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Waveguides of defect chains in photonic crystals
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We develop a two-stage multiple-scattering formalism for the calculation of photonic bands generated by
chains of defects in photonic crystals consisting of nonoverlapping spheres, and for the calculation of the
transmission of light through straight and bent waveguides of such chains. We apply the method to a specific
example which demonstrates that transmission through a bent waveguide occurs with the same efficiency as for
a straight waveguide.
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[. INTRODUCTION gator functions of the system containing the defects, again
directly in real space, as only a small number of nearest

The most desirable property of photonic crystals is theneighbors suffice to give good convergence of the lattice
presence of an absolutemnidirectional photonic band gap sums involved. The restriction of the multiple-scattering
which in turn promises important applications in equations to only a few neighbors gives a TB character to the
optoelectronicd™* One possible application of photonic Method. We note that, due to the rapid decay of the propa-
crystals, namely, the effective and low loss guiding of pho-gator functions, most of the matrices involved in the compu-
tons in integrated optical devices, has also received considation are sparse; exploiting this we have been able to de-
erable attention in recent years. So far, most theoretical an¢elop an ordeN method for the study of photonic crystals
experimental efforts have been focused on two-dimensiona¥ith defects(the computer time scales linearly with the num-
(2D) photonic-crystal-based Waveguia_ejé but work on berN of the inequivalent defecksin Sec. Il we describe the
three-dimensional (3D) structures has also been method with the emphasis placed on the problem of
reportedt®—2° One way of waveguiding in photonic crystals Waveguiding. In Sec. Ill we present numerical results for the
is that of a coupled-defect waveguide: a single defect give§efect modes and the transmission properties of a given
rise to a resonance state of the electromagriefid) field, at waveguide.

a frequency within the frequency gap of the crystal, localized

about the defect. In a periodic arrangement of defeidfect Il. THEORY

chain, the interaction of neighboring defects creates a nar-
row band of stategsdefect bangl around the resonance fre-
quency of the single defect, allowing propagation of the field We consider a harmonic, monochromatic EM wave of an-
along the chain. Due to the nature of this band, it can be@ular frequencys which is incident on a sphere embedded in
studied by means of a tight-bindin@B) description:®2° a homogeneous medium of different dielectric functien,

From the computational methods available for studyingThe sphere is centered at the origin of coordinates. The
3D photonic crystals of nonoverlapping spherical scatterersglectric-field component of the EM wave has the form
such as colloidal crystals, opals, metallodielectric crystalsE(r;t)=ReE(r)exp(—iwt)]; outside the spherds(r) is ex-
etc., those based on the Korringa-Kohn-RostokéKR)  panded in spherical waves as folloygee, e.g., Refs. 23 and
method are the most accurate and computationally efficieng8):
whether in the traditiond? or in the on-shell .
formulation?32*Extensions of the KKR method to deal with B
photonic crystals containing single deféctand randomly E(”‘; m:E_|
distributed defects within  the  coherent-potential
approximatiof®?’ have also been formulated.

In this paper we present a two-stage multiple-scattering
KKR method for the treatment of single defects, clusters of
defects, and defect waveguides in photonic crystals consist-
ing of nonoverlapping spheres in a homogeneous host me-
dium. We first calculate the propagator functions of the pe- ) ) . ) .
riodic system(reference systejn If the reference system Where+q: Vewlc, ¢ belng the velocity of light in vacuunj;
under consideration does not support states of the EM fiel@nd h;" are the sprlencal Bessel and Hankel functions, re-
over a range of frequencies, as is the case of a photonigpectively; andX,(r) are vector spherical harmonics. The
crystal for frequencies within an absolute band gap, thexssociated magnetic-field component of the EM wave can be
propagators decay exponentially with the distance and can babtained through Maxwell equations and we need not write it
calculated directly, without the need of elaborate Ewald-typedown explicitly. The first two terms of Edq1) represent the
transformations. In the second stage we calculate the propéicident (incoming wave on the sphere and the last two

A. Multiple-scattering equations
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represent the scatterédutgoing wave. In the remainder of

the paper we will use the composite indexto describe
collectively the indicesmP with P=E,H. By applying the

proper boundary conditions at the surface of the sphere, we

obtain a relation between the expansion coefficients of the, y
incident and the scattered fields, as follows,

al=T a?, vy

whereT, are the elements of a scattering matrix fhatrix). X
Explicit forms for theT, of a single sphere can be found FIG. 1. A diamond structure of spheres. A linear chain of defect

elsewheré” spheres(black spheresis introduced along th¢110] direction
Let us now consider an assembly of nonoverlapping,nich is taken as tha axis.

spheres centered at sitBs in a homogeneous host medium.
An outgoing wave abouR;. [the wave field is described by 4 frequencies below its bulk plasma frequency, in which
terms similar to the last two of Eql) with coeff|C|entsbL ]
can be written as an incoming wave expanded aBputhe
wave field is described by terms similar to the first two of
Eq. (1) with coefficientsb’| (i")] by means of the equation

caseQ,_L, decay exponentially with the distanteThe lat-

tice sum in Eq.(4) may also be rapidly convergent in the
case of a photonic crystal which possesses an absolute fre-
quency gap because in this case the propagator functions

LL, decay exponentially with distance at frequencies which
= 2 Q._._r Lo (3 lie within the absolute gafsee Sec. Il

If we know the propagator funcuorts[ﬂ, for an arbitrary

sa/stem of nonoverlapping spheres in a homogeneous host

medium (reference systejrwe can obtalnDLL, for a per-
turbed systenta number of spheres of the reference system
'are replaced with spheres of different size and/or dielectric

Explicit expressions for the so-called free-spashich here
means a homogeneous host medium characterized by a re
dielectric function propagator functionsQ:_'L, , for the EM
field can be found in Ref. 26. We note that, by definition

Q'L',_ equals zero for=i’. function) by solving the following equation:

We now introduce the propagator functiob%i, for the
assembly of spheres in the host medium, which give the DLL,—D’LE, + > D[E,,AT'L,,D'L,}L,, (5)
coefficients[in an expansion such as that of Ed)] of the i"L

wave incident on the sphere Bf, due to an outgoing wave \here AT! s the difference betweefl of the perturbed

from the sphere aR;., noting that an outgoing wave from system and’ri of the reference system. Obviously, the lattice
thei’th sphere can reach tl#h sphere directly, or indirectly, Tsum of Eq. (5) is restricted to the sites where spheres of the

after SC?‘“e””_g any number of times by any F‘“mber Oheference system have been substituted. In the absence of
spheregincluding those aR; andR;/). One can easily prove

by iteration the following equation: propagating states in the reference systa‘ﬂ,, decay ex-
ponentially with distance and, therefore, the lattice sum of
i i imi Eg. (5 can be truncated to a few nearest neighbors around
LL’_QLL’+ ”2” QLL”TL”DL”L’ ' @ the siteR; .
WhereTi_ are the elements of the matrix for the sphere at B. A defect chain

R;. For a periodic arrangement of spheres, one usually cal- . . -
! P 9 orsp y We consider a 3D photonic crystal consisting of nonover-

culates the Fourier transform ﬁT'L'L, , denoted byD | /(k) lapping spheres centeredR= R, +t,, whereR,, is a(Bra-

(k is the Bloch wave vectgr and mtegrates the latter over yajg) lattice vector and, a nonprimitive vector within the

the Brillouin zone(BZ) to obtamDLL, . However, unless the unit cell of the crystal; we may have more than one sphere in
spheres are absorbing, the numerical calculation over the Bthe unit cell in which case we have a corresponding number
requires a very dense meshlopoints due to singularities in  ©f t, vectors. In what follows=(n,«). We assume that the
D, .(k).2"?*30n the other hand, as a rule, the caIcuIauonphOtonIC crystal possesses an absolute frequency gap. By
of DlI_IL’ on the basis of Eq4) involves a summation over a substituting an infinite number of spheres along a specific

| ber of latti ites b he crystallographic direction of this crystahost crystal, with
arge number of lattice sites because the free-space propadgsheres of different radius and/or dielectric functibot the

tor functions,Q:_',_,, decay slowly with the distancéR; same for all defecjswe construct a periodic linear chain of
—R;/|. But there are exceptions to this rule: the lattice sumdefects inside the crystdbee Fig. 1 Evidently all defect
of Eqg. (4) can be truncated to a relatively small number ofspheres are situated at the same positjpwithin the unit
nearest neighbors around the dRefor frequencies within a  cell of the crystal, which we denote as=0. The above may
region over which EM waves do not propagate in the hosbe seen as a system with one-dimensiqi&l) periodicity
medium. This is true, for example, in the case of a metal hostalong the defect chajrwith the defect spheres &,=nR
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where R denotes the period of the chain. The propagator al
functions of the perturbed crystal shown in Fig. 1 can be
obtained from those of the host crystal, considered as the M.
reference system, through E(). Puttingi=(n,0)=n by <
which we denote tha@th sphere of the chain, and similarly 3
i’=(n’,0)=n’, we have 2r .
M
! ’ " "nar 1 L
DIY,=D{" + X D" AT.LDL,, (6) 4 .
n”,L”
0

whereAT, is the difference betweenR, of the defect spheres — = — —

andT| of the host ones; evidently the sum oveérincludes I X M I

theTsiheresdof the Cha]!nhonlzﬁ/b iodici fth d FIG. 2. Projection of the frequency band structure, of a crystal
aking advantage of the periodicity of the system e'consisting of dielectric sphereg{=12.965/a,=0.25) arranged as

scribed by Eq.(6), we multiply Eg. (_6) by exg —ikR(n in a diamond structure in aire&1), on the SBZ of the(001)
—n')] and take the sum over’, to obtain surface(shown in the inset

DLL,(k)=DrLL,(k)+2 DrLL,,(k)ATL,,DL,,L,(k), (7) in order to calculat@fﬁ, from Eq.(12). Since we consider
L only first-neighbor interaction in the defect chain, Mema-
where trix has a block-tridiagonal form: only the diagonali")
and the neighboring upper and lower diagonal blocKs (
=ix1) have nonzero elements. In this casM *(1)’C'Ll,,
(Mfl)['f, can be calculated in such a way that the time
required for their computation scales linearly with the num-
ber N of defect spheres in the chaif.
From D'C'Ll we obtain the matrix elements of the scatter-

> [6u— D} (KATLID(k)=D} (k). (9 ing path operator
L//

Di(K=3 exd ~ikR(n—n)ID{[" (8

with a similar expression fob, . (k). We rewrite Eq(7) as

N1 _
The poles ofD/(k), for givenk, determine the eigen- T =

frequenqes 01: the EM field associated with the chain for thlsWhich gives thel. component of the scatterddutpuy EM
k. And sinceD (k) has no poles over the frequency gap of

> : ¢ wave from the lastNth) sphere due to an incidetihput) L’
the unperturbed crystal, these eigenfrequencies are given Ryaye on the first defect sphere.

the roots of

T.DN T, (13

detﬁLL'_D[LI(k)ATL’]:O (10) I1l. APPLICATIONS
for everyk in the 1D BZ: — w/R<k= /R We consider a 3D photonic crystal consisting of nonov-
: . erlapping spheres of dielectric constant=12.96 in air
=1). The spheres are arranged as in a diamond crystal of
gttice constant. We view the crystal as a stack of layers

Let us now consider a finite chain consistingMfdefect
spheres, obtained by the replacement of spheres of the h

crystal; the defect chain need not be linear in the general ca A
parallel to thexy plane. The periodicity of the layers parallel

i’ ri i
(see below. If we setM |, =46,/ 8i—D |, AT ,, We can {4 this plane is described by a 2D square lattice defined by

write Eq. (5) as the primitive vectorsa;=ay(1,0,0) and a,=ay(0,1,0),
where a,=a\/2/2 is the distance between second nearest
DL'L => (M _1):_I|_Dr|_||_l _ (11)  neighbors in the diamond structure. A basis of two spheres of
i radius S=ag/4, at (0,0,0) ancho(llz,o,\/§/4), defines the
) it ) , ) two planes of spheres of a layer. The+1)th layer along
SinceD, , decay exponentially with the distanf® —Ri'[.  the 7 axis is obtained from thath layer by a simple transla-

we drop all terms of Eq(11) which involve interactions t{ion described by the primitive vectas=ag(1/2,1/252/2)
beyond first neighbors. Then the propagator which connectgsee Fig. 1.

structure of the EM field in this crystal on the surface Bril-
DM = (M HM, D'+ (M HN2pr2 . (12  louin Zone(SBZ) of the (001) surface, calculated using the
Lt L LT LT computer program of Ref. 28. The shaded regions extend
. . N1 L over the frequency bands of the EM field: at any one fre-
We are particularly mteres'ted iD ", which is taken as a quency within the shaded region, for a givien{the compo-
measure of the transmission of an EM wave through theent of the reduced wave vector within the SBZ of (881)

defect chain. We need not invert the maﬂklbﬂ, as awhole surfacd, there exists at least one propagating mode of the
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|Ri-Ri'|/a0 FIG. 4. (a) Defect bands generated by an infinitely long linear

chain of defect spheres{=12.965/a,=0.21) along thd110] di-
FIG. 3. The circles sho@mm,|D%E1m,E|2 as a function of the  rection of the crystal described in Fig. 2. The squares/circles are

distance|R;—R;/|, for the crystal of Fig. 2. The squares show bands ofA/B symmetry, respectively, calculated from E#0). The
s |Qn' dashed lines are fits of th@nhybridized bands to Eq(14). (b)
m,m’

2 H —
ime1mel -+ Both curves were obtained favay/c=3.92 ; ;
(middle of the absolute band gap shown in Fig. 2 Density of the EM modes corresponding to the defect bands.

- o described in Sec. Il. We note that all three bands, which are
EM field in the infinite crystal. The blank areas correspond to .

. nondegenerate, result from modes localized on the spheres of
frequency gaps. One clearly sees that we obtain an absolu{ﬁ

frequency gap extending fromwa,/c=3.68 t0 wap/c e chain interacting weakly between them. We confirmed

=4.16. We verified that this is indeed so by calculating thethat the corresponding eigenmodes are made up, almost

band structure at a sufficient numberlgfpoints within the (intlrle Ig)/, +OI ?I!]eg(;lc(-lo)“]p;l% tgg}%}i;gr;?s O\II(\:tth el ;[i-l atzcrir;n s
SBZ. Over this frequency region, there are no propagatm%th I,='1 andm¥—1 041 in Eq. (1)]. In this respect the
states of the EM field. At frequencies near the middle of theb " : '

o ands resemble the electric-dipole bands associated with a
absolute frequency gap, the propagator functibng, ob-  chain of spheres in a homogeneous medium with a negative

tained from Eq.(4) decay rapidly to zero as the distance dielectric constant, studied in Ref. 19, except that in the
|IRi—R;/| increases, in contrast to the free-space propagatqsresent case the reduced symmetry of the system does not

functionsQ!",, which decrease very slowly with the distance allow any degeneracy in the bands. Here, the symmetry of
(see Fig. 3. Therefore, the procedure described in Sec. IIthe defect bands is determined by @g, point group, and
applies. the cprrespondmg propagating mod@&idoch wa\(e$ of the

We introduce, to begin with, a linear defect chain, by EM field belong to eitherA or B, the two 1D irreducible
replacingN spheres lying along tHeL10] direction by others representations of this grodpin fact, we obtain three non-
of different radius:S,=0.21a, (see Fig. 1 for an infinitely ~ degenerate dipole bands of which one hasAhgymmetry
long chain,N— . We note that the distande=a, between 2aNd the other two have thB symmetry. All three bands
first-neighbor spheres along the defect chain corresponds fSPerse with the wave numblein the manner characteristic
the second-neighbor distance in the diamond structure arfef 1B modes, and are described very well[biashed lines in
that the distance between second neighbors in the linedrd: 4@]
chain corresponds to the distance between eighth neighbors
in the diamond structure; therefore, at frequencies near the

middle of the absolute frequency gap Wh@%:_i,, decrease

rapidly with the distance, considering first-neighbor interacyhere ;V and W, are constants which we determined by
tion between the defect spheres in the second-stage scatterifp@ing them to the exact results as shown in Figa)4We
[Eq. (6)] should be a realistic approximation to the problemexpect a degree of hybridization between defect bands of the
ungjer consideration. The same applies also to the bent wavggme (B) symmetry, and this naturally leads to the exact
guide described below. . _bands shown by the squares and circles in Fig). 4t is also

In Fig. 4@ we show the frequency bands associated Withyorth noting that in the present case the modes are mostly of
the linear infinite Chair(WG refer to them as defect bands the H type rather than th& type met in the photonic insu-

calculated from Eq(10). The calculation was done for a |ator of Ref. 19. The density of EM modes resulting from
sufficient number ok points in the region &k=<m/R; the  these bands is easily obtained from

bands folk<<0 are of course symmetric to the ones shown. It

can be seen that the defect bands extend over a narrow fre-

guency region about the center of the absolute gap, which p(w)= E E
ensures that they are reliably calculated by the procedure (O

w,(K)=w,+W,cogdkR) v=1,2,3, (14)

(15
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wherev runs over the different defect banfdsee Fig. 4b)].
We remember thah(w)dw gives the number of EM modes
per unit length of the chain betwean and w+dw. It is
worth noting thatp(w) diverges at those frequencies where
the slope of a band vanishes, althouygfw) is integrable
(Van Hove singularities a fact which might lead to a mea-
surable Lamb shift in atomic transitions of approximately the Z
same frequency when these transitions occur within the pho *
tonic crystaf

Finally, we describe the transmission of light across a
chain of finite length N spherey through the following
guantity (we may call it theL’=|"m’P’ propagation coef- )
ficient): 10" - R N— PR

3.8 4.0 I 4.2
(oao/c

tNl(L,)EE |TEL1,|2, (16) FIG. 5. Transmission along a straigfsolid lineg and a bent
L (broken liney waveguide for an incoming spherical wave corre-
sponding to(a) P'=E, I'=1, andm’=1; (b) P'=E, I'=1, and

) ) o ) m'=0;(c) P'=H, I'=1, andm’=1; and(d) P'=H, |'=1, and
which constitutes a measure of the transmission of light fromy, =g

the first sphere of the chain through the chain to the last

(Nth) sphere of it.tNY(L’) is not to be confused with the corresponding electronic problertransport of electrons
transmission coefficient as ordinarily defined: the ratio of thealong a chain of atomsby a number of authorésee, e.g.,
energy flux outgoing towards infinity from théth sphere to  Ref. 35.

the energy flux incident on the first sphere coming from In Fig. 5 the solid lines givaN'(L’) for a chain of ten
some source outside the chain of spheres. This, the usudéfect spheres along a straight line, along[tH)] direction,
transmission coefficient, will depend on the way light comesas shown in Fig. 1. The broken lines gith€ (L") for a chain

to or is generated at the first sphere and on the way light isonsisting of two sections, a straight line of six defect
taken away from théth sphere, and in this paper we shall spheres along thgL10] direction and a second straight line

not consider this problem. It is perhaps easier to explain thef six defect spheres along th&10] direction, the two meet-
physical meaning of*(L") as follows. We first note that, ing at an angle of 9011 defect spheres in total: one sphere
for the finite chain ol spheres we are considering, the wavejs common to both legs The two top diagrams refer to an
field is a standing wave field, because over the given freincigentE wave (P’ =E). In Fig. 5a) I’=1, m’=1; in Fig.
quency region light cannot propagate in the host photonigyy) |'=1 m’=0. The results for afE wave withl’=1,
crystal. Now,TLDELl, tells us that if about the first sphere, m’=—1 are practically identical to those of Fig(ah. The
locally, there is an outgoing wavel () of unit amplitude, two bottom diagrams refer to an incideHt wave. In Fig.
then thelocally outgoing field about th&lth sphere will have  5(c)1’=1, m’=1;in Fig. 5d) |’=1, m’=0. The results for
a componentL with amplitude TLDle, . Multiplying this  anH wave withl’=1, m’=—1 are practically identical to
quantity with T, [see Eq(13)] is a formal way of relating those of Fig. &c). We observe that in the case of Hnwave
the locally outgoingL’ wave from the first sphere with a With I’=1, m"=0 the propagation coefficient, as defined by
fstious incident. wave on this sphere. Whaty, given 2k 8 B S aees the variation of the propa-
N1 . . . =
by Eq.(13) (o for tha’F matteD, ), teII_s us is how thg fle.ld gation coefficient with the frequencies is different for the two
at the ef‘d of the qhaln relates to th_e field at the begln_nmg 0waveguides, although the difference between the two is on
the chain. Summing over the avglkzilUIe:ImP scattering average rather small. It is worth emphasizing that this result
channels at thélth sphere to obtain™*(L’) [see Eq.(16)]

. . : has been obtained using the exact EM field and it does not
provides a simpler overall measure of the propagatiemns-

. . depend on the parametrized representation of the bands
mission of light along the waveguide from the first to the sh(F))Wn in Fig. 4a).p P

Nth sphere. It is evident that unlike the ordinary transmission
coefficient this quantity can be greater than unity. It is a
useful quantity. By comparing*(L’) of a bent waveguide
with that of a straight waveguid@s in Fig. 5, we can tell We have developed a two-stage multiple-scattering
whether the bend hinders the transmission of light. It is alsanethod which allows an exact calculation of waveguiding
very useful in the study of Anderson localization due to dis-(transmission of lightacross a chain of defects in a realistic
order: if the properties of the spheres along a chain varphotonic crystal consisting of nonoverlapping spheres. The
randomly, then localization due to disorder will trap the light defect chain introduces narrow bands in the absolute gap of
andtNY(L") will vanish exponentially withN. We shall not  the pure crystal. We have shown that an EM signal can
be concerned with this problem here. A treatment of disordepropagate through a bent waveguide with more or less the
and of localization along these lines has been done for theame efficiency as it does through a straight waveguide.

IV. CONCLUSION
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