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Dynamical exchange-correlation potentials for an electron liquid
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The imaginary parts of the exchange-correlation kernelsf xc
L,T(v) in the longitudinal and transverse current-

current response functions of a homogeneous electron liquid are calculated exactly at low frequency, to leading
order in the Coulomb interaction. Combining these new results with the previously known high-frequency
behaviors of Imf xc

L,T(v) and with the compressibility and the third moment sum rules, we construct simple
interpolation formulas for Imf xc

L,T(v) in three and two spatial dimensions. A feature of our interpolation
formulas is that they explicitly take into account the two-plasmon component of the excitation spectrum: our
longitudinal spectrum Imf xc

L (v) is thus intermediate between the Gross-Kohn interpolation, which ignores the
two-plasmon contribution, and a recent approximate calculation by Nifosı`, Conti, and Tosi, which probably
overestimates it. Numerical results for both the real and imaginary parts of the exchange-correlation kernels at
typical electron densities are presented, and compared with those obtained from previous approximations. We
also find an exact relation between Imf xc

L (v) and Imf xc
T (v) at smallv.

DOI: 10.1103/PhysRevB.65.235121 PACS number~s!: 71.15.Mb, 71.10.2w, 71.45.Gm
on
e
t

tia

nt
s

in
ap
p
-

st
t
n
ry

f

e
n
th

-

, of

ec-

ec-

s,
s-
.
ory.
cy

r-
re-
oxi-
of

two-

s
en

by
l

v-
I. INTRODUCTION

Just as the ground-state density functional theory1,2 maps
a real interacting many-electron system to an effective n
interacting one with the same density, the time-depend
density functional theory~TDDFT!3,4 maps a time-dependen
many-body system subjected to an external potentialv(r ,t)
to a noninteracting system with the same densityn(r ,t) sub-
jected to an effective potentialveff(r ,t). This effective poten-
tial includes the external potential, the Hartree poten
vH(r ,t), and an additional ‘‘exchange-correlation’’~xc! po-
tential vxc(r ,t), which is a functional of the time-depende
density as well as the initial state of the system, and need
be approximated.

The search for approximations to the xc potential
TDDFT has an interesting history. The first and simplest
proximation, now known as the ‘‘adiabatic local density a
proximation’’ ~ALDA !,5,6 actually predates the formal intro
duction of TDDFT. In this approximationvxc(r ,t) has the
same functional dependence on density as in the ground-
local density approximation, but is evaluated at the instan
neous time-dependent density. In 1985 Gross and Koh7,8

introduced, within the framework of linear response theo
the first frequency-dependent~i.e., retarded in time! approxi-
mation to the xc potential. This approximation7 has the form

vxc1~r ,v!5 f xc~q50,v!n1~r ,v!, ~1!

wherevxc1(r ,v) andn1(r ,v) are the Fourier transforms o
vxc(r ,t)2vxc(r ) and n(r ,t)2n0(r ), respectively,n0(r ) and
vxc(r ) are the ground-state density and xc potential, resp
tively, and f xc(q,v) is the so-called exchange-correlatio
kernel of a homogeneous electron liquid evaluated at
local ground-state densityn0(r ). This quantity is defined in
terms of the density-density responsex(q,v) function as
follows:

x~q,v!5
x0~q,v!

12@v~q!1 f xc~q,v!#x0~q,v!
, ~2!
0163-1829/2002/65~23!/235121~12!/$20.00 65 2351
-
nt

l

to

-
-

ate
a-

,

c-

e

where x0(q,v) is the noninteracting density-density re
sponse function~the Lindhard function! andv(q) is the Fou-
rier transform of the Coulomb interaction.

The most important property off xc(q,v), in this context,
is the existence of a finite limit forq→0—a property that
can be traced back to translational invariance, and is
course, what makes the local density approximation~1! pos-
sible. In order to approximatef xc(v)[ f xc(q50,v) Gross
and Kohn resorted to an interpolation formula for the sp
trum Im f xc(v), which reduced to the exact limit of Glick
and Long9,10 Im f xc(v);1/v3/2 at high frequency, while van-
ishing linearly forv→0. The coefficient of the linear low
frequency behavior was determined by requiring the sp
trum to satisfy the sum rule

f xc~0!2 f xc~`!5E
2`

` dv

p

Im f xc~v!

v
, ~3!

where the real quantitiesf xc(0) and f xc(`) were obtained
from the compressibility and the third moment sum rule
respectively.11 The finite wavevector extension of the Gros
Kohn’s approximation was later carried out by Dabrowski12

Several aspects of this approximation are unsatisfact
First of all, as we have already noted, the low-frequen
behavior of Imf xc(v) is determined by global sum rule a
guments, rather than being directly related to the low f
quency excitation spectrum of the electron gas. The appr
mate formula does not take into account the possibility
specific spectral structures associated, for instance, to
plasmon excitations. In addition, the requirementf xc(0)
5d2nexc(n)/dn2—the thermodynamic compressibility—i
not quite correct: there is a subtle difference betwe
f xc(0)5 limv→0limq→0f xc(q,v) and d2nexc(n)/dn2

5 limq→0limv→0f xc(q,v). Here exc(n) is the exchange-
correlation energy per particle.

On a more fundamental level, it was pointed out
Dobson13 that Eq.~1! fails to satisfy the harmonic potentia
theorem~intimately related to Kohn’s theorem14!. This led to
a careful reconsideration of the GK dynamical LDA by se
©2002 The American Physical Society21-1
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eral authors.13,15–17The outcome of this effort was the rec
ognition that the dynamical LDA should be formulated
terms of the current density, and that the dynamical excha
correlation potential should be replaced by an exchan
correlation vector potential Axc(r ,v). The expression for
Axc(r ,v) involves two exchange-correlation kerne
f xc

L,T(q,v)—‘‘ L ’’ for ‘‘longitudinal’’ and ‘‘ T’’ for
‘‘transverse’’—which are defined in terms of the longitudin
and transverse current-current response functions of the
mogeneous electron gas as follows:18

xL,T~q,v!5
x0

L,T~q,v!

12~q2/v2!@vL,T~q!1 f xc
L,T~q,v!#x0

L,T~q,v!
,

~4!

where x0
L,T(q,v) is the noninteracting response functio

vL(q)5v(q) andvT(q)50. It is not difficult to verify, with
the help of the relationx(q,v)5(q2/v2)xL(q,v), that
f xc

L (q,v) coincides with thef xc(q,v) of the old density func-
tional theory.

The calculation of the longitudinal and transverse kern
f xc

L,T(q,v) was undertaken by Nifosı`, Conti, and Tosi19–22

~NCT!. Unlike GK, they did not interpolate, but calculate
Im f xc

L,T(v) from the approximate decoupling of an exa
four-point response function. The decoupling procedure o
keeps the direct contributions and ignores exchange co
butions. This is equivalent to writing the spectral density
excitations, atq50, as the convolution of two-single particl
excitation spectra, i.e., the relevant excitations are take
be double electron-hole pairs, double plasmons,
electron-hole-pair1plasmon excitations. A known defect o
this approach is that it does not account for exchange,
even thev→` limit is wrong. NCT corrected for this defi
ciency by introducing an exchange correction factor in
manner of Hubbard. This gives the correct behavior at h
frequency, but is still incorrect forv→0. A very important
feature of the NCT result in three spatial dimensions is
presence of a sharp peak in Imf xc

L,T(v) at v52vp , where
vp is the plasmon frequency. The occurrence of such a p
in the three-dimensional~3D! electron gas is easily unde
stood from the mathematics of the convolution approxim
tion: the density of single plasmon states rises sharply at
threshold atv5vp , and so does the density of two-plasm
states at a threshold atv52vp : this leads to the rapid in
crease in Imf xc

L,T(v) about 2vp . @In two dimensions~2D!,
although the plasmons still make a large contribution at so
characteristic frequency, the sharp peak is absent due to
fact that the plasmon frequency vanishes at long wavelen
as the square root of the wave vector.# While this physical
effect is easy to understand, we believe that the simple c
volution approximation probably overestimates the size
the two-plasmon peak due to lack of self-consistency.
example, it is well known that coupling of the plasmon
electron-hole pairs leads to damping of the plasmon,
consequent broadening of its spectral density of states:
should definitely broaden the sharp features found by NC

Another important contribution to the theory of the d
namical exchange-correlation kernel is the calculation of
23512
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frequency-dependent local field factor G(q,iv)
52 f xc

L (q,iv)/v(q) by Richardson and Ashcroft~RA!.23

This work uses a combination of perturbation theory a
exact sum rules to calculateG for imaginary frequencies, and
has been recently shown to give excellent results for
correlation energy of the homogeneous electron gas.24 How-
ever, the limitation to imaginary frequency prevents the a
plication of these results to truly dynamical situations.

In the present paper, we combine the interpolation p
losophy of GK with the first principle approach of NCT t
provide a novel and simple expression forf xc

L,T(v) in two
and three dimensions—an expression which we hope
prove superior to the ones proposed so far. Our starting p
is the same as that of NCT, but, rather than relying on
decoupling approximation, we find that it is possible to c
culate Imf xc

L,T(v) analytically at low frequency, i.e., we ca
calculate the slope of Imf xc

L,T versusv at v50 with full
inclusion of the exchange terms that were ignored in t
limit by NCT. In the process, we also discover an exact~i.e.,
nonperturbative! relation between the low-frequency limit
of the longitudinal and transverse kernels Imf xc

T (q50,v)
5@d/2(d21)#Im f xc

L (q50,v) at smallv, whered53,2 is
the number of spatial dimensions.

Our calculation is done to ‘‘leading order’’ in the Cou
lomb interaction. Formally, this should be the second-or
@O(e4)#, but the long-range of the Coulomb interactio
causes the second-order calculation to give a diverging
sult. To obtain a finite result, the interaction must be scree
~by the RPA dielectric function in the weak coupling limit!,
but this means that higher order contributions must also
included. Of course only the leading-order term is exact: t
is O(e3) in three dimensions andO@e4 ln(e2)# in two di-
mensions.

The analytical result for the slope of Imf xc(v) at v50 is
then used to improve the GK’s approximation.4,7 Basically
we take the same approach as GK, but we include the
information on the low-frequency behavior together with t
old information on the high frequency behavior and the s
rules. In order to accommodate the new constraint we n
one more parameter than GK. The additional parameter is
width of a Gaussian peak centered atv52vp that we add to
the original GK expression to model the two-plasmon co
tribution first identified by NCT. As expected, this contrib
tion is sizeable, yet considerably smaller than in the N
calculation.

An additional technical point that we have strived to i
clude in our interpolation is the existence of a finite diffe
ence betweenf xc

L (0) and the static compressibility. This dif
ference can be expressed in terms of Landau parame
which are known, approximately, from earlier microscop
calculations. We have taken the difference into accoun
calculating the parameters of our interpolation.

In summary, our expressions for Imf xc
L,T(v) and

Ref xc
L,T(v) should be more accurate, at low frequency, th

either the GK or the NCT formula. In addition, the ne
interpolation includes a reasonable two-plasmon contribu
without compromising the simplicity of the GK form.
1-2
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The paper is organized as follows. In Sec. II, we summ
rize the exact properties of the exchange-correlation ker
in the electron liquid. In Sec. III we present our interpolati
for f xc

L,T(v) in 3D, and compare it with the approximation
by GK and NCT. Section IV presents a similar analysis
f xc

L,T(v) in 2D. In Sec. V, we derive an exact relation b
tween Imf xc

L (v) and Imf xc
T (v) at smallv. The derivation of

the analytical results for Imf xc
L (v) at low frequency is de-

scribed in Sec. VI. Section VII contains our conclusions.

II. EXACT PROPERTIES OF THE XC KERNELS

The q-dependent kernelf xc
L,T(q,v) is an analytic function

of v in the upper half of the complexv plane and its rea
part and imaginary part satisfy Kramers-Kronig~KK ! rela-
tions for eachq. For q50,

Ref xc
L,T~v!2 f xc

L,T~`!5PE
2`

` dv8

p

Im f xc
L,T~v8!

v82v
, ~5!

whereP is the principal part. Therefore Ref xc
L,T(v) may be

obtained from the KK relation of Eq.~5! once Imf xc
L,T(v) is

known.
The zero frequency limits off xc

L (v) and f xc
T (v) are re-

lated to the exchange-correlation~xc! part of the elastic bulk
and shear moduliKxc , mxc via26

f xc
L ~0!5

1

n2 FKxc1
2~d21!

d
mxcG[ f 0

L~n!,

~6!

f xc
T ~0!5

mxc

n2
[ f 0

T~n!.

It is well known that

Kxc5n2
d2

dn2
~nexc!, ~7!

whereexc(n) is the exchange-correlation energy per partic
The difference between Eq.~6! and the compressibility sum
rule

lim
q→0

lim
v→0

f xc
L ~q,v!5Kxc /n2 ~8!

was first pointed out by Conti and Vignale.26 They further
related the xc shear modulusmxc to the Landau parameter
Fl as follows:

mxc5
2EFn

25

3F225F1

31F1
, ~9!

in 3D, and

mxc5
EFn

2

F22F1

21F1
~10!

in 2D, whereEF5kF
2/2m.
23512
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The high frequency limits off xc
L(T)(v) can be expressed in

terms of the ground state properties of electron gas via
third moment sum rules11,26

f xc
L ~`!5

1

2n F2~113b (d)!n112/d
d

dn S exc

n2/dD
112n1/d11

d

dn S exc

n1/dD G[ f `
L ~n!, ~11!

and

f xc
T ~`!5

1

2n F2~b (d)21!n112/d
d

dn S exc

n2/dD
14n1/d11

d

dn S exc

n1/dD G[ f `
T~n!, ~12!

whereb (3)51/5 andb (2)51/2.
The high-frequency behavior of Imf xc

L,T(v) is also known
from second-order perturbative calculations by Glick a
Long,9 Holas and Singwi,10 and NCT,20 as

Im f xc
L,T~v!.2cd

L,T p42dme4

~mv!d/2
~13!

for v→`, where c3
L523/15, c3

T516/15 in 3D, andc2
L

511/32, c2
T59/32 in 2D.

In Sec. V, we prove an exact~i.e., nonperturbative! rela-
tion between the low-frequency limits of Imf xc

L (v) and
Im f xc

T (v). This relation reads

lim
v→0

Im f xc
T ~v!

v
5

d

2~d21!
lim
v→0

Im f xc
L ~v!

v
, ~14!

We then show that, in Sec. VI,

lim
v→0

Im f xc
L,T~v!

v
52S me2

np D 2

~kF!d22Sd
L,T , ~15!

where the dimensionless constantSd
L,T is given by

S3
L52

1

45p H 52~l15/l!tan21l2
2

l
sin21

l

A11l2

1
2

lA21l2 Fp

2
2tan21

1

lA21l2G J ~16!

and

S3
T5

3

4
S3

L ~17!

in 3D, and

S2
L5

1

6 H 2
p

4
1

32l2

22l2
ln~l11!2

l

11l
1

1

22l2
f ~l!J

~18!
1-3
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and

S2
T5S2

L ~19!

in 2D. In the above expressionsl is defined asl
52kF /ks , where ks is the screening wave vectorks

5A4kF /pa0 in 3D andks52/a0 in 2D, kF and a0 are the
Fermi wave vector and the Bohr radius, respectively, and

f ~l!55 2A12l2 tan21A12l

11l
, for l,1,

Al221 lnFAl112Al21

Al111Al21
G , for l.1.

~20!

To lowest nonvanishing order in the Coulomb interacti
the above results take the form

lim
v→0

Im f xc
L ~v!

v
52

1

90F kF

pa0
G3/2 1

n2
~21!

in 3D and

lim
v→0

Im f xc
L ~v!

v
52

1

6 F 1

npa0
G2

ln~kFa0! ~22!

in 2D.
The low-frequency behavior of xc kernel has been rela

to the bulk and shear viscosities of the electron liquid,z and
h via25,26

z52n2 lim
v→0

F Im f xc
L ~v!

v
22

d21

d

Im f xc
T ~v!

v G ~23!

and

h52n2 lim
v→0

Im f xc
T ~v!

v
. ~24!

Equation~14! immediately leads to resultz50 in both 3D
and 2D. We note that this conclusion holds in general, i
beyond perturbation theory. From Eq.~15!, we obtain the
shear viscosity as

h5Fme2

p G2

kF
d22Sd

T . ~25!

This concludes our summary of the exact properties
f xc

L,T(v).

III. INTERPOLATION FORMULA IN THREE DIMENSIONS

As discussed in the Introduction, our proposed interpo
tion for Im f xc

L,T(v) in 3D has the form
23512
d

.,

f

-

Im f xc
L,T~v!52

2vpl

n
ṽF a3

L,T

~11b3
L,Tṽ2!5/4

1ṽ2e2(uṽu2V3
L,T)2/G3

L,TG , ~26!

whereṽ5v/v3m , with v3m52vpl andvpl5A4pne2/m is
the plasmon frequency. We note that all the parametersa3

L,T ,
b3

L,T , V3
L,T , andG3

L,T , are dimensionless. The first term
the square brackets is the Gross-Kohn interpolation form
The second term is introduced to model the two-plasm
contribution identified in Refs. 20, 22. Requiring that th
contribution be maximum nearv52vpl leads to a relation-
ship betweenV3

L,T andG3
L,T

V3
L,T512

3G3
L,T

2
. ~27!

The low frequency result of Eq.~15! fixes a3
L,T as

a3
L,T52F2

3G1/3

p22/3r s
2S3

L,T , ~28!

wherer s is the Wigner-Seitz radius, (4p/3)r s
351/n. Use of

the high-frequency result~13! in Eq. ~26! yields

b3
L,T516F 210

3p8G 1/15

r sFS3
L,T

c3
L,TG 4/5

. ~29!

Finally, Eqs.~5! and ~26! lead to the equation

2X 4A2pa3
L,T

@G~1/4!#2Ab3
L,T

1
1

2p H 2V3
L,TG3

L,Te2(V3
L,T)2/G3

L,T

1~pG3
L,T!1/2@G3

L,T12~V3
L,T!2#

3F11erfS V3
L,T

AG3
L,TD G J C 2vpl

n

5 f 0
L,T~n!2 f `

L,T~n!, ~30!

TABLE I. mxc in 3D in unit 2vpln.

r s 1 2 3 4 5

present 0.00738 0.00770 0.00801 0.00837 0.008
NCT 0.0064 0.0052 0.0037 0.0020 0.0002

TABLE II. The parameters forf xc
L (v) @Eq. ~26!# in 3D.

r s 102a3
L b3

L G3
L V3

L

1 0.5026 0.1555 1.656 21.484
2 0.8473 0.1558 1.368 21.052
3 1.092 0.1496 1.215 20.8227
4 1.278 0.1428 1.112 20.6683
5 1.426 0.1363 1.033 20.5498
1-4
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where

erf~x!5
2

Ap
E

0

x

e2y2
dy. ~31!

By solving Eqs.~27! and~30!, one determines the param
eters G3

L,T and V3
L,T . The real parts of the xc kernel

Ref xc
L,T(v) are then calculated from the KK relation of E

~5!.
Before presenting our numerical results and compar

them with the older ones by GK~Refs. 4,7,8! and NCT,20–22

we must discuss the inputs forf 0(n) and f `(n). For the
exchange-correlation energyexc(n) we use the results o
Monte Carlo calculations.27–30Available results for the Lan-
dau parameterF1, related to the electron effective mass31

andF2 show thatumxcu!Kxc at metallic densities.32,33This is
also confirmed by NCT~Ref. 22! in their RPA treatment of
two-pair processes. A comparison betweenmxc calculated by
NCT andmxc calculated from the Landau parameters of R
33 is given in Table I. Notice that NCT putmxc50 in their
interpolation.

The four parametersa, b, G, andV obtained from Eqs.
~27!,~28!, ~29!, and~30! are listed for several values ofr s in
Tables II and III, forf xc

L (v) and f xc
T (v), respectively. In Fig.

1 we plot our formula for the imaginary part off xc
L (v) in 3D

at r s53. The GK interpolation formula4,7,8 and the result of
the numerical calculation by NCT~Refs. 20,22! are also plot-
ted for comparison. All three curves reduce to the hig
frequency limit of Eq.~13!. At low frequency our curve

TABLE III. The parameters forf xc
T (v) @Eq. ~26!# in 3D.

r s 102a3
T b3

T G3
T V3

T

1 0.3769 0.1651 1.821 21.732
2 0.6355 0.1654 1.533 21.300
3 0.8191 0.1589 1.380 21.070
4 0.9587 0.1516 1.277 20.9158
5 1.069 0.1448 1.198 20.7973

FIG. 1. Imaginary part off xc
L (v) in 3D at r s53 in units of

2vpl /n, as a function ofv. Dotted line: NCT calculation; Dashe
line: GK interpolation.
23512
g

.

-

starts with a slope that is much smaller than the slope of G
and also significantly smaller than the slope of NCT~see
Table IV!. This is understandable because there is no con
on the value of the slope atv50 in the GK interpolation.
The difference from NCT arises from the fact that the e
change contribution cancels part of the direct contributio
near v50. The exchange correction is completely abs
near v50 in NCT’s calculations because the phenomen
logical factorg(v), which they introduced to simulate th
contribution of the exchange, tends to one forv→0. There-
fore, there is every reason to believe that the present res
for Im f xc

L (v) at low frequency are more reliable than bo
GK’s and NCT’s.

At intermediate frequency, our results are intermediate
tween those of GK’s and NCT’s. The contribution of two
plasmon excitations atv52vpl is absent in the GK interpo
lation, while it is quite pronounced in the prese
interpolation, even though the peak is not as sharp as
NCT. The real part off xc

L (v) is plotted in Fig. 2. Note that al
the three approximations reduce to the same limits
Ref xc

L (`), as explained above.
In Figs. 3 and 4 we compare our results for Imf xc

T (v) and
Ref xc

T (v) at r s53 with those of NCT.20 These curves are

TABLE IV. 2Im f xc
L (v)/v near v50. The units are 2

31022/n in 3D and 1022/n in 2D.

r s present~3D! NCT ~3D! present~2D! NCT ~2D!

0.5 0.133 0.327 0.456
1 0.251 0.623 0.746 0.00175
2 0.424 1.09 1.31 2.89
3 0.546 1.42 1.60 3.49
4 0.639 1.68 1.78 3.97
5 0.713 1.85 1.91 4.26
6 0.773 2.00 2.00 4.49
7 0.823 2.08
8 0.866 2.14
9 0.903 2.19
10 0.934 2.17 2.22 4.99

FIG. 2. Real part off xc
L (v) in 3D. Notations and units are as i

Fig. 1.
1-5
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qualitatively similar to those forf xc
L (v). In fact Im f xc

T (v)
differs from Imf xc

L (v) by an approximately constant sca
factor (;0.75) as pointed out by NCT.

IV. INTERPOLATION FORMULA IN TWO DIMENSIONS

The dispersion of the plasmon in a two dimensional el
tron liquid goes ask1/2 at small wave vectork.10,34,35 This
behavior is distinctly different from that of the three
dimensional plasmon. Although the plasmons still make
large contribution to Imf xc

L,T(v) at a characteristic frequenc
v2m , a sharp threshold for two-plasmons emission is abs
in 2D. Using a single mode approximation for the dens
fluctuation spectrum with a pole atv5Ack1k2/2m where
c5(r s /A2)(2EF)2/kF one can estimate the characteris
two-plasmon frequency as

v2m5~27r s
2!1/3EF . ~32!

We are now in a position to approximate Imf xc
L,T(v) in

2D as

FIG. 3. Imaginary part off xc
T (v) in 3D at r s53 in units of

2vpl /n, as a function ofv. Dotted line: NCT calculation.

FIG. 4. Real part off xc
T (v) in 3D. Notations and units are as i

Fig. 3.
23512
-

a

nt

Im f xc
L,T~v!52ṽF a2

L,T

11b2
L,Tṽ2

1ṽ2e2(uṽu2V2
L,T)2/G2

L,TG FRy

n G ,
~33!

where ṽ5v/v2m . Proceeding as in 3D we obtain the fo
lowing four equations:

V2
L,T512

3G2
L,T

2
, ~34!

a2
L,T5p21~25r s!

2/3S2
L,T , ~35!

b2
L,T5p22~27r s

2!2/3FS2
L,T

c2
L,TG , ~36!

and

2S a2
L,T

Ab2
L,T

1
1

2p H 2V2
L,TG2

L,Te2(V2
L,T)2/G2

L,T
1ApG2

L,T

3@G2
L,T12~V2

L,T!2#F11erfS V2
L,T

AG2
L,TD G J D Ry

n

5 f 0
L,T~n!2 f `

L,T~n!. ~37!

By solving Eqs.~34! and ~37!, we obtain the parameter
V2

L,T andG2
L,T .

We put the screening constantks52/a0 in the following
numerical calculations. As in 3D,exc(n) is taken from Monte
Carlo calculations, and the Landau parametersF1 andF2 are
taken from the variational Monte Carlo calculations of Kwo
et al.36. The parameters of the interpolation are listed
Tables V and VI, and our results for Imf xc

L,T(v) at r s53 are
plotted in Figs. 5–7, vis-a-vis the results of the NC
calculation.22 We note that the exchange-correlation cont
bution to the shear modulusmxc , calculated from the Landau
parameters of Kwonet al., affects the final results for
Im f xc

L,T(v) more strongly than in three-dimensions. Asid
from this difference, the qualitative behaviors of Imf xc

L,T(v)

TABLE V. The parameters forf xc
L (v) @Eq. ~33!# in 2D.

r s 102a2
L b2

L G2
L V2

L 102mxc(Ry n)

1 8.448 0.2409 0.763 20.144 3.76
2 5.260 0.2381 0.927 20.391 20.789
3 3.716 0.2205 1.08 20.615 21.35
5 2.250 0.1876 1.31 20.971 21.17

TABLE VI. The parameters forf xc
T (v) @Eq. ~33!# in 2D.

r s 102a2
T b2

T G2
T V2

T 102mxc(Ry n)

1 8.448 0.1971 0.651 0.0237 3.76
2 5.260 0.1948 0.861 20.291 20.789
3 3.716 0.1803 1.03 20.547 21.35
5 2.250 0.1535 1.29 20.936 21.17
1-6
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in 2D and in 3D are similar. As can be seen from Table
the slopes off xc

L (v) nearv50 are less than half of thos
calculated by NCT. The real partsf xc

L,T(v) at r s53 are plot-
ted in Figs. 6 and 8, respectively. Note the reduction of
downward swing at intermediate frequencies. Our value
Ref xc

L,T(0) differs from that of NCT because we make use
Monte Carlo results forKxc and mxc while they calculated
these quantities from their RPA treatment of two-pair p
cesses.

V. EXACT RELATION BETWEEN LONGITUDINAL AND
TRANSVERSE KERNELS AT LOW FREQUENCY

In this section, we derive the exact relation~14! between
Im f xc

L (v) and Imf xc
T (v) at smallv. We start with the exac

expression for the imaginary part of the xc kernel tensor

f xc,i j ~q,v!5
1

v2
@qiqj f xc

L ~v!1~q2d i j 2qiqj ! f xc
T ~v!#,

~38!

obtained by NCT,22 namely,

FIG. 5. Imaginary part off xc
L (v) in 2D at r s53 in units of

Ry/n, as a function ofv. Dotted line: NCT calculation.

FIG. 6. Real part off xc
L (v) in 2D at r s53. Notations and units

are as in Fig. 5.
23512
,

e
f

f

-

Im f xc,i j ~q,v!5S q

nv2D 2
1

Vd
3

lim
q→0

1

q2 (
kk8

(
l l 8

Im^^ j l~k!

3r~2k!; j l 8~k8!r~2k8!&&vG i l ~k,q!

3G j l 8~k8,2q!, ~39!

where

G i l ~k,q!5@v~q1k!2v~k!#kikl1v~k!@klqi2qlki

2d i l q•k#, ~40!

andi , j ,l ,l 8 are Cartesian indices. HereVd is the volumeV in
3D, the areaA in 2D, and j (q,t) is the current density op
erator. The Zubarev product is defined as^^A;B&&v

52 i *0
`dteivt^@A(t),B(0)#&.

For smallv, all the excitations relevant to the spectrum
the four-point response function, involve states in the vic
ity of the Fermi surface. Within this subset of states the lo
gitudinal part of the current is much smaller than the tra
verse part, or k̂@ k̂• j (k)#! j (k), where k̂5k/k. The
geometrical reason for this is shown in Fig. 9: the curre
operatorj (k)5(p(p2k/2)ap2k

† ap is essentially perpendicu

FIG. 7. Imaginary part off xc
T (v) in 2D at r s53 in units of

Ry/n, as a function ofv. Dotted line: NCT calculation.

FIG. 8. Real part off xc
T (v) in 2D at r s53. Notations and units

are as in Fig. 7.
1-7
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lar to k becausep2k/2 is essentially perpendicular tok.
Therefore, to leading order in an expansion in powers ofv,
Im f xc,i j (q,v) can be simplified to

Im f xc,i j ~q,v!5S q

nv2D 2
1

Vd
3

lim
q→0

1

q2 (
kk8

(
l l 8

Im^^ j l~k!

3r~2k!; j l 8~k8!r~2k8!&&v

3v~k!v~k8!Ti jl l 8~k,k8,q!, ~41!

where

Ti jl l 8~k,k8,q!5~kiql1d i l q•k!~kj8ql 81d j l 8k8•q!. ~42!

We now consider the trace of the tensor Imf xc,i j (q,v)

(
i j

Im f xc,i j ~q,v!d i j 5
q2

v2
@ Im f xc

L ~v!1~d21!Im f xc
T ~v!#

~43!

and its longitudinal component

(
i j

qiqj Im f xc,i j ~q,v!5
q4

v2
Im f xc

L ~v!. ~44!

The former involves the quantity

(
i j

d i j Ti j l l 8~k,k8,q!5qlql 8k•k81qlkl 8k•q1kl8ql 8q•k

1d l l 8q•kk 8•q, ~45!

and the latter

(
i j

qiqjTi j l l 8~k,k8,q!54qlql 8k•qk8•q. ~46!

Because the kernelsf xc
L,T(v) do not depend on the direc

tion of q it is permissible to average the above expressi
with respect to the direction ofq. Note that

FIG. 9. Illustration ofk•(p2k/2)'0 for low-energy electron-
hole excitations, which explains the suppression of the longitud
part of the currentj (k) at low frequency.
23512
s

1

2d21p
E dVqd i j Ti j l l 8~k,k8,q!5

2

d
q2@d l l 8k•k81kl8kl 8#

~47!

and

1

2d21p
E dVqqiqjTi j l l 8~k,k8,q!

5
4

d~d12!
q4@d l l 8k•k81klkl 8

8 1kl8kl 8#. ~48!

Again the term withklkl 8
8 picks only the longitudinal com-

ponent of the current and can therefore be dropped. Thu
leading order inv we get

E dVq(
i j

d i j q
2Ti jl l 8~k,k8,q!

5
d12

2 E dVq(
i j

qiqjTi j l l 8~k,k8,q!, ~49!

which implies

(
i j

d i j Im f xc,i j ~q,v!/q25
d12

2 (
i j

Im f xc,i j ~q,v!qiqj /q4.

~50!

Together with Eqs.~43! and~44! this yields the relation~14!.
In the above proof, we have not made use of perturba
theory. The relation~14! is therefore exact.

VI. EVALUATION OF THE IMAGINARY PART
OF THE EXCHANGE-CORRELATION KERNELS

AT LOW FREQUENCY

In this section we supply some details of the calculat
of the imaginary parts of the exchange-correlation kernel
low frequency. We start from Eqs.~39! and ~40!. The four-
point response function̂ ^ j l(k)r(2k); j l 8(k8)r(2k8)&&v

can be expanded in a series of four-vertex diagrams suc
the ones shown in Figs. 10 and 11. There are two type
diagrams. The ‘‘direct’’ diagrams are those that can

al

FIG. 10. The direct zeroth-order diagrams D1 and D2 of
four-point response function̂̂ j (k)r(2k); j (k8)r(2k8)&&v .
1-8
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separated into two parts, each containing two vertices, w
no Coulomb interactions in between~see Fig. 10!. The re-
maining diagrams are those that cannot be separated in
manner: the simplest example is the zeroth order excha
diagram shown in Fig. 11. The imaginary part of the sum
all the direct terms can be written as a convolution of t
imaginary parts of exact two-point response functions as
lows:

Im^^ j l~k!r~k!; j l 8~k8!r~2k8!&&v

52E
0

v dv8

p
@ Im^^ j l~k!; j l 8~k8!&&v8

3Im^^r~k!;r~k8!&&v2v81Im^^ j l~k!;

3r~2k8!&&v8 Im^^r~k!; j l 8~k8!&&v2v8#. ~51!

Using the relation

^^ j l~k!;r~2k!&&5
kl

k2
^^k• j ~k!;r~2k!&&, ~52!

we can rewrite Eq.~51! in terms of the longitudinal and
transverse linear response functionsxL(k,v) andxT(k,v) as
follows:

Im^^ j l~k!r~k!; j l 8~k8!r~2k8!&&v

52Vd
2E

0

v dv8

p

1

k2 H @klkl 8 Im xL~k,v8!

1~k2d l l 82klkl 8!Im xT~k,v8!#

3Im xL~2k,v2v8!dk,2k82
klkl 8

k2
v8~v2v8!

3Im xL~k,v8!Im xL~2k,v2v8!dk,k8J . ~53!

FIG. 11. The exchange zeroth-order diagrams EX1 and EX2
the four-point function̂ ^ j (k)r(2k); j (k8)r(2k8)&&v .
23512
th

his
ge
f
e
l-

Substituting Eq.~53! into Eq. ~39! one obtains20–22

Im f xc
L,T~v!52E

0

vdv8

p E dk

~2p!dn2
@v~k!#2

3FaL,T

k2

v82
Im xL~k,v8!

1gL,T

k2

v2
Im xT~k,v8!G

3
k2

~v2v8!2
Im xL~k,v2v8!, ~54!

whereaL523/30 andaT58/15 in 3D, andaL511/16 and
aT59/16 in 2D, while gL58/15 andgT52/5 in 3D, and
gL5gT51/2 in 2D. This is the expression that NCT calc
lated numerically, using, forxL,T(k,v), the random-phase
approximation~RPA! expressions

xT~k,v!5x0
T~k,v! ~55!

and

xL~k,v!5
x0

L~k,v!

e~k,v!
, ~56!

where e(k,v)512v(k)x0(k,v) is the RPA dielectric
function.37

The calculation simplifies considerably at low frequenc
when one makes use of the limiting forms

Im x0
L~k,v!.2522d

v3

pk3
~4kF

22k2!(d23)/2 ~57!

and

Im x0
T~k,v!.2523d

v

pk
~4kF

22k2!(d21)/2. ~58!

To leading order inv we obtain

Im f xc
L(D)~v!52

m2v

720p5n2 E0

2kF @v~k!#2

ue~k,0!u2
~4kF

22k2!k2dk,

~59!

in 3D ~the superscript ‘‘D ’’ stands for ‘‘direct’’! and

Im f xc
L(D)~v!52

m2v

24p4n2E0

2kF
k

@v~k!#2

ue~k,0!u2
dk, ~60!

in 2D. In writing these expressions we have used the fact
the dynamical dielectric functione(k,v) can be replaced by
the static dielectric functione(k,0) to leading order inv.
Notice that, due to the long range of the Coulomb inter
tion, the integrals in Eqs.~59!, ~60! would diverge if we
used the zeroth order approximatione(k,0)51. Use of the

f

1-9
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RPA static dielectric function assures that we include all
contributions of leading order in the strength of the Coulo
interaction.

Carrying out the integrals overk in Eqs.~59!, ~60! we get

Im f xc
L(D)~v!52

ve4m2kF

45p3n2
@231~l13/l!tan21l# ~61!

in 3D, and

Im f xc
L(D)~v!52

m2ve4

6p2n2 F ln~l11!2
l

l11G ~62!

in 2D. The dimensionless constant is defined asl
52kF /ks . Notice that Eq.~59! corrects the result previousl
reported by Conti and Vignale in Ref. 26, whereas Eq.~60!
agrees with Eq.~4.6! of Ref. 26 ford52.

We now come to the calculation of the exchan
contributions—the terms that are missing in the NCT cal
lation for low frequency. To leading order in the Coulom
interaction only the two diagrams shown in Fig. 11 need
be considered. After some calculations, we get

Im^^ j l~k!r~2k!; j l 8~k8!r~2k8!&&v
(EX)

5
2p

m2 (
pp8

~p2k/2! l$~p2k2k8/2! l 8dp81k8,p2k

1~p81k2k8/2! l 8dp1k8,p81k%n̄pnp2kn̄p8np81k

3d~v1v2kp1vkp8!,

~63!

where np5u(kF2p), n̄p512np , and vkp[vk1p2vp .
The contribution from the first term in the above equati
corresponds to ‘‘EX1’’ and the second one to ‘‘EX2’’ of Fig
11. They can be evaluated in the same way. In fact, it can
readily shown that they make equivalent contributions
Im f xc(v) at smallv. In other words, to first order inv

Im f xc
L(EX)~v!52 Im f xc

L(EX1)~v!. ~64!

Therefore we focus on the first term only, which is given

Im^^ j l~k!r~2k!; j l 8~k8!r~2k8!&&v
(EX1)

5
2p

m2 (
p

~p2k/2! l~p2k2k8/2! l 8n̄pnp2kn̄p2k2k8

3np2k8d~v1v2kp2v2kp2k8!.

~65!

The evaluation of this complex expression is made relativ
easier by the use of the following relation:

n̄pnp2kn̄p2k2k8np2k8d~v1v2kp2v2kp2k8!

5n̄pnp2kn̄p2k2k8np2k8E
0

v

dv8d~v82v2kp2k8!

3d~v2v81v2kp!,

~66!
23512
e
b

-

o

e
o

ly

for v.0. Note that Imf xc
L (v) is an odd function ofv and

therefore it is sufficient to consider only thev.0 case. The
contribution of Eq.~65! to Im f xc

L(EX1)(v) can be expressed a

Im f xc
L(EX1)~v!52pS 1

mnv D 2 1

Vd
3

Q~v!, ~67!

where

Q~v!5 lim
q→0

1

q4 (
p

(
k

(
k8

E
0

v

dv8n̄pnp2kn̄p2k2k8np2k8

3d~v82v2kp2k8!d~v2v81v2kp!L~p,k,k8;q!.
~68!

L(p,k,k8;q) in Eq. ~68! is defined as

L~p,k,k8;q!5(
l l 8

~p2k/2! l~p2k2k8/2! l 8G l~k,q!

3G l 8~k8,2q!, ~69!

where

G l~k,q!5@v~q1k!2v~k!#q•kkl1v~k!@q2kl22k•qql #.
~70!

The leading term ofQ(v) is proportional tov3. The fact
that Q is independent ofq allows us to rewrite Eq.~68! as

Q~v!5(
p

(
k

(
k8

E
0

v

dv8n̄pnp2kn̄p2k2k8np2k8

3d~v82v2kp2k8!d~v2v81v2kp!

3 lim
q→0

1

q4
212dp21E dVqL~p,k,k8;q!. ~71!

The integral in Eq.~71! can be done with the help of formu
las such as

E dVq~M0•q̂!2~M1•q̂!~M2•q̂!

5
2d21p

d~d12!
@2~M1•M0!~M2•M0!1M0

2M1•M2#, ~72!

for arbitrary vectorsM0 , M1 , M2. After a tedious but
straightforward algebra, we obtain

Q~v!5
2

d~d12!
E

0

v

dv8(
k

(
p

v~k!k2n̄pnp2k

3d~v2v81v2kp!J~v8,k,p!, ~73!

where

J~v8,k,p!5(
k8

v~k81p!p•~k81p!n̄k1k8nk8d~v82vkk8!.

~74!

In reaching Eq.~73!, we made use of the fact thatk•k8
5mv andk•(p2k/2)5m(v2v8), from thed functions in
Eq. ~71!, and dropped all terms higher than the leading or
1-10
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in v. In fact, all these higher order terms are related to
longitudinal component of the current. Therefore the det
of the derivation of Eq.~73!, which are not presented her
can be greatly simplified by using from the very beginni
the fact that the longitudinal component of the currents
suppressed at smallv, as pointed out in the preceding se
tion. In the following subsections, we evaluateQ(v) in 3D
and 2D separately.

A. 3D

To calculate J(v8,k,p) in 3D we use the statically
screened Coulomb potentialv(k)54pe2/(k21ks

2) rather
than the bare one (4pe2/k2). Although this is clearly an
uncontrolled approximation beyond second order in the C
lomb interaction, it at least assures that we are calculating
true exchange counterpart of the direct terms compute
the previous section~also uncontrolled beyond the secon
order!.

To linear order inv8, J(v8,k,p) in 3D can be evaluated
as

J~v8,k,p!5u~2kF2k!
m2v8e2V

2pk
@11G~p,k!#, ~75!

where

G~p,k!5@p22ks
22kF

2 #$@kF
21ks

21p22p•k#2

2@p22~p• k̂!2#@4kF
22k2#%21/2. ~76!

Equations~73!, ~75!, and~76! yield

Q~v!5
m2e2V

15p E
0

v

v8dv8(
k

v~k!ku~2kF2k!

3Fm2~v2v8!V

~2p!2k
1I 3G , ~77!

where

I 35(
p

n̄pnp2kd~v2v81v2kp!G~p,k!. ~78!

The linear order term of Eq.~78! can be readily estab
lished as

I 352
m2V~v2v8!

~2p!2k

ks

Aks
214kF

22k2
. ~79!

Putting Eqs.~79! into ~77!, we obtain the low-frequency ex
pression forQ(v) as

Q~v!5S m

2p D 4 2pe2V2v3

45 (
k

v~k!u~2kF2k!

3F12
ks

Aks
214kF

22k2G . ~80!

Carrying out the integral in Eq.~80!, and substituting the
result into Eq.~67! we finally obtain
23512
e
ls

s

-
he
in

Im f xc
L(EX)~v!5

2vm2e4kF

45p3n2 H 12
1

l
sin21

l

A11l2

2
1

l
tan21l1

1

lA21l2

3Fp

2
2tan21

1

lA21l2G J . ~81!

@We have also used Eq.~64!#. Adding Im f xc
L(EX)(v) of Eq.

~81! to Im f xc
L(D)(v) of Eq. ~61! leads to the result for

Im f xc
L (v) in 3D in Eq. ~15!.

B. 2D

In 2D, making use of the statically screened Coulom
potentialv(k)52pe2/(k1ks) we obtain

J~v8,k,p!5u~2kF2k!
m2e2Av8

pkA4kF
22k2

H~p,k!, ~82!

where

H~p,k!5
1

2 H 2p22p•k1D~p,k!

Ap•~p2k!1kF
21D~p,k!1ks

1
2p22p•k2D~p,k!

Ap•~p2k!1kF
22D~p,k!1ks

J , ~83!

with D(p,k)5pA4kF
22k2 sinu, and cosu5p̂• k̂. Equations

~73! and ~82! yield

Q~v!5
m2e2A

4p E
0

v

v8dv8(
k

v~k!
k

A4kF
22k2

u~2kF2k!I 2 ,

~84!

where

I 25(
p

n̄pnp2kd~v2v81v2kp!H~p,k!. ~85!

The linear order term of Eq.~85! can be evaluated as

I 25
m2~v2v8!A

2p2k
F12

ks

A4kF
22k21ks

G . ~86!

Q(v) at low frequency is then obtained as

Q~v!5S m

2p D 4 pe2A2v3

3 (
k

v~k!

A4kF
22k21ks

u~2kF2k!.

~87!

Finally, we have

Im f xc
L(EX)~v!5

m2e4v

12p2n2E0

1

dx
l2x

lx11

1

~lA12x211!
. ~88!
1-11
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We have used Eq.~64! in obtaining Eq.~88!. The integral in
the above equation may be evaluated analytically as

Im f xc
L(EX)~v!5

m2e4v

12p2n2 H p

2
2

2

22l2
@ ln~11l!1 f ~l!#J ,

~89!
where the functionf (l) is defined in Eq.~20!. Equations
~62! and ~89! lead to the result for Imf xc

L (v) in 2D in Eq.
~15!.

VII. SUMMARY

In this paper we have introduced a new analytical
proximation for the longitudinal and transverse exchange
correlation kernels in the three and two-dimensional elect
liquid. The new expressions represent an improvement u
the Gross-Kohn formulas because the imaginary part of
f xc(v) kernels is now exact at low frequency to lowest no
vanishing order in the strength of the Coulomb interacti
This was accomplished through an exact evaluation of
leading exchange diagrams in the diagrammatic expansio
the imaginary part off xc(v). Thus, we have also improve
upon the recent NCT calculation, in which exchange effe
were approximated through an empirical correction fac
The additional exact constraint at low frequency cannot
tte

23512
-
d
n

on
e

-
.
e
of

ts
r.
e

satisfied by the Gross-Kohn formula, if one insists on sa
fying the other known sum rules. Thus, we modified the G
formula by adding a new term which produces a gauss
peak at about two times the plasmon frequency in 3D~or the
equivalent characteristic frequency in 2D!. The existence of
such a peak is suggested by the NCT calculation, but
believe that the strength of the peak is probably overe
mated in that calculation. Our results are intermediate
tween the GK formula, which does not take into account
physical effect of two-plasmon emission, and the NCT res

We have also examined the delicate question of
v→0 limit of f xc

L (v), which we now know doesnot coin-
cide with the compressibility. We estimate the difference b
tween the exact limit and the compressibility and find tha
is rather small at densities of interest in 3D, but in 2D, th
correction is more significant.

Finally we note that the analytical formula of Eq.~15! is
easy to use in practical calculations . This makes the ap
cation of the present work to the low frequency dynam
particularly promising.
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