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Photons in a semibounded dielectric and the surface effect
on spontaneous emission in nanostructures
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Quantization of electromagnetic field in isotropic dielectric medium occupying a half space is carried out.
For a dielectric having a plane boundary with vacuum, we have constructed a complete orthonormal set of light
waves propagating in a whole space. Using this set we calculated the rate of spontaneous emission of photons
by electrons in quantum dots and quantum wells. We predict oscillations of photon emission rate as a function
of the distance between a quantum nanostructure and the surface.
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. INTRODUCTION field E and magnetic fieldH are found completely from a
vector potentialA,
It is known' that the spontaneous emission rate of an atom
in a cavity is enhanced compared to that for the atom placed 1 0A

in a free space. For a cavity formed by two mirrors, this E=—C o H=cul A @

effect was measured in Ref. 2. During the past decades much . .

effort had been devoted to the understanding of the influenc%ere'n' we use the Coulomb gauge_—m\# 0—the poten-
of confinement of electromagnetic field on emission and abzIal A is found from the wave equation

sorption of light in semiconductor nanostructure. In semicon- 5

ductor quantum structures of small lateral dimensions, en- V2A— £ Ezo 2
hancement of the spontaneous emission was recently c? at? '

observed in Ref. 3. While the role of resonatorlike photon

modes that exist in cavities has been analyzed in déted, wheree is the dielectric permittivity of the medium, mag-

e.g., Refs. 4—6, and references therelass attention has netic permeability is assumed to be equal to unity. Electro-

been focused on important geometrical restrictions, such dgagnet!c field fills all the space, at the _mterfaz:eo the
the surface of a structure. Spontaneous magnetic dipole traf2Ngential components & andH are continuous.

sitions in the vicinity of a perfectly reflecting mirror has been e Seek for the solution in the complex-valued form
studied using the classical electromagnetic Green’s function

in Ref. 7. Recent experimefitsevealed strong influence of A(r,t)= ﬂei(k;—wt) 3)
sample-air interface on radiative dephasing time of excitons ’ S ’

in quantum wells. The purpose of the present paper is to i , ,
study a role of modification of photons, which stems fromWherew is the frequency, ankd,= (k, k,) is the propagation

the presence of a surface, in radiative transitions in semicon€ctor. We imply periodic boundary conditions in they
ductor quantum nanostructures. In order to solve this probP!@ne over the area of normalizatiéh The continuous ei-
lem, we first carry out the quantization of electromagneticgenvalue“’ and quasidiscrete vectoks are the same for all
field using the standard procedl?r@. We construct photon modes, the different modes are sp_ecn‘_led in the terms of their
modes in homogeneous isotropic dielectric medium filling up? dependence. The electromagnetic field is represented by a
the half space and contacting with a vacuum. The obtainelin€@r superposition of the traveling monochromatic waves.
quanta should replace the conventional bulk photons that ar/e choose two types of superpositidisee Fig. 1. The first
found by the help of the periodic boundary conditions. Then©"€ corresponds to the field created by a wave mclldent at the
we calculate the rate of photon emission under electron trarpUrfacez=0 from the half space<0 (from the medium L

sitions in a quantum well, where quantum dots are placed af/¢ Will denote the corresponding vector potentialAds).
a finite distance from the surface. The second type of modeAf™), corresponds to the field

created by a wave incident at the interface from half space
z>0 (from the medium 2 An arbitrary vectorA can be
written as the sunA=Ag+A,, whereAy, is the compo-
nent perpendiculaparalle) to the plane of incidence, i.e., to
We assume that the boundary between the medimm (the plane defined by a normal to the boundary and wave
>0) and vacuumZ<0) is an infinite plane surface€0).  vectork=(k,,k,). So, the modes are specified by the com-
The medium and the bounding surface have no free electriplex quantum numbex={w,k,,j,v} wherej = = stands for
charges and external currents. In such a source-free systembove described choice of an incident wave, ards,p la-
one can set the scalar potential equal to zero. The electrigels polarization of the incident wave.

II. PHOTONS IN A HALF SPACE
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(+)modes A (z)=A (e kez—r glk2e?),  7z=0
14 .
=A(1-rge *uz, z<0, (9

Zﬂ
[=5
o\ Z A () =Al ) (e ety elke) 220

2
n<k :
l A2 ek
vacuum | medium =Aip; . (1-rpe ™2, z<0. (10
{(-)modes
l . :
Aé;)(z) =Ai(5rz)(eflk222_ rpelkZZz), 7=0
=AIn}(1-rye z<0. (11
0 z
r 4 The case of total reflection takes place fer mode when
vacuum . medium k> w/c, implying that the normal componekt, is imagi-
FIG. 1. Schematic diagram of photon modes. The inset shows 327 and so the waves transmitted in vacuum decay expo-
quantum dot placed near the boundary with a vacuum. nentially as a distance from the boundary 0 increases. In

this caser andr, are complex valuedy o|?=|r,|?=1.
Using the boundary conditions, the amplitudes of re- 1€ modes are orthogonal with the piecewise constant
flected and transmitted waves are expressed through the aff€ight functione(z). In particular,(z)=1 for z<0 and
plitude A; of an incident wave. In the case where the wavet (2)=n? for z>0. The modes with different wave vectors

incident from vacuum is a-polarized wave, one gets k., are orthogonal due to periodic boundary conditions in the
x-y plane. For vector potentials with the sarkge, the or-
A (2)=A)(eMz+re ), z<0 thonormalization condition is given by
=A)(1+rgeke,  z=0, (4)
where f_ dza(z)Aw,kT,V,j(z)Aj),,kT,V,,j,(z)

(1)2 (1)2 k _k :5/5 /(S - ,. 12
K=\ s = K2 ko= \[ on?—k2, =2 b dur ol @) 42
02 02 I(1z‘|'k22

(5)  The amplitudesA'>) are determined from Eq(12) with
n=1/s is the index of refraction, and, is the amplitude of *+/=?",J". We use the formula
reflection.

For an incident wave parallel to the plane of incidence,

() " dzetik P
A, ' mode, we get dze "= 7 (k) xi
0

D (13
k
AS ) (2)=A)(eMz—r e a?), z<0
wherek is real, andP stands for the principal value.
AL K2z (L+ryeke?, 720, ©) Let us consideA!) mode. Substituting Eq4) into Eq.
n’ky, (12), we found that the total principal-value part equals ex-
actly zero for arbitraryw and w’. In the limit ' — o this

Aé;)(z):Ai(';Z)(eiklzz-}—rpe_iklzz), z<0 result can be written as the equality
()2 kps2 ()2 ()2 ()2
:Aipz E(l"_rp)e 2z, z=0, (7) I(1Z|Ais | _klzlArs | :k22|Ats | ' (14)
where where Al;? and A{) are the amplitudes of reflected and

5 transmitted waves, correspondingly. If we now use the fact
_n Kiz— K2z ®) that for the physical electromagnetic field that is described

=2 ’ by the real vector potentiaAyexpikr —iwt)+c.c., the

n I(1z+ k22

Poynting vector averaged over time is expressed as

The modes {-) exist in the ranges=cKk, .

Consider now a wave incident at the boundasyO from
inside of the medium 2, that i#\(*) modes. These modes 5= |2k (15
exist in the rangeo=ck_/n. The solutions are given by 2700
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we can see that Eq14) reflects conservation of the normal lll. NEAR-SURFACE EMISSION OF LIGHT
E:fg?scment of the energy flow. The remaining part of Eq. We first focus on electron transitions between discrete en-

ergy levels. Let us consider a rectangular quantum(Qa)
A (1+rgrl)d(ky,—k,,) of the dimensiond., XL, XL, placed at a finite distancg
=L,/2 from the surface=0. The potential barrier outside of
+(1=rg)(1—r)d(ky,—ks,)]=8(w—w’), (16)  the dot is assumed to be infinite. With this assumption we
, R " can separate the electron motion in all three spatial direc-
wherer ;=rg(’), kj;=kj,(@'), j=1,2. From Eq(16), tak-  i5ns. |n this model, the proximity of the boundars: 0 does
ing into account that not disturb the electron states, and the effective-mass elec-
tron wave function and the energy are given by

’ wka ’
5(ka—ka)=?5(w—w )s (17
]
¢nxnynz
we get a sought-for expression fi@k{; |?. Normalization of "
the other modes is carried out analogously. It is convenientto 8 sinnXTrx sinnywy sinnZW(Z_ Z5+L,/2)
write the vectorsA(>) as A{™el*) | whereel™ is a unit LiL,L, Ly L, L, ’
vector parallel toAl") . Scalar amplituded (") are given by (22)
w w
AL R AD)2=— — 18
Ao 2wk, Ao 2Ky, 18 i I
+ . . Er"xr'ynz: * 22 2 (23)
The vectorse{™) can be taken in the following form: 2m* AL Ly L
es=£(k ,—ky,0) wheren,, ny, n, are positive integers.
k.o Let us consider transitions between the first excited state

and the ground state due to interaction of electron with above
obtained full set of photon modes. For the ground Stsi#te
1), the set 4nyn,) equals(11]). For the first excited state,
the quantum numbersi¢n,n,) equal(211), (121), or (112
(+) 1 ) depending on a relationship between the sizgs L, and
& =~ kz_k(kxkzbkykzbkf)' (19 L. We will denote these states as, 2y or 2z, respectively.

7 The rate of photon emission associated with the single-
wherek; = w/c andk,= wn/c; vectore is the same for both electron transition is calculated in the first order of perturba-
(%) modes. tion using the Fermi golden rule. We get

Obviously, the solutions that differ by polarization of in-
cident waves are orthogonal to each other due to orthogonal-
ityi(e(f)e(f))zévyvy. Orthogonality of solut.ionsA(*) and VQZZ_T’E IM,(V)|2IN(h o/kaT) + 1]8(Ey — Ey— ).
A7) of the same polarization is proved by direct calculations fi X
of integral (12). (24)
Thus we have constructed a complete set of orthonormal-
ized vectorsA, (r,t) by solving the eigenvalue problem of . . .
electrodynamics equatid) in the whole space. Photons are ~ €re M(A) is the matrix element of the transitiom,
introduced in usual way using the second quantization for=— (X,¥,2), the summation runs over all quantum numbers of

malism. In this representation, the vector potential has th@hotons, N is the Planck distribution function. Energy-
form conservation law in Eq.24) shows that the emitted photons

have large wavelengths compared to the QD size. So in the

22 _ matrix elements the function&,(z) can be replaced with
A(r,)=>, W[axAx(z)e'(kfr’“’tMc.c.], (200 A,(zo) (dipole approximation For total contribution of all
A

modes with fixedw andk, in the rangew=ck, we get

(—) L 2
Y :R(kxklzakyklz K2,

wherea, is a photon annihilation operator at tihee O and
>, denotes the summation ovkr,j,v and the integration
over w. The interaction of electrons with a weak electromag-
netic field is described by

IM,[2=MG [ed,+el )%+ (el)r,— el rg)cosZ], (
25)

ihe
(AV), (21) IM2=MG,el,)?[1~r,cosz], (26)
C

Hine=—
m*

wheree andm* are charge and effective mass of electron. where
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27h3%?

2 _
9L2sntc?ky,

Moa Z=2Ky;2. (27)

In the rangeck,/n<w=ck,, where the total reflection
occurs, the only+) modes are emitted. We get

2 Q.

M -~
IM,|2=M3 (€2 + ef);)z)+ %[cosZ(ef;;)zP+ —e2S") :
+isinz(el}?P~—e5, 5], (28
cosZ isinz
IMo?=Mge)?| 1- ——P"———P"|, (29
where
PE=r,*rf, S*=rg*xr¥. 2
p—'p: s—'s a)ZO/C

For all ®, [My(w)|? is obtained from the corresponding

|Mx(w)|2 by the change—y. FIG. 2. Ratio of photon emission rate to the bulk valueg (

. . —o) versus the distancg, between quantum dot and the surface
We see that the malrix elements depend on a d|Stanc(%=13). Curve 1 represents results for the transitior—2L and

between QD and a crystal surface. On compakhgandM, also for the transitions from twofold-degenerate first excited state of

we see that this dependence appears to be different for the parallelepiped-shaped Q=L ,#L,). Curve 2—the transi-
electron transition from the states of different symmetry. FOkions from threefold-degenerate first excited state of cubic QD.

QD in the bulk ¢g— ), we can omit fast oscillating terms cyrve 3—the transition 2—1.
in the above obtained matrix elements. To calculate the bulk

emission rater” we replace the summation ovkr in Eq.

(24) by the integration in a polar coordinate system. Upon

integration we get cited state for a parallelepiped-shaped QD €L,#L,),

and from the threefold-degenerate first excited stateubi-

b 2% fiwe’n N cal QD of dimensiorL.®). The emission rates normalized to
_ﬁ m2c3 (N+1), (30 the corresponding bulk rates are shown in Fig. 2. For GaAs
“ QD with L,=100 A and m=0.067n,, the distancez,
where noww=(E,,—E;)/%. >L,/2 corresponds to the dimensionless coordinate
The rate given by Eq(30) coincides with the rate of 2wz,/c>6x10"2. We see that influence of the surface on
emission of conventional photons that are introduced by themission of light has long-distance behavior. Comparison of
help of the periodic boundary conditions. In this representathe curves 1 and 3 shows that the surface effect, as well as

tion the magnetic dipole transitiofisjepends on the symmetry of
the electron excited states, i.e., on the orientation of QD with

2mwc?h - respect to the crystal surface

_ i (kr — wt) . e
A(r,1) ;( V wnZV[akeV(k)e +cel, (3D In this paper, the details of near-surface spontaneous
emission of light have been presented for QD’s. The obtained

whereV is the normalization volumek={k,k,,}, the unit  results reflect also the peculiarities of the light emission in

Vo

vectors of polarization may be chosen, e.g., @sand nanostructures of other types, which provide electron con-
—eﬁf). In Eq. (24) now A ={»,k}. For photons of the both finement in the direction normal to the crystal-air interface.

polarizations, we get To demonstrate it, we calculated the rate of photon emission

for transitions between electron subbands in an infinite deep

M |2 2" wh3e? ( ki) - rectangular quantum well. In Fig. 2, curve 3 also exhibits the

M| oL2Vmenck 2/ (320 surface influence on the electron radiative transitions from

the second subband to the ground subbagdy(the distance
Substituting Eq.(32) into Eq. (24) and calculating the sum between the center of the quantum well and the sujface
over k by the integration in a spherical coordinate system,
we obtain result of Eq(30).
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