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Weak dispersion and weak temperature dependence of angle-resolved photoemission
for heavy-fermion systems

Ming-wen Xiao, Zheng-zhong Li, and Wang Xu
Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China

~Received 5 December 2001; published 18 June 2002!

By extending the Kondo lattice model to include an exchange term between thec and f electrons on
nearest-neighbor sites, we proposed an extended model that can be used to explain the weak dispersion and
weak temperature behaviors of angle-resolved photoemission spectroscopies observed recently in heavy-
fermion systems in the high-temperature range (T@TK , TK : the Kondo temperature!. The extended model can
not only describe the electronic coherence atT!TK , but also yield an angle-resolved photoemission peak to
the f electrons atT@TK , with weak dispersion and weak temperature dependence.
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I. INTRODUCTION

As well known, heavy-fermion systems manifest ma
unusual and intriguing properties,1 such as a large Pauli sus
ceptibility and specific heat as compared to ordinary met
which indicate a huge effective electronic mass. Recen
angle-resolved photoemission spectroscopy~ARPES!
experiments,2–4 as a direct probe to the electronic states,
vealed an anomalous property on single crytalline samp
i.e., there still exists a peak structure in the spectrosc
even whenT@TK , whereTK stands for the Kondo tempera
ture, the characteristic temperature of a heavy-fermion s
tem. In particular, the peak shows weak temperature de
dence, and is weakly dispersive: the dispersion is of the o
of 20–35 meV whereas the width of the conduction band
typically a few eV, which means that the highly localizedf
electrons form a narrow itinerant band aboveTK .

Usually, single crytalline heavy-fermion systems are mo
eled by the periodical Anderson model~PAM! or the Kondo
lattice model~KLM !, both of them can account for the ele
tronic coherence present in these systems at low temp
tures,T!TK .5–7 For the PAM, theoretical studies throug
Monte Carlo method8 and the noncrossing approximation f
lattice9 show that it can produce an ARPES peak to thf
electrons atT@TK , and the peak is relatively weakly tem
perature dependent, but the spectral function for thef elec-
trons, and also the corresponding ARPES are stron
dispersive.8,9 For the KLM, it gives no dispersion to thef
electrons atT@TK because, as is well known, thef electrons
are formed into independent localized magnetic moment
T@TK within this model. This means that both the PAM a
KLM are inadequate to describe the ARPES atT@TK , nei-
ther of them can give any exposition of the weak dispers
for the f electrons. Evidently, one must extend and comp
ment those two models, or else resort to other models
order to interpret the two abnormal behaviors of t
f-electron ARPES atT@TK .

In this paper, based on the Kondo lattice model, we s
try to develop a possible model for heavy-fermion system
which is purposed to be able to provide not only a desc
tion of the low-temperature coherence but also of
f-electron ARPES peak atT@TK , including both its weak
0163-1829/2002/65~23!/235122~10!/$20.00 65 2351
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dispersion and weak temperature dependence. The rest o
paper is organized as follows: in Sec. II, we are going
extend the KLM to include a complementary exchange te
between thec and f electrons on nearest-neighbor sites;
Sec. III, we aim at demonstrating that the extended Kon
model can still account for the electronic coherence aT
!TK ; in Sec. IV, we deal with the electronic states of t
system atT@TK within the extended model; in Sec. V, w
explain the two abnormal behaviors of thef-electron ARPES
at T@TK with the results of Sec. IV; finally, in Sec. VI, we
shall conclude our paper with a brief summary.

II. THE EXTENDED KONDO LATTICE MODEL

The Kondo lattice model reads as follows:7

H5(
k,s

«kck,s
† ck,s22J(

i
Si

c
•Si

f , ~1!

where ck,s is the annihilation operator of the conductio
band electrons in the Bloch representation, and«k the corre-
sponding energy;J is the intrasite exchange interaction, an
Si

c andSi
f represent the spin operators on thei th site,

Si
c5

1

2
@ci ,↑

† ci ,↓
† #tWFci ,↑

ci ,↓
G , ~2!

Si
f5

1

2
@ f i ,↑

† f i ,↓
† #tWF f i ,↑

f i ,↓
G , ~3!

wheretW denotes the vector Pauli matrix, andf i ,s the annihi-
lation operator of the localized electrons in the Wannier r
resentation. Additionally, Eq.~1! must satisfy the constraint

(
s

f i ,s
† f i ,s51 ~4!

on all sites.
As is well known, the KLM Hamiltonian of Eq.~1! is just

a direct extension of the single-impurity Kondo mod
~SIKM!,
©2002 The American Physical Society22-1
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H5(
k,s

«kck,s
† ck,s22JSl

c
•Sl

f , ~5!

(
s

f l ,s
† f l ,s51 ~6!

by simply summing all the intrasite exchange terms pres
in the whole lattice, herel denotes the site index of the ma
netic impurity. As pointed out in Sec. I, this extension
enough for describing the low-temperature coherence5–7 oc-
curring in heavy-fermion systems, but it is inadequate to
count for the ARPES peak of thef electrons atT@TK . We
think that the inadequacy results from the fact that such
extension is too simplified, viz., it neglects too many oth
exchange terms, especially the intersite ones. In the si
magnetic impurity case, the exchange interaction betw
thec andf electrons can occur only on the same site, but
the lattice case, it can occur between thec andf electrons on
different sites. To account for the ARPES peak of thef elec-
trons, we should include the intersite exchange interactio

To derive the exchange interaction between thec and f
electrons on different sites, one can start from the electr
field operator,c(r ), as Kasuya did,10

c~r !5(
k,s

wk~r !hsck,s1(
i ,s

w~r2Ri !hs f i ,s , ~7!

where hs denotes the spin wave function,wk(r ) and w(r
2Ri) the wave functions for thec and f electrons, respec
tively. In the single-impurity case, the second sum on
right-hand side of Eq.~7! reduces to a single piece:w(r
2Rl)hs f l ,s . With Eq. ~7!, the exchange interaction betwee
the c and f electrons,Hex , can be expressed as

Hex5(
i , j

(
k,k8

(
s,s8

^ki uvu j k8&ck,s
† f i ,s8

† ck8,s8 f j ,s , ~8!

where

^ki uvu j k8&5E E drdr 8wk
†~r !w†~r 82Ri !

3v~r2r 8!wk8~r 8!w~r2Rj ! ~9!

with v(r2r 8) representing the Coulomb interaction. By u
ing the Bloch theorem

wk
†~r !5e2 ik•Rjwk

†~r2Rj !, ~10!

wk8~r 8!5eik8•Riwk8~r 82Ri !, ~11!

Eq. ~9! can be formulated as

^ki uvu j k8&5ei (k8•Ri2k•Rj )E E drdr 8wk
†~r !w~r !

3v~r2r 82Ri1Rj !w
†~r 8!wk8~r 8!. ~12!

Expanding the Bloch wave functionswk
†(r ) andwk8(r 8) into

the Wannier functionsa†(r2Rm) anda(r 82Rn),
23512
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wk
†~r !5

1

AN
(
m

e2 ik•Rma†~r2Rm!, ~13!

wk8~r 8!5
1

AN
(

n
eik8•Rna~r 82Rn!, ~14!

whereN is the total number of the lattice sites, Eq.~12! can
be further formulated as

^ki uvu j k8&5
1

N
ei (k8•Ri2k•Rj )(

m
(

n
e2 i (k•Rm2k8•Rn)

3E E drdr 8a†~r2Rm!w~r !

3v~r2r 82Ri1Rj !w
†~r 8!a~r 82Rn!.

~15!

The main contribution to the integral comes from the te
with Rm5Rn50,10 and Eq.~15! can be approximated as

^ki uvu j k8&5
1

N
ei (k8•Ri2k•Rj )E E drdr 8a†~r !w~r !

3v~r2r 82Ri1Rj !w
†~r 8!a~r 8!. ~16!

For the single-impurity case,Ri5Rj5Rl , Eq.~8! reduces
to

Hex5J
1

N (
k,k8

(
s,s8

ei (k82k)•Rlck,s
† f l ,s8

† ck8,s8 f l ,s

52J (
s,s8

cl ,s
† cl ,s8 f l ,s8

† f l ,s

522JSl
c
•Sl

f2
J

2 (
s

cl ,s
† cl ,s , ~17!

where we have used Eqs.~2!–~4!, and

cl ,s5
1

AN
(

k
eik•Rlck,s , ~18!

J5E E drdr 8a†~r !w~r !v~r2r 8!w†~r 8!a~r 8!. ~19!

The second term ofHex is an unimportant potential scatte
ing term, as usual, it can be omitted, andHex gives the sec-
ond term of the SIKM of Eq.~5!. Here, there can only exis
the intrasite exchange between thec and f electrons.

In contrast to the single-impurity case, there can exist
intersite exchange between thec and f electrons in the case
of periodical magnetic impurities, apart from the intras
one. Correspondingly, the total exchangeHex separates into
two terms:

Hex522J(
i

Si
c
•Si

f2(
iÞ j

(
s,s8

Ji , j8 ci ,s
† cj ,s8 f j ,s8

† f i ,s

~20!

where
2-2
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Ji , j8 5E E drdr 8a†~r !w~r !

3v~r2r 82Ri1Rj !w
†~r 8!a~r 8!. ~21!

The first term ofHex represents the intrasite exchange, wh
comes from the contribution of the components withi 5 j in
the sum overi and j of Eq. ~8!, and the second one th
intersite exchange from the contribution of the compone
with iÞ j . The former will still exist even if there is only a
single magnetic impurity alone in the system, but the la
will disappear if there is only one magnetic impurity. Agai
an unimportant potential scattering term has been omitte
Eq. ~20!, as in the single-impurity case.

Clearly, the first term on the right-hand side of Eq.~20! is
just a direct sum of all the intrasite terms present on e
impurity site when compared with Eq.~17!, and it yields the
second term of the KLM Hamiltonian in Eq.~1!. Physically,
it describes the intrasite scattering between thec and f elec-
trons, and cannot cause thef electrons to transit from site to
site. On the contrary, the second term on the right-hand
of Eq. ~20! can cause thef electrons to hop from site to sit
because it describes physically the intersite scattering
tween thec and f electrons. However, this term is exclude
completely in the KLM Hamiltonian of Eq.~1!; such exclu-
sion leads to the result that thef electrons are all formed into
independent local magnetic moments atT@TK and gives no
dispersion to the ARPES peak of thef electrons, which is in
contradiction with the experiments,2–4 as pointed out in Sec
I. We believe that this intersite scattering is responsible
the formation of the narrow itinerant band of thef electrons
observed in the ARPES atT@TK , and it should be taken i
into account and included in the Hamiltonian for the latti
case, which is the main idea for us to explain the ARPES
heavy-fermion systems in the this paper.

To determine the effect of this intersite scattering on
formation of the narrowf-electron itinerant band, we shal
for simplicity, keep only the exchange interaction from t
nearest-neighbor sites becauseJi , j8 decreases fast with th
increasing of the distanceuRi2Rj u:

H5(
k,s

«kck,s
† ck,s22J(

i
Si

c
•Si

f

2J1(̂
i j &

(
s,s8

ci ,s
† cj ,s8 f j ,s8

† f i ,s , ~22!

where ^ i j & means the nearest-neighbor sites, andJ1 is the
corresponding coupling strength, which is simplified as
constant for convenience, obviously,uJ1u!uJu. Except the
last term, the above Hamiltonian is the same as the KLM
we shall call it the extended Kondo lattice model~EKLM !.
In the following sections, we shall see that theJ1 term will
cause thef electrons to form a narrow itinerant band atT
@TK and display a weak dispersion and weak tempera
dependent ARPES. Besides, it will produce a renormal
tion to the electronic coherence at low temperatures, i.eT
!TK .
23512
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As usual, we shall introduce the chemical potentialm and
the Lagrange multiplier« f to treat the conservation of par
ticles and the constraint of Eq.~4!,

H5(
k,s

«kck,s
† ck,s22J(

i
Si

c
•Si

f

2J1(̂
i j &

(
s,s8

ci ,s
† cj ,s8 f j ,s8

† f i ,s2mS (
k,s

ck,s
† ck,s

1(
i ,s

f i ,s
† f i ,sD 1(

i
« f S (

s
f i ,s

† f i ,s21D , ~23!

which constitutes our working Hamiltonian. Accordingly, th
parametersm and« f are determined by the following equa
tions:

Nt5(
k,s

^ck,s
† ck,s&1(

i ,s
^ f i ,s

† f i ,s&, ~24!

15
1

N (
i ,s

^ f i ,s
† f i ,s&, ~25!

where Nt is the total number of the electrons, and^•••&
means the thermal average with respect to the work
Hamiltonian. In the numerical calculations below, a tigh
binding band of a simple cubic lattice will be supposed
the c electrons:

«k5«02t@cos~kxa!1cos~kya!1cos~kza!#, ~26!

wherea denotes the lattice constant. The corresponding d
sity of states

g~v!52
1

p

1

N (
k

ImS 1

v2«k1 i01D ~27!

is shown in Fig. 1; here and hereafter, thec band parameters
are chosen as«050, t51, anda51.

FIG. 1. The density of states of the undressedc electrons.
2-3
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III. THE LOW-TEMPERATURE COHERENCE

For the sake of investigating the low-temperature el
tronic coherence, let us first reformulate the working Ham
tonian as

H5(
k,s

~«k2J/22m!ck,s
† ck,s1(

i ,s
~« f2m! f i ,s

† f i ,s

1J(
i

(
s,s8

ci ,s
† f i ,s f i ,s8

† ci ,s8

1J1(̂
i j &

(
s,s8

ci ,s
† f i ,s f j ,s8

† cj ,s82N« f . ~28!

Henceforward, the energy constant2J/2 will be absorbed
into the«0 of «k in Eq. ~26!.

Although the SIKM can be solved exactly,11 the above
model is hard to handle at present, just as the KLM. O
must hence resort to approximation methods, of which
slave-boson mean-field~SBMF! approximation5–7 is suc-
cessful to describe the electronic coherence at low temp
tures. Therefore, we shall adopt it here to study the lo
temperature coherence. According to this method, one
treat the third and fourth terms on the right-hand side of
~28! by introducing the SBMF parameter

b5(
s

^ci ,s
† f i ,s&5(

s
^ f i ,s

† ci ,s&, ~29!

which leads to the mean-field Hamiltonian

HMF5(
k,s

~«k2m!ck,s
† ck,s1(

k,s
~« f2m! f k,s

† f k,s

1 J̃b(
k,s

~ck,s
† f k,s1 f k,s

† ck,s!2N~« f1 J̃b2!,

~30!

where

J̃5J16J1 , ~31!

f k,s5
1

AN
(

l
e2 ik"Rl f l ,s . ~32!

Obviously, if J150, J̃ reduces toJ, andHMF goes back
to HMF

KLM , the mean-field Hamiltonian for the Kondo lattic
model

HMF
KLM 5(

k,s
~«k2m!ck,s

† ck,s1(
k,s

~« f2m! f k,s
† f k,s

1Jb(
k,s

~ck,s
† f k,s1 f k,s

† ck,s!2N~« f1Jb2!,

~33!

which is the case studied in Refs. 6 and 7. Equation~30!

indicates that the EKLM just renormalizesJ into J̃5J
23512
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16J1 in the mean-field approximation when compared w
the KLM. Obviously,J1 can strengthen or weakenJ̃ if J1
,0 or J1.0 (J,0), since J is the intrasite exchange
strength, whereasJ1 is the intersite exchange strength, it
believed thatuJ1u!uJu. Thus, the renormalization is rela
tively small, andJ1 cannot reverse the sign ofJ̃, namely,J̃
keeps the same sign asJ no matter whetherJ1 is positive or
negative:J̃,0. BecauseJ̃ has the same sign asJ, or they can
be different merely in the magnitude, the physical results
HMF at T!TK are qualitatively the same as those ofHMF

KLM .
As demonstrated in Refs. 6 and 7,HMF

KLM can account for
the low-temperature coherence of heavy-fermion syste
therefore,HMF can also account for the low-temperature c
herence, i.e., the coherence is not broken but mainta
within the extended Kondo lattice model, which is importa
to understand the properties of heavy-fermion systems at
temperatures. Equation~30! shows that the exchange inte
action between thec andf electrons on nearest-neighbor sit
can modify the electronic coherence at low temperatu
through a renormalization.

A key manifestation of the coherence is that thef elec-
trons are formed into a band at low temperatures, with
huge effective electronic mass, which can be seen strai
forwardly fromD f(v), the density of states of thef electrons

D f~v!52
1

p

1

N (
k

Im^^ f k,su f k,s
† &&v1 i01, ~34!

where ^^ f k,su f k,s
† &&z represents thef-electron Green’s func-

tion obtained from Eq.~30!. Its numerical results atT
50 K are shown in Fig. 2, where the chemical potentialm
is taken as the origin of energy, and locates at the poin
v50. Figure 2 indicates that there arise two bands,
heavy-fermion metals,nt&2, wherent5Nt /N is the total
number of the electrons per site, the chemical potentia
positioned in the lower band. At the chemical potential, t
density of states is huge, in comparison with the density
states of the barec electrons in Fig. 1. As is well known
m* /me.D f(0)/g(0), where m* and me are the effective
f-electron and barec-electron masses, respectively, th
means thatm* /me@1, namely, thef electrons get a huge
effective mass.

FIG. 2. The density of states of thef electrons atT50 K.
2-4
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Another important manifestation of the coherence is
onset of a characteristic energy scale, i.e.,kTK , whereTK is
the so-called Kondo temperature, it is defined by5–7

kTK5« f2m, ~35!

where« f andm take their values atT50 K. The numerical
results ofTK are shown in Fig. 3, wherenc5nt21 repre-
sents the number of thec electrons per site, it indicates tha
kTK /t is rather small for a typical heavy-fermion system.

IV. THE ELECTRONIC STATES
AT HIGH TEMPERATURES

Now, we turn to study the electronic states of the hea
fermion system in the high-temperature range (T@TK), we
shall see that the intersite scattering between thec and f
electrons can produce an essential influence on thef elec-
trons and change radically their electronic states at high t
peratures, though it just yields a renormalization to the lo
temperature coherence and cannot revise qualitatively
electronic states of the system at low temperatures.

At high temperatures, the above slave-boson mean-fi
approximation being inappropriate, we must have recours
other approximations. To do so, we would employ t
method of the equation of motion for the Green
function,12–15and start from the working Hamiltonian of Eq
~23!, which can be rewritten as

H5(
k,s

~«k2m!ck,s
† ck,s1(

k,s
~« f2m! f k,s

† f k,s

1H11H22N« f , ~36!

where

H1522J(
i

Si
c
•Si

f , ~37!

H252J1(̂
i j &

(
s,s8

ci ,s
† cj ,s8 f j ,s8

† f i ,s . ~38!

FIG. 3. The Kondo temperature versus the concentration of
c electrons.
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With Eq. ~36!, the equation of motion for the Green
function ^^ck,suck,s

† &&z can be expressed as

z^^ck,suck,s
† &&z5^$ck,s ,ck,s

† %&1^^@ck,s ,H#uck,s
† &&z

511~«k2m!^^ck,suck,s
† &&z

1^^@ck,s ,H1#uck,s
† &&z

1^^@ck,s ,H2#uck,s
† &&z , ~39!

where @A,B# and $A,B% denote the commutator and ant
commutator of A and B, respectively. ConsideringuJ1u
!uJu, H2 is much weaker thanH1, we shall thus continue
^^@ck,s ,H1#uck,s

† &&z forward with its equation of motion, bu
truncate^^@ck,s ,H2#uck,s

† &&z with the factorization

^ f i ,s
† f j ,s8&5rds,s8 , ~40!

where iÞ j . For simplicity, we consider the paramagne
case only. Evidently,r 5^ f i ,s

† f j ,s& stands for the site-to-site
hopping amplitude of thef electrons, which arises from th
intersite exchange scattering with thec electrons. The factor-
ization results in

^^@ck,s ,H2#uck,s
† &&z5zk^^ck,suck,s

† &&z , ~41!

where

zk522J1r @cos~kxa!1cos~kya!1cos~kza!#, ~42!

that is to saŷ ^@ck,s ,H2#uck,s
† &&z has gone back to the ini

tial Green’s function ^^ck,suck,s
† &&z . To continue

^^@ck,s ,H1#uck,s
† &&z forward, we first decompose it as

^^@ck,s ,H1#uck,s
† &&z

52
J

N (
n

(
k8

(
n

ei (k82k)•Rn^^Sn
f
•tWsnck8,nuck,s

† &&z ,

~43!

and then handlê^Sn
f
•tWsnck8,nuck,s

† &&z with its equation of
motion

z^^Sn
f
•tWsnck8,nuck,s

† &&z

5^$Sn
f
•tWsnck8,n ,ck,s

† %&1^^@Sn
f
•tWsnck8,n ,H#uck,s

† &&z

5^Sn
f &•tWsndk,k8ds,n1~«k82m!^^Sn

f
•tWsnck8,n ,uck,s

† &&z

1^^@Sn
f
•tWsnck8,n ,H1#uck,s

† &&z

1^^@Sn
f
•tWsnck8,n ,H2#uck,s

† &&z . ~44!

As we have done with respect tô̂@ck,s ,H2#uck,s
† &&z , we

would also truncatê^@Sn
f
•tWsnck8,n ,H2#uck,s

† &&z with the fac-
torization of Eq.~40!,

e

2-5



rs

rm

t-

e-
, as

MING-WEN XIAO, ZHENG-ZHONG LI, AND WANG XU PHYSICAL REVIEW B 65 235122
^^@Sn
f
•tWsnck8,n ,H2#uck,s

† &&z5zk8^^Sn
f
•tWsnck8,nuck,s

† &&z ,
~45!

it is thus closed into the left-hand side of Eq.~44!. Regarding

^^@Sn
f
•tWsnck8,n ,H1#uck,s

† &&z , it breaks into two terms:

^^@Sn
f
•tWsnck8,n ,H1#uck,s

† &&z

5^^@Sn
f
•tWsn ,H1#ck8,nuck,s

† &&z

2
J

N (
m

(
k9

(
g

ei (k92k8)•Rm

3^^Sn
f
•tWsnSm

f
•tW ngck9,guck,s

† &&z . ~46!

Using Eqs.~44!–~46!, Eq. ~43! becomes

^^@ck,s ,H1#uck,s
† &&v

5
J2

N2 (
n

(
k8

(
n

(
m

(
k9

(
g

ei [(k82k)•Rn1(k92k8)•Rm]

3
^^Sn

f
•tWsnSm

f
•tW ngck9,guck,s

† &&z

z2~«k81zk82m!

2
J

N (
n

(
k8

(
n

ei (k82k)•Rn

3
^^@Sn

f
•tWsn ,H1#ck8,nuck,s

† &&z

z2~«k81zk82m!
, ~47!

where we have used the fact that(n^Sn
f &50 in the paramag-

netic case, which results in the contribution from the fi
term on the right-hand side of Eq.~44! becoming zero. In-
serting it and Eq.~41! into Eq. ~39!, we get

@z2~«k1zk2m!#^^ck,suck,s
† &&z

511
J2

2N2

3(
s

(
n

(
k8

(
n

(
m

(
k9

(
g

ei [(k82k)•Rn1(k92k8)•Rm]

3
^^Sn

f
•tWsnSm

f
•tW ngck9,guck,s

† &&z

z2~«k81zk82m!

2
J

2N (
s

(
n

(
k8

(
n

ei (k82k)•Rn

3
^^@Sn

f
•tWsn ,H1#ck8,nuck,s

† &&z

z2~«k81zk82m!
, ~48!

where the fact that̂̂ ck,↑uck,↑
† &&v5^^ck,↓uck,↓

† &&v in the para-
magnetic case has been used.

For the second term on the right-hand side of Eq.~48!, we
first cut off the sum overk9 with maintaining only the term
of k95k, and the sum overg with of g5s, and then fac-
23512
t

torize (nSn
f
•tWsnSm

f
•tW ns out of the Green’s function by in-

cluding only the on-site spin correlation:14,15 ^(nSn
f
•tWsnSm

f

•tW ns&5dm,n^Sn
f
•Sn

f &, which results in

J2

2N2 (
s

(
n

(
k8

(
n

(
m

(
k9

(
g

ei [(k82k)•Rn1(k92k8)•Rm]

3
^^Sn

f
•tWsnSm

f
•tW ngck9,guck,s

† &&z

z2~«k81zk82m!

5J2S 1

N (
n

^Sn
f
•Sn

f & D S 1

N (
k8

1

z2~«k81zk82m!
D

3^^ck,suck,s
† &&z . ~49!

Like the second term, we shall also deal with the third te
by the cutoff approximation withk85k andn5s,

2
J

2N (
s

(
n

(
k8

(
n

ei (k82k)•Rn

3
^^@Sn

f
•tWsn ,H1#ck8,nuck,s

† &&z

z2~«k81zk82m!

52
J

2N (
n

3
^^@Sn

f z ,H1#ck,↑uck,↑
† &&z2^^@Sn

f z ,H1#ck,↓uck,↓
† &&z

z2~«k81zk82m!

50, ~50!

this is because ^^@Sn
f z ,H1#ck,↑uck,↑

† &&z

5^^@Sn
f z ,H1#ck,↓uck,↓

† &&z in the paramagnetic case. Substitu
ing Eqs.~49! and ~50! into Eq. ~48!, we obtain

@z2~«k1zk2m!#^^ck,suck,s
† &&z

511J2S 1

N (
n

^Sn
f
•Sn

f & D
3S 1

N (
k8

1

z2~«k81zk82m!
D ^^ck,suck,s

† &&z .

~51!

It can be written in a more compact form

^^ck,suck,s
† &&z5

1

z2~«k1zk2m!2Sc~z!
, ~52!

wherezk is the energy renormalization arising from the sit
to-site hoping due to the intersite exchange scattering
indicated by Eq.~42! andSc(z) is the self-energy,

Sc~z!5J2S 1

N (
n

^Sn
f
•Sn

f & D S 1

N (
k

1

z2~«k1zk2m! D .

~53!
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Apparently, it results from both the intrasite spin correlatio
and the intersite hoping of thef electrons, which are include
in ^Sn

f
•Sn

f & and zk , respectively. Following Anderson,16 we
take only the imaginary part ofSc(v1 i01),

Sc~v1 i01!52 ipJ2rc~0!S 1

N (
n

^Sn
f
•Sn

f & D 52 iGc ,

~54!

where

rc~v!52
1

p

1

N (
k

ImS 1

v2~«k1zk2m!1 i01D .

~55!

As a consequence

^^ck,suck,s
† &&v1 i015

1

v2~«k1zk2m!1 iGc
, ~56!

evidently,Gc stands for the damping of thec electrons.
By the same procedure as for^^ck,suck,s

† &&v1 i01, we
obtain

^^ f k,su f k,s
† &&v1 i015

1

v2~« f1jk2m!1 iG f
, ~57!

where

jk522J1s@cos~kxa!1cos~kya!1cos~kza!#, ~58!

G f5pJ2r f~0!S 1

N (
n

^Sn
c
•Sn

c& D ~59!

with

s5^ci ,s
† cj ,s&, ~60!

r f~v!52
1

p

1

N (
k

ImS 1

v2~« f1jk2m!1 i01D .

~61!

By using Eqs.~56! and~57!, the hopping amplitudess and
r in Eqs.~60! and~40! can be expressed in the case of sim
cubic lattice as

s52
1

6N (
k,s

E
2`

1`dv

p
f ~v!@cos~kxa!1cos~kya!

1cos~kza!#Im^^ck,suck,s
† &&v1 i01, ~62!

r 52
1

6N (
k,s

E
2`

1`dv

p
f ~v!@cos~kxa!1cos~kya!

1cos~kza!#Im^^ f k,su f k,s
† &&v1 i01, ~63!

wheref (v)51/(ev/kT11) is the Fermi distribution function
andk denotes the Boltzmann constant. With the same rea
Eqs.~24! and ~25! can be formulated as
23512
s

n,

nt512
1

N (
k,s

E
2`

1`dv

p
f ~v!Im^^ck,suck,s

† &&v1 i01,

~64!

152
1

N (
k,s

E
2`

1`dv

p
f ~v!Im^^ f k,su f k,s

† &&v1 i01, ~65!

they are the equations aboutm and« f .
As regards the on-site correlations^Sn

f
•Sn

f & and ^Sn
c
•Sn

c&,
they can be calculated through Eqs.~2!–~4!, with the result
that

1

N (
n

^Sn
f
•Sn

f &5S~S11!, ~66!

1

N (
n

^Sn
c
•Sn

c&5
3

2

1

N (
q

^S1~q!S2~q!&, ~67!

whereS51/2 is the spin quantum number of thef electrons,
and

S1~q!5
1

AN
(

k
ck1q,↑

† ck,↓ , ~68!

S2~q!5
1

AN
(

k
ck,↓

† ck1q,↑ , ~69!

the spin-density operators of thec electrons. With the help of
the fluctuation-dissipation theorem,12 ^S1(q)S2(q)& can be
represented by the Green’s function^^S2(q)uS1(q)&&v1 i01,

^S1~q!S2~q!&52E dv

p
b~v!Im^^S2~q!uS1~q!&&v1 i01,

~70!

whereb(v)51/(ev/kT21) is the Bose distribution function
Physically, the Green’s function̂̂ S2(q)uS1(q)&&v1 i01 de-
scribes the spin fluctuation of thec electrons. If there is no
interaction, i.e.,J5J150, it can be decoupled as

^^S2~q!uS1~q!&&v1 i01

52
1

N (
k
E dv8

p
@^^ck1q,↑uck1q,↑

† &&v1v81 i01
(0)

3Im^^ck,↓uck,↓
† &&v8101

(0)
1^^ck,↓uck,↓

† &&v82v1 i01
(0)

3Im^^ck1q,↑uck1q,↑
† &&v81 i01

(0)
# f ~v8!, ~71!

where^^ck,suck,s
† &&v1 i01

(0) represents the Green’s functions
the undressedc electrons. Considering thatJ andJ1 are both
much less than the bandwidth of the undressedc electrons,
they have very small influences on the of thec electrons. As
a consequence, we shall still decoup
^^S2(q)uS1(q)&&v1 i01 as in Eq.~71! under the interactions
of J andJ1, but renorrnalize the undressed Green’s functio
into the corresponding dressed ones,
2-7
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^^S2~q!uS1~q!&&v1 i01

52
1

N (
k
E dv8

p
@^^ck1q,↑uck1q,↑

† &&v1v81 i01

3Im^^ck,↓uck,↓
† &&v81011^^ck,↓uck,↓

† &&v82v1 i01

3Im^^ck1q,↑uck1q,↑
† &&v81 i01# f ~v8!. ~72!

As a result of Eqs.~67!, ~70!, and~72!, we get

1

N (
n

^Sn
c
•Sn

c&

5
3

2E2`

1`dv

p E
2`

1`dv8

p
b~v!@ f ~v8!

1 f ~v81v!#S 1

N (
k

Im^^ck,↓uck,↓
† &&v81 i01D

3S 1

N (
q

Im^^cq,↑ucq,↑
† &&v81v1 i01D . ~73!

The discussions up to now show that Eqs.~56!, ~57!,
~62!–~65!, and~73! constitute a closed set of equations of t
self-consistent Hartree-Fock approximation~SCHFA!, they
are the basic equations for us to describe the electronic s
of thec andf electrons atT@TK within the extended Kondo
lattice model. If one likes to go beyond the SCHFA, he c
further employ the parquet approximation due
Abrikosov13 to include the effects of higher orders, which a
less important and neglected here. The numerical resultss
and r are shown in Figs. 4 and 5, respectively, clearly, th
are both weak-temperature dependent.

Equations~57!, ~58!, and~60! indicate that the site-to-site
hoping due to the intersite exchange scattering produce
f-electron band with a dispersion of« f1jk5« f
22J1s@cos(kxa)1cos(kya)1cos(kza)#, the width of this band
being proportional toJ1s. BecauseJ1 is much less than the
bandwidth of thec electrons ands!1 as shown in Fig. 4, the
bandwidth of thef electrons is much less than that of thec

FIG. 4. The temperature dependence of thec-electron hopping
amplitude.
23512
tes

n

f
y

an

electrons. In other words, thef electrons are formed into a
narrow itinerant band under the intersite exchange scatte
between thef and c electrons within the EKLM. On the
contrary, if J150 as in the KLM, thejk will become zero,
and thef electrons are formed into independent local ma
netic moments with the energy level being at« f . That is the
reason why we extend the KLM into the EKLM.

On the other hand, considering that thec-electron band-
width is of the order of several eV, thec electronic state will
depend on temperature weakly. As a result, the hopping
plitude s5^ci ,s

† cj ,s& and the local spin correlation̂Sn
c
•Sn

c&
will vary rather slowly with the varying of temperature,
induces that bothjk}J1s and G f}^Sn

c
•Sn

c& change slowly
with temperature, and so does thef Green’s function
^^ f k,su f k,s

† &&v1 i01. Therefore, thef electronic state will be
weakly temperature dependent within the EKLM.

These two features can be illustrated clearly byAf(k,v),
the spectral functions of thef electrons,

Af~k,v!52Im^^ f k,su f k,s
† &&v1 i01, ~74!

which are shown, respectively, in Figs. 6 and 7. In Fig. 6,
shift of the peak is about 40 meV if the bandwidth of th
barec electrons is taken to be 6 eV, which means that

FIG. 5. The temperature dependence of thef-electron hopping
amplitude.

FIG. 6. The dispersion of thef-electron spectral function.
2-8
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f-electron band is weakly dispersive. Compared with Refs
and 9, Fig. 6 demonstrates that thef electrons within the
EKLM is far less dispersive than within the PAM. The ins
in Fig. 7 is an enlarged view, which indicates that the sp
tral function is nearly independent of temperature. Ob
ously, the numerical results are in accordance with the ab
qualitative analyses.

In sum, thef-electron state is both of weak dispersion a
of weak temperature dependence atT@TK within the frame-
work of the extended Kondo lattice model.

V. THE ARPES OF THE F ELECTRONS AT TšTK

For thef electrons in the heavy-fermion system, which a
strongly correlated, as proved in Refs. 17–20, their ARP
contains two parts: the elastic part and the inelastic part.
former contributes a peak to the ARPES, which gives
dispersion information of the electrons, but the latter contr
utes a background, which is irrelevant with the dispersi
As we are mainly concerned with the properties of the p
here, we shall consider only the elastic part of the ARP
which is described by the differential cross secti
P(k,v),17–20

FIG. 7. The temperature dependence of thef-electron spectral
function.
. 8
6

n
a
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P~k,v!}Af~k,v! f ~v!

}
G f

@v2~« f1jk2m!#21G f
2

f ~v! ~75!

}
G f

@v82~« f1jk!#21G f
2

f ~v82m!, ~76!

where v85v1m, and we take the Fermi levelm as the
origin of the energy from now on. Clearly, the first factor o
the right-hand side represents a Lorentzian peak with a c
ter at« f1jk and a half-width ofG f , and the second one
Fermi profile. Equation~76! indicates that the shift of the
ARPES peak with the variation ofk reflects the dispersion o
the f electrons—the stronger the dispersion, the farther
peak shifts—and the width reflects the damping of thef
electrons—the larger the damping, the wider the peak.
sides, the temperature behavior of the peak is controlled
both the spectral function and the Fermi profile.

As pointed out in the preceding section,J1s is much
less than the c-electron bandwidth, therefore
jk522J1s@cos(kxa)1cos(kya)1cos(kza)# will vary slowly
whenk scans through the Brillouin zone, as a consequen
the Lorentzian peak as well as the ARPES peak can m
only quite a small distance whenk scans from (p,p,p), the
bottom of the band, to (0,0,0), the top of the band, which c
be seen directly from Fig. 6, and

FIG. 8. The dispersion of thef-electron ARPES.
P~k,v!}
G f

„v82$« f22J1s@cos~kxa!1cos~kya!1cos~kza!#%…21G f
2

f ~v82m!. ~77!
ft is

own
ES
The numerical results of the ARPES are depicted in Fig
with the bandwidth of the barec electrons supposed to be
eV. The shift of the ARPES peak is about 40 meV whenk
scans from the bottom of the band to the top of the ba
such a small shift of the peak is a reflection of the we
dispersion of thef-electron band, which is qualitatively in
,

d,
k

agreement with the experiments where the observed shi
about 20–35 meV for different samples.2–4 In addition, as
both the hopping amplitudes and the dampingG f depend
weakly on temperature, Eq.~77! indicates that the Lorentzian
peak will depend on temperature weakly, as has been sh
in Fig. 7. Thereby, the temperature behavior of the ARP
2-9
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arises mainly from the Fermi profile, which means that
ARPES will be weakly temperature dependent because
Fermi profile is weakly temperature dependent in the exp
mental temperature range. This is depicted in Fig. 9, wh
shows that the theoretical result is in accordance with
experiments.2–4 Compared with the PAM,8,9 the f-electron
ARPES is now both of weak dispersion and of weak te
perature dependence atT@TK within the EKLM, whereas it
is only weakly temperature dependent but strongly disper
in the PAM.

On all accounts, the extended Kondo lattice model is a
to interpret theoretically both the weak dispersion and w
temperature dependence of the ARPES of thef electrons ob-
served experimentally.

FIG. 9. The temperature dependence of thef-electron ARPES.
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VI. SUMMARY AND CONCLUSIONS

After including an exchange term between thec and f
electrons on nearest-neighbor sites, we have develope
extended Kondo lattice model, and used it to explain
weak dispersion and weak temperature behaviors of
angle-resolved photoemission spectroscopies of thef elec-
trons atT@TK . It is found that the extended Kondo lattic
model just produces a small renormalization to the lo
temperature coherence when compared with the Kondo
tice model, namely, it maintains the low-temperature coh
ence of heavy-fermion systems, which is fundamental
comprehend the low-temperature properties of those
tems. Unlike the Kondo lattice model, the extended Kon
lattice model causes thef electrons to build a narrow itiner
ant band atT@TK , and contributes an angle-resolved ph
toemission peak with weak dispersion and weak tempera
dependence to thef electrons, which is in agreement with th
experiments. In other words, the extended Kondo latt
model can account for both the low-temperature cohere
and thef-electron ARPES in the high-temperature range.

In this paper, we have just used the EKLM to discuss
ARPES of the nonmagnetic heavy-fermion systems. In p
ciple, it can also be applied to the magnetic systems, whic
under consideration.
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