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Dynamical exchange-correlation potentials for an electron liquid
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The imaginary parts of the exchange-correlation kerh';;E(w) in the longitudinal and transverse current-
current response functions of a homogeneous electron liquid are calculated exactly at low frequency, to leading
order in the Coulomb interaction. Combining these new results with the previously known high-frequency
behaviors of Im‘kC'T(w) and with the compressibility and the third moment sum rules, we construct simple
interpolation formulas for Infis;"(w) in three and two spatial dimensions. A feature of our interpolation
formulas is that they explicitly take into account the two-plasmon component of the excitation spectrum: our
longitudinal spectrum Inhkc(w) is thus intermediate between the Gross-Kohn interpolation, which ignores the
two-plasmon contribution, and a recent approximate calculation by Wi€nti, and Tosi, which probably
overestimates it. Numerical results for both the real and imaginary parts of the exchange-correlation kernels at
typical electron densities are presented, and compared with those obtained from previous approximations. We
also find an exact relation between fip(w) and Imf] () at smallw.
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[. INTRODUCTION where xo(q,w) is the noninteracting density-density re-
sponse functioifthe Lindhard functionandv(q) is the Fou-
Just as the ground-state density functional thkbrgaps  rier transform of the Coulomb interaction.
a real interacting many-electron system to an effective non- The most important property df(q,), in this context,
interacting one with the same density, the time-dependeris the existence of a finite limit fog— 0—a property that
density functional theoryTDDFT)3* maps a time-dependent can be traced back to translational invariance, and is, of
many-body system subjected to an external poteniiat) course, what makes the local density approximatibrpos-
to a noninteracting system with the same densty;t) sub-  sible. In order to approximaté,.(w)=f,,(q=0,0) Gross
jected to an effective potentiaky(r,t). This effective poten- and Kohn resorted to an interpolation formula for the spec-
tial includes the external potential, the Hartree potentiatrum Imf,(w), which reduced to the exact limit of Glick
vy(r,t), and an additional “exchange-correlatiofitc) po-  and Long*°Im f,(w)~ 1/0*? at high frequency, while van-
tential v,(r,t), which is a functional of the time-dependent ishing linearly foro—0. The coefficient of the linear low
density as well as the initial state of the system, and needs toequency behavior was determined by requiring the spec-
be approximated. trum to satisfy the sum rule
The search for approximations to the xc potential in
TDDFT has an interesting history. The first and simplest ap- > do IMmf,(w)
proximation, now known as the “adiabatic local density ap- Fee0) = Tl 2) = f_m7 T e )
proximation” (ALDA),>® actually predates the formal intro-
duction of TDDFT. In this approximatiom.(r,t) has the where the real quantitie(0) and f, () were obtained
same functional dependence on density as in the ground-statem the compressibility and the third moment sum rules,
local density approximation, but is evaluated at the instantarespectively! The finite wavevector extension of the Gross-
neous time-dependent density. In 1985 Gross and kK®hn Kohn's approximation was later carried out by Dabrowki.
introduced, within the framework of linear response theory, Several aspects of this approximation are unsatisfactory.
the first frequency-dependefite., retarded in timeapproxi-  First of all, as we have already noted, the low-frequency
mation to the xc potential. This approximatidmas the form  behavior of Imf,(w) is determined by global sum rule ar-
guments, rather than being directly related to the low fre-
Uyer(r,w)=f,(q=0,w)n{(r,w), (1) gquency excitation spectrum of the electron gas. The approxi-
i mate formula does not take into account the possibility of
wherev,q(r,w) andny(r,«) are the Fourier transforms of gphecific spectral structures associated, for instance, to two-
Uxe(T,1) ~vx(r) andn(r,t) —no(r), respectivelyng(r) and  piasmon excitations. In addition, the requiremeit(0)
vy(r) are the ground-state density and xc potential, respec= d?ne,(n)/dn’—the thermodynamic compressibility—is

tively, and f,(q,w) is the so-called exchange-correlation ot quite correct: there is a subtle difference between
kernel of a homogeneous electron liquid evaluated at th?XC(O):IimwﬂoliquOfXC(q!w) and d2ne,(n)/dn?

local ground-state densityy(r). This quantity is defined in =limg_glim, _of.(q,@). Here eq(n) is the exchange-
terms of the density-density respongéq,w) function as  qrelation energy per particle.
follows: On a more fundamental level, it was pointed out by
Dobsort? that Eq.(1) fails to satisfy the harmonic potential
(@) Xo(Q, @) @) theorem(intimately related to Kohn’s theoréfh. This led to

- 1-[v(g)+f(g,0)]xo(q,w)’ a careful reconsideration of the GK dynamical LDA by sev-
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eral authors®**~*"The outcome of this effort was the rec- frequency-dependent local  field  factor G(q,iw)
ognition that the dynamical LDA should be formulated in = . (qiw)/v(q) by Richardson and AshcroftRA).%

terms of the current density, and that the dynamical exchanggnis work uses a combination of perturbation theory and

correlation potential should be replaced by an exchang€syact sum rules to calcula@for imaginary frequencies, and
correlation yector potential Ay(r, ). The expression for has been recently shown to give excellent results for the
Ax(r,w) involves two exchange-correlation kemels . elation energy of the homogeneous electron?gatow-

LT Wy o» « : : » « ”

Itxc (q"")_” L h_fohr Izngnuglna!{ andf h IT _Ioé_ | ever, the limitation to imaginary frequency prevents the ap-

a;?jntsgirseer_ewc ICrreiiec ?rler;et r(l,n i:«.mg(f) nc?’o(r)lngé#tlﬁ:gah plication of these results to truly dynamical situations.
ransverse cu -cu sponse functions " In the present paper, we combine the interpolation phi-

mogeneous electron gas as follots: losophy of GK with the first principle approach of NCT to
LT provide a novel and simple expression IiigT(w) in two
Xo' (9,) and three dimensions—an expression which we hope will
— (g% )" T(q) + i (9,0) x5 (g, @) prove superior to the ones proposed so far. Our starting point
(4) is the same as that of NCT, but, rather than relying on the
decoupling approximation, we find that it is possible to cal-

where xg''(g,0) is the noninteracting response function cyjate ImfL."(w) analytically at low frequency, i.e., we can

v (q)=v(q) andvT(g)=0. It is not difficult to verify, with X T o
' calculate the slope of IfT. versusw at w=0 with full
the help of the relationy(q,)=(q%®?)x"(q®), that pe of Iff; @

inclusion of the exchange terms that were ignored in this
L (g,w) coincides with the,(q, ) of the old density func- g g

tional theor limit by NCT. In the process, we also discover an exaet,

The calcﬁ'lation of the longitudinal and transverse kemelsnonperturba}tiv)s_ relation between the low-frequency limits
fL.T(q.w) was undertaken by NifosConti, and TosP-22 of the longitudinal and transverse kernels flh(q=0,w)
XC ' =[d/2(d—1)]Imf;(q=0,0) at smallw, whered=3,2 is

(NCT). Unlike GK, they did not interpolate, but calculated A i
the number of spatial dimensions.

Imf;':T(w) from the approximate decoupling of an exact SR " )
four-point response function. The decoupling procedure only ©OUr calculation is done to “leading order” in the Cou-
keeps the direct contributions and ignores exchange conterb4'nteraCt'°n' Formally, this should be the second-order
butions. This is equivalent to writing the spectral density ofl ©(€")], but the long-range of the Coulomb interaction
excitations, atj=0, as the convolution of two-single particle causes the second-order calculation to give a diverging re-
excitation spectra, i.e., the relevant excitations are taken tgult. To obtain a finite result, the interaction must be screened
be double electron-hole pairs, double plasmons, andby the RPA dielectric function in the weak coupling lippit
electron-hole-pait plasmon excitations. A known defect of but this means that higher order contributions must also be
this approach is that it does not account for exchange, thugicluded. Of course only the leading-order term is exact: this
even thew— limit is wrong. NCT corrected for this defi- is O(€®) in three dimensions an®[e*In(e?)] in two di-
ciency by introducing an exchange correction factor in themensions.

manner of Hubbard. This gives the correct behavior at high The analytical result for the slope of Ifp.(w) atw=0 is
frequency, but is still incorrect fom—0. A very important  then used to improve the GK'’s approximatidhBasically
feature of the NCT result in three spatial dimensions is theve take the same approach as GK, but we include the new
presence of a sharp peak in fip'(w) at w=2w,, where information on the low-frequency behavior together with the
,, is the plasmon frequency. The occurrence of such a pea®ld information on the high frequency behavior and the sum
in the three-dimensionaBD) electron gas is easily under- rules. In order to accommodate the new constraint we need
stood from the mathematics of the convolution approxima-one more parameter than GK. The additional parameter is the
tion: the density of single plasmon states rises sharply at theidth of a Gaussian peak centered.at 2w, that we add to
threshold atw=w,,, and so does the density of two-plasmonthe original GK expression to model the two-plasmon con-
states at a threshold at=2w,: this leads to the rapid in- tribution first identified by NCT. As expected, this contribu-

crease in InfL."(w) about 20, [In two dimensions(2D), tion is sizeable, yet considerably smaller than in the NCT
although the plasmons still make a large contribution at som&alculation. . . _ _
characteristic frequency, the sharp peak is absent due to the An addlthDa| techn!cal 'pomt the}t we have str'|v'ed tg in-
fact that the plasmon frequency vanishes at long wavelengtﬁ'Ude in our interpolation is the existence of a finite differ-
as the square root of the wave vectWhile this physical ence betweetfi;(0) and the static compressibility. This dif-
effect is easy to understand, we believe that the simple corference can be expressed in terms of Landau parameters,
volution approximation probably overestimates the size ofvhich are known, approximately, from earlier microscopic
the two-plasmon peak due to lack of self-consistency. Fogalculations. We have taken the difference into account in
example, it is well known that coupling of the plasmon to calculating the parameters of our interpolation.
electron-hole pairs leads to damping of the plasmon, and In summary, our expressions for Mi’b‘T(w) and
consequent broadening of its spectral density of states: thEef)L«;T(w) should be more accurate, at low frequency, than
should definitely broaden the sharp features found by NCTeither the GK or the NCT formula. In addition, the new
Another important contribution to the theory of the dy- interpolation includes a reasonable two-plasmon contribution

namical exchange-correlation kernel is the calculation of thevithout compromising the simplicity of the GK form.

LT _
X (9,0) 1
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The paper is organized as follows. In Sec. Il, we summa
rize the exact properties of the exchange-correlation kerne
in the electron liquid. In Sec. Il we present our interpolation
for f" T(w) in 3D, and compare it with the approximations
by GK and NCT. Section IV presents a similar analysis for
fL."(w) in 2D. In Sec. V, we derive an exact relation be-
tween Imfxc(w) and Imfxc(w) at smallw. The derivation of
the analytical results for In‘tc(w) at low frequency is de-
scribed in Sec. VI. Section VII contains our conclusions.

II. EXACT PROPERTIES OF THE XC KERNELS

The g-dependent I<ernef|L T(q w) is an analytic function

of w in the upper half of the complex plane and its real
part and imaginary part satisfy Kramers-Kror(igK) rela-
tions for eachy. Forgq=0,

= do’ IMfe(w')
ReflyT(w)— ()= [ S0 T2

(5

w T o' —w
whereP is the principal part. Therefore R{;J(w) may be
obtained from the KK relation of Eq5) once Imf."(w) is
known.

The zero frequency limits of (o) andf (w) are re-
lated to the exchange-correlati(xc) part of the elastic bulk
and shear moduk ., p. via?®

1 2(d—1)
f)&c(o):_z Kye d XC Eflﬁ(n),
n
(6)
,u
f1(0)=—"=fi(n).
It is well known that
2
Kye=n ?(nfxc): (7)

wheree,(n) is the exchange-correlation energy per particle.
The difference between E¢6) and the compressibility sum
rule

lim lim f5(q,)=K,c/n?
q—0 w—0

®)

was first pointed out by Conti and Vigna&They further
related the xc shear modulys,. to the Landau parameters
F, as follows:

_ 2Egn 3F,—5F, o
o5 BIF; ©
in 3D, and
E,:n FZ_Fl
Hxe= 2" 2+F, (10

in 2D, whereEg=k2/2m.

PHYSICAL REVIEW B 65 235121

- The high frequency limits Of)';C(T)(w) can be expressed in
kerms of the ground state properties of electron gas via the
third moment sum rulé$?°

f>|2c(°°)=% —(1+3B(d))n1+2/d%(%>
+1m1/d+1%<%)]zf;(n), (11)
and
fr(e)= 50| = (B9= 1)nl+2/dddn(%>
+4nl/d+1ddn( €xc ”—f . 1

where 3(®)=1/5 andg®=1/2.

The high-frequency behavior of Ifl}."(w) is also known
from second-order perturbative calculations by Glick and
Long? Holas and Singwt® and NCT?° as

m* 9me?
Imfll(w)=—c§T—1 (13
( d (mw)dIZ
for w—o, where c;=23/15, c;=16/15 in 3D, andcs

=11/32,¢5=9/32 in 2D.

In Sec. V, we prove an exacte., nonperturbativerela-
tion between the low-frequency limits of Ifj(w) and
Im f;(w). This relation reads

_Im fi(0)  d Imfk(w)
ul)lTo ‘” 2(d 1)wT0 ’ 9
We then show that, in Sec. VI,
fLT 0} mé
fim b () ( ) (ke)d255T, (15
w—0 w
where the dimensionless const&jt" is given by
- L s (v sta I Ssin
S3= 25 ( )tan )\sm NESY
PR o (16)
AV2+02| 2 AV2+N2
and
3
$=75s (17)
in 3D, and
g 2| A1) — R
=75 4 A E (*)
(18
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and TABLE 1. gy in 3D in unit 2wyn.

S'ZF:SE (19) g 1 2 3 4 5
. . . . present 0.00738 0.00770 0.00801 0.00837  0.00851
in 2D. In the abov_e expressmns- is defined as\ NCT 0.0064 0.0052 0.0037 0.0020 0.0002
=2k /ks, where kg is the screening wave vectokg
= 4kg/mag in 3D andks=2/ay in 2D, kg anda, are the

Fermi wave vector and the Bohr radius, respectively, and 20, aIé,T
LT __ pl~
1_)\ Im fxc ((l)) n (1+bI§’TZ)2)5/4
2\/1—)\2tan*1\/—1+)\, for A<1,
f0)= +Z>2e(z"“5j)2'r§jl (26)
VA+1-yA—1 '
W\2=1In| ————|, for \>1.
JVA+1+JyN—1

20 wherew=w/wzy, With wa,=2wy andwy=J47ne?/m is
the plasmon frequency. We note that all the paramet‘girs
To lowest nonvanishing order in the Coulomb interactionPs’ + 5", anng'T_, are dimensionless. The first term in
the above results take the form the square brackets is the Gross-Kohn interpolation formula.
The second term is introduced to model the two-plasmon
contribution identified in Refs. 20, 22. Requiring that this

L 3/2
lim Im fie( @) __ i ﬁ i (21) contribution be maximum neas= 2w, leads to a relation-
00 @ 90| mag| n2 ship betweer)5" andI's'"
in 3D and 0LT_q- ary’ 27
>
Im fL 2 .
Iimﬂ= _% In(kgag) (220 The low frequency result of Eq15) fixesas" as
00 w nma,
1/3
. aL,TZZ - —2/3r2 L, T (28)
in 2D. 3 3| ™ TS

The low-frequency behavior of xc kernel has been related ) ] ) ] 3
to the bulk and shear viscosities of the electron liqyigdnd ~ Wherer s is the Wigner-Seitz radius, @#3)r;=1/n. Use of

7 via?>?® the high-frequency resu(tL3) in Eq. (26) yields
10 1/15 |_'T 4/5
C[im fi(w)  d—1Imfl(w) LT_1d 2 S5
= —n2||m[ -2 < (23 b3 =18-—5| s oL (29
w—0
q Finally, Egs.(5) and(26) lead to the equation
an
[ LT
T | 4V2mas 1 LTl To— @b T2t T
o Imf(w) 5 LT+2 203 'y e 3 3
n=—n2I|mT. (24) [T(1/4)]°Vbz ™
w—0
+(al5 )M T+2(057)%]
Equation(14) immediately leads to resuff=0 in both 3D LT
and 2D. We note that this conclusion holds in general, i.e., «| 1+erf Qg 2wy
beyond perturbation theory. From E(L5), we obtain the w/rléyT n
shear viscosity as LT LT
:fO, (n)_f:x:’ (n), (30)
me’]? d-2aT
=\ K “Sy. (25) TABLE Il. The parameters fof;(w) [Eq. (26)] in 3D.
L L L L
This concludes our summary of the exact properties of s 103 b3 I's 3
fre' (). 1 0.5026 0.1555 1656  —1.484
2 0.8473 0.1558 1.368 —1.052
IIl. INTERPOLATION FORMULA IN THREE DIMENSIONS 3 1.092 0.1496 1.215 —0.8227
4 1.278 0.1428 1.112 —0.6683
As discussed in the Introduction, our proposed interpola- 5 1.426 0.1363 1.033 —0.5498

tion for Imf-."(w) in 3D has the form
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TABLE IIl. The parameters fof.(w) [Eq. (26)] in 3D. TABLE IV. —Imfl(w)/o near o=0. The units are 2
X 1072/n in 3D and 102/n in 2D.
re 10Pag b] ry Ol
1 0.3769 01651 Leo1 1730 rs present3D) NCT (3D) present2D) NCT (2D)
2 0.6355 0.1654 1.533 —1.300 0.5 0.133 0.327 0.456
3 0.8191 0.1589 1.380 —-1.070 1 0.251 0.623 0.746 0.00175
4 0.9587 0.1516 1.277 —-0.9158 2 0.424 1.09 1.31 2.89
5 1.069 0.1448 1.198 -0.7973 3 0.546 1.42 1.60 3.49
4 0.639 1.68 1.78 3.97
5 0.713 1.85 1.91 4.26
where 6 0.773 2.00 2.00 4.49
) 7 0.823 2.08
X o 8 0.866 2.14
erf(x) = \/_;fo e Ydy. (31 9 0.903 219
10 0.934 2.17 2.22 4.99

By solving Egs.(27) and(30), one determines the param-
etersT5" and Q5". The real parts of the xc kernels
Refl."(w) are then calculated from the KK relation of Eq.
(5).

Before presenting our numerical results and comparin
them with the older ones by GKRefs. 4,7,8and NCT?9-22
we must discuss the inputs fdg(n) and f..(n). For the
exchange-correlation energg.(n) we use the results of
Monte Carlo calculationd’—*CAvailable results for the Lan-
dau parameteF,, related to the electron effective mass,
andF, show thaf u,.| <K at metallic densitie?**This is
also confirmed by NCTRef. 22 in their RPA treatment of
two-pair processes. A comparison betweggn calculated by
NCT andu,. calculated from the Landau parameters of Re
33 is given in Table I. Notice that NCT put,.=0 in their
interpolation.

The four parameters, b, I', and ) obtained from Egs.
(27),(28), (29), and(30) are listed for several values of in
Tables Il and I, forf; () andf] (), respectively. In Fig.
1 we plot our formula for the imaginary part bﬁc(w) in 3D
atr,=3. The GK interpolation formufa’® and the result of
the numerical calculation by NC{Refs. 20,22 are also plot-
ted for comparison. All three curves reduce to the high-
frequency limit of Eq.(13). At low frequency our curve

starts with a slope that is much smaller than the slope of GK,
and also significantly smaller than the slope of NGEe
%able IV). This is understandable because there is no control
n the value of the slope ai=0 in the GK interpolation.
The difference from NCT arises from the fact that the ex-
change contribution cancels part of the direct contributions
near ®=0. The exchange correction is completely absent
near =0 in NCT’s calculations because the phenomeno-
logical factorg(w), which they introduced to simulate the
contribution of the exchange, tends to one éo+-0. There-
fore, there is every reason to believe that the present results
f_for Im f)&c(w) at low frequency are more reliable than both
GK'’s and NCT's.

At intermediate frequency, our results are intermediate be-
tween those of GK's and NCT’s. The contribution of two-
plasmon excitations ab=2wy, is absent in the GK interpo-
lation, while it is quite pronounced in the present
interpolation, even though the peak is not as sharp as in
NCT. The real part of'x'c(w) is plotted in Fig. 2. Note that all
the three approximations reduce to the same limits for

Refl (=), as explained above.
In Figs. 3 and 4 we compare our results forﬂfg(w) and
Ref](w) atry=3 with those of NCE° These curves are

0 = T T T T
AN present —— 0 : ' : '
L NCT - i " e
0.02 K --- T 0.02 R —-
A . LT 0.04 o
oM 2 e .3
—_ AL e -0.06
3 : =
;‘_? 0.06 I~ i a8 -0.08
- o1 3 : present —
= . . o e T — NCT -
0.08 [ : T ¥ o2 GK ---
: B 014 [ .
0.1 : 7 B
B B -0.16 [~ u T
-0.12 L L ! L 018 [ : i
0 1 2 3 4 5 02 1 1 1 1
W/ m pl 0 1 2 3 4 5
0/ 0L
FIG. 1. Imaginary part oﬁkc(w) in 3D atrgs=3 in units of
2wy /n, as a function ofw. Dotted line: NCT calculation; Dashed FIG. 2. Real part of)&c(w) in 3D. Notations and units are as in
line: GK interpolation. Fig. 1.
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0. ' ' T TABLE V. The parameters fof: () [Eq. (33)] in 2D.
ool F present ——
oo b NCT oo i re 10%a5 b5 rs Qb 10 uy(Ry n)
00 F A 1 8448 02409 0763 —0.144 3.76
/3\ ooa b ) 2 5.260 0.2381 0.927 -0.391 —0.789
=2 ' 3 3.716 0.2205 1.08 —-0.615 -1.35
g T : i 5 2250 01876 131 -0.971 -1.17
0,06 [ .
007 [ - LT
L i ~ as’ LTy2pL.T Ry
-0.08 |mf)&éT(w)=—w Mot + 2% —(lo|-05 "2yt || 2 ’
-0.09 : : : ! 1+by n
0 1 2 3 4 5 (33
O/ 0y

where = w/w,,. Proceeding as in 3D we obtain the fol-

FIG. 3. Imaginary part off] () in 3D atrs=3 in units of lowing four equations:
2wp /n, as a function okw. Dotted line: NCT calculation.

31—~L,T
QpT=1-——, (34)

qualitatively similar to those fof.(w). In fact Imf] (o)
differs from Imf)L(c(w) by an approximately constant scale LT —1,55. \2/3aL.T
factor (~0.75) as pointed out by NCT. 3 =7 (275 (39

S5

LT - 2

IV. INTERPOLATION FORMULA IN TWO DIMENSIONS by '=m2(2'r9)*3 i (36)

2

The dispersion of the plasmon in a two dimensional elec- nd
tron liquid goes ak'? at small wave vectok.}%3*3This
behavior is distinctly different from that of the three- L T 1
dimensional plasmon. Although the plasmons still make a _<
large contribution to |n’i)IZéT(w) at a characteristic frequency \/ 2
wom, @ sharp threshold for two-plasmons emission is absent

_ (oL T2l T
QLTS Te @D 4 ([T

in 2D. Using a single mode approximation for the density ><[1“'- T+2(QL 2] 1+ erf| —2— LT Ry
fluctuation spectrum with a pole ai= \/ck+k?/2m where ,/rz N n
c=(rs/\2)(2EF)?/ke one can estimate the characteristic

two-plasmon frequency as =fgT(n)—f5T(n). (37

By solving Egs.(34) and (37), we obtain the parameters
wom= (233, (32 QLT andTs’

We put the screening constakg=2/a, in the following
numerical calculations. As in 32,(n) is taken from Monte
Carlo calculations, and the Landau paramekgrandF, are
taken from the variational Monte Carlo calculations of Kwon
et al®. The parameters of the interpolation are listed in
Tables V and VI, and our results for Iff."(w) atrs=3 are
plotted in Figs. 5-7, vis-a-vis the results of the NCT
calculation?? We note that the exchange-correlation contri-
bution to the shear modulys,., calculated from the Landau

We are now in a position to approximate fip'(®) in
2D as

3 parameters of Kwonet al., affects the final results for
{g ImeC (w) more strongly than in three-dimensions. Aside
2 from this difference, the qualitative behaviors of 1fp"(w)
002 1 pre;eg; - TABLE VI. The parameters fof () [Eq. (33)] in 2D.
0.04 [~ H n
re 1CPa; b; r; Q) 10u(RyN)
| 1 | 1
o ! 2 3 s s 1 8448 01971 0651  0.0237 3.76
©/ o 2 5260 01948 0.861 -0.291 —0.789
3 3.716 0.1803 1.03 —0.547 —-1.35
FIG. 4. Real part of () in 3D. Notations and units are asin 5 2.250 0.1535 1.29 —0.936 -1.17

Fig. 3.
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0™ T T T T T T T 0 T T T T T T T
present —— o F present — N
NCT - NCT -
005 N oot .
_ 006 B T
S = L B -
28 o1 T g 00
E L o1 b B _
E :
0.15 7 E 012 .
014 0 T
02 1 1 1 1 1 1 1 _0.16 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
© (Ry) @ (Ry)

FIG. 7. Imaginary part offlc(w) in 2D atrg=3 in units of

FIG. 5. Imaginary part offkc(w) in 2D atrg=3 in units of ) : -
Ry/n, as a function ofw. Dotted line: NCT calculation.

Ry/n, as a function ofw. Dotted line: NCT calculation.

in 2D and in 3D are similar. As can be seen from Table I,

the slopes off;(») nearo=0 are less than half of those Im fyeij (9, @)=
calculated by NCT. The real part§;'(w) atrs=3 are plot-

ted in Figs. 6 and 8, respectively. Note the reduction of the Xp(=K)ji (k) p(=k")))oli(k,q)
downward swing at intermediate frequencies. Our value of

q|°1 1
n_wz> —3 lim = > Im{(ji(k)

Vg q—00° k' 11’

Refl."(0) differs from that of NCT because we make use of X (k' —a), (39

Monte Carlo results foK,, and u,. while they calculated where

these quantities from their RPA treatment of two-pair pro-

cesses. Ly (k,a) =[v(g+k) —v(k) Jkik +v(k)[kgi—qgk;
—19-k], (40)

V. EXACT RELATION BETWEEN LONGITUDINAL AND

TRANSVERSE KERNELS AT LOW FREQUENCY andi,j,l,|" are Cartesian indices. He¥g is the volumeV in
3D, the aredA in 2D, andj(q,t) is the current density op-

In this section, we derive the exact relatiti®) between erator. The Zubarev product is defined &$A;B)),
Im f}(w) and Imf (o) at smallo. We start with the exact = —i[5dte“([A(t),B(0)]).

expression for the imaginary part of the xc kernel tensor For smallw, all the excitations relevant to the spectrum of
the four-point response function, involve states in the vicin-
1 ity of the Fermi surface. Within this subset of states the lon-
fxcij(dw)= _Z[qujf)IZc(w)"'(qzé\ij — i) frw)], gitudinal part of the current is much smaller than the trans-

@ (3 Verse part, or K[k-j(k)]<j(k), where k=k/k. The
geometrical reason for this is shown in Fig. 9: the current

obtained by NCF2 namely, operatorj (k) =2 ,(p— k/2)a;§,kap is essentially perpendicu-
-0.15 T T T T T T T 015 ' ' ' ' ' T '
N o N I
[T 0.1
025
~—~ 005
3 03 present ;%
9 NCT - —
T}f -0.35 - o] O Frrrremrr ]
Q ~
~ L | present —
04T NCT -
R -0.05 [ 7
045 [ .
05 1 1 1 1 1 1 1 0.1 | 1 | | [ 1 1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
® (Ry) ® (Ry)
FIG. 6. Real part of'x‘c(w) in 2D atr =3. Notations and units FIG. 8. Real part ofIC(w) in 2D atr = 3. Notations and units
are as in Fig. 5. are as in Fig. 7.
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FIG. 9. lllustration ofk-(p—k/2)=~0 for low-energy electron-
hole excitations, which explains the suppression of the longitudinal 2

part of the curreni(k) at low frequency.

lar to k becausep—k/2 is essentially perpendicular to.

Therefore, to leading order in an expansion in powers pf

Im f,j(d,0) can be simplified to

2
Im e (A @) = | — | S im =3 S im0
Vd a—00° k' 11’
Xp(=K);jir(K)p(=K')))w
Xv(K)v(K")Tij (kK" a), (41)
where
Tijn (kK" a) = (kg + 6q-K) (k{ - + /K" -q). (42)

We now consider the trace of the tensorfl;;(q, »)

2
[Imfxc(w)+(d DImfl ()]

(43

% Im fycij(d,0) 6=

and its longitudinal component

4
E 0 Im f i (a, w)— SImfl(w). (44)

The former involves the quantity

iEj 8 Tijn (kK" a)=q,q/k-k"+ak - k-g+k/q;.q-k

+6||rQ'kk,'q, (45)

and the latter

% qiq; Tiju - (k,k",0)=4q,q,-k- gk’ -q. (46)
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Pr- k)QP( b A4 QJ“’”
Pk
’=. k'=k
D1 D2

FIG. 10. The direct zeroth-order diagrams D1 and D2 of the
four-point response functiof{j(k) p(—k);j(k")p(—k"))),, -

1 2
d—lﬂf dQq0i Tijn (kK" q) = aq2[5n K-k +kik/]
47

and

1
ﬂf dQ4q;iq;Tiji - (k,k",q)

(d+2)q[5||rk k’ +kk|/+k|k|r] (48)

Again the term withkk/, picks only the longitudinal com-
ponent of the current and can therefore be dropped. Thus, to
leading order inw we get

f dﬂ@ 89Ty (k,k',q)

d+2
fdn S qo T (k@) (49

which implies

d+2
%‘4 8 Imfyeij(a,w)/q= - %‘4 Im fyeij(9, @) 005 /9%
(50)

Together with Eqs(43) and(44) this yields the relatiori14).
In the above proof, we have not made use of perturbation
theory. The relatior{14) is therefore exact.

VI. EVALUATION OF THE IMAGINARY PART
OF THE EXCHANGE-CORRELATION KERNELS
AT LOW FREQUENCY

In this section we supply some details of the calculation
of the imaginary parts of the exchange-correlation kernels at
low frequency. We start from Eq$39) and (40). The four-

point response functlor((J,(k)p( K);i (K" p(=Kk")M e

Because the kerne&C (w) do not depend on the direc- can be expanded in a series of four-vertex diagrams such as
tion of q it is permissible to average the above expressionshe ones shown in Figs. 10 and 11. There are two types of

with respect to the direction af. Note that

diagrams. The “direct” diagrams are those that can be

235121-8
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i L k)

ik} P-k)  p(-k')

p-K=p +k p-k=p-k

EX ] EX2

FIG. 11. The exchange zeroth-order diagrams EX1 and EX2 of

the four-point function((j (k) p(—k);j(k")p(—k")}), -

separated into two parts, each containing two vertices, with

no Coulomb interactions in betwedeee Fig. 10 The re-

PHYSICAL REVIEW B 65 235121

Substituting Eq(53) into Eq. (39) one obtain® 22

odw’ dk
- - 2
o J(Zw)dnz[wk)]

2
aL’T—,ZImXL(k,w’)
®

Im fi’(w)=—

X

2
tyr—ImxT(ko')
w

k2
X——Im y (k,o—w'),

(0—o')? (54)

maining diagrams are those that cannot be separated in thighere e, =23/30 andar=8/15 in 3D, ande, =11/16 and
manner: the simplest example is the zeroth order exchanger=9/16 in 2D, while y, =8/15 andy;=2/5 in 3D, and
diagram shown in Fig. 11. The imaginary part of the sum ofy.= ¥7=1/2 in 2D. This is the expression that NCT calcu-
all the direct terms can be written as a convolution of thelated numerically, using, fox""(k,®), the random-phase
imaginary parts of exact two-point response functions as fol@Pproximation(RPA) expressions

lows:

Im{(1(K) p(K);J1 (K p(—K")))

odw’
:—f =~ LK)z (K)o

0
XIm((p(k);p(k))) - wr +IM((J 1 (K);

X p(—k ) o IM((p(K)ij1 (K)ol (BD)

Using the relation

k
<<j|<k);p<—k>>>=k—'2<<k-1<k);p<—k>>>, (52

we can rewrite Eq(51) in terms of the longitudinal and
transverse linear response functigngk, o) andy+(k,») as
follows:

Im{(j1(K)p(K): 1 (K)p(=K"))),

) odw’ 1
:_Vd -
o

E{[lﬂkv Im x“(k, ")

+ (K28 —kiki)Im xT(k,w")]

kK
XImXL(—k,w—w’)ﬁk’_kr— ?w'(w—w’)

XIm x-(k,w")Im )(L(—k,w—w’)ék’k/]. (53

X' (k@)= xo(k,) (55
and

) Xo(k,®)

X (k) =", (56
where e(k,w)=1-v(k)xo(k,w) is the RPA dielectric
function®’

The calculation simplifies considerably at low frequency,
when one makes use of the limiting forms

3
w
Im bk, ) =252 (4kEI) @2 (57)
k
and
w
Im Bk, w)=25"% " (akE -k V2 (58)

To leading order inv we obtain

m’w 2k [v(k)]?
Im f5P)(w)=— f 4kZ—k?)k2dk,
o (@) 7207°n? Jo |e(k,0)|2( P
(59
in 3D (the superscript D” stands for “direct”) and
Mo (2 [v(k)]?
Im f5{P)(w)=— f dk, (60)
e (@) 247*n2Jo | e(k,0)|2

in 2D. In writing these expressions we have used the fact that
the dynamical dielectric functioa(k,w) can be replaced by
the static dielectric functiore(k,0) to leading order inw.
Notice that, due to the long range of the Coulomb interac-
tion, the integrals in Eqs(59), (60) would diverge if we
used the zeroth order approximatietk,0)=1. Use of the

235121-9
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RPA static dielectric function assures that we include all thefor »>0. Note that Inf:(w) is an odd function of» and
contributions of leading order in the strength of the Coulombtherefore it is sufficient to consider only the>0 case. The

interaction. contribution of Eq(65) to Im f5{¥*1)(w) can be expressed as
Carrying out the integrals ovérin Egs.(59), (60) we get
1121
o wetmPke B Im fkéEX“(w>=2w( m) VIO Y
Im 1P (w)=— ———-[-3+(\+3\)tan '\]  (61) d
4smn where
in 3D, and 1
Q(w)=lim — > > > | doNyny_Np_ Ny
i 1L ) m’we’ I L A 62 g-0q” P Kk ' JoO
m e (0)=— 62n? nA+1)=—7| (2

X' -0y )d(w—o'+o_1p)A(p,KK';q).

in 2D. The dimensionless constant is defined &s (68)
= 2kg /ks. Notice that Eq(59) corrects the result previously A(P.k,k’;q) in Eq. (68) is defined as
reported by Conti and Vignale in Ref. 26, whereas &)
agrees with Eq(4.6) of Ref. 26 ford=2. A(p,k,k’;q)=2 (p—k/2),(p—k—k'/2),, T(k,q)

We now come to the calculation of the exchange n
contributions—the terms that are missing in the NCT calcu- Xy (k' —q) 69)
lation for low frequency. To leading order in the Coulomb (KA
interaction only the two diagrams shown in Fig. 11 need towhere

be considered. After some calculations, we get )
I'(k,q)=[v(g+k)—v(k)]q-kk+v(k)[qk —2k-qq].
IM((i(K)p(—K)3j1r (k) p(—k )5 _ , _ (70
The leading term ofQ(w) is proportional tow®. The fact

2 that Q is independent o allows us to rewrite Eq(68) as
=223 (P2 (p—k—K' 1201 By Qis indep G oles
pp’

) ) - — 63 Q)= > > | do'ngny Ny Np_ir
+(p +k—k /2)|r5p+kr’pr+k}npﬂp_kﬂprnpr+k p ok g JO
><5((J)+(J),kp+(y)kpr), X5(0),_w,kp,k!)5(w_(v’+w,kp)
where n,= (kg —p), n,=1-n,, and W= W+ p— Wp - ; i 1-d —1] .
PN p P . p P "p Xlim —2 dQ A(p,kk";q). (71
The contribution from the first term in the above equation q|_>0q4 m oA (P @ 7D

corresponds to “EX1” and the second one to “EX2” of Fig. ] ) )
11. They can be evaluated in the same way. In fact, it can b&he integral in Eq(71) can be done with the help of formu-
readily shown that they make equivalent contributions td@s such as

Im f,(w) at smallw. In other words, to first order i

fqu(Mo-a)z(Ml'a)(Mz'a)

Im f5E9(w) =2 Im f5E D (@), (64)
2d—1
Therefore we focus on the first term only, which is given by = d(d—+727)[2(M1' Mo)(M,-Mg)+ M§M1~ M,], (72
Im((j1(K)p(—K);j1 (k) p(—k"))), B for arbitrary vectorsM,, M;, M,. After a tedious but

straightforward algebra, we obtain

2 _ _
=— > (P—k/2)(p—k—=K'12);NgNg Ny kK (65) 2 ® B
U Q(w)=mjo dw’; % v(K)k?ngn,_

an,klts((,!)‘i‘ w,kp—w,kp,k/).

Xo(w— o' +w_p) o' kp), (73
The evaluation of this complex expression is made relativel)<Nh
easier by the use of the following relation: ere
Fpnp,ka,k,k/np,k/(s(w"‘ w,kp— w,kp,k,) ‘J(w/ 1k'p):§ U(k, + p)p (k’ + p)nk+k’nk’ 5((0, - wkk’)'
(74)

:np“p—k”p—k—k’np—k'fo do'S(@' o p-) (66 |, reaching Eq.(73), we made use of the fact th&t k'’
=mw andk- (p—k/2)=m(w— "), from the § functions in
Xo(w—o'+w_y), Eq. (71), and dropped all terms higher than the leading order

235121-10
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in w. In fact, all these higher order terms are related to the 2 wm2ek 1 A

longitudinal component of the current. Therefore the details  Im fL{5¥(w)= —3;{ 1-=sint—

of the derivation of Eq(73), which are not presented here, 45m°n A V1+A

can be greatly simplified by using from the very beginning

the fact that the longitudinal component of the currents is _ Etanfl)\_i_

suppressed at small, as pointed out in the preceding sec- A AV2+\2

tion. In the following subsections, we evaludw) in 3D

and 2D separately. o T a1 1 (81)
2 N2NE |

A. 3D
[We have also used E@64)]. Adding Imf-(¥¥(w) of Eq.

screened Coulomb potential(k) =4me?/(k*+ kg) rather (81)Lt0 '”.‘ fkéD).(w) of Eq. (61) leads to the result for
than the bare one (#e/k?). Although this is clearly an M fx(@) in 3D in Eq.(15.

uncontrolled approximation beyond second order in the Cou-

lomb interaction, it at least assures that we are calculating the B. 2D

true exchange counterpart of the direct terms computed in |y 2D, making use of the statically screened Coulomb
th?j }:l;rewous sectiorfalso uncontrolled beyond the second potentialy (k) = 27€?/(k+ks) we obtain

ordep.

To calculate J(w',k,p) in 3D we use the statically

To linear order inw’, J(w’,k,p) in 3D can be evaluated m2eAw’
as J(w' ,k,p)=0(2kg—k)——=———=—=H(p,k), 82
m?w’e?V
J(w’,k,p)z9(2kF—k)W[1+G(p,k)], (75 where
where 1 2p2—p-k+D(p,k
G(p,k) =[p2— K2~ KZ{[KZ+ K2+ p2—p-k]? Vp: (p—K) +KE+D(p,k) +kg
—[p?— (p-k)2I[4kE—K2T} 12 (76) . 2p°-p-k-D(pK) 63
2 1
Equations(73), (75), and(76) yield Vo (p—k)+kE—D(p,k) +kKs
m2e2V (o with D(p,k) =p+/4kZ—kZsing, and cos=p-k. Equations
Qw)=—— | o'dw’ > v(kko(2ke—k) (73) and (82) yield
0 k
2,2
mz(w—w’)V _mEAJ'w ’ ’ K
R = d K)——=—=0(2kr—Kk)I >,
o | 71 Qo= o w@v()m< Fkl2
(84)
where
where

l3= 2> NNy Sw— 0"+ 1) G(p,kK). (79) N
P |2=§ NpNp— (@ — ' +w_ ) H(P,K). (85)

The linear order term of Eq.78) can be readily estab-

lished as The linear order term of Eq85) can be evaluated as
mV(wo—w') k m?(w—ow')A k
i 2 — z (79 1= ( 5 el P — : (86)
(2m)%k  JK2+4kZE—k 272k VAkE — k2 + kg

Putting Eqs(79) into (77), we obtain the low-frequency ex- () at low frequency is then obtained as
pression forQ(w) as

4 2pa2, 3
m \*2me’V2e? _[m\*me’A%e v(K) B
Q(“’):(Z — 5 ; v (k) 0(2kg—k) Q(w) . 3 ; \/4k§—k2+k56(2kF k).
(87)
_ s _ (8o)  Finally, we have
VK +4kE—k?
2,4 2

Carrying out the integral in Eq80), and substituting the Im FLEX () = m-e wfldx AX 1 -
result into Eq.(67) we finally obtain xe 1272n2)o  AX+1(\J1—-x2+1)
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We have used Ed64) in obtaining Eq.(88). The integral in
the above equation may be evaluated analytically as

m2e4w T

1272022 2

Im fLE9 () = _2)\2[In(1+)\)+f()\)] ,

(89
where the functionf(\) is defined in Eq.(20). Equations
(62) and (89) lead to the result for I (w) in 2D in Eq.
(15).

VIl. SUMMARY

In this paper we have introduced a new analytical ap
proximation for the longitudinal and transverse exchange an
correlation kernels in the three and two-dimensional electro

PHYSICAL REVIEW B 65235121

satisfied by the Gross-Kohn formula, if one insists on satis-
fying the other known sum rules. Thus, we modified the GK
formula by adding a new term which produces a gaussian
peak at about two times the plasmon frequency in(8&the
equivalent characteristic frequency in RThe existence of
such a peak is suggested by the NCT calculation, but we
believe that the strength of the peak is probably overesti-
mated in that calculation. Our results are intermediate be-
tween the GK formula, which does not take into account the
physical effect of two-plasmon emission, and the NCT result.
We have also examined the delicate question of the
w—0 limit of fL(®), which we now know doesot coin-
cide with the compressibility. We estimate the difference be-

B/veen the exact limit and the compressibility and find that it

S rather small at densities of interest in 3D, but in 2D, this

rrection is more significant.

liquid. The new expressions represent an improvement upo?lO

the Gross-Kohn formulas because the imaginary part of thgagmglmgei:Otﬁiégi;m;izf%gzzl f?ﬁ:';g&iﬁﬁei -
f(w) kernels is now exact at low frequency to lowest non- y P : PP

vanishing order in the strength of the Coulomb interaction.Catlon of the present work to the low frequency dynamics

This was accomplished through an exact evaluation of thgartlcularly promising.
leading exchange diagrams in the diagrammatic expansion of
the imaginary part of,.(w). Thus, we have also improved
upon the recent NCT calculation, in which exchange effects We gratefully acknowledge support for this work from the
were approximated through an empirical correction factorNSF Grant No. DMR-0074959 and from the Research Board
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