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Waveguides of defect chains in photonic crystals
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We develop a two-stage multiple-scattering formalism for the calculation of photonic bands generated by
chains of defects in photonic crystals consisting of nonoverlapping spheres, and for the calculation of the
transmission of light through straight and bent waveguides of such chains. We apply the method to a specific
example which demonstrates that transmission through a bent waveguide occurs with the same efficiency as for
a straight waveguide.
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I. INTRODUCTION

The most desirable property of photonic crystals is
presence of an absolute~omnidirectional! photonic band gap
which in turn promises important applications
optoelectronics.1–4 One possible application of photon
crystals, namely, the effective and low loss guiding of ph
tons in integrated optical devices, has also received con
erable attention in recent years. So far, most theoretical
experimental efforts have been focused on two-dimensio
~2D! photonic-crystal-based waveguides5–15 but work on
three-dimensional ~3D! structures has also bee
reported.16–20 One way of waveguiding in photonic crysta
is that of a coupled-defect waveguide: a single defect gi
rise to a resonance state of the electromagnetic~EM! field, at
a frequency within the frequency gap of the crystal, localiz
about the defect. In a periodic arrangement of defects~defect
chain!, the interaction of neighboring defects creates a n
row band of states~defect band! around the resonance fre
quency of the single defect, allowing propagation of the fi
along the chain. Due to the nature of this band, it can
studied by means of a tight-binding~TB! description.19,20

From the computational methods available for study
3D photonic crystals of nonoverlapping spherical scatter
such as colloidal crystals, opals, metallodielectric cryst
etc., those based on the Korringa-Kohn-Rostoker~KKR!
method are the most accurate and computationally effici
whether in the traditional21,22 or in the on-shell
formulation.23,24Extensions of the KKR method to deal wit
photonic crystals containing single defects25 and randomly
distributed defects within the coherent-potent
approximation26,27 have also been formulated.

In this paper we present a two-stage multiple-scatter
KKR method for the treatment of single defects, clusters
defects, and defect waveguides in photonic crystals con
ing of nonoverlapping spheres in a homogeneous host
dium. We first calculate the propagator functions of the
riodic system~reference system!. If the reference system
under consideration does not support states of the EM fi
over a range of frequencies, as is the case of a phot
crystal for frequencies within an absolute band gap,
propagators decay exponentially with the distance and ca
calculated directly, without the need of elaborate Ewald-ty
transformations. In the second stage we calculate the pr
0163-1829/2002/65~23!/235201~6!/$20.00 65 2352
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gator functions of the system containing the defects, ag
directly in real space, as only a small number of near
neighbors suffice to give good convergence of the latt
sums involved. The restriction of the multiple-scatteri
equations to only a few neighbors gives a TB character to
method. We note that, due to the rapid decay of the pro
gator functions, most of the matrices involved in the comp
tation are sparse; exploiting this we have been able to
velop an order-N method for the study of photonic crysta
with defects~the computer time scales linearly with the num
berN of the inequivalent defects!. In Sec. II we describe the
method with the emphasis placed on the problem
waveguiding. In Sec. III we present numerical results for
defect modes and the transmission properties of a gi
waveguide.

II. THEORY

A. Multiple-scattering equations

We consider a harmonic, monochromatic EM wave of a
gular frequencyv which is incident on a sphere embedded
a homogeneous medium of different dielectric function,e.
The sphere is centered at the origin of coordinates. T
electric-field component of the EM wave has the for
E(r ;t)5Re@E(r )exp(2ivt)#; outside the sphere,E(r ) is ex-
panded in spherical waves as follows~see, e.g., Refs. 23 an
28!:

E~r !5(
l 51

`

(
m52 l

l F i

q
alm

0E¹3 j l~qr !X lm~ r̂ !

1alm
0H j l~qr !X lm~ r̂ !1

i

q
alm

1E¹3hl
1~qr !X lm~ r̂ !

1alm
1Hhl

1~qr !X lm~ r̂ !G , ~1!

whereq5Aev/c, c being the velocity of light in vacuum;j l

and hl
1 are the spherical Bessel and Hankel functions,

spectively; andX lm( r̂ ) are vector spherical harmonics. Th
associated magnetic-field component of the EM wave can
obtained through Maxwell equations and we need not writ
down explicitly. The first two terms of Eq.~1! represent the
incident ~incoming! wave on the sphere and the last tw
©2002 The American Physical Society01-1
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represent the scattered~outgoing! wave. In the remainder o
the paper we will use the composite indexL to describe
collectively the indiceslmP with P5E,H. By applying the
proper boundary conditions at the surface of the sphere
obtain a relation between the expansion coefficients of
incident and the scattered fields, as follows,

aL
15TL aL

0 , ~2!

whereTL are the elements of a scattering matrix (T matrix!.
Explicit forms for theTL of a single sphere can be foun
elsewhere.28

Let us now consider an assembly of nonoverlapp
spheres centered at sitesRi in a homogeneous host medium
An outgoing wave aboutRi 8 @the wave field is described b

terms similar to the last two of Eq.~1! with coefficientsbL
1 i 8#

can be written as an incoming wave expanded aboutRi @the
wave field is described by terms similar to the first two
Eq. ~1! with coefficientsb8L

i ( i 8)# by means of the equation

b8L
i ~ i 8!5(

L8
VLL8

i i 8 bL8
1 i 8 . ~3!

Explicit expressions for the so-called free-space~which here
means a homogeneous host medium characterized by a

dielectric function! propagator functions,VLL8
i i 8 , for the EM

field can be found in Ref. 26. We note that, by definitio

VLL8
i i 8 equals zero fori 5 i 8.

We now introduce the propagator functionsDLL8
i i 8 for the

assembly of spheres in the host medium, which give
coefficients@in an expansion such as that of Eq.~1!# of the
wave incident on the sphere atRi , due to an outgoing wave
from the sphere atRi 8 , noting that an outgoing wave from
the i 8th sphere can reach thei th sphere directly, or indirectly
after scattering any number of times by any number
spheres~including those atRi andRi 8). One can easily prove
by iteration the following equation:

DLL8
i i 8 5VLL8

i i 8 1 (
i 9,L9

VLL9
i i 9 TL9

i 9 DL9L8
i 9 i 8 , ~4!

whereTL
i are the elements of theT matrix for the sphere a

Ri . For a periodic arrangement of spheres, one usually

culates the Fourier transform ofDLL8
i i 8 , denoted byDLL8(k)

(k is the Bloch wave vector!, and integrates the latter ove

the Brillouin zone~BZ! to obtainDLL8
i i 8 . However, unless the

spheres are absorbing, the numerical calculation over the
requires a very dense mesh ofk points due to singularities in
DLL8(k).27,29,30On the other hand, as a rule, the calculati

of DLL8
i i 8 on the basis of Eq.~4! involves a summation over

large number of lattice sites because the free-space prop

tor functions, VLL8
i i 8 , decay slowly with the distanceuRi

2Ri 8u. But there are exceptions to this rule: the lattice s
of Eq. ~4! can be truncated to a relatively small number
nearest neighbors around the siteRi for frequencies within a
region over which EM waves do not propagate in the h
medium. This is true, for example, in the case of a metal h
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at frequencies below its bulk plasma frequency, in wh

caseVLL8
i i 8 decay exponentially with the distance.31 The lat-

tice sum in Eq.~4! may also be rapidly convergent in th
case of a photonic crystal which possesses an absolute
quency gap because in this case the propagator funct

DLL8
i i 8 decay exponentially with distance at frequencies wh

lie within the absolute gap~see Sec. III!.

If we know the propagator functionsDLL8
r i i 8 for an arbitrary

system of nonoverlapping spheres in a homogeneous

medium ~reference system! we can obtainDLL8
i i 8 for a per-

turbed system~a number of spheres of the reference syst
are replaced with spheres of different size and/or dielec
function! by solving the following equation:

DLL8
i i 8 5DLL8

r i i 81 (
i 9,L9

DLL9
r i i 9DTL9

i 9 DL9L8
i 9 i 8 , ~5!

where DTL
i is the difference betweenTL

i of the perturbed
system andTL

ri of the reference system. Obviously, the latti
sum of Eq.~5! is restricted to the sites where spheres of
reference system have been substituted. In the absenc

propagating states in the reference system,DLL8
r i i 8 decay ex-

ponentially with distance and, therefore, the lattice sum
Eq. ~5! can be truncated to a few nearest neighbors aro
the siteRi .

B. A defect chain

We consider a 3D photonic crystal consisting of nonov
lapping spheres centered atRi5Rn1ta , whereRn is a ~Bra-
vais! lattice vector andta a nonprimitive vector within the
unit cell of the crystal; we may have more than one spher
the unit cell in which case we have a corresponding num
of ta vectors. In what followsi[(n,a). We assume that the
photonic crystal possesses an absolute frequency gap
substituting an infinite number of spheres along a spec
crystallographic direction of this crystal~host crystal!, with
spheres of different radius and/or dielectric function~but the
same for all defects!, we construct a periodic linear chain o
defects inside the crystal~see Fig. 1!. Evidently all defect
spheres are situated at the same positionta within the unit
cell of the crystal, which we denote asa[0. The above may
be seen as a system with one-dimensional~1D! periodicity
~along the defect chain! with the defect spheres atRn5nR

FIG. 1. A diamond structure of spheres. A linear chain of def
spheres~black spheres! is introduced along the@110# direction
which is taken as thex axis.
1-2



to
b
th

y

s

e

-
hi
o
n

h
ca

ec
s

th

(

e
m-

r-

v-

l of
rs
l
by

est
s of

-

nd
il-
e
end
re-

the

tal

WAVEGUIDES OF DEFECT CHAINS IN PHOTONIC CRYSTALS PHYSICAL REVIEW B65 235201
where R denotes the period of the chain. The propaga
functions of the perturbed crystal shown in Fig. 1 can
obtained from those of the host crystal, considered as
reference system, through Eq.~5!. Putting i 5(n,0)[n by
which we denote thenth sphere of the chain, and similarl
i 85(n8,0)[n8, we have

DLL8
nn85DLL8

r nn81 (
n9,L9

DLL9
r nn9DTL9DL9L8

n9n8 , ~6!

whereDTL is the difference betweenTL of the defect sphere
andTL

r of the host ones; evidently the sum overn9 includes
the spheres of the chain only.

Taking advantage of the 1D periodicity of the system d
scribed by Eq.~6!, we multiply Eq. ~6! by exp@2ikR(n
2n8)# and take the sum overn8, to obtain

DLL8~k!5DLL8
r

~k!1(
L9

DLL9
r

~k!DTL9DL9L8~k!, ~7!

where

DLL8
r

~k!5(
n8

exp@2 ikR~n2n8!#DLL8
r n n8 ~8!

with a similar expression forDLL8(k). We rewrite Eq.~7! as

(
L9

@dLL92DLL9
r

~k!DTL9#DL9L8~k!5DLL8
r

~k!. ~9!

The poles ofDLL8(k), for given k, determine the eigen
frequencies of the EM field associated with the chain for t
k. And sinceDLL8

r (k) has no poles over the frequency gap
the unperturbed crystal, these eigenfrequencies are give
the roots of

det@dLL82DLL8
r

~k!DTL8#50 ~10!

for everyk in the 1D BZ:2p/R,k<p/R.
Let us now consider a finite chain consisting ofN defect

spheres, obtained by the replacement of spheres of the
crystal; the defect chain need not be linear in the general

~see below!. If we setMLL8
i i 8 5dLL8d i i 82DLL8

r i i 8DTL8
i 8 , we can

write Eq. ~5! as

DLL8
i i 8 5 (

i 9,L9
~M 21!LL9

i i 9 DL9L8
r i 9 i 8 . ~11!

SinceDLL8
r i i 8 decay exponentially with the distanceuRi2Ri 8u,

we drop all terms of Eq.~11! which involve interactions
beyond first neighbors. Then the propagator which conn
the first and the last spheres of the defect chain become

DLL8
N1

5(
L9

@~M 21!LL9
N1 DL9L8

r 11
1~M 21!LL9

N2 DL9L8
r 21

#. ~12!

We are particularly interested inDLL8
N1 which is taken as a

measure of the transmission of an EM wave through

defect chain. We need not invert the matrixMLL8
i i 8 as a whole
23520
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in order to calculateDLL8
N1 from Eq. ~12!. Since we consider

only first-neighbor interaction in the defect chain, theM ma-
trix has a block-tridiagonal form: only the diagonal (i 5 i 8)
and the neighboring upper and lower diagonal blocksi 8
5 i 61) have nonzero elements. In this case, (M 21)LL8

N1 ,
(M 21)LL8

N2 can be calculated in such a way that the tim
required for their computation scales linearly with the nu
ber N of defect spheres in the chain.32

From DLL8
N1 we obtain the matrix elements of the scatte

ing path operator

tLL8
N1

5TLDLL8
N1 TL8 , ~13!

which gives theL component of the scattered~output! EM
wave from the last (Nth! sphere due to an incident~input! L8
wave on the first defect sphere.

III. APPLICATIONS

We consider a 3D photonic crystal consisting of nono
erlapping spheres of dielectric constantes512.96 in air
(e51). The spheres are arranged as in a diamond crysta
lattice constanta. We view the crystal as a stack of laye
parallel to thexy plane. The periodicity of the layers paralle
to this plane is described by a 2D square lattice defined
the primitive vectors a15a0(1,0,0) and a25a0(0,1,0),
where a05aA2/2 is the distance between second near
neighbors in the diamond structure. A basis of two sphere
radius S5a0/4, at (0,0,0) anda0(1/2,0,A2/4), defines the
two planes of spheres of a layer. The (n11)th layer along
thez axis is obtained from thenth layer by a simple transla
tion described by the primitive vectora35a0(1/2,1/2,A2/2)
~see Fig. 1!.

Figure 2 shows the projection of the frequency ba
structure of the EM field in this crystal on the surface Br
louin Zone~SBZ! of the ~001! surface, calculated using th
computer program of Ref. 28. The shaded regions ext
over the frequency bands of the EM field: at any one f
quency within the shaded region, for a givenki @the compo-
nent of the reduced wave vector within the SBZ of the~001!
surface#, there exists at least one propagating mode of

FIG. 2. Projection of the frequency band structure, of a crys
consisting of dielectric spheres (es512.96,S/a050.25) arranged as
in a diamond structure in air (e51), on the SBZ of the~001!
surface~shown in the inset!.
1-3
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V. YANNOPAPAS, A. MODINOS, AND N. STEFANOU PHYSICAL REVIEW B65 235201
EM field in the infinite crystal. The blank areas correspond
frequency gaps. One clearly sees that we obtain an abs
frequency gap extending fromva0 /c53.68 to va0 /c
54.16. We verified that this is indeed so by calculating
band structure at a sufficient number ofki points within the
SBZ. Over this frequency region, there are no propaga
states of the EM field. At frequencies near the middle of

absolute frequency gap, the propagator functionsDLL8
r i i 8 ob-

tained from Eq.~4! decay rapidly to zero as the distan
uRi2Ri 8u increases, in contrast to the free-space propag

functionsVLL8
i i 8 which decrease very slowly with the distan

~see Fig. 3!. Therefore, the procedure described in Sec
applies.

We introduce, to begin with, a linear defect chain,
replacingN spheres lying along the@110# direction by others
of different radius:Sd50.21a0 ~see Fig. 1!; for an infinitely
long chain,N→`. We note that the distanceR5a0 between
first-neighbor spheres along the defect chain correspond
the second-neighbor distance in the diamond structure
that the distance between second neighbors in the lin
chain corresponds to the distance between eighth neigh
in the diamond structure; therefore, at frequencies near

middle of the absolute frequency gap whereDLL8
r i i 8 decrease

rapidly with the distance, considering first-neighbor intera
tion between the defect spheres in the second-stage scatt
@Eq. ~6!# should be a realistic approximation to the proble
under consideration. The same applies also to the bent w
guide described below.

In Fig. 4~a! we show the frequency bands associated w
the linear infinite chain~we refer to them as defect bands!,
calculated from Eq.~10!. The calculation was done for
sufficient number ofk points in the region 0<k<p/R; the
bands fork,0 are of course symmetric to the ones shown
can be seen that the defect bands extend over a narrow
quency region about the center of the absolute gap, wh
ensures that they are reliably calculated by the proced

FIG. 3. The circles show(m,m8uD1mE;1m8E
ii 8 u2 as a function of the

distanceuRi2Ri 8u, for the crystal of Fig. 2. The squares sho

(m,m8uV1mE;1m8E
ii 8 u2. Both curves were obtained forva0 /c53.92

~middle of the absolute band gap shown in Fig. 2!.
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described in Sec. II. We note that all three bands, which
nondegenerate, result from modes localized on the spher
the chain interacting weakly between them. We confirm
that the corresponding eigenmodes are made up, alm
entirely, of electric-dipole terms@E terms with l 51 andm
521,0,11 in Eq. ~1!# and magnetic dipole terms@H terms
with l 51 andm521,0,11 in Eq. ~1!#. In this respect the
bands resemble the electric-dipole bands associated w
chain of spheres in a homogeneous medium with a nega
dielectric constant, studied in Ref. 19, except that in
present case the reduced symmetry of the system does
allow any degeneracy in the bands. Here, the symmetry
the defect bands is determined by theC1h point group, and
the corresponding propagating modes~Bloch waves! of the
EM field belong to eitherA or B, the two 1D irreducible
representations of this group.33 In fact, we obtain three non
degenerate dipole bands of which one has theA symmetry
and the other two have theB symmetry. All three bands
disperse with the wave numberk in the manner characteristi
of TB modes, and are described very well by@dashed lines in
Fig. 4~a!#

vn~k!5v̄n1Wncos~kR! n51,2,3, ~14!

where v̄n and Wn are constants which we determined b
fitting them to the exact results as shown in Fig. 4~a!. We
expect a degree of hybridization between defect bands of
same ~B! symmetry, and this naturally leads to the exa
bands shown by the squares and circles in Fig. 4~a!. It is also
worth noting that in the present case the modes are most
the H type rather than theE type met in the photonic insu
lator of Ref. 19. The density of EM modes resulting fro
these bands is easily obtained from

r~v!5
1

p (
n

Fdvn~k!

dk G21

, ~15!

FIG. 4. ~a! Defect bands generated by an infinitely long line
chain of defect spheres (es512.96,S/a050.21) along the@110# di-
rection of the crystal described in Fig. 2. The squares/circles
bands ofA/B symmetry, respectively, calculated from Eq.~10!. The
dashed lines are fits of the~unhybridized! bands to Eq.~14!. ~b!
Density of the EM modes corresponding to the defect bands.
1-4
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WAVEGUIDES OF DEFECT CHAINS IN PHOTONIC CRYSTALS PHYSICAL REVIEW B65 235201
wheren runs over the different defect bands@see Fig. 4~b!#.
We remember thatr(v)dv gives the number of EM mode
per unit length of the chain betweenv and v1dv. It is
worth noting thatr(v) diverges at those frequencies whe
the slope of a band vanishes, althoughr(v) is integrable
~Van Hove singularities!, a fact which might lead to a mea
surable Lamb shift in atomic transitions of approximately t
same frequency when these transitions occur within the p
tonic crystal.34

Finally, we describe the transmission of light across
chain of finite length (N spheres! through the following
quantity ~we may call it theL8[ l 8m8P8 propagation coef-
ficient!:

tN1~L8![(
L

utLL8
N1 u2, ~16!

which constitutes a measure of the transmission of light fr
the first sphere of the chain through the chain to the
(Nth! sphere of it.tN1(L8) is not to be confused with the
transmission coefficient as ordinarily defined: the ratio of
energy flux outgoing towards infinity from theNth sphere to
the energy flux incident on the first sphere coming fro
some source outside the chain of spheres. This, the u
transmission coefficient, will depend on the way light com
to or is generated at the first sphere and on the way ligh
taken away from theNth sphere, and in this paper we sha
not consider this problem. It is perhaps easier to explain
physical meaning oftN1(L8) as follows. We first note that
for the finite chain ofN spheres we are considering, the wa
field is a standing wave field, because over the given
quency region light cannot propagate in the host photo
crystal. Now,TLDLL8

N1 tells us that if about the first sphere
locally, there is an outgoing wave (L8) of unit amplitude,
then thelocally outgoing field about theNth sphere will have
a componentL with amplitude TLDLL8

N1 . Multiplying this
quantity withTL8 @see Eq.~13!# is a formal way of relating
the locally outgoingL8 wave from the first sphere with
fictitious incidentL8 wave on this sphere. WhattLL8

N1 , given
by Eq.~13! ~or for that matterDLL8

N1 ), tells us is how the field
at the end of the chain relates to the field at the beginnin
the chain. Summing over the availableL5 lmP scattering
channels at theNth sphere to obtaintN1(L8) @see Eq.~16!#
provides a simpler overall measure of the propagation~trans-
mission! of light along the waveguide from the first to th
Nth sphere. It is evident that unlike the ordinary transmiss
coefficient this quantity can be greater than unity. It is
useful quantity. By comparingtN1(L8) of a bent waveguide
with that of a straight waveguide~as in Fig. 5!, we can tell
whether the bend hinders the transmission of light. It is a
very useful in the study of Anderson localization due to d
order: if the properties of the spheres along a chain v
randomly, then localization due to disorder will trap the lig
and tN1(L8) will vanish exponentially withN. We shall not
be concerned with this problem here. A treatment of disor
and of localization along these lines has been done for
23520
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corresponding electronic problem~transport of electrons
along a chain of atoms! by a number of authors~see, e.g.,
Ref. 35!.

In Fig. 5 the solid lines givetN1(L8) for a chain of ten
defect spheres along a straight line, along the@110# direction,
as shown in Fig. 1. The broken lines givetN1(L8) for a chain
consisting of two sections, a straight line of six defe
spheres along the@110# direction and a second straight lin
of six defect spheres along the@ 1̄10# direction, the two meet-
ing at an angle of 90°~11 defect spheres in total: one sphe
is common to both legs!. The two top diagrams refer to a
incidentE wave (P85E). In Fig. 5~a! l 851, m851; in Fig.
5~b! l 851, m850. The results for anE wave with l 851,
m8521 are practically identical to those of Fig. 5~a!. The
two bottom diagrams refer to an incidentH wave. In Fig.
5~c! l 851, m851; in Fig. 5~d! l 851, m850. The results for
an H wave with l 851, m8521 are practically identical to
those of Fig. 5~c!. We observe that in the case of anH wave
with l 851, m850 the propagation coefficient, as defined
Eq. ~16!, is the same for the straight and bent waveguide
all frequencies. In all other cases the variation of the pro
gation coefficient with the frequencies is different for the tw
waveguides, although the difference between the two is
average rather small. It is worth emphasizing that this re
has been obtained using the exact EM field and it does
depend on the parametrized representation of the ba
shown in Fig. 4~a!.

IV. CONCLUSION

We have developed a two-stage multiple-scatter
method which allows an exact calculation of waveguidi
~transmission of light! across a chain of defects in a realist
photonic crystal consisting of nonoverlapping spheres. T
defect chain introduces narrow bands in the absolute ga
the pure crystal. We have shown that an EM signal c
propagate through a bent waveguide with more or less
same efficiency as it does through a straight waveguide.

FIG. 5. Transmission along a straight~solid lines! and a bent
~broken lines! waveguide for an incoming spherical wave corr
sponding to~a! P85E, l 851, andm851; ~b! P85E, l 851, and
m850; ~c! P85H, l 851, andm851; and~d! P85H, l 851, and
m850.
1-5
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