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Coherent control of photon-assisted tunneling between quantum dots: A theoretical approach
using genetic algorithms

Ilia Grigorenko, Oliver Speer, and Martin E. Garcia*
Institut für Theoretische Physik der Freien Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany

~Received 14 January 2002; published 28 May 2002!

We analyze theoretically the electron tunneling induced by an ultrashort pulse of electric field between two
metallic reservoirs coupled through a double quantum dot. We solve the equations of motion for the reduced
density matrix to determine the transferred charge, which is a functional of the external field. Then, we use
genetic algorithms to determine the optimal shape of the electric field that maximizes the transferred charge.
Results show that, due to the presence of Rabi oscillations, a sequence of pulses of different shapes is needed.
Such pulse sequence leads to a remarkable enhancement of the current with respect to a single~Gaussian or
square! pulse. We analyze the cases of interdot Coulomb repulsionU50 andU→`.
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I. INTRODUCTION

Coherent control of carrier dynamics in mesoscopic s
tems using external ultrashort pulses of time-dependent fi
has become a subject of active research in recent years.1–4 In
particular, the study of photon-induced and photo
suppressed quantum dynamical tunneling has attracted m
attention due to the potential applications of these effect
quantum computing. Sequences of laser pulses of diffe
durations affect the systems in different ways and permit
to perform some restricted manipulation of physical qua
ties, such as the photon-induced current.2,3

On the other hand, in atomic and molecular physics,
advent of pulse-shaping and feed-back techniques for
modulation of amplitude and phase of ultrashort laser pu
has opened the possibility of going a step further and te
the lasers to control occupations of electronic levels
atoms5 or to drive molecular reactions in real time,6–9 as
proposed by Judson and Rabitz.10 The idea consists in de
signing pulses or sequences of pulses having a given opt
shape~and phase! so that the desired nuclear wave-pack
dynamics is induced. For instance, in experiments using s
learning algorithms on small clusters and molecules la
pulse profiles~and phases! were optimized in such a way tha
certain fragmentation or ionization channels could be
vored and others were suppressed.7–9 It is still an open ques-
tion whether such nice examples of laser manipulation
wave-packet dynamics can be also performed in mesosc
systems. For such systems, not the nuclear but the elect
degrees of freedom might offer the possibility of control
pulse shaping. An important requirement for the control
the wave-packet dynamics is the existence of phase co
ence over a time range comparable to the duration of
pulse sequence. This condition is certainly fulfilled by me
scopic systems such as quantum dots QD’s, which are c
acterized by the spatial and temporal coherence of their e
tronic states.11 For this reason quantum dots are oft
referred as ‘‘artificial atoms,’’12 and double quantum dots a
‘‘artificial molecules.’’13

In this paper we provide a theoretical description of
coherent manipulation of photon-assisted tunneling in qu
0163-1829/2002/65~23!/235309~7!/$20.00 65 2353
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tum dots via optimization of external control fields. We sho
for a model system that measurable quantities, such as
photon-induced current, can be considerably enhanced if
timized time-dependent electric fields are used.

As model device we consider an electron pump based
resonant photon-assisted tunneling through a double q
tum dot.14 A periodic external field applied on this pum
induces spatial Rabi oscillations that make possible elec
delocalization and transport, otherwise inhibited.14 This sys-
tem shows interesting time-dependent tunneling dynamic15

To achieve the pulse shaping or optimization of the ext
nal fields we use genetic algorithms, as proposed in Ref.
The genetic algorithm~GA! belongs to a new generation o
the so-called intelligent global optimization techniques. Fi
proposed by Holland16 in connection with his theory of adap
tive systems, it has been applied to numerous difficult o
mization problems, particularly in engineering and appli
sciences.17,18 This search method has been recently appl
to optimize the atomic structures of small clusters19–21 and
also to obtain ground-state functions of quantu
systems.22,23

We show in this paper how the GA allows a fast a
efficient search of the optimal time-dependent field. Our
sults indicate that, due to the complex photon-assisted e
tron dynamics in the electron pump, involving Rabi oscill
tions with frequencies changing in time, pulse sequence
complicated shape are needed to induce a maximal curr

The paper is organized as follows. In Sec. II we pres
the theoretical model for both the description of the elect
pump and the pulse shaping. In Sec. III we show and disc
the results. Finally, in Sec. IV we present a summary a
outlook of further possible applications.

II. THEORY

A. Model Hamiltonian and equations of motion

We consider a device consisting in a double quantum
coupled to two metallic leads~reservoirs! and configured as
an electron pump as described in Ref. 14. This device
illustrated in Fig. 1. The double quantum dot can be mode
by only two nondegenerated and weakly coupled elect
©2002 The American Physical Society09-1
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levels with energies«1 and«2. This simplification is allowed
in the resonant approximation. The quantum dot 1 is c
nected to the reservoir on the left, and the second quan
dot is coupled to the right reservoir. The applied voltage
biased in such a way that the chemical potential of the
reservoirmL is lower than that on the right reservoir (mR).
Therefore, in absence of external perturbation the level
occupied whereas level 2 is empty. Since we also ass
that the coupling between the quantum dots is very weak
current flows in the absence of external fields.

If the external resonant electric field is applied to the s
tem, it works as a pump: Rabi oscillations of the electr
occupations occur between the levels 1 and 2, and elect
can tunnel from the left to the right reservoir.14,15

The Hamiltonian of the double QD coupled to the ext
nal field can be expressed as

HDQD5(
i 51

2

« i~ t !ci
†ci1d~c1

†c21c2
†c1!, ~1!

whereci
† (ci) is the creation~annihilation! operator for an

electron on doti. « i(t)5(21)i /2 @D«1A(t)cosvt#. D«
5«22«1 is the energy difference between the on-site en
gies of the quantum dots. The intradot interactions are
sorbed in the on-site energies.A(t)cosvt is the time-varying
external field, which causes the on-site energies to osci
against each other. The amplitudeA(t) is also time depen-
dent and describes the pulse shape. The external field is
plied only to the dots.14 d is the coupling between the QD’s

The Hamiltonian for the metallic reservoirs and the tun
barriers is given by14

HRT5 (
kP l / l 5L,R

«klckl
† ckl1 (

kPL
VkL~ckL

† c11c1
†ckL!

1 (
kPR

VkR~ckR
† c21c2

†ckR!1Un1n2 . ~2!

Here,ckl
† , with l 5L,R creates an electron of momentumk

in reservoirl. The quantitiesVkl i , with l 5L,R, and i 51,2
represent the tunnel matrix elements between the reser

FIG. 1. Illustration of the photon-assisted tunneling via optim
zation of the shape of the external electric pulse on an elec
pump. An external field of optimized shape excites a double
between two metallic contacts. The resulting charge-exchange
cess leads to a maximal current.
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and the QD’s.U is the magnitude of the interdot electron
electron repulsion, and the occupation operatorsn1 and n2

are given byn15c1
†c1 andn25c2

†c2. For simplicity, spin is
neglected.

In the derivation of Eqs.~3! we have performed the fol
lowing approximation. We assume that the reservoir on
right has a broadband of unoccupied states, so that onc
electron has jumped from the second quantum dot to
reservoir it cannot jump back any more. Thus, the time sc
for the tunneling process between the second dot and
reservoir on the right is determined by a transfer rateG2
52prR(«)uVkRu2, whererR is the density of states in th
right reservoir. Similarly, the transfer rateG1 is given by
G152prL(«)uVkLu2.

In order to describe the electron dynamics we use
density-matrix approach similar to that derived in Ref. 2
Given the above Hamiltonians, the master equation for d
sity matrix r, which describes the evolution of the syste
reads

i\
]

]t
r115 iG1r01d~r122r21!,

i\
]

]t
r2252 iG2r221d~r212r12!, ~3!

i\
]

]t
r1252 i

G2

2
r1212«1~ t !r121d~r222r11!,

i\
]

]t
r2152 i

G2

2
r2112«2~ t !r211d~r222r11!.

Equations~3! allow one to investigate the case of zero a
infinite interdot Coulomb repulsionU by choosing the prope
expression for the quantityr0. For U50 we write r051
2r11, whereas the caseU→` requiresr0512r112r22,
which projects out double occupancies.24 The initial situation
is r1151, r2250, as can be inferred from Fig. 1. We con
sider photon assisted tunneling when the resonance cond
\v5A(D«)214d2 is satisfied.

From the integration of Eqs.~3! one can obtain the charg
transferred from the left into the right reservoir due to t
action of the external field over the time interval@0,T#. For
that purpose we write the current operatorĴ5 id/\(c1

†c2

2c2
†c1), which leads, in combination with Eqs.~3!, to the

time-dependent average current

^I ~ t !&5e Tr$r̂ Ĵ%5e
]r22~ t !

]t
1

e G2

\
r22~ t !, ~4!

wheree is the electron charge. The net transferred char
QT is obtained as

QT5E
o

T

dt^I ~ t !&5
e G2

\ E
0

T

dt r22~ t !1e r22~T!. ~5!

Obviously,QT only represents the transferred charge to
right reservoir whenG2Þ0. In Eq. ~5!, the second term in-
dicates that, after the field is switched off (t.T), the charge
remaining in the second quantum dote r22(T) is completely
transferred to the right reservoir.

n

ro-
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COHERENT CONTROL OF PHOTON-ASSISTED . . . PHYSICAL REVIEW B65 235309
It is important to point out thatQT5QT@A(t)# is a func-
tional of the field amplitudeA(t), and can exhibit different
types of behavior depending on the form ofA(t). For in-
stance, if the external field has a Gaussian shapeA(t)
5A0exp(2t2/2t2) of duration t, then QT shows
Stückelberg-like oscillations as a function oft.15 However,
the Gaussian shape ofA(t) does not necessarily maximiz
the transferred charge. Our goal is to find the optimal pu
shapeAopt(t), which maximizesQT , i.e., which satisfies
QT

max5QT@Aopt(t)#.

B. Determination of the optimal field

The problem of findingAopt(t) is very complicated be-
cause of its high nonlinearity and the large number of
grees of freedom. Therefore, we use a global search met
GA. The GA was developed to optimize~maximize or mini-
mize! a given property, depending on many variables of
system. In GA language the quantity to optimize is refer
as the fitness function. The GA basically maps the degree
freedom or variables of the system to be optimized ont
genetic code~represented by a vector!. Thus, a random popu
lation of individuals is created as a first generation. T
population ‘‘evolves’’ and subsequent generations are rep
duced from previous generations through application of
ferent operators on the genetic codes, like, for instance,

FIG. 2. Optimization of the external field for the isolated doub
quantum dot (G50). ~a! Solid line: reference pulse of durationt
5pVmax

21 , intensityA0 yielding the first maximum ofJ1(A0 /\v)
~see text!, and energyE0. Dashed line: optimal pulse shape for th
maximization of the charge transferred from the left to the rig
quantum dot. The pulse energy isE0. ~b! Corresponding time de
pendence of the occupationr22(t) on the second dot for the pulse
shown in~a!.
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tations, crossovers, and reproductions or copies.
mutation operator changes randomly the genetic informa
of an individual, i.e., one or many components of the vec
representing its genetic code. The crossover or recomb
tion operator interchanges the components of the gen
codes of two individuals.18 In a simple recombination, a ran
dom position is chosen at which each partner in a particu
pair is divided into two pieces. Each vector then exchange
section of itself with its partner. The copy or reproductio
operator merely transfers the information of the parent to
individual of the next generation without any changes.

In our present approach the vector representing the
netic code is just the pulse shapeA(t). The fitness function,
i.e., the functional to be maximized by the successive g
erations is the transferred chargeQT@A(t)# @see Eq.~5!#. The
genetic algorithm applied to pulse shaping consists in
following steps.

~i! We create a random initial population$Aj
(0)(t)%, j

51, . . . ,N, consisting of N different pulse amplitudes
Aj

(0)(t).
~ii ! The fitnessQT@Aj

(0)(t)# of all individuals is deter-
mined.

~iii ! A new population$Aj
(1)(t)% is created through appli

cation of the genetic operators.
~iv! The fitness of the new generation is evaluated.
~v! Steps ~iii ! and ~iv! are repeated for the successi

generations$Aj
(n)(t)% until convergence is achieved and th

optimal pulse shape that maximizesQT is found.
It is important to indicate that the crossover and mutat

operations usually used would produce discontinuous pul
which are, of course, not realistic. In order to avoid th
problem we use the so-called smooth or uncertain cross
and mutation operations.22,23An example of a smooth cross
over operation is performed in the following:

A1
(n11)~ t !5A1

(n)~ t !St~ t !1A2
(n)~ t !@12St~ t !#,

A2
(n11)~ t !5A2

(n)~ t !St~ t !1A1
(n)~ t !@12St~ t !#, ~6!

t

FIG. 3. Optimization of the external field for the isolated doub
quantum dot using constraints for the minimum pulse width. Op
mal pulse shape for the maximization of the charge transferred f
the left to the right quantum dot. Pulse energyE50.57E0 G50.
Inset: corresponding time dependence of the occupationr22(t) on
the second dot.
9-3
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ILIA GRIGORENKO, OLIVER SPEER, AND MARTIN E. GARCIA PHYSICAL REVIEW B65 235309
where St(x) is a smooth step function of the form
St(t)5@11tanh(t2t0)/kc

2#/2. t0 is chosen randomly@ t0

P(0,T)# andkc is a parameter that controls the sharpness
the crossover operation.

We assume that the control field is active within tim
interval tP@0,T#, with boundary conditionsA(0)5A(T)
50. As initial population of field amplitudes satisfying th
boundary conditions we choose Gaussian-like functions
the form

Aj
(0)~ t !5I j

0exp@2~ t2t j !
2/t j

2#t~ t2T! ~7!

with random values fort jP@0,T# and the durationt j

P@0,T#. The peak intensityI j
0 for each pulse is calculate

from the condition that all pulses must carry the same ene

E05E
0

T

A2~ t !cos2vt dt. ~8!

Equation~8! represents a constraint for our calculations.

III. RESULTS

In this section we present results of the optimization
the transferred charge in the system. The parameters us
our calculations are given in terms of the tunneling mat
elementd. The energy differenceD«5«22«1 must be much
larger thand to ensure that the ground state of the dou
quantum dot is localized on the left side and the excited s
is localized on the right side. This also leads to a shar
resonance behavior. Therefore we setD«524d. In our cal-
culations we use symmetric coupling of the QD to the res
voirs G15G2[G and compute optimal field shape for diffe

FIG. 4. Optimization for the electron pump (GÞ0). ~a! Optimal
pulse shape that induces maximal current forG50.01d. Pulse en-
ergy E54.26E0 ~b! Corresponding behavior ofr22(t).
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ent values of the coupling constantsG50,0.01d,0.05d. It is
important to point out thatG must be smaller thand so that
the Rabi oscillations do not become overdamped. IfG is
large the system saturates very rapidly tor115r2251/2 and
no interesting transient dynamics can be observed. Fina
we choose the control intervalT5100\/d, which is large
enough to allow back and forth motion of the electrons b
tween the quantum dots and is of the order of\/G.

We discuss first results forU50, i.e., neglecting the in-
terdot Coulomb repulsion.

The search for the optimal pulse in the system describ

FIG. 5. Optimization for the electron pump (GÞ0). ~a! Optimal
pulse shape forG50.05d. Pulse energyE5121E0 ~b! Correspond-
ing behavior ofr22(t).

FIG. 6. Illustration of the optimization process using gene
algorithms. Evolution of the ‘‘fittest’’ pulse shape for maximizatio
of the current forG50.05d.
9-4
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COHERENT CONTROL OF PHOTON-ASSISTED . . . PHYSICAL REVIEW B65 235309
in Sec. II constitutes a difficult task. From the elementa
analysis of Eqs.~3! it is clear that the optimal pulse shou
first be able to transfer an electron from left to the right Q
~inversion of the occupation! and then to keep this situatio
as long as possible. However, there are many different p
shapes able to achieve this situation, and it isa priori not
clear which one maximizesQT .

ForG50, for example, Eqs.~3! can be solved analytically
for some cases. If, for example, the external field is perio
in time A(t)5A0cosvt, with a constant amplitudeA0, an
electron placed on one of the dots will oscillate back a
forth between the dots with the Rabi frequencyV
52d/\ J1(A0 /\v),25,26 J1 being the Bessel function of or
der 1, if the system absorbs one photon. In order for this
happen, v must fulfill the resonance condition\v
5AD«214d2. The description of the tunneling dynamics f
pulses of varying intensity is much more complicated, b
cause the Rabi frequency changes in time.

Thus, for pulses of constant amplitude there is an up
limit Vmax for the Rabi frequency, which is obtained whe
the ratiox5A0 /\v is such that the functionJ1(x) has its
first maximum. Using this property we construct a referen
pulse of square shape@A(t)5A0 for 0<t<t and A(t)50
otherwise# with intensity A0 as defined above and duratio
t5pVmax

21 . In the following, we will use the energyE0 of
such reference pulse as a unit of pulse energies. In princ
one would expect that the reference pulse defined above
actly achieves an inversion of the occupation in the dou
quantum dot within the shortest time~assuming only one-
photon absorption!. However, as we show below, such
pulse shape is not the optimal one.

In Fig. 2 we compare the effect induced on the isola
double quantum dot (G50) by the reference square puls
with that induced by the optimal one calculated using G
and having the same energyE0. As one can see in Fig. 2~b!,
GA finds a pulse shape that induces a slightly faster tran
of the charge.

Note that, if no constraints are imposed on the width
the pulses, a pulse of infinitely small width (d pulse! should
yield to the maximalQT . Such pulse would producer22(t)
51 over the whole time control interval, leading to th
maximum possible valueQT

max5eTG/\1e. However, the
energy of such pulse would diverge. Pulses with zero wi

FIG. 7. Evolution of the transfered charge for increasing num
of iteration of the GA forG50.05d.
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and infinite energy cannot describe a realistic situati
Moreover, for such pulses the whole model would bre
down, since very energetic pulses would excite many lev
on each quantum dot.

In the following calculations we set the time interval fo
charge transferT5100\/d. We also put a constraint on th
minimal width of the pulse in order to describe pulses th
can be achieved experimentally. In our calculations t
minimal width is naturally determined by the discretizatio
of the time interval and by the smoothness parameterskc and
km of the crossover and mutation operations@see Eq.~6!#.

In Fig. 3 we show the optimized pulse shape for the ma
mization of the charge transfer in the isolated double qu
tum dot (G50) under the constraint discussed above. T
optimal pulse excites the system at the beginning of the c
trol time interval, inducing an inversion of the occupatio
r22(t) reaches the value 1 when the pulse goes to zero. S
G50 this occupation remains constant in time. As a con
quenceQT is maximized. From the comparison between F
2~a! and Fig. 3 we see that a limitation of the minimal pul
width leads to more symmetric pulses. The correspond
evolution of the occupation of the second quantum do
shown in the inset of Fig. 3.

In Fig. 4 we show the optimal field envelope and t
induced occupationr22(t) in the case of the weak couplin
to reservoirs with coupling constantG50.01d. Note that the
optimal field is structured as a sequence of two pulses.
first one acts at the beginning and has the proper shap
bring the occupation of the second QD to a value close to
However, sinceGÞ0 and according to Eqs.~3!, r22(t) starts
to decrease as soon as the first pulse goes to zero@see Figs.
4~a! and 4~b!#. Shortly before the end of the control tim
interval the second pulse brings the occupationr22(t) again
to a high value@Fig. 4~b!#. The structure of the optimal puls
can be easily interpreted with the help of the expression
QT as a functional ofr22(t) @Eq. ~5!#. The first pulse tends to
keep the terme G2 /\*0

Tdt r22(t) as large as possible
whereas the second pulse acts to increaseer22(T). As a con-
sequence,QT is maximized.

Figure 5 shows results for the same system, but w

r

FIG. 8. Dependence of the total transferred chargeQT ~dia-
monds! induced by the optimal pulse as a function of the coupli
G to the leads forU50. The circles represent the values ofQ for
U→`.
9-5
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larger coupling constant, namely,G50.05d. As can be seen
in Fig. 5~a!, in this case the optimal solution exhibits n
only pulses at the beginning and at the end of the con
interval, but also a complicated sequence of pulses betw
them, which preventr22(t) to go to zero and stabilize i
around the value 1/2, i.e., at the state where both dots
equally occupied@Fig. 5~b!#.

If G is increased further, the structure in the middle of t
time interval becomes more important. In the limit of largeG
we expect a square pulse to maximizeQT , since in this case
the pulse only needs to transfer charge at some constan
with a value of the order ofG.

In order to illustrate the progress achieved by the gen
algorithm during the optimization process we show in Fig
the shapes~envelopes! of the fittest pulses at different stage
of the genetic evolution, for the case ofG50.05d. In Fig.
6~a! one of the pulses of the initial population~parents! is
plotted. As all other parents, this pulse is Gaussian-like
induces a net charge transfer of less than 1 electron.
successive application of the genetic operations improves
pulse shape and transforms the initial Gaussians in diffe
pulse sequences. As a result, the envelope of the fittest p
of the tenth generation@Fig. 6~b!#, for instance, exhibits sev
eral peaks. After 30 iterations@Fig. 6~c!# the pulse form al-
ready exhibits most of the features of the optimal pulse,
after 50 iteration it converges to the optimal one@Fig. 6~d!#.
To illustrate this convergence, we show in Fig. 7 the evo
tion of the transfered chargeQT@A(t)# as a function of the
number of iterations of the GA. It is clear that after about
iterations the pulse induces a transferred charge very clos
the optimal one.

In order to investigate the influence of the interdot Co
lomb repulsionU we perform calculations similar to thos
described above, but for the caseU→` using the same se
of coupling parametersG. We found that the repulsion be
tween QD’s leads to a relatively smaller net transfe
charge@see~Fig. 8!#. This is due to the fact thatU→` pre-
vents double occupancies in the system. Therefore, an e
tron from the left reservoir can jump into the double qua
tum dot only when the previous electron has already left

FIG. 9. Optimized pulse form forG50.01d ~solid line, pulse
energy E548.4E0) and G50.05d ~dashed line, pulse energyE
513E0) for the maximization of the average occupationP22 of the
second quantum dot~see text!.
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system and was transferred to the right reservoir.
For the sake of comparison we have also calculated

optimal pulse shape, which maximizes the mean occupa
of the second QD, using as fitness function the time integ
of the occupation on the second quantum dot,P22

5*0
Tdt r22(t) ~for G50.01d,0.05d). Interestingly, the opti-

mal pulse also has two peak structures~Fig. 9!. Indeed, the
first pulse pumps one electron from the left to the right Q
The reason for the position of the second pulse is that
efficiency in increasingr22(t) is maximal when r22(t)
reaches its minimum, i.e., at the end of the control interv

Finally, and in order to show that pulse shaping can
deed lead to a remarkable enhancement of the pho
assisted current through double quantum dots, we indicat
Table I the values of the transferred chargeQT for G
50.01d and pulses having different shapesA(t) but carrying
the same energyE. As expected, the optimal pulse found b
the GA @already shown in Fig. 4~a!# induces clearly more
transferred charge than pulses having other shapes. It is
portant to point out that the rectangular and Gaussian pu
mentioned in Table I are the fittest ones among rectang
and Gaussian pulses, respectively. Thus, the optimal p
induces 1.74 times more charge than the best Gaussian p
and 1.5 times more charge than the best rectangular p
This shows that GA is a powerful method for solving th
optimal control problem for the quantum systems on a fin
interval of time.

IV. SUMMARY

We have presented a theoretical study of the optimal c
trol of photon-assisted tunneling. We have shown that, a
the case for real molecules, pulse-shaping techniques c
lead to an efficient control of wave-packet dynamics also
artificial molecules, such as double quantum dots. Of cou
in the latter case ultrashort pulses of external fields mus
created to manipulate the electron dynamics, unlike the c
of real molecules, for which femtosecond laser pulses
used to control the nuclear wave-packet dynamics.
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TABLE I. Total transferred chargeQT@A(t)# for different pulses
having different shapes but the same energyE54.26E0 ~see text!.
The coupling to the leads is assumed to beG50.01d and the inter-
dot repulsionU50.

Pulse shape QT

Optimal pulse@see Fig. 4~a!# 1.29
Rectangular pulse 0.85
Gaussian pulse 0.74
Constant pulse 0.77
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