is the coupling between the QD’s. (I (t)>=eTr{pJ}=eT + szz(t). (4)
The Hamiltonian for the metallic reservoirs and the tunnel
barriers is given by} wheree is the electron charge. The net transferred charged

Qq is obtained as

_ T T T
Her= > €kICkICr T > Vi (CC1HC1CL)
kel/l=L,R kel

T er T
Qr= fo dt(l(t))= Tfo dtpaa(t) +epaA(T). (5

+k§R Vir(CkrCa+ C3Ckr) +UnaN;. (2 Oobviously,Q; only represents the transferred charge to the
right reservoir wherl’,#0. In Eq. (5), the second term in-
Here,cf,, with | =L,R creates an electron of momentum  dicates that, after the field is switched off{T), the charge
in reservoirl. The quantitiesVy;; , with |=L,R, andi=1,2  remaining in the second quantum aob,,(T) is completely
represent the tunnel matrix elements between the reservoiteansferred to the right reservoir.
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(b) FIG. 3. Optimization of the external field for the isolated double
quantum dot using constraints for the minimum pulse width. Opti-

mal pulse shape for the maximization of the charge transferred from

the left to the right quantum dot. Pulse enefgy 0.57E, I'=0.

Inset: corresponding time dependence of the occupatigft) on

the second dot.

population

tations, crossovers, and reproductions or copies. The
mutation operator changes randomly the genetic information
3 4 5 of an individual, i.e., one or many components of the vector
time [h/d] representing its genetic code. The crossover or recombina-
tion operator interchanges the components of the genetic
FIG. 2. Optimization of the external field for the isolated double codes of two individuald® In a simple recombination, a ran-
quantum dot ['=0). (a) Solid line: reference pulse of duratian  dom position is chosen at which each partner in a particular
=mpa,. intensity A yielding the first maximum o8;(Ao/h®)  pair is divided into two pieces. Each vector then exchanges a
(see text, and energyE,. Dashed line: optimal pulse shape for the section of itself with its partner. The copy or reproduction

maximization of the charge transferred from the Igft tq the rightoperator merely transfers the information of the parent to an
quantum dot. The pulse energy . (b) Corresponding time de- 4ividual of the next generation without any changes.

Eﬁggvin;e(ac)’f the occupatign(t) on the second dot for the pulses |, o\ hresent approach the vector representing the ge-

netic code is just the pulse shapét). The fithess function,
o . _ i.e., the functional to be maximized by the successive gen-
It is important to point out thaQ7=Q+[A(t)] is a func-  erations is the transferred char@g[A(t)] [see Eq(5)]. The
tional of the field amplltudeA(t), and can exhibit different gene[ic a|gorithm app||ed to pu|Se Shaping consists in the
types of behavior depending on the form Aft). For in-  following steps.
stance, if the external field_ has a Gaussian shapg (i) We create a random initial populatioﬁAJ(O)(t)}, j
=Agexp(~t¥27%) of duration 7, then Qr shows —1 N, consisting of N different pulse amplitudes
Stickelberg-like oscillations as a function of'® However, ~ A()),
the Gaussian shape #f(t) does not necessarily maximize J(ii) The fitnessQT[A(O)(t)] of all individuals is deter-
the transferred charge. Our goal is to find the optimal DUIS‘?nined. J

Shn?aee:%lf’f(;)’ \(’\t';]]'Ch maximizesQr, i.e., which satisfies (iii) A new popul'ation{Ajfl)(t)} is created through appli-
T L cation of the genetic operators.
(iv) The fitness of the new generation is evaluated.
B. Determination of the optimal field (v) Steps(iii) and (iv) are repeated for the successive

enerationgd A(™ ()} until convergence is achieved and the
The problem of findingA,(t) is very complicated be- g SA (D) 9

o . 0 optimal pulse shape that maximiz€s is found.
cause of its high nonlinearity and the large number of de- It is important to indicate that the crossover and mutation

%r,ie'srr?f fée:dom. dTherIeforS, twe utse a glot.)allsearch .m.ethogberations usually used would produce discontinuous pulses,
A. The LA was developed to op |m|z(maX|m|zg oF MIN \which are, of course, not realistic. In order to avoid this
mize) a given property, depending on many variables of th%rn

. T oblem we use the so-called smooth or uncertain crossover
system. In GA language the quantity to optimize is referred, 4 1, \tation operatiorf€2*An example of a smooth cross-
as the fitness fu_nctlon. The GA basically maps _th(_a degrees Ver operation is performed in the following:
freedom or variables of the system to be optimized onto a
genetic codérepresented by a vecjoiThus, a random popu-
lation of individuals is created as a first generation. This A D =AM () Stt) + AP ([ 1-St(t)],
population “evolves” and subsequent generations are repro-
duced from previous generations through application of dif- (n+1) - -
ferent operators on the genetic codes, like, for instance, mu- Ay TP =AY(DSHY) AT (D[I-StY)],  (6)
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FIG. 4. Optimization for the electron pump ¢ 0). (a) Optimal FIG. 5. Optimization for the electron pump' ¢ 0). (a) Optimal
pulse shape that induces maximal currentffer0.01d. Pulse en-  PUISe shape fof' =0.05d. Pulse energf =121E, (b) Correspond-
ergy E=4.26E, (b) Corresponding behavior gfy(t). ing behavior ofp(t).

where St(x) is a smooth step function of the form ent values of the coupling constardts=0,0.0d,0.05. It is
St(t):[1+tanh([fto)/k§]/2. tg is chosen randomly|t, important to point out thal' must be smaller thad so that
€(0,T)] andk, is a parameter that controls the sharpness ofhe Rabi oscillations do not become overdamped Ifs
the crossover operation. large the system saturates very rapidlypte= p,»,=1/2 and
We assume that the control field is active within time no interesting transient dynamics can be observed. Finally,
interval t[0,T], with boundary conditionsA(0)=A(T)  we choose the control intervdl=1002/d, which is large
=0. As initial population of field amplitudes satisfying the enough to allow back and forth motion of the electrons be-
boundary conditions we choose Gaussian-like functions ofween the quantum dots and is of the order:éF .
the form We discuss first results fdd =0, i.e., neglecting the in-
A1) =1%x — (t—t) % 72]t(t—T) (7)  terdot Coulomb repulsion. . .
J J 177 The search for the optimal pulse in the system described

with random values fort;e[0,T] and the duration;

100 100
€[0,T]. The peak intensityjQ for each pulse is calculated = w0 st i ) |\ 10th
from the condition that all pulses must carry the same energ$ 60 st iteration || iteration
- =
— 2 g 40 40
Eo fo A?(t)coSwt dt. (8) S N
Equation(8) represents a constraint for our calculations. %00 w0 e w0 10 ‘o 20 4 e s 10
time [A/d] time [A/d]
Il. RESULTS = 150 150
= after 30 iterations after 50 iterations
In this section we present results of the optimization of2 e 100
the transferred charge in the system. The parameters used-=z,
our calculations are given in terms of the tunneling matrix§ so 50
elementd. The energy differencAe =¢,— &, must be much E
larger thand to ensure that the ground state of the double™ L T ey S T
guantum dot is localized on the left side and the excited stat . )
time [R/d) time [A/d]

is localized on the right side. This also leads to a sharper
resonance behavior. Therefore we aet=24d. In our cal- FIG. 6. lllustration of the optimization process using genetic

culations we use symmetric coupling of the QD to the reseralgorithms. Evolution of the “fittest” pulse shape for maximization
voirsI'y=T",=T" and compute optimal field shape for differ- of the current fol =0.05d.
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FIG. 7. Evolution of the transfered charge for increasing number

of iteration of the GA forl’=0.05d. FIG. 8. Dependence of the total transferred cha@je (dia-
monds induced by the optimal pulse as a function of the coupling

in Sec. Il constitutes a difficult task. From the elementaryl to the leads folu=0. The circles represent the values@ffor
analysis of Eqs(3) it is clear that the optimal pulse should U—ee,

first be able to transfer an electron from left to the right QD

(inversion of the occupatiorand then to keep this situation and infinite energy cannot describe a realistic situation.
as long as possible. However, there are many different pulsgloreover, for such pulses the whole model would break
shapes able to achieve this situation, and iaipriori not  down, since very energetic pulses would excite many levels
clear which one maximize®+ . on each quantum dot.

ForI'=0, for example, Eqg3) can be solved analytically  In the following calculations we set the time interval for
for some cases. If, for example, the external field is periodi¢harge transfel =1004/d. We also put a constraint on the
in time A(t)=Agcoswt, with a constant amplitudé,, an  minimal width of the pulse in order to describe pulses that
electron placed on one of the dots will oscillate back andcan be achieved experimentally. In our calculations this
forth between the dots with the Rabi frequendy  minimal width is naturally determined by the discretization
=2d/% 31 (Ag/fiw) >?° J; being the Bessel function of or- of the time interval and by the smoothness paramétgeasd
der 1, if the system absorbs one photon. In order for this t&_, of the crossover and mutation operatigase Eq.(6)].
happen, @ must fuffill the resonance conditionw In Fig. 3 we show the optimized pulse shape for the maxi-
=A%+ 4d? The description of the tunneling dynamics for mization of the charge transfer in the isolated double quan-
pulses of varying intensity is much more complicated, betum dot (' =0) under the constraint discussed above. The
cause the Rabi frequency changes in time. optimal pulse excites the system at the beginning of the con-

Thus, for pulses of constant amplitude there is an uppetrol time interval, inducing an inversion of the occupation.
limit Q. for the Rabi frequency, which is obtained when p,,(t) reaches the value 1 when the pulse goes to zero. Since
the ratiox=Aq/hw is such that the functiod;(x) has its T'=0 this occupation remains constant in time. As a conse-
first maximum. Using this property we construct a referencequenceQ+ is maximized. From the comparison between Fig.
pulse of square shagé\(t)=A, for O<t<r7 and A(t)=0 2(a) and Fig. 3 we see that a limitation of the minimal pulse
otherwisg with intensity A, as defined above and duration width leads to more symmetric pulses. The corresponding
T= wQ,;;X. In the following, we will use the energlf, of  evolution of the occupation of the second quantum dot is
such reference pulse as a unit of pulse energies. In principlshown in the inset of Fig. 3.
one would expect that the reference pulse defined above ex- In Fig. 4 we show the optimal field envelope and the
actly achieves an inversion of the occupation in the doublénduced occupatiom,,(t) in the case of the weak coupling
quantum dot within the shortest tim@ssuming only one- to reservoirs with coupling constaht=0.01d. Note that the
photon absorption However, as we show below, such a optimal field is structured as a sequence of two pulses. The
pulse shape is not the optimal one. first one acts at the beginning and has the proper shape to

In Fig. 2 we compare the effect induced on the isolatedoring the occupation of the second QD to a value close to 1.
double quantum dotl{=0) by the reference square pulse However, sincd”# 0 and according to Eq$3), p,,(t) starts
with that induced by the optimal one calculated using GAto decrease as soon as the first pulse goes to[gemFigs.
and having the same energy. As one can see in Fig.(), 4(a) and 4b)]. Shortly before the end of the control time
GA finds a pulse shape that induces a slightly faster transfanterval the second pulse brings the occupajgs(t) again
of the charge. to a high valug Fig. 4(b)]. The structure of the optimal pulse

Note that, if no constraints are imposed on the width ofcan be easily interpreted with the help of the expression of
the pulses, a pulse of infinitely small widtld pulse should  Qt as a functional op,,(t) [Eq. (5)]. The first pulse tends to
yield to the maximalQ;. Such pulse would produge(t) keep the termeTl,/%[jdtp,y(t) as large as possible,
=1 over the whole time control interval, leading to the whereas the second pulse acts to incregse(T). As a con-
maximum possible valu®QT#=eTl'/%+e. However, the sequenceQ; is maximized.
energy of such pulse would diverge. Pulses with zero width Figure 5 shows results for the same system, but with
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200 TABLE I. Total transferred charg®+[ A(t) ] for different pulses
having different shapes but the same endEgy4.26E, (see text
S 150 | The coupling to the leads is assumed tolbe0.01d and the inter-
§ dot repulsionU =0.
g 100 Pulse shape Qr
T 50 f Optimal pulse[see Fig. 42)] 1.29
Rectangular pulse 0.85
0 Gaussian pulse 0.74
Constant pulse 0.77

FIG. 9. Optimized pulse form foF =0.01d (solid line, pulse ~ System and was transferred to the right reservoir.

energy E=48.4£,) and I'=0.05d (dashed line, pulse enerdy For the sake of comparison we have also calculated the
=13E,) for the maximization of the average occupat®y, of the  optimal pulse shape, which maximizes the mean occupation
second quantum ddsee text of the second QD, using as fitness function the time integral

of the occupation on the second quantum dé&;,

larger coupling constant, namely=0.05d. As can be seen =fgdtp22(t) (for T'=0.01d,0.05). Interestingly, the opti-
in Fig. @), in this case t_he optimal solution exhibits not 1,4 pulse also has two peak structutEg. 9). Indeed, the
only pulses at the beginning and at the end of the controfiyst pylse pumps one electron from the left to the right QD.
interval, but also a complicated sequence of pulses betweefhe reason for the position of the second pulse is that its
them, which preven'ng(t) to go to zero and stabilize it efficiency in increasingp,,(t) is maximal when p,(t)
around the value 1/2, i.e., at the state where both dots argaches its minimum, i.e., at the end of the control interval.
equally occupiedFig. S(b)]. _ . Finally, and in order to show that pulse shaping can in-

If T" is increased further, the structure in the middle of thejeeq |lead to a remarkable enhancement of the photon-
time interval becomes more important. In the limit of laige  assisted current through double quantum dots, we indicate in
we expect a square pulse to maxime, since in this case Taple | the values of the transferred chargg for T
the pulse only needs to transfer charge at some constant ratg) 914 and pulses having different shap®&) but carrying
with a value of the order of. . _the same energ. As expected, the optimal pulse found by

In_order to_lllustrate the_pro_gress achieved by tht_a genetighe GA [already shown in Fig. @] induces clearly more
algorithm during the optimization process we show in Fig. 6iransferred charge than pulses having other shapes. It is im-
the shapegenvelopesof the fittest pulses at different stages portant to point out that the rectangular and Gaussian pulses
of the genetic evolution, for the case b=0.0%. In Fig.  mentioned in Table | are the fittest ones among rectangular
6(a) one of the pulses of the initial populatidparent$ is  and Gaussian pulses, respectively. Thus, the optimal pulse
plotted. As all other parents, this pulse is Gaussian-like anghqyces 1.74 times more charge than the best Gaussian pulse,
induces a net charge transfer of less than 1 electron. Thgnd 1.5 times more charge than the best rectangular pulse.
successive application of the genetic operations improves thenis shows that GA is a powerful method for solving the

pulse sequences. As a result, the envelope of the fittest pulg§gerval of time.

of the tenth generatioffFig. 6(b)], for instance, exhibits sev-

eral peaks. After 30 iteration$ig. 6(c)] the pulse form al-

ready exhibits most of the features of the optimal pulse, and IV. SUMMARY

after 50 iteration it converges to the optimal dfég. 6(d)].

To illustrate this convergence, we show in Fig. 7 the evolu- We have presented a theoretical study of the optimal con-

tion of the transfered charg®@{[A(t)] as a function of the trol of photon-assisted tunneling. We have shown that, as is

number of iterations of the GA. It is clear that after about 50the case for real molecules, pulse-shaping techniques could

iterations the pulse induces a transferred charge very close tead to an efficient control of wave-packet dynamics also in

the optimal one. artificial molecules, such as double quantum dots. Of course,
In order to investigate the influence of the interdot Cou-in the latter case ultrashort pulses of external fields must be

lomb repulsionU we perform calculations similar to those created to manipulate the electron dynamics, unlike the case

described above, but for the calde~ using the same set Of real molecules, for which femtosecond laser pulses are

of coupling parameter§. We found that the repulsion be- used to control the nuclear wave-packet dynamics.

tween QD’s leads to a relatively smaller net transfered

charge[see(Fig. 9)]. Th|§ is _due to the fact that — o pre- ACKNOWLEDGMENTS
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