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Photons in a semibounded dielectric and the surface effect
on spontaneous emission in nanostructures
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Quantization of electromagnetic field in isotropic dielectric medium occupying a half space is carried out.
For a dielectric having a plane boundary with vacuum, we have constructed a complete orthonormal set of light
waves propagating in a whole space. Using this set we calculated the rate of spontaneous emission of photons
by electrons in quantum dots and quantum wells. We predict oscillations of photon emission rate as a function
of the distance between a quantum nanostructure and the surface.
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I. INTRODUCTION

It is known1 that the spontaneous emission rate of an at
in a cavity is enhanced compared to that for the atom pla
in a free space. For a cavity formed by two mirrors, th
effect was measured in Ref. 2. During the past decades m
effort had been devoted to the understanding of the influe
of confinement of electromagnetic field on emission and
sorption of light in semiconductor nanostructure. In semic
ductor quantum structures of small lateral dimensions,
hancement of the spontaneous emission was rece
observed in Ref. 3. While the role of resonatorlike phot
modes that exist in cavities has been analyzed in detail~see,
e.g., Refs. 4–6, and references therein!, less attention has
been focused on important geometrical restrictions, suc
the surface of a structure. Spontaneous magnetic dipole
sitions in the vicinity of a perfectly reflecting mirror has be
studied using the classical electromagnetic Green’s func
in Ref. 7. Recent experiments8 revealed strong influence o
sample-air interface on radiative dephasing time of excit
in quantum wells. The purpose of the present paper is
study a role of modification of photons, which stems fro
the presence of a surface, in radiative transitions in semic
ductor quantum nanostructures. In order to solve this pr
lem, we first carry out the quantization of electromagne
field using the standard procedure.9,10 We construct photon
modes in homogeneous isotropic dielectric medium filling
the half space and contacting with a vacuum. The obtai
quanta should replace the conventional bulk photons tha
found by the help of the periodic boundary conditions. Th
we calculate the rate of photon emission under electron t
sitions in a quantum well, where quantum dots are place
a finite distance from the surface.

II. PHOTONS IN A HALF SPACE

We assume that the boundary between the mediumz
.0) and vacuum (z,0) is an infinite plane surface (z50).
The medium and the bounding surface have no free ele
charges and external currents. In such a source-free sy
one can set the scalar potential equal to zero. The ele
0163-1829/2002/65~23!/235308~5!/$20.00 65 2353
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field E and magnetic fieldH are found completely from a
vector potentialA,

E52
1

c

]A

]t
, H5curl A. ~1!

Herein, we use the Coulomb gauge—divA50—the poten-
tial A is found from the wave equation

¹2A2
«

c2

]2A

]t2
50, ~2!

where« is the dielectric permittivity of the medium, mag
netic permeability is assumed to be equal to unity. Elect
magnetic field fills all the space, at the interfacez50 the
tangential components ofE andH are continuous.

We seek for the solution in the complex-valued form

A~r ,t !5
A~z!

AS
ei (ktr2vt), ~3!

wherev is the frequency, andkt5(kx ,ky) is the propagation
vector. We imply periodic boundary conditions in thex-y
plane over the area of normalizationS. The continuous ei-
genvaluev and quasidiscrete vectorskt are the same for al
modes, the different modes are specified in the terms of t
z dependence. The electromagnetic field is represented
linear superposition of the traveling monochromatic wav
We choose two types of superpositions~see Fig. 1!. The first
one corresponds to the field created by a wave incident a
surfacez50 from the half spacez,0 ~from the medium 1!.
We will denote the corresponding vector potential asA(2).
The second type of mode, (A(1)), corresponds to the field
created by a wave incident at the interface from half sp
z.0 ~from the medium 2!. An arbitrary vectorA can be
written as the sumA5As1Ap , whereAs(p) is the compo-
nent perpendicular~parallel! to the plane of incidence, i.e., t
the plane defined by a normal to the boundary and w
vectork5(kt ,kz). So, the modes are specified by the co
plex quantum numberl5$v,kt , j ,n% wherej 56 stands for
above described choice of an incident wave, andn5s,p la-
bels polarization of the incident wave.
©2002 The American Physical Society08-1
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Using the boundary conditions, the amplitudes of
flected and transmitted waves are expressed through the
plitude A i of an incident wave. In the case where the wa
incident from vacuum is as-polarized wave, one gets

As
(2)~z!5A is

(2)~eik1zz1r se
2 ik1zz!, z<0

5A is
(2)~11r s!e

ik2zz, z>0, ~4!

where

k1z5Av2

c2
2kt

2, k2z5Av2

c2
n22kt

2, r s5
k1z2k2z

k1z1k2z
,

~5!

n5A« is the index of refraction, andr s is the amplitude of
reflection.

For an incident wave parallel to the plane of inciden
Ap

(2) mode, we get

Apt
(2)~z!5A ipt

(2)~eik1zz2r pe2 ik1zz!, z<0

5A ipt
(2) k2z

n2k1z

~11r p!eik2zz, z>0, ~6!

Apz
(2)~z!5Aipz

(2)~eik1zz1r pe2 ik1zz!, z<0

5Aipz
(2) 1

n2
~11r p!eik2zz, z>0, ~7!

where

r p5
n2k1z2k2z

n2k1z1k2z

. ~8!

The modes (2) exist in the rangev>ckt .
Consider now a wave incident at the boundaryz50 from

inside of the medium 2, that is,A(1) modes. These mode
exist in the rangev>ckt /n. The solutions are given by

FIG. 1. Schematic diagram of photon modes. The inset show
quantum dot placed near the boundary with a vacuum.
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As
(1)~z!5A is

(1)~e2 ik2zz2r se
ik2zz!, z>0

5A is
(1)~12r s!e

2 ik1zz, z<0, ~9!

Apt
(1)~z!5A ipt

(1)~e2 ik2zz1r peik2zz!, z>0

5A ipt
(1)n

2k1z

k2z
~12r p!e2 ik1zz, z<0. ~10!

Apz
(1)~z!5Aipz

(1)~e2 ik2zz2r peik2zz!, z>0

5Aipz
(1)n2~12r p!e2 ik1zz, z<0. ~11!

The case of total reflection takes place for1 mode when
kt.v/c, implying that the normal componentk1z is imagi-
nary and so the waves transmitted in vacuum decay ex
nentially as a distance from the boundaryz50 increases. In
this case,r s and r p are complex valued,ur su25ur pu251.

The modes are orthogonal with the piecewise cons
weight function«(z). In particular,«(z)51 for z<0 and
«(z)5n2 for z.0. The modes with different wave vector
kt are orthogonal due to periodic boundary conditions in
x-y plane. For vector potentials with the samekt , the or-
thonormalization condition is given by

E
2`

`

dz«~z!Av,kt ,n, j~z!Av8,kt ,n8, j 8
* ~z!

5d j , j 8dn,n8d~v2v8!. ~12!

The amplitudesAin
(6) are determined from Eq.~12! with

n, j 5n8, j 8. We use the formula

E
0

`

dze6 ikz5pd~k!6 i
P
k

, ~13!

wherek is real, andP stands for the principal value.
Let us considerAs

(2) mode. Substituting Eq.~4! into Eq.
~12!, we found that the total principal-value part equals e
actly zero for arbitraryv and v8. In the limit v8→v this
result can be written as the equality

k1zuA is
(2)u22k1zuArs

(2)u25k2zuAts
(2)u2, ~14!

where Ars
(2) and Ats

(2) are the amplitudes of reflected an
transmitted waves, correspondingly. If we now use the f
that for the physical electromagnetic field that is describ
by the real vector potentialA0 exp(ikr 2 ivt)1c.c., the
Poynting vector averaged over time is expressed as

S5
v

2p
uA0u2k, ~15!

a
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we can see that Eq.~14! reflects conservation of the norm
component of the energy flow. The remaining part of E
~12! is

uA is
(2)u2@~11r sr s8!d~k1z2k1z8 !

1~12r s!~12r s8!d~k2z2k2z8 !#5d~v2v8!, ~16!

wherer s85r s(v8), kjz8 5kjz(v8), j 51,2. From Eq.~16!, tak-
ing into account that

d~kjz2kjz8 !5
vkjz

kj
2

d~v2v8!, ~17!

we get a sought-for expression foruA is
(2)u2. Normalization of

the other modes is carried out analogously. It is convenien
write the vectorsA in

(6) as A0
(6)en

(6) , where en
(6) is a unit

vector parallel toA in
(6) . Scalar amplitudesA0

(6) are given by

uA0
(2)u25

v

2pc2k1z

, uA0
(1)u25

v

2pc2k2z

. ~18!

The vectorsen
(6) can be taken in the following form:

es5
1

kt
~ky ,2kx,0!,

ep
(2)5

1

k1kt
~kxk1z ,kyk1z ,2kt

2!,

ep
(1)52

1

k2kt
~kxk2z ,kyk2z ,kt

2!, ~19!

wherek15v/c andk25vn/c; vectores is the same for both
(6) modes.

Obviously, the solutions that differ by polarization of in
cident waves are orthogonal to each other due to orthogo
ity (en

(6)en8
(6))5dn,n8 . Orthogonality of solutionsA(1) and

A(2) of the same polarization is proved by direct calculatio
of integral ~12!.

Thus we have constructed a complete set of orthonorm
ized vectorsAl(r ,t) by solving the eigenvalue problem o
electrodynamics equation~2! in the whole space. Photons a
introduced in usual way using the second quantization
malism. In this representation, the vector potential has
form

A~r ,t !5(
l
A2pc2\

vS
@alAl~z!ei (ktr2vt)1c.c.#, ~20!

whereal is a photon annihilation operator at timet50 and
(l denotes the summation overkt , j ,n and the integration
overv. The interaction of electrons with a weak electroma
netic field is described by

Hint52
i\e

m* c
~A¹!, ~21!

wheree andm* are charge and effective mass of electro
23530
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III. NEAR-SURFACE EMISSION OF LIGHT

We first focus on electron transitions between discrete
ergy levels. Let us consider a rectangular quantum dot~QD!
of the dimensionsLx3Ly3Lz placed at a finite distancez0
>Lz/2 from the surfacez50. The potential barrier outside o
the dot is assumed to be infinite. With this assumption
can separate the electron motion in all three spatial dir
tions. In this model, the proximity of the boundaryz50 does
not disturb the electron states, and the effective-mass e
tron wave function and the energy are given by

cnxnynz

5S 8

LxLyLz
D 3/2

sin
nxpx

Lx
sin

nypy

Ly
sin

nzp~z2z01Lz/2!

Lz
,

~22!

Enxnynz
5

p2\2

2m*
S nx

2

Lx
2

1
ny

2

Ly
2

1
nz

2

Lz
2D , ~23!

wherenx , ny , nz are positive integers.
Let us consider transitions between the first excited s

and the ground state due to interaction of electron with ab
obtained full set of photon modes. For the ground state~state
1!, the set (nxnynz) equals~111!. For the first excited state
the quantum numbers (nxnynz) equal~211!, ~121!, or ~112!
depending on a relationship between the sizesLx , Ly , and
Lz . We will denote these states as 2x, 2y or 2z, respectively.
The rate of photon emission associated with the sing
electron transition is calculated in the first order of perturb
tion using the Fermi golden rule. We get

na5
2p

\ (
l

uMa~l!u2@N~\v/kBT!11#d~E2a2E12\v!.

~24!

Here Ma(l) is the matrix element of the transition,a
5(x,y,z), the summation runs over all quantum numbers
photons, N is the Planck distribution function. Energy
conservation law in Eq.~24! shows that the emitted photon
have large wavelengths compared to the QD size. So in
matrix elements the functionsAl(z) can be replaced with
Al(z0) ~dipole approximation!. For total contribution of all
modes with fixedv andkt in the rangev>ckt we get

uMxu25M0x
2 @esx

2 1epx
(1)21~epx

(1)2r p2esx
2 r s!cosZ#,

~25!

uMzu25M0z
2 epz

(1)2@12r p cosZ#, ~26!

where
8-3
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M0a
2 5

27\3e2

9La
2Sm2c2k2z

, Z52k2zz0 . ~27!

In the rangeckt /n<v<ckt , where the total reflection
occurs, the only~1! modes are emitted. We get

uMxu25M0x
2 ~esx

2 1epx
(1)2!1

M0x
2

2
@cosZ~epx

(1)2P12esx
2 S1!

1 i sinZ~epx
(1)2P22esx

2 S2!#, ~28!

uMzu25M0z
2 epz

(1)2S 12
cosZ

2
P12

i sinZ

2
P2D , ~29!

where

P65r p6r p* , S65r s6r s* .

For all v, uM y(v)u2 is obtained from the correspondin
uMx(v)u2 by the changex→y.

We see that the matrix elements depend on a dista
between QD and a crystal surface. On comparingMx andMz
we see that this dependence appears to be different fo
electron transition from the states of different symmetry. F
QD in the bulk (z0→`), we can omit fast oscillating term
in the above obtained matrix elements. To calculate the b
emission ratena

b we replace the summation overkt in Eq.
~24! by the integration in a polar coordinate system. Up
integration we get

na
b5

28

27La
2

\ve2n

m2c3
~N11!, ~30!

where nowv5(E2a2E1)/\.
The rate given by Eq.~30! coincides with the rate o

emission of conventional photons that are introduced by
help of the periodic boundary conditions. In this represen
tion

A~r ,t !5(
n,k
A2pc2\

vn2V
@aken~k!ei (kr 2vt)1c.c.#, ~31!

whereV is the normalization volume,k5$kt ,k2z%, the unit
vectors of polarization may be chosen, e.g., ases and
2ep

(1) . In Eq. ~24! now l5$n,k%. For photons of the both
polarizations, we get

uMau25
27p\3e2

9La
2Vm2nck

S 12
ka

2

k2D . ~32!

Substituting Eq.~32! into Eq. ~24! and calculating the sum
over k by the integration in a spherical coordinate syste
we obtain result of Eq.~30!.

To illustrate an influence of the crystal surface, we ha
calculated the rates of photon emission for interlevel elect
transitions in QDs. The calculations were carried out for
transitions to the ground state from a nondegenerate s
~QD with LxÞLyÞLz), from twofold-degenerate first ex
23530
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cited state for a parallelepiped-shaped QD (Lx5LyÞLz),
and from the threefold-degenerate first excited state~a cubi-
cal QD of dimensionL3). The emission rates normalized t
the corresponding bulk rates are shown in Fig. 2. For Ga
QD with Lz5100 Å and m50.067m0, the distancez0

.Lz/2 corresponds to the dimensionless coordin
2vz0 /c.631023. We see that influence of the surface o
emission of light has long-distance behavior. Comparison
the curves 1 and 3 shows that the surface effect, as we
the magnetic dipole transitions,7 depends on the symmetry o
the electron excited states, i.e., on the orientation of QD w
respect to the crystal surface.

In this paper, the details of near-surface spontane
emission of light have been presented for QD’s. The obtai
results reflect also the peculiarities of the light emission
nanostructures of other types, which provide electron c
finement in the direction normal to the crystal-air interfac
To demonstrate it, we calculated the rate of photon emiss
for transitions between electron subbands in an infinite d
rectangular quantum well. In Fig. 2, curve 3 also exhibits
surface influence on the electron radiative transitions fr
the second subband to the ground subband (z0 is the distance
between the center of the quantum well and the surface!.
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FIG. 2. Ratio of photon emission rate to the bulk values (z0

→`) versus the distancez0 between quantum dot and the surfa
(«513). Curve 1 represents results for the transition 2x→1 and
also for the transitions from twofold-degenerate first excited stat
a parallelepiped-shaped QD (Lx5LyÞLz). Curve 2—the transi-
tions from threefold-degenerate first excited state of cubic Q
Curve 3—the transition 2z→1.
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