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Weak dispersion and weak temperature dependence of angle-resolved photoemission
for heavy-fermion systems
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By extending the Kondo lattice model to include an exchange term betweeo &mel f electrons on
nearest-neighbor sites, we proposed an extended model that can be used to explain the weak dispersion and
weak temperature behaviors of angle-resolved photoemission spectroscopies observed recently in heavy-
fermion systems in the high-temperature range Tk , Tk : the Kondo temperatuyeThe extended model can
not only describe the electronic coherencd &Ty , but also yield an angle-resolved photoemission peak to
the f electrons aff > Ty, with weak dispersion and weak temperature dependence.
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[. INTRODUCTION dispersion and weak temperature dependence. The rest of the
paper is organized as follows: in Sec. Il, we are going to
As well known, heavy-fermion systems manifest manyextend the KLM to include a complementary exchange term
unusual and intriguing propertié$uch as a large Pauli sus- between thec and f electrons on nearest-neighbor sites; in
ceptibility and specific heat as compared to ordinary metalss€c. Ill, we aim at demonstrating that the extended Kondo
which indicate a huge effective electronic mass. Recentlymodel can still account for the electronic coherenceT at
ang'e_reso'ved photoemission SpectroscomRPES <TK! in Sec. |\/, we deal with the electronic states of the
experiment$;* as a direct probe to the electronic states, re-System aff>Ty within the extended model; in Sec. V, we

vealed an anomalous property on single crytalline S(.jm]p|e§xplain the two abnormal behaviors of thelectron ARPES

i.e., there still exists a peak structure in the spectroscop@t > Tk With the results of Sec. IV; finally, in Sec. VI, we

even whenl>Ty, whereTy stands for the Kondo tempera- shall conclude our paper with a brief summary.
ture, the characteristic temperature of a heavy-fermion sys-

tem. In particular, the peak shows weak temperature depen-  Il. THE EXTENDED KONDO LATTICE MODEL
dence, and is weakly dispersive: the dispersion is of the order
of 20—35 meV whereas the width of the conduction band is
typically a few eV, which means that the highly localized
electrons form a narrow itinerant band abdug. H=Y, sicf ,Co—23> S-S, (1)

Usually, single crytalline heavy-fermion systems are mod- Ko ' i
eled by the periodical Anderson mod@AM) or the Kondo where ¢y , is the annihilation operator of the conduction-

lattice model(KLM ), both of them can account for the elec- band electrons in the Bloch representation, apdhe corre-

tronic coherence present in these systems at low temperg- onding energyl is the intrasite exchange interaction, and
tures, T<T .5 For the PAM, theoretical studies through >F g 9y 9 :

f . .
Monte Carlo methotiand the noncrossing approximation for S’ and$; represent the spin operators on te site,
lattice’ show that it can produce an ARPES peak to the

The Kondo lattice model reads as follows:

electrons aff>Ty, and the peak is relatively weakly tem- S:zi[cf of 17 Ci,p @)
perature dependent, but the spectral function forfth&ec- 20T e, A

trons, and also the corresponding ARPES are strongly

dispersivé®® For the KLM, it gives no dispersion to thi 1 f

electrons alf> Ty because, as is well known, thelectrons Sf:_[fi-rTfiTl]; "T}, 3
are formed into independent localized magnetic moments at S fil

T> Ty within this model. This means that both the PAM and - ) ) o

KLM are inadequate to describe the ARPESTatT,, nei- Wherer denotes the vector Pauli matrix, ahd, the annihi-

ther of them can give any exposition of the weak dispersiori@tion operator of the localized electrons in the Wannier rep-

for the f electrons. Evidently, one must extend and complefesentation. Additionally, E{1) must satisfy the constraints

ment those two models, or else resort to other models in

order to interpret the two abnormal behaviors of the 2 i -1 4

f-electron ARPES at>Tg. & oo
In this paper, based on the Kondo lattice model, we shall

try to develop a possible model for heavy-fermion systemson all sites.

which is purposed to be able to provide not only a descrip- As is well known, the KLM Hamiltonian of Eq) is just

tion of the low-temperature coherence but also of thea direct extension of the single-impurity Kondo model

f-electron ARPES peak &i>Ty, including both its weak (SIKM),
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H :gf &kCh o~ 205 S, 5 op(r)= iN > e kRmaf(r—R,), (13

; fl flo=1 (6) ¢k,(r’)=iN2 ek Ra(r'—R,), (19

by simply summing all the intrasite exchange terms presenjhereN is the total number of the lattice sites, E42) can
in the whole lattice, heredenotes the site index of the mag- pe further formulated as

netic impurity. As pointed out in Sec. I, this extension is

enough for describing the low-temperature cohergroec- I P e
curring in heavy-fermion systems, but it is inadequate to ac-  (Ki[v[ik )=Ne'(" Ri~k R’)é ; e ! Rm~k'-Rn)
count for the ARPES peak of tHeelectrons alf>T,. We

think that the inadequacy results from the fact that such an .

extension is too simplified, viz., it neglects too many other Xf f drdr'a’(r—Rpy)w(r)

exchange terms, especially the intersite ones. In the single

magnetic impurity case, the exchange interaction between Xv(r—r'=Ri+Ryw'(rHa(r' —=Ry).
the c andf electrons can occur only on the same site, but for (15)

the lattice case, it can occur between ¢rendf electrons on ) o )
different sites. To account for the ARPES peak of tiedec- The main contribution to the integral comes from the term
. . ) : . ; —p —n10 ;
trons, we should include the intersite exchange interaction.With Ry,=R,=0,'° and Eq.(15) can be approximated as
To derive the exchange interaction between ¢hend f 1
e_Iectrons on different sites, one coan start from the electron- <ki|U|jkr>:_ei(k’-Rrk-Rj)f f drdr’a’(r)yw(r)
field operatory(r), as Kasuya did N

Xv(r—r'—=Ri+Rpw'(rHa(r’). (16

to
where 7, denotes the spin wave functiog,(r) and w(r

—R;) the wave functions for the andf electrons, respec- 1 (k) Ryt gt
tively. In the single-impurity case, the second sum on the Hex:JN = 2 e 'Sk of) o Ckr o Fio
right-hand side of Eq(7) reduces to a single piecev(r 77
-R)) n,f| ,. With Eq.(7), the exchange interaction between _ S +
the c andf electronsH,,, can be expressed as =32 CCiofi e
o, J
Hexzizj kgk 2 (kilolik)el oo fion @) =-2358-5 3 ¢l 0 (17
where where we have used Eq®)—(4), and
i S0 r T Trpr c =i E eik‘RIC (18)
(kilv]jk')= drdr’ gp(nw'(r'—R)) Lo N= Ko
Xv(r=r") e (r )w(r—R;) 9
, , , _ J=f f drdr’a’(ryw(r)yv(r—r"Hw'(rHa(r’). (19
with v(r—r") representing the Coulomb interaction. By us-
ing the Bloch theorem The second term dfl,, is an unimportant potential scatter-
+ ClkeRe t ing term, as usual, it can be omitted, ard, gives the sec-
er(r)=e " Te(r=Ry), (10 ond term of the SIKM of Eq(5). Here, there can only exist
_ the intrasite exchange between thandf electrons.
e (r)=e* Rig, (r'-R), (11) In contrast to the single-impurity case, there can exist the
intersite exchange between theandf electrons in the case
Eqg. (9) can be formulated as of periodical magnetic impurities, apart from the intrasite
one. Correspondingly, the total exchandg, separates into
<ki|v|jkr>=ei(k’-Rifk-Rj)J' f drdr’gol(r)w(r) two terms:
Xu(r=r' =R+ R)W (1) (r'). (12) Hem =203 §7-8-2 3 il 60, fio
Expanding the Bloch wave functiorsi(r) and e (r’) into (20
the Wannier functiona'(r—R,,) anda(r’' —R,), where
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r rot
Ji,j—J J drdr’a’(ryw(r) 0l i
Xv(r—r'=Ri+Rpw'(rHa(r’). (21)
The first term ofH, represents the intrasite exchange, which § 02f 1
comes from the contribution of the components withj in S0

the sum over andj of Eq. (8), and the second one the
intersite exchange from the contribution of the components 0.1
with i#]. The former will still exist even if there is only a
single magnetic impurity alone in the system, but the latter
will disappear if there is only one magnetic impurity. Again, g0
an unimportant potential scattering term has been omitted ir
Eq. (20), as in the single-impurity case.

Clearly, the first term on the right-hand side of E20) is FIG. 1. The density of states of the undresseglectrons.
just a direct sum of all the intrasite terms present on each
impurity site when compared with E(L7), and it yields the
second term of the KLM Hamiltonian in E@L). Physically,
it describes the intrasite scattering betweendfedf elec-
trons, and cannot cause thelectrons to transit from site to
site. On the contrary, the second term on the right-hand side
of Eq. (20) can cause théelectrons to hop from site to site H :E ol —ZJE . Sf
because it describes physically the intersite scattering be- o otk i
tween thec andf electrons. However, this term is excluded

i iltoni Q); - i
completely in the KLM Hamiltonian of Eq1); such exclu _Jl% E CiT,a'Cj,a"fj it U_M( kE Cl,ack,a

As usual, we shall introduce the chemical potentiadnd
the Lagrange multipliee; to treat the conservation of par-
ticles and the constraint of E¢4),

sion leads to the result that tfielectrons are all formed into
independent local magnetic momentsTat T and gives no
dispersion to the ARPES peak of thelectrons, which is in +z it
contradiction with the experiments? as pointed out in Sec. o e
I. We believe that this intersite scattering is responsible for
the formation of the narrow itinerant band of thelectrons  which constitutes our working Hamiltonian. Accordingly, the
observed in the ARPES a& Ty, and it should be taken it parameterg. ande; are determined by the following equa-
into account and included in the Hamiltonian for the latticetions:
case, which is the main idea for us to explain the ARPES of
heavy-fermion systems in the this paper.

To determine the effect of this intersite scattering on the N,=> (cl’gckvg>+2 (fiT'Ufi'l,), (29
formation of the narrowf-electron itinerant band, we shall, ko ho
for simplicity, keep only the exchange interaction from the

+ sf<2 fi*,(,fi,(,—l), (23)

nearest-neighbor sites becauke decreases fast with the 1 )
increasing of the distand®, — Rj?: 1= .E (fi.ofi o) (29
_ + B o where N, is the total number of the electrons, and- -)
H g, koo 2‘]2 S8 means the thermal average with respect to the working

Hamiltonian. In the numerical calculations below, a tight-
_ PSR P binding band of a simple cubic lattice will be supposed for
J1<izi> 2, oSyl i @2 thec electrons:

where(ij) means the nearest-neighbor sites, dpds the ex=go—t[cogk,a)+cogk,a)+cogka)], (26
corresponding coupling strength, which is simplified as a

constant for convenience, obviousld;|<|J|. Except the wherea denotes the lattice constant. The corresponding den-
last term, the above Hamiltonian is the same as the KLM, saity of states

we shall call it the extended Kondo lattice modEKLM).

In the following sections, we shall see that theterm will 11 1
cause the electrons to form a narrow itinerant band &t g(w)=——— >, Im(— (27)
>Ty and display a weak dispersion and weak temperature TN % o—g+i0"

dependent ARPES. Besides, it will produce a renormaliza-
tion to the electronic coherence at low temperatures, T.e., is shown in Fig. 1; here and hereafter, thband parameters
<Tg. are chosen asy=0, t=1, anda=1.
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Ill. THE LOW-TEMPERATURE COHERENCE T
[ A: J=-0.18, J =-0.018, n=1.70,

For the sake of investigating the low-temperature elec- [ B: J=-0.20,7=-0.020, =1.70,
tronic coherence, let us first reformulate the working Hamil- p C:J=-0.22, 7 =0.022, n=1.70.
tonian as [

150

100 |- -

H=2 (2= 2= )0k Cuot 2 (2= Wl fi

+32 2 cf fiofl . cig
s ,

!
o,

+le > C?,UfiygijU,Cj,,,/—st. (28 -0.03 -0.02 001 000 o001 o002 0.03
<|]> o’ ' [6)]
Henceforward, the energy constantl/2 will be absorbed FIG. 2. The density of states of thielectrons af =0 K.

into thee, of &, in Eq. (26).
Although the SIKM can be solved exactfythe above 163, in the mean-field approximation when compared with

model is hard to handle at present, just as the KLM. On§he KLM. Obviously, J; can strengthen or weakehif J
must hence resort to approximation methqu’ff which the<0 or J.1>0 (J<0’),1sinceJ is the intrasite exchaﬁge
slave-boson mgan-fleIdSBMF) _approxmatloﬁ IS suc- strength, wherea$, is the intersite exchange strength, it is
cessful to describe the electronic coherence at low t(::mpera-[l)-elieved that|J,|<|J|. Thus, the renormalization is rela-
tures. Therefore, we shall adopt it here to study the low-. 1 ' ' = ~
temperature coherence. According to this method, one caively small, andJ; cannot reverse the sign df namely,J
treat the third and fourth terms on the right-hand side of Eqkeeps the same sign asio matter whethed, is positive or
(28) by introducing the SBMF parameter negative:J<<0. Becausd has the same sign dsor they can

be different merely in the magnitude, the physical results of

Hye at T<Ty are qualitatively the same as thoseHgf" .

_ T _ T
b_z‘ <Ci"’fi"’>_§g: (FioCiia) 29 As demonstrated in Refs. 6 and =" can account for
. ! L the low-temperature coherence of heavy-fermion systems,
which leads to the mean-field Hamiltonian thereforeH,, can also account for the low-temperature co-
herence, i.e., the coherence is not broken but maintained
Hye= > (8k—/_L)Cl’(er,U_+ > (sf_,u)flﬁfklg within the extended Kond_o lattice model, vv_hich is important
k.o ko to understand the properties of heavy-fermion systems at low

temperatures. Equatiof80) shows that the exchange inter-
+jb2 (Cl ot fl oCho)— N(sf+3b2), action between the andf electrons on nearest-neighbor sites
Ko 70T o can modify the electronic coherence at low temperatures
(30) through a renormalization.
A key manifestation of the coherence is that thelec-

where trons are formed into a band at low temperatures, with a
~ huge effective electronic mass, which can be seen straight-
J=J+6Jy, (3D forwardly fromD;(w), the density of states of tHeslectrons
1 . 11 +
fk’U:\/_NZ e_lk'leta.. (32) Df(w):_;N% |m<<fk,a'|fk,o'>>w+i0+1 (34)

where((fk,<,|fl’g)>Z represents théelectron Green’s func-

OE&’,\LOUSW* ifJ,=0, J reduces ta), andHyr goes back 5y gptained from Eq.(30). Its numerical results aff
to Hye" , the mean-field Hamiltonian for the Kondo lattice —y k are shown in Fig. 2, where the chemical potential

model is taken as the origin of energy, and locates at the point of
w=0. Figure 2 indicates that there arise two bands, for

HKM = > (Sk_M)CII,ng,U_}'E (Sf_,u)flyofk‘a heavy-fermion metalsn;<2, wheren;=N{/N is the total

k.o k.o number of the electrons per site, the chemical potential is

positioned in the lower band. At the chemical potential, the
+Jb, (e frot L Cro)—N(gf+Ib?), density of states is huge, in comparison with the density of
kKo o states of the bare electrons in Fig. 1. As is well known,
(33) m*/m¢=D(0)/g(0), where m* and m, are the effective
f-electron and barec-electron masses, respectively, this
which is the case studied in Refs. 6 and 7. Equati®®  means tham*/m,>1, namely, thef electrons get a huge
indicates that the EKLM just renormalize$ into J=J  effective mass.
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0.010 T T T T T With Eq. (36), the equation of motion for the Green’s
function((ck,(,lc;(,})Z can be expressed as
0008  J=-0.20,J,=-0.02. 1
oonc _ 2((Cholch )= (o L)+ ([ HIlEL )
<
EM =1+ (e~ w){{Ck ol CL o))z
0.004 [ E
L +<<[Ck,trle]|CI,a’>>z
0.002 - T +<<[Ck,(r !H2]|Cl,o'>>zv (39)
0.000 s \ s s \ where[A,B] and {A,B} denote the commutator and anti-
0.60 0.65 0.70 0.75 0.80 085 0.90 commutator of A and B, respectively. ConsideringJ,|

n <|J|, H, is much weaker thait;, we shall thus continue

C
(([cx.o H1llct ,)), forward with its equation of motion, but
FIG. 3. The Kondo temperature versus the concentration of th?mncate(([ck ’ H2]|CT >> with the factorization
c electrons. o k,o!)z

Another important manifestation of the coherence is the (F F ) =185 00, (40)
onset of a characteristic energy scale, k&, , whereTy is

the so-called Kondo temperature, it is defined By wherei#j. For simplicity, we consider the paramagnetic

case only. Evidentlyy =<fiT,(,fj,(,) stands for the site-to-site
(35) hopping amplitude of thé electrons, which arises from the
intersite exchange scattering with tbelectrons. The factor-
wheree; and u take their values af=0 K. The numerical ization results in
results of Ty are shown in Fig. 3, whera.=n,—1 repre-
sents the number of theelectrons per site, it indicates that + _ t
kT /t is rather small for a typical heavy-fermion system. (LG HallCko))= Eid{Cial k)2 “4D

kTe=e1—u,

where
IV. THE ELECTRONIC STATES

AT HIGH TEMPERATURES (= —2Jyr[cogkea)+cogkya)+cogk,a)], (42

f pr, we turn .to study the electronic states of the heavy-,[hat is to say(([c U,H2]|Cl }), has gone back to the ini-
ermion system in the high-temperature range>(T), we . ; o ' + .
shall see that the intersite scattering between dhend f tial GreensT function <<Ckv"|_ck’0>>z' To gontmue
electrons can produce an essential influence orftlec-  ({[Ck.o-H1l[Ck,,))- forward, we first decompose it as
trons and change radically their electronic states at high tem-

peratures, though it just yields a renormalization to the low- <<[Ck,a-!Hl]|Cl N2

temperature coherence and cannot revise qualitatively the

electronic states of the system at low temperatures. J e >
: i - (k' =K)-Ry//af . +
At high temperatures, the above slave-boson mean-field N ; ?« EV e "((Sh* TerCh7 1l C o)) 2
approximation being inappropriate, we must have recourse to
other approximations. To do so, we would employ the (43
method of the equation of motion for the Green’s f - T - .
function!2-15and start from the working Hamiltonian of Eq. @nd then handlé(S,- 7,,Ckr,/Cx »)), With its equation of
(23), which can be rewritten as motion
f o= +
H= (e )0k ot 2 (8= )L o (S Tl Gz
k,o ’ ' k,o ' ' R R
:<{Slf"| TovCk! v lCT U}>+<<[Slf"| TavCk’ v lH]|CJr o'>>
+H;+H,—Ney, (36) vk : kol/z
:<St1> Tov(sk,k’ 5<r,v+(8k’ _/*L)<<SI1 T(rl/ck’,v 1|Cl,o>>z
where
+<<[Sf"| T(TVCk’,V'Hl]|CE,O'>>Z
__ o -
Hi=-202 S°-, 37 HULSy s HalEL ) (44
As we have done with respect (Q[cky(,,Hz]lcE’L,}}Z, we
Hy=—31> > ¢l ciofl fio. (39)  would also truncaté([ S 7,,ci:, . Hollc) ,)), with the fac-
M g 707 b0 torization of Eq.(40),

235122-5



MING-WEN XIAO, ZHENG-ZHONG LI, AND WANG XU

<<[Sf"l ;a'vck’,v !H2]|CI:,U>>Z: gk’<<srf‘| ;O'VCk’,V|CIJ£,U>>Z!
(45)

it is thus closed into the left-hand side of E44). Regarding
({[Sh- TouCirp H11lCL ))2, it breaks into two terms:

<<[ST1 ;(rvck’,v 1Hl]|CE,0>>Z
= <<[S|t1 ;O'V !Hl]ck’,v|cl,a'>>z

__222 i(K"—k")-Rp,

m K" Y
X <<Srf‘| ! 7—:(J'Vsrf‘n‘ 7—:V)/Ck”,)/| Cl,o—))Z .
Using Eqs.(44)—(46), Eq. (43) becomes

<<[Ck,01Hl]|Cl,o’>>w
:_2 z 2 E 2 E i[(k"—k)-Ry+(K"—k")- Rl

mr y

f = f T
> <<Sn TUVSm' Tvyck”,ylck,o>>z

Z— (et —n)
_iz 2 2 el(k'=k)-Ry
N n k' v

X<<[Srf1 ;O'V !Hl]ck’,vlcl,(r>>z
Z— (gt 4 —p)

(46)

, (47)

where we have used the fact (S )=0 in the paramag-
netic case, which results in the contribution from the first

term on the right-hand side of E¢44) becoming zero. In-
serting it and Eq(41) into Eq.(39), we get

[2— (et L= ) H{Chol )2

J2
= J’__
2N?
XE E 2 2 2 2 2 ei[(k’7k)'Rn+(k”*k’)‘Rm]
a n g v m gy

f = f -
> <<Sn TUVSm' Tvyck”,ylcl,o>>z

Z— (et ik —nm)
_iz 2 2 Z ik’ —k)-Ry
N loa n k' v

X<<[Slf1 ;O'V !Hl]ck’,vlcl,v>>z
z— (gt 4 —m)

where the fact that(cy ;|c ;)),=((ck ilci ), in the para-
magnetic case has been used.

For the second term on the right-hand side of @8), we
first cut off the sum ovek” with maintaining only the term
of k”=k, and the sum ovey with of y=¢, and then fac-

: (48)

PHYSICAL REVIEW B 65 235122

torize EVSL~ ;wafﬂ- ;W out of the Green’s function by in-
cluding only the on-site spin correlatidf®® (3, 7, S
oo = Omn(Sh- S, which results in

_2222222 i[(K"—K)-Ry+(K"=K')- Ry

2N? 7 m e Ty
X<<SI1 ;(TVSIT]. 7-:V)/Ck”,)/|CI,¢T>>Z

Z— (e +fw—p)

1 1 1
=J2<— f of ) -
N ; & N % z— (e + 4w — )

X((CholCh )z (49)

Like the second term, we shall also deal with the third term
by the cutoff approximation wittkk’ =k andv=¢,

J )
_ Y i(k'—k)-R

X(([SL' Tou HilCk el ),
z— (e + )
J
2N

fz
LIS H

l]Ck,T|CE,T>>Z_<<[Srf1Z ) Hl]Ck,i|CE,i>>z

Z— (e +lw—p)

=0, (50)

this is because (IS Hilewlef 1)),
=(([S"* H Hilcy, L|Ck }), in the paramagnetic case. Substitut-
ing Egs.(49) and (50) into Eq. (48), we obtain

[2— (et & 1) 1{(Ciol G )2
1
53 ()]

x(iE !

=1+J?

({Croloho):-

N 2= (e + Ll —n)
(51
It can be written in a more compact form
(Colch e - 2
Kokl I2T 7 — (et L~ ) —2e(2)

where(, is the energy renormalization arising from the site-
to-site hoping due to the intersite exchange scattering, as
indicated by Eq(42) andX.(z) is the self-energy,

_2[ 1> (s )(i _
@)= (N &N e aw)
53
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Apparently, it results from both the intrasite spin correlations
and the intersite hoping of tHeelectrons, which are included

in (S-S) and ¢,, respectively. Following Andersdfi,we
take only the imaginary part & (o +i0"),

2c<w+io+>=—in2pc<0>($Z <s;-s;>):—ir

(54)
where
11 1
=——< 2 Im .
PO TN E (w—<ek+/:k—m+io+
(55)
As a consequence
R 1
<<Ck,o|ck,a>>w+i0+: (56)

o= (&t G p) Tl

evidently,I', stands for the damping of theelectrons.
By the same procedure as f«é(ck'0.|cljg>>w+io+, we
obtain

1
<<fk,(r|fl,(r>>w+i0+:w_(8f+§k_M)+iFf’ (57)
where
éc=—2J;8[cogk,a) +cogk,a)+cogk.a)]l, (59
1
T ED N BT
with
s=(c{ ,Cj o). (60)
11 1
PO TN 'm<w—<sf+sk—m+io+ |

(61)

By using Eqs(56) and(57), the hopping amplitudesand

PHYSICAL REVIEW B 65 235122

1 do
t: —N Ko J,w_f(w)|m<<ck10'|Cl,0'>>w+i0+v
(64)
1 dow
1=-N& f_m—f<w>lm<<fk,alfl,<,>>w+io+, (65)

they are the equations aboutande; .

As regards the on-site correlatiotis! - Sf) and(S¢- S5),
they can be calculated through E@2)—(4), with the result
that

1
N2 (Shrs)=s(s+1), (66)

NS5 S S @s @), 6

whereS=1/2 is the spin quantum number of thelectrons,
and

1
S"(q)= \/_N Ek: k+q,1Ck, | » (68
. 1 )
S (‘”:Tﬁzk Ci | Ckia, (69)

the spin-density operators of theslectrons. With the help of
the fluctuation-dissipation theoreth{S*(q)S™(q)) can be
represented by the Green’s functiof8™ (q)|S*(A))) w+io+

dw
(" @S (@)= [ S2b@Im(S (@IS" @)y i0-
(70)
whereb(w)=1/(e“’kT—1) is the Bose distribution function.
Physically, the Green’s functio(S™(q)|S"(Q)))+io+ de-

scribes the spin fluctuation of theeelectrons. If there is no
interaction, i.e.J=J,;=0, it can be decoupled as

<<57(Q)|S+(Q)>>w+io+

r in Egs.(60) and(40) can be expressed in the case of simple

cubic lattice as

5= GNEJ

+cogk,a) JIm{(Cy 4ICf o)) wrio*s (62)

wn )T

+cogka)]Im{(fy . f

f(w)[cogk,a)+cogkya)

f(w)[cogk,a)+cogkya)

=__2J

X|m<<Ck l|ck l>> r+0++<<ck L|Ck L>>w '—w+i0"

X|m<<Ck+q,T|Ck+q,T>>wf+io+]f(w,)' (72)

Where(<c,w|clﬂ))(wolio+ represents the Green’s functions of
the undressed electrons. Considering thatandJ, are both
much less than the bandwidth of the undressedectrons,

they have very small influences on the of thelectrons. As

[<<Ck+q T|Ck+q T>>w+w'+l0+

shall still

ko)) wtio®s (63)

a consequence, we decouple
wheref () =1/(e”’*T+1) is the Fermi distribution function ((S™(q)|S*(q)))w+io+ as in Eq.(71) under the interactions
andk denotes the Boltzmann constant. With the same reasowf J andJ,, but renorrnalize the undressed Green'’s functions
Egs.(24) and (25) can be formulated as into the corresponding dressed ones,

235122-7
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FIG. 4. The temperature dependence of ¢helectron hopping
amplitude.

<<S‘(q)|8+(q)>>w+io+

:__zf

X |m<<Ck,¢|Cl,¢>>w’ +o+t <<Ck,1|cl,i>>w’ —wtiot
X|m<<ck+q,T|Cl+q,1>>w'+io+]f(0),)- (72)

As a result of Egqs(67), (70), and(72), we get

[<<Ck+q T|Ck+q T>>w+w’+l0+

EDREES
i =y

1
N ; |m<<ck,1|cl,l>>w'+io+)

+f(w'+w)]

(73

1
X N % Im<<cq,T|C£,T>>w’+w+iO+> .

The discussions up to now show that E@s6), (57),

(62—(65), and(73) constitute a closed set of equations of the

self-consistent Hartree-Fock approximati®@CHFA), they

are the basic equations for us to describe the electronic state [ B

of the c andf electrons aff> Ty within the extended Kondo

lattice model. If one likes to go beyond the SCHFA, he can 30|
due to

further employ the parquet approximation

PHYSICAL REVIEW B 65 235122

0.016 T r T T T r T T T
0.012 |-
n=1.80, J=-0.20, J =-0.02.
0.008 |- .
k
0.004 |- 3
0.000 1 ' 1 ' 1 ' 1 ' 1
6 8 10 12 14
/T,
FIG. 5. The temperature dependence of ftedectron hopping
amplitude.

electrons. In other words, theelectrons are formed into a
narrow itinerant band under the intersite exchange scattering
between thef and c electrons within the EKLM. On the
contrary, ifJ;=0 as in the KLM, the&, will become zero,
and thef electrons are formed into independent local mag-
netic moments with the energy level beingeat That is the
reason why we extend the KLM into the EKLM.

On the other hand, considering that ttxelectron band-
width is of the order of several eV, theeelectronic state will
depend on temperature weakly. As a result, the hopping am-
plitude s=(c/ ,¢; ,) and the local spin correlatio(;- S
will vary rather slowly with the varying of temperature, it
induces that bothé,«J;s and I';=(S}- S;) change slowly
with temperature, and so does tHe Green’s function
<<fk,o|fl,g—>>w+i0+- Therefore, the electronic state will be
weakly temperature dependent within the EKLM.

These two features can be illustrated clearly.Ayk, o),
the spectral functions of thieelectrons,

Ag(k,w)=—Im{(fy .|}

k,o’>>w+i0+! (74)

which are shown, respectively, in Figs. 6 and 7. In Fig. 6, the
shift of the peak is about 40 meV if the bandwidth of the
barec electrons is taken to be 6 eV, which means that the

777

n=1.80, T=10T,
J=-0.20,J,=-0.02.

A k=m, ky:n, k=n, J
B: k=n/2, k=n/2, k=n/2,

Abrikosov*® to include the effects of higher orders, which are =

less important and neglected here. The numerical results of 20 |

andr are shown in Figs. 4 and 5, respectively, clearly, they <
are both weak-temperature dependent.

Equationg57), (58), and(60) indicate that the site-to-site 10|

hoping due to the intersite exchange scattering produces a

C: k=0, k=0, k=0.

f-electron band with a dispersion ofe;+ & =¢g; [
—2J;5[ cosk.@)+cosk,a) +cosk.a)], the width of this band 0= 0'5 0'0 : 0'5 . 0
being proportional tal;s. Becausel; is much less than the o - 0) ’ :

bandwidth of thec electrons and<1 as shown in Fig. 4, the
bandwidth of thef electrons is much less than that of the

235122-8
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40 T T T T T T T T
n=1.80, J=-0.20, J =-0.02, T - ' [ A
[ k=, k=r, k=. A At k=m, k=, k=n,
30l - B: k=n/2, ky=1'l:/2, k=n/2,
E [ C:k=0,k=0,k=0 1
3l :
ST = [ =180, T=10T,,
_C;i J=-0.20, J=-0.02.
=
10
0 1 1 Il L M 1 . 1 N 1 N 1 " E
-1.0 -0.5 0.0 0.5 1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
® ®
FIQ. 7. The temperature dependence of Hedectron spectral FIG. 8. The dispersion of theelectron ARPES.
function.
H(k, w)oc As(k, ) f(w)
f-electron band is weakly dispersive. Compared with Refs. 8 T
and 9, Fig. 6 demonstrates that thelectrons within the o 5 5> f(w) (75
EKLM is far less dispersive than within the PAM. The inset [o— (st &— )]+
in Fig. 7 is an enlarged view, which indicates that the spec- r
tral function is nearly independent of tempergture. Obvi- o f - o'~ p), (76)
ously, the numerical results are in accordance with the above [o —(es+ &)+ T

qualitative analyses. : . . where o' =w+pu, and we take the Fermi levgl as the

In sum, thef-electron state is both of weak dispersion andqigin of the energy from now on. Clearly, the first factor on
of weak temperature dependencelat T within the frame-  the right-hand side represents a Lorentzian peak with a cen-
work of the extended Kondo lattice model. ter ate¢+ &, and a half-width ofl’s, and the second one a
Fermi profile. Equation(76) indicates that the shift of the
ARPES peak with the variation &freflects the dispersion of
the f electrons—the stronger the dispersion, the farther the
peak shifts—and the width reflects the damping of the

For thef electrons in the heavy-fermion system, which are€lectrons—the larger the damping, the wider the peak. Be-
strongly correlated, as proved in Refs. 17—20, their ARPE ides, the temperature behavior of the peak is controlled by
contains two parts: the elastic part and the inelastic part. ThBOth the spectral function and the Fermi profile.

. : : As pointed out in the preceding sectiod,s is much
former contributes a peak to the ARPES, which gives th ess than the celectron bandwidth, therefore,

dispersion information of the electrons, but the latter contrib-. _ _ -

utes a background, which is irrelevant with the dispersionf\}‘hen k2 ilcz[r?s ?ﬁ;gt;ﬁﬁg@%%ﬁgfyng |Izlisv2rgors]lsc;v(\qlla/ence,
As we are mainly concerned with the properties of the peakhe |orentzian peak as well as the ARPES peak can move
here, we shall consider only the elastic part of the ARPESOmy quite a small distance whénscans from (7’77-'77)' the
which is described by the differential cross sectionbottom of the band, to (0,0,0), the top of the band, which can
(k,w), =20 be seen directly from Fig. 6, and

V. THE ARPES OF THE F ELECTRONS AT T>Tg

I’y

"— ). 7
(o' —{e;— 23,5 cogkya) + cogkya) + cogk,a)1})?+ T’ “) (77

f(w

(K, )

The numerical results of the ARPES are depicted in Fig. 8agreement with the experiments where the observed shift is
with the bandwidth of the bare electrons supposed to be 6 about 20—-35 meV for different sampl&€g' In addition, as

eV. The shift of the ARPES peak is about 40 meV wlken both the hopping amplitude and the damping’; depend
scans from the bottom of the band to the top of the bandweakly on temperature, E¢Z7) indicates that the Lorentzian
such a small shift of the peak is a reflection of the weakpeak will depend on temperature weakly, as has been shown
dispersion of thef-electron band, which is qualitatively in in Fig. 7. Thereby, the temperature behavior of the ARPES

235122-9
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T T T T T T T T VI. SUMMARY AND CONCLUSIONS

| 1=1.80,J=-0.20,J =-0.02,
L k=, k=m, k=m.

c After including an exchange term between thend f
T electrons on nearest-neighbor sites, we have developed an
extended Kondo lattice model, and used it to explain the

A:T=8T,, weak dispersion and weak temperature behaviors of the
| B:T=107,, ] angle-resolved photoemission spectroscopies off tkec-
G T=12T;, trons atT>Ty. It is found that the extended Kondo lattice

D: T=15T,.

TI(k,w) (arb. units)

model just produces a small renormalization to the low-
temperature coherence when compared with the Kondo lat-
tice model, namely, it maintains the low-temperature coher-
ence of heavy-fermion systems, which is fundamental to
: y : y : y : : comprehend the low-temperature properties of those sys-
-0.8 -0.6 -0.4 -0.2 0.0 0.2 i :
0) tems. Unlike the Kondo lattice model, the extended Kondo
lattice model causes tifeelectrons to build a narrow itiner-
FIG. 9. The temperature dependence of ftetectron ARPES.  ant band aff>T,, and contributes an angle-resolved pho-
toemission peak with weak dispersion and weak temperature

arises mainly from the Fermi profile, which means that thedependence to theelectrons, which is in agreement with the
ARPES will be weakly temperature dependent because thexperiments. In other words, the extended Kondo lattice
Fermi profile is weakly temperature dependent in the experimodel can account for both the low-temperature coherence
mental temperature range. This is depicted in Fig. 9, whicland thef-electron ARPES in the high-temperature range.
shows that the theoretical result is in accordance with the In this paper, we have just used the EKLM to discuss the
experiment$™* Compared with the PAM? the f-electron  ARPES of the nonmagnetic heavy-fermion systems. In prin-
ARPES is now both of weak dispersion and of weak tem-iple, it can also be applied to the magnetic systems, which is
perature dependence Bt Ty within the EKLM, whereas it ynder consideration.
is only weakly temperature dependent but strongly dispersive
in the PAM.

Qn all accounts, the extended Kondo I_attice _model is able ACKNOWLEDGMENTS
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