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Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors
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The magnetic behavior of insulating doped diluted magnetic semicondybBW®iS’s) is characterized by the
interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the
susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in con-
trast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors.
To explain this behavior, a model has been developed in which polarons interact via both the standard direct
carrier-carrier exchange interacti¢due to virtual carrier hoppingand an indirect carrier-ion-carrier exchange
interaction(due to the interactions of polarons with magnetic ions in an interstitial re¢ditsing a variational
procedure, the optimal values of the model parameters were determined as a function of temperature. At
temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly
temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromag-
netic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This
result supports the experimental evidence for ferromagnetism in insulating doped DMS’s.
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[. INTRODUCTION enough to percolate, and the undoped system is not magneti-
cally ordered.(Spin glass type order of the undoped system
Diluted magnetic semiconductof®MS’s) are semicon- has been observed in |-Vl DMS’s for Mn concentrations

ductors in which a fraction of the nonmagnetic ions thatabovex=0.21") Consequently, the unusual magnetic behav-
make up the crystal structure have been replaced by magpr is attributable to the presence of the dopants. This is not
netic transition metal or rare earth ions. For example, substisurprising, despite the low carrier concentration, because the
tuting Mr?* ions for some of the Cd ions in the nonmagnetic Bohr radius that characterizes the carrier wave function is
semiconductor, CdTe, yields the diluted magnetic semiconlarge compared to the Mn 3d wave function that character-
ductor, Cd_,Mn,Te. In doped DMS's, the sizable exchange izes the extent of the Mn local moment. We interpret the
interaction between magnetic ions and carri@ectrons or large collective spins, responsible for the double-step form of
holes leads to unusual optical, magnetic, and transport propthe susceptibility, to be bound magnetic polarofis?
erties. Due to their potential for use in novel devices, whichformed by the exchange interaction between localized carri-
takes advantage of both their semiconducting and magnetirs and magnetic ions within the carrier orbit. Furthermore, a
properties, DMS’s have, of late, been the subject of mucHit of the polaron part of the the susceptibility data to a Curie-
interest'? Recently, the discovetyof a ferromagnetic tran-

sition temperature of 110 K in a sample of GaMn,As (R [ ———— T r
with x~0.05 has further enhanced both the experiméntal :
and theoreticd *° interest in DMS'’s. "g 1210° k
In the 1I-VI DMS Zn;_,Mn,Te (x<0.1), p-doped with o i
carriers at the level of 8 10'"/cm®, where the system is in g a010* F
the insulating state, measurements of susceptibility versus ‘i’ ’ F
applied magnetic field were conducted by Liu at the NEC =z 6010 E
Research Institute. The data, originally reported in an NEC 27 [
technical memd® have been reproduced in Fig. 1 for the g F
convenience of the reader. Note the double-step structure of z 30107
the susceptibility and the two characteristic field scales indi- o F ]
cated by the inflection points of the curve. This form sug- 0010 Fossnl —ssal sl sl
gests a dual magnetization mechanism whereby large collec- L AR U

tive spins align at fields£300 G) too weak to magnetize Magnetc ficld (Gauss)
the individual magne_tlc_|c_>ns. Only a_t mu_ch Iarger_ f|el_ds FIG. 1. Magnetic susceptibilitydM/dH) of Zn, ,Mn,Te (x
_(~15 000 _G) do the individual Mn spins align. W|th_|n this ~0.1), p-doped at the level of 8 10-/cn?, measured at 2 K as a
interpretation, the measured susceptibility can be viewed agnction of applied magnetic field. Circles denote measured data
the sum of two contributions: a collective spin term thatwhile the solid line is a fit to a dual magnetization model. The
drops off around 300 G and an individual spin term thatdashed line separates the collective gpivlaror contribution from
drops off around 15000 G. The dashed line in Fig. 1 servege individual Mn spin contribution. Data were obtained by Liu
to separate these two contributions. (Ref. 16 at NEC Research Institute and is reproduced here with the
For thex regime in question, the Mn concentration is not permission of NEC.
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Weiss form reveals a net ferromagnetic interaction between V/J

the polarons. This result is in stark contrast to that observed

for conventional nonmagnetic semiconductors in which vir- L e BT ‘-
tual carrier hopping invariably yields antiferromagneti@m. j\/ ‘f\ =y fi,\ff\\\ - \\?K\\\/\L\ L /‘/\ 7
To explain both the formation of bound magnetic polarons RERESN) m\{;{\y\j\ awi NI \/\
and the ferromagnetic nature of their interaction, we intro- N ;\/\f\\ﬁ%(/s\f f\f\\/// \/,/\ Vo //\\ .
duced, in Ref. 21, a bound magnetic polaron model for insu- f\f S AR f\\ff\/{;\ £ SATER e >
lating doped DMS'’s. This was further elucidated by a com- SN NS 1l /\\\\//‘//\ P V2
prehensive calculation in which we showed how the ’/,]/\\ N Y ! //\X\\\
parameters of the model could be obtained in an optimal DA ERR N e
manner using a variational principtféwhich we present be- »

low.

In Sec. Il, we describe the system of two interacting po-
larons in a diluted magnetic semiconductor and develop a
simplified model to capture its behavior. In Sec. Ill, we cal-
culate, within our model, both the single-polaron partition
function and the polaron-pair partition function. Making use
of these partition functions, we implement a variational pro-

cedure, in Sec. IV, to optimize the parameters of our model-ron exchange constant for the particular material dnds

Wel find ;hat Wth"e the TOdel p?ram&aters gesirl?rl]ng s'lngleihe carrier wave function. For the purpose of this study, we

pofaron tformation are temperature-dependent, the polarony 4y e  to pe the hydrogenic wave function

polaron interaction parameters can be treated as temperature-

independent constants for magnetic ion and carrier densities \If(r)—(wag’)*l’zexp(—r/aB) 2.2
= 2 )

of interest. We make use of these results in Sec. V where we

demonstrate how a ferromagnetic polaron-polaron interacwith an effective Bohr radiusiz. However, it should be

tion can be obtained. Conclusions are presented in Sec. Vinoted that for acceptors, in particular, the carrier wave func-
tions may be more complicatéfiWe are also implicitly as-

L.,

FIG. 2. Schematic of polaron-pair system.

Il. POLARON-PAIR SYSTEM AND MODEL suming that the binding energy of the impurity is large com-
pared to the magnetic energy of the polaron, so magnetic
A. The system ordering does not change the carrier wave function.

To understand the magnetic behavior of diluted magnetic Finally, there exists an additional antiferromagnetic ex-
semiconductors, we consider the polaron-pair system th&@hange interaction, between the individual magnetic ions,
consists of two Carrier@|ectrons or ho]ésbound to impu_ which has a characteristic Iength scale on the order of a
fity sites(donors or acceptorseparated by an interimpurity Magnetic ion radius+ A). Since this length scale is small
distance,R;,, and the magnetic ionGisually spin 5/2 My~ compared with others in the systefie., ag~10—20 A),
that surround them. This complex system interacts via thre@e neglect all but nearest-neighbor interactions and assume
independent exchange interactions each of which have dithat the nearest neighbors form inert singlets. Thus, ion-ion
ferent characteristic length scales. interactions are considered only via the use of an effective

The bound carriers interact directly via an impurity- magnetic ion concentration=x(1—x)*? in place ofx, the
impurity exchange interaction. Although this interaction cantrue magnetic ion concentratidh.
be more complicated for the case of acceptéwswhich the Hence, the polaron-pair systefgiven the assumptions
valence band is degenerpfé we assume an impurity- noted abovginteracts via two antiferromagnetic exchange
impurity interaction of the Heisenberg type, as in the donorinteractions, a carrier-carrier interaction and a carrier-
case, characterized by an exchange conskafhis interac- magnetic ion interaction. These interactions are depicted in
tion has been shown to be antiferromagnetic for donors irFig. 2 and result in the Hamiltonian
nonmagnetic semiconducté?sand is assumed to be so for
carriers in diluted magnetic semiconductors as welis a ) 5
function of the interimpurity distance and the effective Bohr H:ain: Sy S| Wanl“+ “zn: S S| Wan|*+3s;- 5,
radius and varies approximately as 2.3

J~exp(—2Ry,/ag). (2.2 wheren runs over all magnetic iongV,, and¥,, are the
carrier wave functions at the magnetic sites; ands, are
Were it not for the influence of additional interactions, thisthe carrier spins, and th®, are magnetic ion spins.
direct exchange would yield a net antiferromagnetic ex- We consider this to be a polaron-pair system because
change interaction in DMS's. carrier-ion interactions tend to antialign the spins of mag-
The second interaction at work in this system is the exnetic ions in the vicinity of a carrier with respect to the
change interaction between each of the carriers and the magarrier spin. Thus, each carrier and the ions in its vicinity
netic ions. This interaction is also antiferromagnetic and iSorm a single magnetic polaron with a large collective spin.
proportional in magnitude te|W¥|?, wherea is the carrier- The polarons interact via both the direct antiferromagnetic
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carrier-carrier exchange interaction and the indirect ferro-
magnetic exchange interaction that results when carrier-ion
interactions cause both polarons to antialign with the same
magnetic ions. Details of the competition between these two
interactions will be explored as we study the nature of a
simplified model.

B. The model

Although the true Hamiltonian provides the best descrip- T
tion of the polaron-pair system, its solution is complicated by
the fact that the magnitude of the carrier-ion interaction var-

ies exponentially with carrier-ion distancesince carrier [ — >
wave functions are hydrogenicln order to obtain a more

detailed understanding of the polaron-pair system, it is nec- FIG. 3. Schematic of polaron-pair model.

essary to study a simplified, more tractable model. The most

obvious simplification would be to make a mean field ap-  _ _ _ _
proximation. However, it has been shovgee p. 429 of Ref. S'L_sphg;‘no_ 13 ' Sz_sph;;no_ ZS’ ' Ss_lnterstitial

17 as well as Refs. 18 and Jlthat the mean field approxi- (2.4b

mation neglects the spin-spin correlations responsible for PAihereK is the intrapolaron ion-carrier exchange constant,
laron formation and results in a spurious finite-temperaturg - is the interstitial ion-carrier exchange constahis the
divergence of the single polaron susceptibility. To obtain ayirect carrier-carrier exchange constast,and s, are the
tractable model that avoids the problems associated witQg rier spinsS, andS, are the net polaron spins, asy is
mean field theory, we make the following two approxima-the collective spin of the interstitial regiofAt this point, we
tions: the single-step approximation and the interstitial respecify only that the interstitial region have cylindrical sym-
gion approximation. metry and be located between the polarons. However, for
The single-step approximation entails replacing the carrieeomputational purposes, a particular shape must be chosen.
wave functions by radial step functions that are constant Urhis matter is discussed further in Sec. IV} Bs is indicated
to a radiusR and zero beyon®. In this approximation, all of iy Fig. 3 where the details of this model are presented
the magnetic ions within a sphere of radRsbout a carrier graphically, the essence of the polaron-polaron model re-
interact with that carrier with the same exchange conskant, duces to a competition between the direct antiferromagnetic
Thus, in this model, the definition of a polaron becomescarrier-carrier interactions characterizeddbgnd the indirect
clear. A polaron is composed of a single carrier and all of thgerromagnetic carrier-ion-carrier interactions characterized
magnetic ions within a radiug of the impurity site to which  y K’ By showing that there are circumstances in which the
the carrier is bound. This approximation, first developed byferromagnetic interaction dominates, a theoretical justifica-
Ryabchenko and Semen®allows for the exact calculation tion for DMS ferromagnetism can be obtained. By applying
of the sin.gle-polaron partition function and makes thehe (Ryabchenko-Semenpisingle-step approximation and
polaron-pair case much more tractable. the interstitial approximation to the polaron-pair model, we
To consider interactions between two polarons, we mushaye effectively separated the polaron-pair system into one
make the additional Conjecture that there iS an interstitial‘nechanism for po|ar0n formation and another for po'aron_

region between the two polarons within which the magnetigyolaron interaction. It is this separation that makes possible a
ions interact significantly with both carriers. Such a regionca|culation of the polaron-pair partition function.

must exist in order for the indirect ferromagnetic carrier-ion-

carrier interactiqns to _be_signifi_ca_nt. In order to treat the IIl. PARTITION FUNCTION CALCULATION

effects of these interstitial ions within our model, we assume

a cylindrically symmetric interstitial region within which To obtain the partition function for this problem, we must
all of the magnetic ions interact with both of the carriers with consider both the interacting part of the systéhe carriers
an exchange constanK’. In this interstitial region ap- and magnetic ions within the polarons and the interstitial
proximation?® carrier-ion exchange causes both carrier spingegion, and the noninteracting pathose magnetic ions that
to antialign with the interstitial spins and thereby align with are external to both the polarons and the interstitial region
each other. Thus, an indirect source of carrier-carrier ferroThus, the full partition function takes the fori=Z,Z e,

magnetism is introduced into the model. where Z,,, is the polaron-pair partition function and,,; is
In the end, the above approximations yield the modekhe partition function of the non-interacting external ion
Hamiltonian spins.

Since the external ions are ineR,,; is just given by the
degeneracy of the magnetic ion spins. By taking the mag-
Ho=K[($:S)+ (s, S) ]+ K (811 5,) - S3+3s,- Sy, netic ions to be spin 5/@s is the case for Mneach spin has
(2.4a 2s+1=6 orientations. ThereforeZ,—=6Nex, where Noy,
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the number of external magnetic ions in the system, is equathere

to the total number of ions in the system minus the number L

of ions in the polarons and interstitial region. Note that while _ 5x/2 | 3x/2 1 X2 1 e XI2 | —3XI2 | —Bx/2
these noninteracting external spins contribute no energy to ()= E[e reTrreTtre Thre e 1
the system, they contribute nonzero entropy and therefore 3.7
cannot be neglected.

Due to the approximations made in developing our model
the polaron-pair system separates into an individual polaro
part and a polaron-polaron interaction part. Hence, as will be
explicitly shown, the polaron-pair partition function can be  Z,,=2
expressed as the product of two single-polaron partition
functions and a polaron-polaron interaction partition func- o o d\ _
tion. xf de E(eys+e‘75)e"‘s[6F(iA)]Nl.

For largeN, the sum ovefS can be converted to an integral
ra]nd the partition function can be written as

J
L+(e-1)7

A. Single-polaron partition function (3.8

The single-polaron partition function can be calculatedContinuing to the imaginary temperature axis, using the defi-
exactly for the single-step model that we have adopted. For aition of a §-function, and continuing back to the real tem-

single polaron, the Hamiltonian is perature axis, we obtain
AK 2.2 g N ¥ g N
H=\Ks S= 5 [(s+9°—s"—F], (3.) Zpo=6"1Zy, Z;=2|1+(e —1)5 F(y)™1, (3.9

wheres is the carrier spinS is the sum of the magnetic ion where we have separated out the factor f, &vhich will be
spins within the polaron, ands is a placeholder constant canceled by part oZ,; in the full partition function. Note
that has been inserted for notational convenience and withat this expression has the correct infinite temperature limit
eventually be set equal to one. For a giv&rthe total spin sinceZpo|(T—>oo)—>2(6)N1, which is the partition function
can take two valuesS+ 3 or S—3. The former yields an for a noninteracting system &f; spin-5/2 magnetic ions and

energy and degeneracy one spin-1/2 carrier.
NsKS ; . ;
L= 82 . g.=2(S+1), (3.2 B. Polaron-Pair partition function

The exact quantum mechanical calculation of the polaron-
while the latter yields pair partition function is significantly more complicated than
the single-polaron case. However, at low temperatures, a
semiclassical technique introduced in Ref. 21 can be used to
find Z,, throughout the temperature range of interest. Spe-
cifically, we must make the assumption that the temperature
is low enough such that the ion spins within the polarons and
interstitial region are well enough aligned that the two po-
Zoo=Tr e PM]=2 D(S)[g e PE++g_e FE-], laron spinsS; andS,, and the interstitial region spifss, are

s large enough to be treated as classical magnetic moments.
(3.4 Thus, we make a semiclassical approximation in wigh

whereD(S) is the number of ways in which the ion spins Sz, and Sz are treated as classical spins while the carrier

can be arranged to give a collective s@inDefiningD,(S)  SPins,s; ands,, are treated quantum mechanically. For the

to be the number of ways that the ions can be arranged t6ase we are interested in, appropriate for light to moderately

give a collectivez component of spin equal 8and doing a doped II-Vi-based DMS’s, we expect thit ,J<K. Conse-

bit of algebraic manipulation, we obtain quently, we will first find the partition function for the case
of noninteracting polarons(' =J=0) and then include the

N K(S+1)
E.=-———, g-=25 (3.3

Thus, the single-polaron patrtition function is given by

SNy/2 effects of nonzerd& ' andJ as first order perturbations. Sepa-
Zoo=2|1+(e7=1)—| > D,(S)coshy9), rating the Hamiltonian into three parts, we wriké=H,
9Yls==5Ny2 +H;+H,, where
(3.5 1+ Ha,
wherey=\¢8K/2 andN, is the number of ion spins within Ho=K[As1(81-S)) +Asa(S2 S) ],
the polaron. Using the definition of & function,D,(S) can
be written as Hi1=J(s1-s2), (3.10
Ny = dN _ Ho=K'[Ac1(S1-S3) + Nea(S2 S3) ],
DS)=Tré| S— >, & =f —eM[6F(in)N, _
=1 —w2T and we have introduced four new constamtg,, As>, A¢1,

(3.6 and\.;. While these constants will be set equal to unity at
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the end of our calculation, they act as placeholders that will 2 i 1)/a N
be useful when we optimize our model parameters in Sec. IV.  £Z=21Z5Z3, Z3= L e A= DHE()Nax dx,

In the noninteracting polaron limit K'=J=0), the (3.16
polaron-pair partition function is simplg,,=6N1*N2z,7,, '
whereZ, and Z, are the single-polaron partition functions whereZ; is the polaron-polaron interaction part.
given by Eq.(3.9) with y;=\4BK/2, andy,=\sBK/2 re-
spectively. In the semiclassical limit, the wave functions of V. VARIATIONAL OPTIMIZATION OF MODEL
the noninteracting polaron pair ae(1)«(2), «(1)8(2), PARAMETERS
B(l)a(2), andB(1)B(2), where« is the total spinS+ 1/2 . . . . .
state of the single polaraicarrier and magnetic ions aligned ~ Given the partition function calculated in the preceding
and B is the S—1/2 state(carrier and magnetic ions anti- sgcuon, vye.proceed to optimize the parameters of our model
aligned. At the low temperatures for which the semiclassicalVi@ & variational approach. AT=0, optimal values of the
approximation is valid, only the ground stae(1)B(2), is modellparameters could be obta!ned_ by minimizing the ex-
significantly occupied. Hence, the’ andJ perturbations are Pectation value of the model Hamiltonian. At-0, we adopt

@n analogous variational approach described by Feyfiman
Therefore, for interacting polarons with nonzétbandJ, ~ [of Which the quantity to be minimized is th€ function
we write F=Fpn+(H—H), (4.1)

J .
M,y=(B(1)B(2)|H1|B(1)B(2))= 58118522 =

NP whereH ,, is the model Hamiltonian anid is the true Hamil-
4 tonian. The averagé - -) is taken over the states éf,,. F
(3.1) canbe showf! to be an upper bound on the true free energy
F of the HamiltonianH at the temperature T in question. By
My =(B(1)B(2)|H,| B(1)B(2)) minimizing F with respect to the model parameters, optimal
, values can be determined as a function of temperature.
_K_[)‘clsZS-LH\CZSlSZ.S%:_Q S, As will be shown explicitly in Sec. IV B, the totalF
2 SS B K323, function separates into the sum of two single polaron func-
(3.12 tions and a polaron-polaron interaction function. Therefore,
' we shall optimize the single-polaron parameters first and
where then consider the interaction parameters.

2 P : o
B BK’ \/)\c1+)\02 A. Single-polaron parameter optimization

Q N > T Acihcoth12, (3.13

The single-polaronF function can be obtained by ex-
pressing(H,), (H), andF, in terms of the single-polaron

f12 1S the cosine of the angle betwe8pandsS,, andus is partition function,Z;. Recall that the model Hamiltonian has
the cosine of the angle betwe&y and thez axis. Making the form

use of these matrix elements, the polaron-pair partition func-
tion can be written as
Ho=AK> s S, 4.2
pr:Tr[e*B(HOJrMJJrMK’)] ]

where indeX runs over all magnetic ion spin§;, within a

=f d3S,d3S,d3S;D(S,)D(S,)D(S,) sphere of radiusR about the carrier spins, and \¢ is a
constant which will soon be set equal to unity. Taking the
X @Y1811 ¥2Sp— BIA+QusSy. (3.19 thermal average over the eigenstate$igf yields that
Performing the indicated integration and doing a bit of alge- NsdInZ,;
bra this becomes (Hm)=NsKNy(s §j)=— B ong 4.9
S
o N 2 BIx*-1) N whereN; is the number of magnetic ions within the polaron.
Zpp=6"1""2217, 0 ° & [BF(Q)] ex dx, The true Hamiltonian has the form
(3.15
— 2
wherex?=1+ u,, N3 is the number of magnetic ion spins H_“En: S S| Wl 4.4

within the interstitial region, and we have identifigqd and
Z, as the single-polaron partition functions. Notice that inwhere the index runs over all magnetic ion spins. There-
this approximation, the partition function does separate into &re, noting thats- S;) is only nonzero for ion spins within
polaron formation factor and a polaron-polaron interactionthe polaron, we find that

factor. Multiplying this result by the partition function for

external ion SpPINSZq= 6Nt0t*N_1*N2*N3, and dropping the (Hy=a> |¥,|¥s S)=
constant factor of ®ot, we obtain the full partition function ]

Vs &|nZl

B s’

(4.5
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where

v | rlw P 4.6
STKV.Js '

and the integral is over a sphere of radRiand volumeVy.
Finally, since the free energy is

[ATH FRET

1 : ]
Fmn=—=InZ,, 4.7 08 E
B o Erowl il 1
we can combine the expressions abdsetting\=1) to o7 et 001 T 01 !
obtain the single polarorF function E CUUKve T e o ]
008 | .
1 dlnz 3 ]
Fi=—=INZy+ (ye—1)—— (4.9 005 E
B dINs 004 | 3
K F 3
whereZ, is given by Eq.(3.9). By minimizing F; with re- 003 £ 3
spect to the parameteRsandK, the optimal values of these £ 1
parameters can be found. o0z F E
By performing such a procedure numerically over a range 0.01 ? 3
of temperature values, the optimal values of the single po- N S T I
laron parameters were determined as functions of tempera- 0.001 001 T o1 )

ture. The results of this optimization for a magnetic ion den- 1 o
K*Volumevs. T

sity of 5 ions per sphere of radiusg are plotted in Fig. 4.

In the high-temperature limitT>K), the exchange inter- o8 | ]
action between the carrier and the magnetic ions within the ) ]
polaron is insignificant compared to temperature. Thus, the 06 | .
magnetic ion spins are not aligned and there is no difference  KVol [ ]
between the free energy of a spin within the polaron and that 04 L ]
of an external spin. As a result, tiféfunction is minimized [ ]
when the model carrier wave function best matches the true 02 | ]
carrier wave function. This matching of a step of witkland B ]
heightK to a hydrogenic wave function yields the optimal, (Y T EETETY ROV SRR M
temperature-independent values Rfand K. Thus, as is 0.001 001 T 01 1

shown in Fig. 4R, K, andKVj  (the total exchange energy

are temperature-independent in the high-temperature regimR"
For low temperaturesT(<K), the carrier-ion exchange

interaction is significant compared to temperature. Thus, th

magnetic ion spins located near the carrier antialign with the _ S

carrier spin. In this situation, the inclusion of an additional B. Polaron-pair parameter optimization

ion within the polaron entails a gain in exchange energy. Just as for the single polaron, we can obtain the polaron-
However, since the number of external spins decreases Ipyair  function by expressingH ), (H), andF, in terms of

one, there is also a decrease in the entropy of free spinge full partition functionZ. For the polaron pair, our model
Therefore, the optimaR is determined by the balance of Hamiltonian is

exchange energy and the entropy of free spins.TAde-

creases, the exchange energy gained by increasing the size of

the polaron becomes more valuable. Thus, as is shown in )

Fig. 4,Rincreases as |g(1/T) asT drops. AsR increasesk Hm:"leZ Sl‘SH‘sZK; S St hakK Ek S
must decrease in order to maintain the match between the

model step wave function and the true wave function. Thus, ,

K decreases with decreasifig Finally, despite the decrease K zk S SHIs 5, (4.9
in K, the total exchange energwhich is proportional to

KV,) increases a3 drops and the spins align.

It is interesting to note that in this problem, the variationalwhere indices andj run over the magnetic ions in polaron 1
principle leads one to match the Hamiltoniarhagh T, while  and 2, respectivelk runs over ions in the cylindrically sym-
entropy-energy balance determines the parametdmsnal. metric interstitial region, and the’s are constants that will
This is just the converse of what one expects in most probsoon be set equal to one. Taking the thermal average then
lems. yields

FIG. 4. Temperature dependence of single-polaron parameters.
distances are in units oég and all energies are in units of
g/ag~625 K.
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(Hm) =As1KNg(s;- §) + NoKNy($;- §)) + A K N(s; - S
+Ae2K'Na(S- S)+3(s1° 5), (4.10

whereN;=N, are the number of ions in polaron 1 and 2,
andNj; is the number of ions in the interstitial region. Noting

that

B Sy 1 109Inz il
(s1-S)=(s j>__K_NlE P (4.11)

(3-8 = (5 S)= ~ 5

. > K'Ng B d\cy’

and setting the.’s equal to one, this becomes
Hoyo 2 aInZ+(9InZ L 41
< m>__E &)\51 &)\Cl (S:]_Sz) ( . 2'

Since the true Hamiltonian has the form

H= a; 1+ Sol Wi+ a; S SilWon|?+ 38105,
4.13

and we know thats- S, is only nonzero for ion spins within
the polarons or interstitial region

<H>=“<51'Sﬁ>§i: |‘I’1i|2+a<51'3»<>§k: W42

+a<52'5j>§]_: |\I’2j|2+a<32'5k>§k: |W |2

+3(s1's)- (4.14
Again making use of Eq4.11), this becomes
Hy = 2 (9InZJr dinz L 41
( >__,E Y ong T ong (s1'sp), (419

where v; is defined in Eq(4.6) and we have now defined

Vo= | & WA .16
Cc KVC c 1 1 .

where the integral is over the cylindrically symmetric inter-

stitial region of volumeV, . Subtracting Eq(4.12 from Eg.
(4.19 and adding the free enerdy,,= — 1/8In Z, we obtain
the polaron-paitF function

JdinZ
Nt |’
(4.17

whereZ is the partition function given by E¢3.16). SinceZ
is of the formzZ=2,7,Z5, it is clear thatF is of the form

]:_l|22 107|n22 1
= En+(75 )EWL(% )
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Ellipsoidal Lens Interstitial Region

FIG. 5. Schematic of ellipsoidal lens-shaped interstitial region.

alnZs
O\

.7:3=—% INZ3+2(y.—1) (4.18

Since these terms share no variational parameters, the
polaron-pair model can be optimized by usifigto optimize

K andR (as we did in the preceding sectjaand usingF; to
optimize K’ and the parameters describing the geometry of
the interstitial region.

Before we can proceed to minimizg, we must define a
specific geometry for the interstitial region between the two
polarons. The bispherical geometry of the problem suggests
that a natural choice would be the spherical lens formed by
the intersection of two spheres centered on the two polarons.
However, such a shape can be completely specified by a
single parameter, the lens width In order to provide an
additional degree of freedom within the model, we will use
the slightly more general ellipsoidal lens formed by the in-
tersection of two ellipsoids centered on the polarons. In this
manner, the interstitial region can be specified by two param-
eters: the lens width, and the lens radiug, The details of
this shape are depicted in Fig. 5.

The task of optimizing the model parametefs, h, and
p, is complicated in two ways. First of all, unlike the single-
polaron case where both the partition functi@y, and the
geometrical factor,, could be obtained analytically, both
the interaction partition functiorZ, and the interstitial geo-
metrical factor,y., must be calculated numerically. This
complicates the numerics but poses no fundamental problem.

The second complication requires a bit more attention.
Naively one would expect that by blindly varying these three
parameters untif; is minimized, the optimal values of these
parameters could be obtained. However, upon closer exami-

F=F,+ F,+ F5 and therefore separates into a polaron for-nation, it becomes clear that this is not the case. In perform-
mation term,F, + F,=2F;, which we developed in the pre- ing this optimization of the interstitial region parameters, it is

ceding section, and a polaron-polaron interaction term

our objective to determine the parameters that best match the
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true interaction betweeboth carriers and the magnetic ions nature of the wave functions would dictate that this region be
in the interstitial region. However, minimizing th€ func-  the intersection of two spheres centered at the carrier
tion merely yields the configuration that, overall, is mostsites—a spherical lens. Therefore, the natural shape for the
energetically favorable. As a result, if all three parameterdnterstitial region is a spherical lens. This fact provides the
are varied, the minimun®; will be achieved when the in- condition for setting the width of the interstitial region in
terstitial region has totally engulfed both of the polarons. Inwhat we call the optimally spherical method. For a given
this configuration, the interstitial region contains ions that aréémperature, the fixed width, is set to be that for which the
very close to the carriers and therefore experience large expinimization of the function automatically yields a value
change interactions. However, these ions that interact ver§f the lens radiusp, for which the ellipsoidal lens becomes
strongly with one of the polarons barely interact at all with SPherical. Thus, the result is a spherical lens interstitial re-
the other. Thus, the result of an unconstrained minimizatiof@ion in which the lens radius is the energetically optimal
does not yield an interstitial region with whidioth of the  radius for the given width. As we will show, this technique
carriers interact strongly. Therefore, to obtain sensible reYields the proper increase as temperature drops.
sults, the minimization of the interactigh function must be Using both the fixed width approachvith h set to Zp)
constrained. Two methods of constraining the minimizationrand the optimally spherical approach, the polaron-polaron
have been developed: the fixed width method and the optinteraction parameterk,’, h, andp, were optimized as func-
mally spherical method. tions of temperature. The results of this optimization for a
The interstitial region in which both carrier wave func- magnetic ion density of 5 ions per sphere of radiag and
tions are significant must be concentrated about the poirt carrier density such tha®,,=6ag are plotted in Fig. 6.
halfway between the two polarons. Thus, one method of conAlthough the parameter values are plotted over a wide range
straining the minimization of thé function is to fix the lens  Of temperatures, they are only meaningful for temperatures at
width, h, to a set value. Using this fixed width method, the Which the polaron-pair model is valid. Clearly, once the po-
only parameters that are allowed to vary are the interstitialarons have increased to a size such that they touch the in-
interaction strengthi’, and the lens radiug. For a given terstitial region, the polaron-pair model is no longer valid.
temperature, theF function will be minimized for some op- This impact between the polarons and the interstitial region
timal values of these two parameters. Thus, by performing &ccurs afl = Tiypac Where R+h=Ry,. In Fig. 6, the tem-
numerical minimization for a range of temperature valuesperature of impact has been denoted by a vertical dashed line
the temperature dependencekdf andp can be determined. for both the fixed width and the optimally spherical cases.
In the fixed width model, the fixed value ofis chosen Note that for either methodlimpact is found to be approxi-
such that both carrier wave functions will be “significant” mately equal to 0.006/a3 or around 3 K for typical ion and
within the interstitial region. In a sense, the choice of a parcarrier densities. Sincé’(Timpacd < Timpact: this cutoff tem-
ticular h defines the threshold of exchange interactionperature lies within the high-temperature reginie>K')
strength with both carriers that is required for an ion to bewhere the interstitial ion-carrier interactions are insignificant
included in the interstitial region. However, as temperaturecompared to temperature. Hence, for temperatures where our
changes, this threshold should change as well since all enemodel is well defined, all of the polaron-polaron interaction
gies in the system are measured with respect to temperaturigarameters are constant. For very low temperatures (
Thus, as temperature drops, the threshold should also drogK'), our results are not quantitative, but since polarons are
and the width of the interstitial region should increds® nearly aligned(either parallel or antiparalleby this point,
include those additional ions that now meet the loweredhis regime lies beyond the temperature range of interest. The
threshold. This is a feature that is not incorporated into theuse of a constant parameter model to treat the polaron-
fixed width method, sinck remains constant as temperature polaron interaction in Ref. 21 is therefore justified.
varies. Unfortunately, this problem cannot be solved by mak-
ing h a variational parameter since, if this is the case, the V. POLARON-POLARON INTERACTION
minimum F function will only be achieved when the inter- ) . . . )
stitial region engulfs the polarons. One way to incorporate Given the polarpn—polaron interaction partition function,
the growth ofh with decreasing’ into the process would be Z3: @S expressed in Eq3.16, it follows that the thermal
to choose a new fixet for every T and set the temperature- average of the cosine of the angle between the two polaron
dependent threshold for inclusion in the interstitial region bySPINS can be obtained via
hand. However, this approach would require a prior knowl-<cost9 )
edge of the temperature dependencé,ofvhich we do not 1

have. 2 o

A more natural way to allow the threshold to vary with fo (X~ 1)e 0 DIkeTR (K x/ \2kgT)Nox dx
is to let the threshold be set by the geometry of the system. = > ,
The pola_ron—palr prob!em consists of two sources of rgdla]ly J ef‘](xzfl)MKBTF(K/X/ \/EkBT)NSX dx
symmetric wave functions separated by an interimpurity dis- 0

tance. Thus, the system has an innate bispherical geometry. If 5.
one were to define a region in space in which the wave :
functions of both carriers would surpass a given thresholdwhereF(z) is defined in Eq(3.7), x>~ 1=cos#;,, andN;
the geometry of the system and the spherically symmetrie= N;(h,p) is the number of magnetic ions in the interstitial
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h 2 _Mm—_—a 3 FIG. 7. Thermal average of the cosine of the angle between
15 E l 3 polaron spins{cosé,,), plotted versus temperature flg=20 and
1E 0 3 several values of the ratid’/J.
05 E 3
QE.....I 1 L thaagl 2 TN
. 0.001 "T 0.01 041 parameter valueg,cosé,,) is positive and neighboring po-
a5 E B n 'p"'s' '.i.' R larons tend to align. For large enougti/J, indirect ferro-
s E i¥s E magnetic carrier-ion-carrier interactions can dominate the di-
25 B N i E rect antiferromagnetic carrier-carrier interactions to yield a
P2 3 It 3 net ferromagnetic polaron-polaron interaction.
E I F
05 E 1 E VI. CONCLUSIONS
0 Eayiesl PP TN | PR
0.001 YT 00t 0.1 In this analysis of the magnetic behavior of diluted mag-
0001 P {0 SR netic semiconductors, we have proposed a simplified model
0.0008 :_X% Ve 3 to describe both the formation of bound magnetic polarons
P e | ] and the interactions between them. Approximating carrier
K' X I ] wave functions via sharp cutoffs that define polarons and
00004 0 ] interstitial regions between them, we have obtained a trac-
ooo0z | 0 3 table model and calculated the resulting partition function.
N T TN Utilizing a finite temperature variational approach, the model
0.001 [T 001 0.1 parameters have been optimized as functions of temperature.
0.1 —rTT — —rr —TTTT . . P
F T ) Hrrrmy ] At very high temperaturesTeK), the spins within the sys-
C K *VoIHme VS. T ] . .
oos | 3 tem are not aligned and the model parameters obtain the
0os E I 3 constant values for which the model wave functions best
K*vol [ i ] match the true wave functions. At lower temperaturis (
004 E <T<K), where the carrier-ion exchange interaction be-
002 L ] comes more significant, both polaron size and total intrapo-
C ] laron exchange energy increase logarithmically with decreas-
0.

ing T. However, throughout this intermediate temperature
range, the parameters controlling polaron-polaron interac-

FIG. 6. Temperature dependence of polaron-polaron interactio§ons, K, h, andp, remain constant &b varies. At very low
parameters obtained using both the fixed width and opt,ma||ytemperatures'l(<K ), even these interstitial region param-
spherical methods of constraining the minimization. All distances€ters would become temperature dependent. However, for

are in units ofag and all energies are in units ozf/a§~625 K.

reasonable carrier and ion densities, the polarons grow large

enough to touch the interstitial region, such that our model

region. As motivated above, the polaron-polaron interactiorceases to be valid, well before this regime is realized. Hence,
parametersK’ andN;, are approximately temperature inde- for temperatures of interest, a model in which the polaron-

pendent in the temperature range of interest. Thus, for varipolaron interaction parameters are constant is justified varia-
ous constant values df K’, andN;, the above expression tionally. Therefore, for reasonable valueskof/J we obtain,

can be evaluated numerically as a function of temperature tas in Ref. 21, a net ferromagnetic polaron-polaron interac-
reveal the temperature dependence of the interpolaron anglegon, in agreement with the experimental evidence for ferro-

The results have been plotted in Fig. 7 fég=20 and sev-
eral values of the ratid’/J. We see that for reasonable

magnetism in insulating doped DMS'’s.

The further growth of the polaron pair bubble, for
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<K', could be captured via a variational scheme employingurity sites due to nearby Mn, has been considered by An-
an appropriately generalized object. Starting at the point ofjelescu and Bhatt
polaron overlap, such an object, involving two or three varia-
tional parameters, should evolve from a “peanut shape,”
with cylindrical symmetry, to a sphere with the midpoint of
the two dopant sites as its center. This could be a promising The authors would like to thank NEC Research Institute
direction for future research. for allowing us to reproduce, in Fig. 1, the susceptibility data
Note addedRecently, a tendency toward ferromagnetismmeasured by J. Liu. This work was supported by NSF Grant
has been observed by other grodp$’ In addition, a sepa- Nos. DMR-9400362 and 9809483. A.C.D. acknowledges
rate mechanism for ferromagnetic alignment, resulting fronsupport from the Princeton Center for Complex Materials at
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