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Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors
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The magnetic behavior of insulating doped diluted magnetic semiconductors~DMS’s! is characterized by the
interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the
susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in con-
trast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors.
To explain this behavior, a model has been developed in which polarons interact via both the standard direct
carrier-carrier exchange interaction~due to virtual carrier hopping! and an indirect carrier-ion-carrier exchange
interaction~due to the interactions of polarons with magnetic ions in an interstitial region!. Using a variational
procedure, the optimal values of the model parameters were determined as a function of temperature. At
temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly
temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromag-
netic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This
result supports the experimental evidence for ferromagnetism in insulating doped DMS’s.
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I. INTRODUCTION

Diluted magnetic semiconductors~DMS’s! are semicon-
ductors in which a fraction of the nonmagnetic ions th
make up the crystal structure have been replaced by m
netic transition metal or rare earth ions. For example, sub
tuting Mn21 ions for some of the Cd ions in the nonmagne
semiconductor, CdTe, yields the diluted magnetic semic
ductor, Cd12xMnxTe. In doped DMS’s, the sizable exchan
interaction between magnetic ions and carriers~electrons or
holes! leads to unusual optical, magnetic, and transport pr
erties. Due to their potential for use in novel devices, wh
takes advantage of both their semiconducting and magn
properties, DMS’s have, of late, been the subject of mu
interest.1,2 Recently, the discovery3 of a ferromagnetic tran-
sition temperature of 110 K in a sample of Ga12xMnxAs
with x'0.05 has further enhanced both the experimenta4–8

and theoretical9–15 interest in DMS’s.
In the II-VI DMS Zn12xMnxTe (x<0.1), p-doped with

carriers at the level of 331017/cm3, where the system is in
the insulating state, measurements of susceptibility ve
applied magnetic field were conducted by Liu at the NE
Research Institute. The data, originally reported in an N
technical memo,16 have been reproduced in Fig. 1 for th
convenience of the reader. Note the double-step structur
the susceptibility and the two characteristic field scales in
cated by the inflection points of the curve. This form su
gests a dual magnetization mechanism whereby large co
tive spins align at fields (;300 G) too weak to magnetiz
the individual magnetic ions. Only at much larger fiel
(;15 000 G) do the individual Mn spins align. Within th
interpretation, the measured susceptibility can be viewed
the sum of two contributions: a collective spin term th
drops off around 300 G and an individual spin term th
drops off around 15 000 G. The dashed line in Fig. 1 ser
to separate these two contributions.

For thex regime in question, the Mn concentration is n
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enough to percolate, and the undoped system is not mag
cally ordered.~Spin glass type order of the undoped syste
has been observed in II-VI DMS’s for Mn concentratio
abovex50.2.17! Consequently, the unusual magnetic beha
ior is attributable to the presence of the dopants. This is
surprising, despite the low carrier concentration, because
Bohr radius that characterizes the carrier wave function
large compared to the Mn 3d wave function that charac
izes the extent of the Mn local moment. We interpret t
large collective spins, responsible for the double-step form
the susceptibility, to be bound magnetic polarons,17–19

formed by the exchange interaction between localized ca
ers and magnetic ions within the carrier orbit. Furthermore
fit of the polaron part of the the susceptibility data to a Cur

FIG. 1. Magnetic susceptibility (dM/dH) of Zn12xMnxTe (x
'0.1), p-doped at the level of 331017/cm3, measured at 2 K as a
function of applied magnetic field. Circles denote measured d
while the solid line is a fit to a dual magnetization model. T
dashed line separates the collective spin~polaron! contribution from
the individual Mn spin contribution. Data were obtained by L
~Ref. 16! at NEC Research Institute and is reproduced here with
permission of NEC.
©2002 The American Physical Society05-1
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Weiss form reveals a net ferromagnetic interaction betw
the polarons. This result is in stark contrast to that obser
for conventional nonmagnetic semiconductors in which v
tual carrier hopping invariably yields antiferromagnetism20

To explain both the formation of bound magnetic polaro
and the ferromagnetic nature of their interaction, we int
duced, in Ref. 21, a bound magnetic polaron model for in
lating doped DMS’s. This was further elucidated by a co
prehensive calculation in which we showed how t
parameters of the model could be obtained in an opti
manner using a variational principle,22 which we present be
low.

In Sec. II, we describe the system of two interacting p
larons in a diluted magnetic semiconductor and develo
simplified model to capture its behavior. In Sec. III, we c
culate, within our model, both the single-polaron partiti
function and the polaron-pair partition function. Making u
of these partition functions, we implement a variational p
cedure, in Sec. IV, to optimize the parameters of our mo
We find that while the model parameters describing sing
polaron formation are temperature-dependent, the pola
polaron interaction parameters can be treated as tempera
independent constants for magnetic ion and carrier dens
of interest. We make use of these results in Sec. V where
demonstrate how a ferromagnetic polaron-polaron inte
tion can be obtained. Conclusions are presented in Sec.

II. POLARON-PAIR SYSTEM AND MODEL

A. The system

To understand the magnetic behavior of diluted magn
semiconductors, we consider the polaron-pair system
consists of two carriers~electrons or holes! bound to impu-
rity sites~donors or acceptors! separated by an interimpurit
distance,R12, and the magnetic ions~usually spin 5/2 Mn!
that surround them. This complex system interacts via th
independent exchange interactions each of which have
ferent characteristic length scales.

The bound carriers interact directly via an impurit
impurity exchange interaction. Although this interaction c
be more complicated for the case of acceptors~for which the
valence band is degenerate!,23 we assume an impurity
impurity interaction of the Heisenberg type, as in the don
case, characterized by an exchange constantJ. This interac-
tion has been shown to be antiferromagnetic for donors
nonmagnetic semiconductors20 and is assumed to be so fo
carriers in diluted magnetic semiconductors as well.J is a
function of the interimpurity distance and the effective Bo
radius and varies approximately as

J;exp~22R12/aB!. ~2.1!

Were it not for the influence of additional interactions, th
direct exchange would yield a net antiferromagnetic
change interaction in DMS’s.

The second interaction at work in this system is the
change interaction between each of the carriers and the m
netic ions. This interaction is also antiferromagnetic and
proportional in magnitude toauCu2, wherea is the carrier-
23520
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ion exchange constant for the particular material andC is
the carrier wave function. For the purpose of this study,
will take C to be the hydrogenic wave function

C~r !5~paB
3 !21/2exp~2r /aB! ~2.2!

with an effective Bohr radiusaB . However, it should be
noted that for acceptors, in particular, the carrier wave fu
tions may be more complicated.24 We are also implicitly as-
suming that the binding energy of the impurity is large co
pared to the magnetic energy of the polaron, so magn
ordering does not change the carrier wave function.

Finally, there exists an additional antiferromagnetic e
change interaction, between the individual magnetic io
which has a characteristic length scale on the order o
magnetic ion radius (; Å). Since this length scale is sma
compared with others in the system~i.e., aB;10220 Å),
we neglect all but nearest-neighbor interactions and ass
that the nearest neighbors form inert singlets. Thus, ion-
interactions are considered only via the use of an effec
magnetic ion concentration,x̄[x(12x)12, in place ofx, the
true magnetic ion concentration.17

Hence, the polaron-pair system~given the assumptions
noted above! interacts via two antiferromagnetic exchan
interactions, a carrier-carrier interaction and a carri
magnetic ion interaction. These interactions are depicted
Fig. 2 and result in the Hamiltonian

H5a(
n

s1•SnuC1nu21a(
n

s2•SnuC2nu21Js1•s2 ,

~2.3!

wheren runs over all magnetic ions,C1n and C2n are the
carrier wave functions at the magnetic siten, s1 ands2 are
the carrier spins, and theSn are magnetic ion spins.

We consider this to be a polaron-pair system beca
carrier-ion interactions tend to antialign the spins of ma
netic ions in the vicinity of a carrier with respect to th
carrier spin. Thus, each carrier and the ions in its vicin
form a single magnetic polaron with a large collective sp
The polarons interact via both the direct antiferromagne

FIG. 2. Schematic of polaron-pair system.
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BOUND MAGNETIC POLARON INTERACTIONS IN . . . PHYSICAL REVIEW B65 235205
carrier-carrier exchange interaction and the indirect fer
magnetic exchange interaction that results when carrier
interactions cause both polarons to antialign with the sa
magnetic ions. Details of the competition between these
interactions will be explored as we study the nature o
simplified model.

B. The model

Although the true Hamiltonian provides the best descr
tion of the polaron-pair system, its solution is complicated
the fact that the magnitude of the carrier-ion interaction v
ies exponentially with carrier-ion distance~since carrier
wave functions are hydrogenic!. In order to obtain a more
detailed understanding of the polaron-pair system, it is n
essary to study a simplified, more tractable model. The m
obvious simplification would be to make a mean field a
proximation. However, it has been shown~see p. 429 of Ref.
17 as well as Refs. 18 and 19! that the mean field approxi
mation neglects the spin-spin correlations responsible for
laron formation and results in a spurious finite-temperat
divergence of the single polaron susceptibility. To obtain
tractable model that avoids the problems associated
mean field theory, we make the following two approxim
tions: the single-step approximation and the interstitial
gion approximation.

The single-step approximation entails replacing the car
wave functions by radial step functions that are constan
to a radiusR and zero beyondR. In this approximation, all of
the magnetic ions within a sphere of radiusR about a carrier
interact with that carrier with the same exchange constanK.
Thus, in this model, the definition of a polaron becom
clear. A polaron is composed of a single carrier and all of
magnetic ions within a radiusR of the impurity site to which
the carrier is bound. This approximation, first developed
Ryabchenko and Semenov,25 allows for the exact calculation
of the single-polaron partition function and makes t
polaron-pair case much more tractable.

To consider interactions between two polarons, we m
make the additional conjecture that there is an interst
region between the two polarons within which the magne
ions interact significantly with both carriers. Such a regi
must exist in order for the indirect ferromagnetic carrier-io
carrier interactions to be significant. In order to treat t
effects of these interstitial ions within our model, we assu
a cylindrically symmetric interstitial region within which
all of the magnetic ions interact with both of the carriers w
an exchange constant,K8. In this interstitial region ap-
proximation,26 carrier-ion exchange causes both carrier sp
to antialign with the interstitial spins and thereby align w
each other. Thus, an indirect source of carrier-carrier fe
magnetism is introduced into the model.

In the end, the above approximations yield the mo
Hamiltonian

Hm5K@~s1•S1!1~s2•S2!#1K8~s11s2!•S31Js1•s2 ,
~2.4a!
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S1[ (
Sphere no. 1

Si , S2[ (
Sphere no. 2

Sj , S3[ (
Interstitial

Sk ,

~2.4b!

where K is the intrapolaron ion-carrier exchange consta
K8 is the interstitial ion-carrier exchange constant,J is the
direct carrier-carrier exchange constant,s1 and s2 are the
carrier spins,S1 andS2 are the net polaron spins, andS3 is
the collective spin of the interstitial region.~At this point, we
specify only that the interstitial region have cylindrical sym
metry and be located between the polarons. However,
computational purposes, a particular shape must be cho
This matter is discussed further in Sec. IV B.! As is indicated
in Fig. 3 where the details of this model are presen
graphically, the essence of the polaron-polaron model
duces to a competition between the direct antiferromagn
carrier-carrier interactions characterized byJ and the indirect
ferromagnetic carrier-ion-carrier interactions characteriz
by K8. By showing that there are circumstances in which
ferromagnetic interaction dominates, a theoretical justifi
tion for DMS ferromagnetism can be obtained. By applyi
the ~Ryabchenko-Semenov! single-step approximation an
the interstitial approximation to the polaron-pair model, w
have effectively separated the polaron-pair system into
mechanism for polaron formation and another for polaro
polaron interaction. It is this separation that makes possib
calculation of the polaron-pair partition function.

III. PARTITION FUNCTION CALCULATION

To obtain the partition function for this problem, we mu
consider both the interacting part of the system~the carriers
and magnetic ions within the polarons and the intersti
region!, and the noninteracting part~those magnetic ions tha
are external to both the polarons and the interstitial regio!.
Thus, the full partition function takes the form,Z5ZppZext,
whereZpp is the polaron-pair partition function andZext is
the partition function of the non-interacting external io
spins.

Since the external ions are inert,Zext is just given by the
degeneracy of the magnetic ion spins. By taking the m
netic ions to be spin 5/2~as is the case for Mn!, each spin has
2s1156 orientations. Therefore,Zext56Next, where Next,

FIG. 3. Schematic of polaron-pair model.
5-3
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ADAM C. DURST, R. N. BHATT, AND P. A. WOLFF PHYSICAL REVIEW B65 235205
the number of external magnetic ions in the system, is eq
to the total number of ions in the system minus the num
of ions in the polarons and interstitial region. Note that wh
these noninteracting external spins contribute no energ
the system, they contribute nonzero entropy and there
cannot be neglected.

Due to the approximations made in developing our mod
the polaron-pair system separates into an individual pola
part and a polaron-polaron interaction part. Hence, as wil
explicitly shown, the polaron-pair partition function can b
expressed as the product of two single-polaron partit
functions and a polaron-polaron interaction partition fun
tion.

A. Single-polaron partition function

The single-polaron partition function can be calculat
exactly for the single-step model that we have adopted. F
single polaron, the Hamiltonian is

H5lsKs•S5
lsK

2
@~s1S!22s22S2#, ~3.1!

wheres is the carrier spin,S is the sum of the magnetic io
spins within the polaron, andls is a placeholder constan
that has been inserted for notational convenience and
eventually be set equal to one. For a givenS, the total spin
can take two values:S1 1

2 or S2 1
2 . The former yields an

energy and degeneracy

E15
lsKS

2
, g152~S11!, ~3.2!

while the latter yields

E252
lsK~S11!

2
, g252S. ~3.3!

Thus, the single-polaron partition function is given by

Zpol5Tr@e2bH#5(
S

D~S!@g1e2bE11g2e2bE2#,

~3.4!

whereD(S) is the number of ways in which the ion spin
can be arranged to give a collective spinS. Defining Dz(S)
to be the number of ways that the ions can be arrange
give a collectivez component of spin equal toSand doing a
bit of algebraic manipulation, we obtain

Zpol52F11~eg21!
]

]gG (
S525N1/2

5N1/2

Dz~S!cosh~gS!,

~3.5!

whereg[lsbK/2 andN1 is the number of ion spins within
the polaron. Using the definition of ad function,Dz(S) can
be written as

Dz~S!5Tr dS S2(
j 51

N1

Sj
zD 5E

2`

` dl

2p
eilS@6F~ il!#N1,

~3.6!
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F~x!5
1

6
@e5x/21e3x/21ex/21e2x/21e23x/21e25x/2#.

~3.7!

For largeN1, the sum overScan be converted to an integra
and the partition function can be written as

Zpol52F11~eg21!
]

]gG
3E

2`

`

dSE
2`

` dl

2p
~egS1e2gS!eilS@6F~ il!#N1.

~3.8!

Continuing to the imaginary temperature axis, using the d
nition of a d-function, and continuing back to the real tem
perature axis, we obtain

Zpol56N1Z1 , Z152F11~eg21!
]

]gGF~g!N1, ~3.9!

where we have separated out the factor of 6N1, which will be
canceled by part ofZext in the full partition function. Note
that this expression has the correct infinite temperature l
sinceZpol(T→`)→2(6)N1, which is the partition function
for a noninteracting system ofN1 spin-5/2 magnetic ions and
one spin-1/2 carrier.

B. Polaron-Pair partition function

The exact quantum mechanical calculation of the polar
pair partition function is significantly more complicated tha
the single-polaron case. However, at low temperatures
semiclassical technique introduced in Ref. 21 can be use
find Zpp throughout the temperature range of interest. S
cifically, we must make the assumption that the tempera
is low enough such that the ion spins within the polarons a
interstitial region are well enough aligned that the two p
laron spins,S1 andS2, and the interstitial region spin,S3, are
large enough to be treated as classical magnetic mome
Thus, we make a semiclassical approximation in whichS1 ,
S2, and S3 are treated as classical spins while the carr
spins,s1 and s2, are treated quantum mechanically. For t
case we are interested in, appropriate for light to modera
doped II-VI-based DMS’s, we expect thatK8,J!K. Conse-
quently, we will first find the partition function for the cas
of noninteracting polarons (K85J50) and then include the
effects of nonzeroK8 andJ as first order perturbations. Sep
rating the Hamiltonian into three parts, we writeH5H0
1H11H2, where

H05K@ls1~s1•S1!1ls2~s2•S2!#,

H15J~s1•s2!, ~3.10!

H25K8@lc1~s1•S3!1lc2~s2•S3!#,

and we have introduced four new constants,ls1 , ls2 , lc1,
andlc1. While these constants will be set equal to unity
5-4
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BOUND MAGNETIC POLARON INTERACTIONS IN . . . PHYSICAL REVIEW B65 235205
the end of our calculation, they act as placeholders that
be useful when we optimize our model parameters in Sec

In the noninteracting polaron limit (K85J50), the
polaron-pair partition function is simplyZpp56N11N2Z1Z2,
whereZ1 and Z2 are the single-polaron partition function
given by Eq.~3.9! with g15ls1bK/2, andg25ls2bK/2 re-
spectively. In the semiclassical limit, the wave functions
the noninteracting polaron pair area(1)a(2), a(1)b(2),
b(1)a(2), andb(1)b(2), wherea is the total spinS11/2
state of the single polaron~carrier and magnetic ions aligned!
and b is the S21/2 state~carrier and magnetic ions ant
aligned!. At the low temperatures for which the semiclassic
approximation is valid, only the ground state,b(1)b(2), is
significantly occupied. Hence, theK8 andJ perturbations are
taken to be the diagonal matrix elements in this ground st

Therefore, for interacting polarons with nonzeroK8 andJ,
we write

MJ5^b~1!b~2!uH1ub~1!b~2!&5
J

4

S1•S2

S1S2
5

Jm12

4
,

~3.11!

MK85^b~1!b~2!uH2ub~1!b~2!&

52
K8

2 Flc1S2S11lc2S1S2

S1S2
•S3G52

V

b
m3S3 ,

~3.12!

where

V5
bK8

A2
Alc1

2 1lc2
2

2
1lc1lc2m12, ~3.13!

m12 is the cosine of the angle betweenS1 andS2, andm3 is
the cosine of the angle betweenS3 and thez axis. Making
use of these matrix elements, the polaron-pair partition fu
tion can be written as

Zpp5Tr@e2b(H01MJ1MK8)#

5E d3S1d3S2d3S3D~S1!D~S2!D~S3!

3eg1S11g2S22bJ/41Vm3S3. ~3.14!

Performing the indicated integration and doing a bit of alg
bra this becomes

Zpp56N11N2Z1Z2E
0

A2
e2

bJ(x221)
4 @6F~V!#N3x dx,

~3.15!

wherex2511m12, N3 is the number of magnetic ion spin
within the interstitial region, and we have identifiedZ1 and
Z2 as the single-polaron partition functions. Notice that
this approximation, the partition function does separate in
polaron formation factor and a polaron-polaron interact
factor. Multiplying this result by the partition function fo
external ion spins,Zext56Ntot2N12N22N3, and dropping the
constant factor of 6Ntot, we obtain the full partition function
23520
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V.

f

l

e.

c-

-

a
n

Z5Z1Z2Z3 , Z35E
0

A2
e2bJ(x221)/4F~V!N3x dx,

~3.16!

whereZ3 is the polaron-polaron interaction part.

IV. VARIATIONAL OPTIMIZATION OF MODEL
PARAMETERS

Given the partition function calculated in the precedi
section, we proceed to optimize the parameters of our mo
via a variational approach. AtT50, optimal values of the
model parameters could be obtained by minimizing the
pectation value of the model Hamiltonian. AtTÞ0, we adopt
an analogous variational approach described by Feynm27

for which the quantity to be minimized is theF function

F[Fm1^H2Hm&, ~4.1!

whereHm is the model Hamiltonian andH is the true Hamil-
tonian. The averagê•••& is taken over the states ofHm . F
can be shown27 to be an upper bound on the true free ener
F of the HamiltonianH at the temperature T in question. B
minimizing F with respect to the model parameters, optim
values can be determined as a function of temperature.

As will be shown explicitly in Sec. IV B, the totalF
function separates into the sum of two single polaron fu
tions and a polaron-polaron interaction function. Therefo
we shall optimize the single-polaron parameters first a
then consider the interaction parameters.

A. Single-polaron parameter optimization

The single-polaronF function can be obtained by ex
pressing^Hm&, ^H&, andFm in terms of the single-polaron
partition function,Z1. Recall that the model Hamiltonian ha
the form

Hm5lsK(
j

s•Sj , ~4.2!

where indexj runs over all magnetic ion spins,Sj , within a
sphere of radiusR about the carrier spin,s, and ls is a
constant which will soon be set equal to unity. Taking t
thermal average over the eigenstates ofHm yields that

^Hm&5lsKN1^s•Sj&52
ls

b

] ln Z1

]ls
, ~4.3!

whereN1 is the number of magnetic ions within the polaro
The true Hamiltonian has the form

H5a(
n

s•SnuCnu2, ~4.4!

where the indexn runs over all magnetic ion spins. There
fore, noting that̂ s•Sn& is only nonzero for ion spins within
the polaron, we find that

^H&5a(
j

uC j u2^s•Sj&52
gs

b

] ln Z1

]ls
, ~4.5!
5-5
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where

gs5
a

KVs
E

S
d3r uC~r !u2 ~4.6!

and the integral is over a sphere of radiusR and volumeVs .
Finally, since the free energy is

Fm52
1

b
ln Z1 , ~4.7!

we can combine the expressions above~setting ls51) to
obtain the single polaronF function

F152
1

b F ln Z11~gs21!
] ln Z1

]ls
G , ~4.8!

whereZ1 is given by Eq.~3.9!. By minimizing F1 with re-
spect to the parametersR andK, the optimal values of thes
parameters can be found.

By performing such a procedure numerically over a ran
of temperature values, the optimal values of the single
laron parameters were determined as functions of temp
ture. The results of this optimization for a magnetic ion de
sity of 5 ions per sphere of radius 1aB are plotted in Fig. 4.

In the high-temperature limit (T@K), the exchange inter
action between the carrier and the magnetic ions within
polaron is insignificant compared to temperature. Thus,
magnetic ion spins are not aligned and there is no differe
between the free energy of a spin within the polaron and
of an external spin. As a result, theF function is minimized
when the model carrier wave function best matches the
carrier wave function. This matching of a step of widthR and
height K to a hydrogenic wave function yields the optima
temperature-independent values ofR and K. Thus, as is
shown in Fig. 4,R, K, andKVs ~the total exchange energy!
are temperature-independent in the high-temperature reg

For low temperatures (T!K), the carrier-ion exchange
interaction is significant compared to temperature. Thus,
magnetic ion spins located near the carrier antialign with
carrier spin. In this situation, the inclusion of an addition
ion within the polaron entails a gain in exchange ener
However, since the number of external spins decrease
one, there is also a decrease in the entropy of free sp
Therefore, the optimalR is determined by the balance o
exchange energy and the entropy of free spins. AsT de-
creases, the exchange energy gained by increasing the s
the polaron becomes more valuable. Thus, as is show
Fig. 4,R increases as ln10(1/T) asT drops. AsR increases,K
must decrease in order to maintain the match between
model step wave function and the true wave function. Th
K decreases with decreasingT. Finally, despite the decreas
in K, the total exchange energy~which is proportional to
KVs) increases asT drops and the spins align.

It is interesting to note that in this problem, the variation
principle leads one to match the Hamiltonian athigh T, while
entropy-energy balance determines the parameters atlow T.
This is just the converse of what one expects in most pr
lems.
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B. Polaron-pair parameter optimization

Just as for the single polaron, we can obtain the polar
pairF function by expressinĝHm&, ^H&, andFm in terms of
the full partition function,Z. For the polaron pair, our mode
Hamiltonian is

Hm5ls1K(
i

s1•Si1ls2K(
j

s2•Sj1lc1K8(
k

s1•Sk

1lc2K8(
k

s2•Sk1Js1•s2 , ~4.9!

where indicesi andj run over the magnetic ions in polaron
and 2, respectively,k runs over ions in the cylindrically sym
metric interstitial region, and thel ’s are constants that wil
soon be set equal to one. Taking the thermal average
yields

FIG. 4. Temperature dependence of single-polaron parame
All distances are in units ofaB and all energies are in units o
a/aB

3;625 K.
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^Hm&5ls1KN1^s1•Si&1ls2KN2^s2•Sj&1lc1K8N3^s1•Sk&

1lc2K8N3^s2•Sk&1J^s1•s2&, ~4.10!

whereN15N2 are the number of ions in polaron 1 and
andN3 is the number of ions in the interstitial region. Notin
that

^s1•Si&5^s2•Sj&52
1

KN1

1

b

] ln Z

]ls1
, ~4.11!

^s1•Sk&5^s2•Sk&52
1

K8N3

1

b

] ln Z

]lc1
,

and setting thel ’s equal to one, this becomes

^Hm&52
2

b F] ln Z

]ls1
1

] ln Z

]lc1
G1J^s1•s2&. ~4.12!

Since the true Hamiltonian has the form

H5a(
n

s1•SnuC1nu21a(
n

s2•SnuC2nu21Js1•s2

~4.13!

and we know that̂s•Sn& is only nonzero for ion spins within
the polarons or interstitial region

^H&5a^s1•Si&(
i

uC1i u21a^s1•Sk&(
k

uC1ku2

1a^s2•Sj&(
j

uC2 j u21a^s2•Sk&(
k

uC2ku2

1J^s1•s2&. ~4.14!

Again making use of Eq.~4.11!, this becomes

^H&52
2

b Fgs

] ln Z

]ls1
1gc

] ln Z

]lc1
G1J^s1•s2&, ~4.15!

wheregs is defined in Eq.~4.6! and we have now defined

gc5
a

KVc
E

C
d3r uC1~r !u2, ~4.16!

where the integral is over the cylindrically symmetric inte
stitial region of volumeVc . Subtracting Eq.~4.12! from Eq.
~4.15! and adding the free energy,Fm521/b ln Z, we obtain
the polaron-pairF function

F52
1

b F ln Z12~gs21!
] ln Z

]ls1
12~gc21!

] ln Z

]lc1
G ,
~4.17!

whereZ is the partition function given by Eq.~3.16!. SinceZ
is of the formZ5Z1Z2Z3, it is clear thatF is of the form
F5F11F21F3 and therefore separates into a polaron f
mation term,F11F252F1, which we developed in the pre
ceding section, and a polaron-polaron interaction term
23520
-

F352
1

b F ln Z312~gc21!
] ln Z3

]lc1
G . ~4.18!

Since these terms share no variational parameters,
polaron-pair model can be optimized by usingF1 to optimize
K andR ~as we did in the preceding section! and usingF3 to
optimizeK8 and the parameters describing the geometry
the interstitial region.

Before we can proceed to minimizeF3, we must define a
specific geometry for the interstitial region between the t
polarons. The bispherical geometry of the problem sugg
that a natural choice would be the spherical lens formed
the intersection of two spheres centered on the two polar
However, such a shape can be completely specified b
single parameter, the lens widthh. In order to provide an
additional degree of freedom within the model, we will u
the slightly more general ellipsoidal lens formed by the
tersection of two ellipsoids centered on the polarons. In t
manner, the interstitial region can be specified by two para
eters: the lens width,h, and the lens radius,r. The details of
this shape are depicted in Fig. 5.

The task of optimizing the model parameters,K8, h, and
r, is complicated in two ways. First of all, unlike the singl
polaron case where both the partition function,Z1, and the
geometrical factor,gs , could be obtained analytically, bot
the interaction partition function,Z3, and the interstitial geo-
metrical factor,gc , must be calculated numerically. Th
complicates the numerics but poses no fundamental prob

The second complication requires a bit more attenti
Naively one would expect that by blindly varying these thr
parameters untilF3 is minimized, the optimal values of thes
parameters could be obtained. However, upon closer exa
nation, it becomes clear that this is not the case. In perfo
ing this optimization of the interstitial region parameters, it
our objective to determine the parameters that best match

FIG. 5. Schematic of ellipsoidal lens-shaped interstitial regi
5-7
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true interaction betweenboth carriers and the magnetic ion
in the interstitial region. However, minimizing theF func-
tion merely yields the configuration that, overall, is mo
energetically favorable. As a result, if all three paramet
are varied, the minimumF3 will be achieved when the in
terstitial region has totally engulfed both of the polarons.
this configuration, the interstitial region contains ions that
very close to the carriers and therefore experience large
change interactions. However, these ions that interact v
strongly with one of the polarons barely interact at all w
the other. Thus, the result of an unconstrained minimiza
does not yield an interstitial region with whichboth of the
carriers interact strongly. Therefore, to obtain sensible
sults, the minimization of the interactionF function must be
constrained. Two methods of constraining the minimizat
have been developed: the fixed width method and the o
mally spherical method.

The interstitial region in which both carrier wave fun
tions are significant must be concentrated about the p
halfway between the two polarons. Thus, one method of c
straining the minimization of theF function is to fix the lens
width, h, to a set value. Using this fixed width method, t
only parameters that are allowed to vary are the interst
interaction strength,K8, and the lens radius,r. For a given
temperature, theF function will be minimized for some op
timal values of these two parameters. Thus, by performin
numerical minimization for a range of temperature valu
the temperature dependence ofK8 andr can be determined

In the fixed width model, the fixed value ofh is chosen
such that both carrier wave functions will be ‘‘significan
within the interstitial region. In a sense, the choice of a p
ticular h defines the threshold of exchange interact
strength with both carriers that is required for an ion to
included in the interstitial region. However, as temperat
changes, this threshold should change as well since all e
gies in the system are measured with respect to tempera
Thus, as temperature drops, the threshold should also
and the width of the interstitial region should increase~to
include those additional ions that now meet the lowe
threshold!. This is a feature that is not incorporated into t
fixed width method, sinceh remains constant as temperatu
varies. Unfortunately, this problem cannot be solved by m
ing h a variational parameter since, if this is the case,
minimum F function will only be achieved when the inte
stitial region engulfs the polarons. One way to incorpor
the growth ofh with decreasingT into the process would be
to choose a new fixedh for everyT and set the temperature
dependent threshold for inclusion in the interstitial region
hand. However, this approach would require a prior kno
edge of the temperature dependence ofh, which we do not
have.

A more natural way to allow the threshold to vary withT
is to let the threshold be set by the geometry of the syst
The polaron-pair problem consists of two sources of radia
symmetric wave functions separated by an interimpurity d
tance. Thus, the system has an innate bispherical geomet
one were to define a region in space in which the wa
functions of both carriers would surpass a given thresh
the geometry of the system and the spherically symme
23520
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nature of the wave functions would dictate that this region
the intersection of two spheres centered at the car
sites—a spherical lens. Therefore, the natural shape for
interstitial region is a spherical lens. This fact provides t
condition for setting the width of the interstitial region i
what we call the optimally spherical method. For a giv
temperature, the fixed width,h, is set to be that for which the
minimization of theF function automatically yields a value
of the lens radius,r, for which the ellipsoidal lens become
spherical. Thus, the result is a spherical lens interstitial
gion in which the lens radius is the energetically optim
radius for the given width. As we will show, this techniqu
yields the proper increase inh as temperature drops.

Using both the fixed width approach~with h set to 2aB)
and the optimally spherical approach, the polaron-pola
interaction parameters,K8, h, andr, were optimized as func-
tions of temperature. The results of this optimization for
magnetic ion density of 5 ions per sphere of radius 1aB and
a carrier density such thatR1256aB are plotted in Fig. 6.
Although the parameter values are plotted over a wide ra
of temperatures, they are only meaningful for temperature
which the polaron-pair model is valid. Clearly, once the p
larons have increased to a size such that they touch the
terstitial region, the polaron-pair model is no longer val
This impact between the polarons and the interstitial reg
occurs atT5Timpact where 2R1h5R12. In Fig. 6, the tem-
perature of impact has been denoted by a vertical dashed
for both the fixed width and the optimally spherical cas
Note that for either method,Timpact is found to be approxi-
mately equal to 0.005a/aB

3 or around 3 K for typical ion and
carrier densities. SinceK8(Timpact)!Timpact, this cutoff tem-
perature lies within the high-temperature regime (T@K8)
where the interstitial ion-carrier interactions are insignifica
compared to temperature. Hence, for temperatures where
model is well defined, all of the polaron-polaron interacti
parameters are constant. For very low temperaturesT
!K8), our results are not quantitative, but since polarons
nearly aligned~either parallel or antiparallel! by this point,
this regime lies beyond the temperature range of interest.
use of a constant parameter model to treat the pola
polaron interaction in Ref. 21 is therefore justified.

V. POLARON-POLARON INTERACTION

Given the polaron-polaron interaction partition functio
Z3, as expressed in Eq.~3.16!, it follows that the thermal
average of the cosine of the angle between the two pola
spins can be obtained via

^cosu12&

5

E
0

A2
~x221!e2J(x221)/4kBTF~K8x/A2kBT!N3x dx

E
0

A2
e2J(x221)/4kBTF~K8x/A2kBT!N3x dx

,

~5.1!

whereF(z) is defined in Eq.~3.7!, x2215cosu12, andN3
5N3(h,r) is the number of magnetic ions in the interstiti
5-8
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BOUND MAGNETIC POLARON INTERACTIONS IN . . . PHYSICAL REVIEW B65 235205
region. As motivated above, the polaron-polaron interact
parameters,K8 andN3, are approximately temperature ind
pendent in the temperature range of interest. Thus, for v
ous constant values ofJ, K8, andN3, the above expressio
can be evaluated numerically as a function of temperatur
reveal the temperature dependence of the interpolaron a
The results have been plotted in Fig. 7 forN3520 and sev-
eral values of the ratioK8/J. We see that for reasonab

FIG. 6. Temperature dependence of polaron-polaron interac
parameters obtained using both the fixed width and optim
spherical methods of constraining the minimization. All distanc
are in units ofaB and all energies are in units ofa/aB

3;625 K.
23520
n

ri-

to
le.

parameter values,̂cosu12& is positive and neighboring po
larons tend to align. For large enoughK8/J, indirect ferro-
magnetic carrier-ion-carrier interactions can dominate the
rect antiferromagnetic carrier-carrier interactions to yield
net ferromagnetic polaron-polaron interaction.

VI. CONCLUSIONS

In this analysis of the magnetic behavior of diluted ma
netic semiconductors, we have proposed a simplified mo
to describe both the formation of bound magnetic polaro
and the interactions between them. Approximating car
wave functions via sharp cutoffs that define polarons a
interstitial regions between them, we have obtained a tr
table model and calculated the resulting partition functio
Utilizing a finite temperature variational approach, the mo
parameters have been optimized as functions of tempera
At very high temperatures (T@K), the spins within the sys-
tem are not aligned and the model parameters obtain
constant values for which the model wave functions b
match the true wave functions. At lower temperatures (K8
!T!K), where the carrier-ion exchange interaction b
comes more significant, both polaron size and total intra
laron exchange energy increase logarithmically with decre
ing T. However, throughout this intermediate temperatu
range, the parameters controlling polaron-polaron inter
tions,K8, h, andr, remain constant asT varies. At very low
temperatures (T!K8), even these interstitial region param
eters would become temperature dependent. However,
reasonable carrier and ion densities, the polarons grow l
enough to touch the interstitial region, such that our mo
ceases to be valid, well before this regime is realized. Hen
for temperatures of interest, a model in which the polaro
polaron interaction parameters are constant is justified va
tionally. Therefore, for reasonable values ofK8/J we obtain,
as in Ref. 21, a net ferromagnetic polaron-polaron inter
tion, in agreement with the experimental evidence for fer
magnetism in insulating doped DMS’s.

The further growth of the polaron pair bubble, forT

n
y
s

FIG. 7. Thermal average of the cosine of the angle betw
polaron spins,̂ cosu12&, plotted versus temperature forN3520 and
several values of the ratioK8/J.
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!K8, could be captured via a variational scheme employ
an appropriately generalized object. Starting at the poin
polaron overlap, such an object, involving two or three var
tional parameters, should evolve from a ‘‘peanut shap
with cylindrical symmetry, to a sphere with the midpoint
the two dopant sites as its center. This could be a promis
direction for future research.

Note added. Recently, a tendency toward ferromagnetis
has been observed by other groups.28,29 In addition, a sepa-
rate mechanism for ferromagnetic alignment, resulting fr
the strong local exchange fields experienced at the two
v.

t-

H.

A
H.

23520
g
f
-
,’’

g

-

purity sites due to nearby Mn, has been considered by
gelescu and Bhatt.14
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