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Odd-even binding effect from random two-body interactions
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Systematic odd-even binding energy differences in finite metallic particles are usually attributed to mean-
field orbital energy effects or to a coherent pairing interaction. We show analytically and numerically that a
purely random two-body Hamiltonian can also give rise to an odd-even staggering. We explore the character-
istics of this chaotic mechanism and discuss distinguishing features with respect to the other causes of stag-
gering. In particular, randomness-induced staggering is found to be a smooth function of particle number, and
the mechanism is seen to be largely insensitive to the presence of a magnetic field.
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[. INTRODUCTION clei it is well known that the residual interaction leads to
fluctuation properties in wave functions and energy levels

Interacting finite fermionic systems such as atomic nucleithat are similar to those of random matrices taken from the
metallic clusterg,and small metallic graidsdisplay an odd- Gaussian orthogonal ensembfdn the case of small metal-
even staggering in ground-state energies, i.e., the bindinc grains or quantum dots, one may assume that their irregu-
energy of an even-number system is larger than the aritHar shape leads to chaoticity in the single-particle wave
metic mean of its odd-number neighbors. There are two welifunctions:” This in turn causes randomness in those two-
known mechanisms that can give rise to th|S Staggerind?ody matrix elements that link four different orbitals with
namely, the Kramers degeneracy in the mean-field Hamil€ach other. Matrix elements between pairs of orbitals that are
tonian and the BCS mechanism arising from an attractivé€lated by time-reversal symmetry need not necessarily be
effective interaction. In nuclei, the BCS pairing mechanismrandom, and these determine the “coherent” terms of the
resulting from a residual nucleon-nucleon interaction isinteraction.
dominane but the mean-field or orbital energy effect may A realistic Hamiltonian for quantum dots or small metallic
also be significant in the lighter nucteiSurprisingly, many ~ grains would thus conserve total spin and include spin-
basic phenemona normally associated with pairing can alstydependent one-body terms, random two-body interactions,
arise from random interactions. The behavior of random&nd coherent interactions that are nonrandom but have attrac-
interaction ensembles has mostly been studied in a nuclefive and repulsive components. The most general Hamil-
physics Conte)?t_ll but there has a|so been some Study Oftonian to Study generic pI‘OpeI’tieS when all these features are
spectra in the context of small metallic graitis. included may be written as

In the case of metallic clusters of fewer than a hundred
atoms, the orbital energy effect is rather strong and stagger-H = >} 8iCiTgCig+zi (u+ui/)CiTTCiTLCiLCiT

ing is seen for species that do not exhibit superconductivity. io
This effect can be easily understood using a jellium model or
density functional theory? On the other hand, the staggering + X [(Wotw){oa|o){os|os)
effect seen in Ref. 2 may have some contribution from the i 01050304
BCS pairing mechanism. A number of theoretical studies , - - -
have been mad&using techniques applicable to large finite + (Wit Wy )(aalolor) (o3| ol o) 1Ciy, ¢ 0 C 0 Cic,
systems? Taking a uniform mean-field spectrum and an at-
i S ) . . ) oy
tractive pairing interaction with constant coupling, one ob +iEj (9+g})chclici o

serves a smooth crossover from BCS superconductivity in
the bulk to the few-electron regime. For small systems, the

gap is of the size of the mean level spacing and thus ceases +E E [voija (o1 o2) (sl og)

to be an indicator for pairing. Nevertheless, strong pairing ikl 01050504
correlations and odd-even staggering persist as the system R R -
size decreases. +vgjik{oilolog)-(o3loloa)lci, €y ChoCio, (D)

In a grain with irregular boundaries, one expects that the

electron orbitals will have a chaotic character and therefore Here the coherent parts of the interaction are represented
the interaction will have a random as well as a regular partby the terms with coefficients, ws, andg. The fluctuating

In this paper we will introduce such an interaction and studyparts of the interaction are represented by the terms contain-
its typical effects on the binding systematics. Our Hamil-ingu’, w., g', andvs. These fluctuating parts are typically
tonian thus includes attractive and repulsive pairing interactaken from ensembles with a Gaussian distribution; they are
tions as well as more general two-body interactions. Thahus characterized by the width of the Gaussian. The single-
assumption of randomness is motivated as follows: For nuparticle terme; sets the energy scale and may often be taken
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to give a uniform spacing of levels without loss of generality.for the set of orbital pairsj. The A4 in the third line are
This full Hamiltonian is difficult to study due to its many similarly defined for spin-triplet pairs.
parameters. There have been many studies in the limit in The randomness assumption tells us that there is no pre-
which fluctuation effects are only included in the single-ferred basis within either th&=0 or S=1 sector of two-
particle Hamiltoniane; .*3=*' We consider a very different body states. The couplings,,, then should be taken from
limit, neglecting the coherent terms in the interaction andthe Gaussian orthogonal random-matrix ensem@&E).
assuming the ¢ term to dominate the fluctuating parts. Prop- We fix the variance of the to be unity for off-diagonal
erties of such random two-body interaction ensembles havelements. The GOE then satisfies
been studied extensively in nuclear physts>

When the Hamiltonian of the nuclear shell model was (vg V=14 8,00, 3
modeled in this way, it was found that the spectral properties o o

were_quitsz regular for the ground states. As examples Wghere(. . ) indicates an ensemble average and similarly for
mentionJ"=0" ground-state dominance in shell model cal—v1 ,. We are concentrating for now on the case of time-
culations with random interactioris? band structure in in- reegrsa| symmetry, so the matrices andv, are real and
teracting boson models with 'random couplif@structure in symmetric. The case of broken time-reversal symmetry in
ground-sta’ge wave functions of two-body randomne presence of a magnetic field will be considered in Sec. V.
enseﬂnbleé, and an odd-even binding effectin filling a large e prefactor<C, and C, allow us to consider arbitrary
shell:” In the context of quantum dots, the random two-bodygiyengths of the spin-0 and spin-1 couplings relative to each
interactions were found strongly to favor singlet ground-statyner and relative to the single-particle level spacing. As we
spins.““"Recently, this structure has beenynve_s%gated USINQyill see below, several qualitatively different regimes for
the group symmetry of the random HamiltonigisThese o nd-state staggering are possible within this simple ran-

findings suggest that the structure of interacting many-bodyj, 1, model depending on the valugg andC, as well as
systems is to some extent already determined by the rank of, particle aensity. !

the i.nteractilon alone, _and one does not need all the Qetails of Let us denote the ground-state energy of khbody sys-
the interaction. We will show that odd-even staggering alsQgn 45 (N). A useful staggering indicator is the empirical
fits into this picture and is not solely a consequence of aMairing gap
attractive pairing force.

This paper is organized as follows. In Sec. Il we introduce 1
the Hamiltonian and discuss the odd-even effects arising A(N)==[E(N+1)—2E(N)+E(N—1)]. (4
from the one-body part alone. Section Ill contains analytical 2
results for the odd-even staggering due to a random two- . _ _ _ . .,
body interaction(some technical details of this analytical NS three-point observable is essentially the “curvature” or
analysis are included in the AppentlixThe crossover be- Second derivative of the binding energy with respect to par-
tween the mean-field regime and the regime of strong interlilé numberN. Positive (negativg A(N) indicates that the
actions is numerically investigated in Sec. IV. The effects of2inding energy of thé\-body system is largesmalley than
breaking time-reversal symmetry are studied in Sec. V. githe arithmetic mean of the b|nd|_ng energies of its neighbors.
nally, we give a summary. V\/_(tah hl\?ve an odd-even staggering wheneXxéN) staggers

Wi .
It is instructive to consider the trivial case where residual

interactions are negligible, i.e.Cq=C;=0. Then the

As discussed in the Introduction, we will consider en-N-particle ground-state energy is given BYyN) =257,

sembles of Hamiltonians including only a single-particle en-for N even andE(N) =E(N—1)+ &1y, for N odd. Here
ergy and a random two-body interaction. We write this in theN may range between 0 andv2 whereM is the number of

II. HAMILTONIAN AND STAGGERING INDICATOR

form available orbitals. One obtains for the empirical pairing gap
M
(enr)y+1—enp)/2=0 for N even,
_ t T T _
H=2 ei(clici+elci)+Co 2 vouuAoPon AN)=) or N odd. @

a,a’spin-0 pairs

@) Thus, there is a trivial odd-even staggering due to the mean-
field alone. In what follows we will mainly be interested in
the effects of interactions, and in the effects of adding a
The first term represents the mean-field contribution, whergnagnetic field. For odd-number systems, a nonzero value of
g; is the single-particle energy associated with orhit@ind  the empirical pairing gap must be due to interactions, and
Ci;, Cj, are the one-particle annihilation operators for thatthis allows one easily to discriminate mean-field effects from
orbital. As usual, we assume an orderif\g=e; 1. The sec- interactions. Such a discrimination is more difficult for even-
ond and third terms represent the interaction for pairs havingumber systems and has recently been studied in mean-field
spin Sequal to 0 and 1, respectively. The operatdgg in  plus pairing Hamiltonian&?%*°We will see in Sec. IV how
the second term are spin-singlet two-particle annihilation opmean-field effects can be distinguished from staggering
eratorsAg,=(Ci Cj; —Ci;Cj )/ V2(1+ &;;) with « standing caused by complexor random interactions. Note that an

+
+C1 2 vlﬁﬁ’AlﬁAlB’ .
B,B'spin-1 pairs
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electric charging energi nase CN(N—1) leads only to a where theN orbitalsi,, |, are a!l disFinct. On_e easily checks
N-independent constant shifA(N)—A(N)+c and can that the number o5=0 pairs in this state isN?+2N)/8,

therefore be neglected. since the particles on orbitalsandj, for a givenz are in an
S=0 combination by construction, while the remaining
Ill. EEFECTS FROM RANDOM (N?—2N)/2 pairs have a probability 1/4 of being in a singlet

TWO-BODY INTERACTIONS combination. Any of thes&=0 pairs, labeled by’ in Eq.

(2), may be annihilated by th€, term in the Hamiltonian.
We now imagine the opposite situation from that of the Another S=0 pair & must then be created; there avi?/2
previous section, i.e., we consider the regime=0 where choices fora in the dilute limit. Thus, simply by counting
mean-field effects are negligibly weak compared with thethe number of terms in th€, part of the Hamiltonian in Eq.
random two-body interaction. In this limit one might assume(2) that may act on a total spih=0 basis state we find
that all odd-even effects should disappear. Surprisingly, this

turns out not to be the case. Instead, we find persistent odd- , 2 MZ(N?+2N)

even staggering arising only from the random two-body in- Trevenn<mH“=Co 3 ®)
teractions; stronger binding energies for eWisystems are

typically obtained in numerical simulations. for N even andN<M.

To understand this result analytically, we first note that the ~Similarly, for oddN the preferred many-body ground state
spectral density of a system with two-body interactions aphas total spinJ=1/2. The typical basis state has the form
proaches a Gaussian shape in the many-body limit
N— o 3132 The ground-state energies for different particle
number or spin sectors are then largely determined by the
widths \TrH? (Refs. 12,27 of the corresponding Gaussians,

N/2
— o—Ni25t oot At ot
|Wioyp)=2 aszﬂl (aiziajo aiZTajzl)|0>1 9

scaling as where we takel,= +1/2 without loss of generality, and the
indicesi,, j,, andk are all distinct. This state contains only
E~b\/W (6) (N?+2N—3) singlet pairs, resulting in
where it is assumed without loss of generality that F0. ,  ,M*N?+2N-3)
. TrodanemyH =Co————F—— (10)
The prefactob depends of course on the details of the de- 8

viations of the spectral shape from an exact Gaussian form_r P , . .
since these deviations cut off the tails of the Gaussian. Fol! "€ O(1/N%) difference in the widths explains the odd-even

lowing an analysis along the lines of Ref. 31, where theStaggering in ground-state energies. Intuitively, the result is

spectral shape is expanded in terms of Hermite polynomial€£asy to understand: the ground state of the Ndslstem is

and then estimating the coefficients of these polynomialsiorced to have a slightly higher total spin, resulting in a

one may conjecture that the prefactoshould scale as I Slightly smaller fraction of spin-0 pairs and consequently a
with the number of particles in the system. In any case, fo,smal.ler effect of theC, term in t.he'Hamlltoman. This in the
our purposes it is sufficient that this prefactor varies€Nd is what leads to weaker binding for the dddsystem.
smoothly with N without significant staggering, which is Th_e above analysis a!so gives a quantitative prediction for
confirmed by numerical simulations. Equati8) is known the size of the staggering effect. Assuming in accordance
to provide a good qualitative explanation for some observed!ith Eq. (6) that the ratio of ground-state energies is propor-
behavior of low-lying spectra, even for moderate numbers ofional to the ratio of the widths, we find

particles where the Gaussian approximation is far from valid. 3

For example, a comparison ofo for d|fferent spin sectors |Eevern] = | Eodanl ( 1+ _2> (12)
helps to explainJ=0 total spin dominance among the 2N

ground states of random interacting many-body systéris. ¢, largeN in the dilute limit and therefore

A. Dilute limit N 3
AN)e,=(~ )N 55 [E(N)

(12)
Applying this approach to the present problem, we need

then_ to_understand how i’ depends on the number .Of. to leading order. We may compare this with the size of the
particles and other parameters of the system. For S'mpl'c'typairing gap for the mean-field dominated system. In the pre-
we consider first the dilute limiN<M with a pureS=0  ;ij;s section. we saw that (N)=A/2 on average foN
two-body coupling C,=0). even, whereA is the mean level spacing of the single-

From previous work, it is known that for eveN the_ particle spectrum. This can be normalized, however, in units
ground state comes always from the sector of total spin ¢ 1o binding energy. This binding energy, i.e., half the

=0. In the dilute limit, a typical basis state in this sector hasmany-body spectral width, i€|~MNA/2 in the mean-field
the form case. So the average pairing gap has the size

N/2
_ 1
Wi-0)=2""?[] (&l 3], ~alal plo), @) A(N) meanfieid yrpg [E(N)] (13)
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for even N, which surprisingly issmaller than the pure N S B B B B
interaction-induced pairing gap in the dilute linht<M. I .

At finite particle densityp=2N/M, mean-field-induced .
and interaction-induced stagger are of comparable size, a - S T T T B
characteristic difference being the vanishing of the pairing ALt A o & &
gapA(N) for oddN in the mean-field case, E¢p), which is =
absent for the pure interacting theory. In addition, in the pres- 3 0
ence of fluctuations in the single-particle spectrum, mean-
field inducedA (N) will itself fluctuate between successive

even values ofN, while interaction-induced stagger is pre- I : . ]
dicted to be smooth. These analytic predictions will be veri- L
fied numerically in Sec. IV below. ) . . . . . . .

2 4 6 8 10 12 14 16 18

B. General results for finite density FIG. 1. Empirical pairing gap as a function of particle number

The above derivation, though strictly valid only in the for parametere=0 (full line), ¢=m/12 (dashed ling and ¢
dilute limit, in fact provides a correct intuitive explanation of =m/2 (dotted line; graph scaled by a factor 1/2 for display pur-
the Stagger at any density for a pLBGO two_body interac- pose$ shows the transition from the mean-field regime to strong
tion. Handling theS= 1 interaction requires more care, since interactions in the spin-0 channel. Note that the pairing&@) is
the qualitative behavior will depend strongly on the densitydlmensmnless here and in all following figures; the energy scale in
p. We therefore need the exact expressions f6+2Tin vari- our calculation is set by the overall energy scale of the Hamiltonian
ous particle number and spin sectors. These expressions m%ﬁ?e text
be straightforwardly, though perhaps rather tediously, ob-

tained by applying the original Hamiltonian, B@), to vari- single-particle orbitals t&1 =10, and obtain ensemble aver-
y applying gmna ' ' ages from 200 runs. The largest matrices of the ensemble
ous basis states and evaluating the norm.

have dimension 63 504; their ground states are computed us-

The full results are presented in the Appendix. There Weing the sparse matrix SOlV@IRPACK.%3

find that for a pure singlet random interaction, the prediction We have to assian values to the single-particle enetgies
of Eq. (12) for the size of the staggering, obtained above X 9 ; ge-p *
X . N . of the mean field and to the coupling consta@isandC; of
only in the dilute limit, is in fact confirmed as a lower bound . . .
. o . . the two-body interactions. We assume a mean-field spectrum
for arbitrary densities in the many-body limit—oo: : : . .
with level spacingse;,—¢; that are Wigner distributed.
3 This is consistent with the assumption that our quantum dot
(— l)NA(N)CO> W'E(N”' (14 or metallic grain has irregular shape. To study the transition,
we multiply the single-particle energies with a factor ¢os

The situation is more complex for a pure triplet coupling@nd set the spin-0 couplinGo(¢) =sing. Here ¢ is in the
(Co=0), since here the ground state may be a state of eithd@nge¢ €[0,7/2] and thus parametrizes the transition from
minimal or maximal spin. In this case we see using formulaghe mean field to the regime of strong interactions. The
given explicitly in the Appendix that a critical densipy,;,  SPiN-1 couplingC, is set to zero. Figure 1 shows the empiri-
exists below which there is no staggering, while above whictfal pairing gap(4) as a function of particle numbex for
interaction-induced staggering of ordd(N)|/N? appears, Parameter valueg=0,7/12,m/2. _ _
just as in the singlet case. As the singlet coupling is turned We see from Fig. 1 that the odd-even staggering persists
on, p.i decreases, reaching 0 @,=C,. Thus, odd-even throughout this transition. In the absence of_ thg mean field
staggering with stronger binding for evéhsystems is pre- (¢=/2), the staggering decreases slowly with increasing
dicted to be a very general consequence of random two-booﬁ}”d then increases again very close to the maximal filling,
interactions, present for pure-singlet and pure-triplet interacvhen the number of holes becomes small arabproaches

only even or only odd values dfl are considered. These
IV. CROSSOVER BETWEEN MEAN-FIELD REGIME qualitative results are fully consistent with the analytical pre-
AND STRONG TWO-BODY INTERACTIONS dictions obtained in Sec. lll and in the Appendix. The ab-

sence of such a smooth envelope thus indicates that the stag-

The analytical results of the previous sections were obgering is instead dominated by mean-field effects, as in the
tained for pure one-body or pure two-body interactions. Ing=0 line in Fig. 1. Similar observations have been made for
this section we will study the odd-even staggering for the fullpairing-plus-quadrupole in Ref. 29. Note that the random
Hamiltonian (2) numerically. To this purpose we draw the interactions drive the empirical pairing gagN) to negative
random matricesy andv4 in Eqg. (2) from the GOE and values for oddN; in this sense the staggering is more pro-
compute the ground-state energies of Hamiltonian of(Ey. nounced in the presence of interactions than in the mean-
for several particle numberd. This procedure is repeated field regime. Note also that the magnitude of the staggering
many times for eaciN to obtain ensemble-averaged valuesitself contains only little information since the transition
for the ground state energi€N) and the empirical pairing from the noninteracting to the interacting Hamiltonian does
gap defined in Eq). In what follows we set the number of not correspond to a transition in a physical system.
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V. MAGNETIC FIELD EFFECTS

BCS-like pairing results from strong correlations between
fermions in time-reversed orbitals. Thus, these correlations
can be destroyed by a sufficiently strong breaking of time-
reversal symmetry. Examples of this well-known phenom-
enon are the breakdown of electronic superconductivity in
the presence of sufficiently strong magnetic fields and the
; reduction of pairing correlations in rapidly rotating and de-
g s J formed nuclei. In this section we want to study how breaking
time-reversal symmetry affects the odd-even staggering in
systems with a random two-body interaction. Having metal-
o L L L L ! L L lic grains in mind we thus consider the effect of a magnetic
field. To be definite, we take a uniforBifield in thez direc-
tion. This leads to Zeeman splitting and adds the following

FIG. 2. Empirical pairing gap as a function of particle number one-body term to the Hamiltonian:
for parametero=0 (full line), ¢=m/12 (dashed ling and ¢
= /2 (dotted line; graph scaled by a factor 1/2 for display pur-
pose$ shows the transition from the mean-field regime to strong HB:MBE (CiTTCiT_CiTLCiL), (19
interactions in the spin-1 channel. =1

M

which also breaks rotational symmetry, i.e., only the projec-

We repeat these calculations in Fig. 2 for the case of vantion of the total spinJ, remains conserved. Herg, is an
ishing spin-0 couplingC,=0, and set the spin-1 coupling to appropriate constant. A second effect consists of the modifi-
Ci(¢)=sin¢. Again, odd-even staggering persists through-cation of the random two-body interaction. Provided the
out the transition. In the regime of strong interactions thetime-reversal symmetry breaking induces splittings that are
magnitude of the empirical pairing gap increases with in-larger than the mean level spacing, the random matrices
creasingN for evenN. The situation is reversed for odd v,, anduvigs in the Hamiltonian(2) have to be drawn
values ofN. Leaving out very small systemdNE3), the  from the Gaussian unitary ensemil@UE). Accordingly,
envelopes for even and odd are still smooth enough to Eq. (3) for the S=0 matrix vy,, and the corresponding
discriminate mean-field effects from interaction-inducedformula for theS=1 matrixv,z5/ have to be replaced by
pairing.

Finally, we consider the case of equally strong spin-0 and (|voaarl?)={lv1gs|?)=1. (16)

spin-1 couplings and se€q(¢)=C1(¢)=sing. Figure 3 _ _ . .

shows that this case is qt?alitative?y similar to the case ofThIS reduces the variance of the diagonal matrix e_Iemgnts by
pure spin-1 coupling, since triplet pairs outnumber single® factor of two when compared to the GOE. Considering the
pairs by a 3:1 ratio in the largs- limit. Again, the random two-body interaction alone, this effect introduces

interaction-induced staggering exhibits a smooth envelopgnIy small corrections of order B to the results presented

and can therefore clearly be distinguished from mean-field" the previous sectlons. apd in the Append|.x. . .
effects. Let us consider the trivial case where residual interactions

can be neglected. TH&dependent pairing gap then becomes

a
e

1
2 (enpr1—enp)—uB for N even,

uB for N odd.
il 17

The odd-even staggering thus decreases with increasing

i magnetic field and disappears when the Zeeman splitting

2uB equals half the mean level spacifg;.,—¢;). Note

: that Eq.(17) ceases to be applicable for stronger magnetic

gk - 4 fields. In the limit of very largeB fields, the ground state

becomes spin polarizede., has maximal spid=N/2) and

any odd-even staggering disappears. Note also that a break-

B L L L L L L L ing of time-reversal symmetry leads to a positive pairing gap
N ‘ at oddN and can thereby easily be distinguished from the

effects of interactions.

FIG. 3. Empirical pairing gap as a function of particle number ~ We now include again the random two-body interactions
for parameterg=0 (full line), ¢ /12 (dashed ling and ¢  and compute the empirical pairing gap as the magnetic field
=x/2 (dotted line; graph scaled by a factor 1/2 for display pur-iS switched on. The number of single-particle orbitalsvis
pose$ shows the transition from the mean-field regime to strong=6. At vanishing magnetic field we assume an equidistant
interactions. mean-field spectrum with unit spacing. The two-body ran-

v B R 0 ANB)=
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L5 1 . . . T T ance has only mild effects on the ground-state structure in
strongly interacting systems. This finding is consistent with a
recent study of time-reversal symmetry breaking in the
nuclear shell model with random two-body interactichs.

VI. SUMMARY

We have shown analytically and numerically that random
two-body interactions cause an odd-even staggering in inter-
acting few-fermion systems such as small metallic grains or
quantum dots. Interactions tend to smooth out the Ndzhd
. . . . . . . . evenN dependence of the pairing gaps and can thereby be
2 3 4 5 6 7 8 9 10 discriminated from the nonsmooth mean-field staggering. As
expected, the breaking of time reversal symmetry leads to a

FIG. 4. Empirical pairing gap as a function of particle number decrease of the odd-gyen staggering; this trend can, however,
for various strengths of the magnetic fielduB/(e;.,—¢;) P& countered by sufficiently strong two-body interactions.

=0,1/4,1/2(full line, dotted line, dashed line
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4 shows that the odd-even staggering decreases with increas-

ing Zeeman splitting. The remaining staggering is due to the APPENDIX

interactions, which are relatively weak in this example; the

transition from the GOE to the GUE in the random two-body The derivation of interaction-induced staggering in Sec.
matrix is very mild. For strong two-body interactions the Ill was obtained in the dilute limiN<M. For general values
odd-even staggering remains strong when time-reversal synof N and M and couplingsC, and C,, a straightforward
metry is broken. Thus, the breaking of time-reversal invari-counting procedure results in the exact expressions

2+ 2

N
TrJ=0H2=%NZ(2M —N)?+ 7 C5(2M?+ MN—N?) - 3C}(2M?~ 7TMN+3N?)]

6

N N
+ 1—6{c3[6M +N—2Nd(1-d)]—3C2[10M — 13N—2Nd(1+d)]} + 1—6[8c3—24c§(2+d)] (A1)

2+ 2

C N
TrJ:1,2H2=%N2(2M ~N)?+ 72[C(2M?+ MN—N?) ~3C3(2M?~ TMN +3N?)]

i 2, 2 _ N2 2 2_ 2 2
+ 16{CO( 3M“+9MN~—N*“/2)+3C{[M“—15MN+ 3IN“/2+2N“d(1+d)]}

1 3
+1—6[C§(—9M+11N—2Nd)+3C§(9M—31N—8Nd)]+a[—lSCS+73C§] (A2)

Cz
Try_ noH2=—[N3(M — N)2— N(M2—5MN+ 4N2) + N(7N—3M) — 4N]. (A3)
4

In each of the three above expressions for minimal and maxithe many-body limit, and this leading term is seen to be
mal spin states, terms are ordered by their relative impormanifestly symmetric under particle-hole exchamge 2M
tance in the many-body limit at finite density, i.e., in the limit —N for the minimal-spin state®f course the maximal spin
N— o with p=N/2M =const. The leading term ©(N*) in  states]=N/2 exist only forN<M). At subleading order, the
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symmetry is broken due to anticommutation relations bevery low denSitYP<Pcm:(5—2\/§)/13%0-118, but as den-

tween the creation and annihilation operators in @&). At sjty increases a transition should occur to ground states of

both leading and first subleading orderHPris clearly iden-  minimal spin. The preference for maximal spin at low den-

tical for theJ=0 andJ=1/2 states, indicating that the stag- sity is obvious, since high-spin states clearly maximize the

gering can occur only aD(1/N?), entirely consistent with fraction of particle pairs with aligned spin§€ 1 instead of

our dilute analysis in Sec. Ill. It is also at this second sub-s=0). On the other hand, the physical reason for the transi-

leading order that we first encounter the dimensionless quanion to minimal-spin ground states even with a p@e1

tlty d, which we did not need to consider in the dilute ap-coup”ng forp>pcrit is that at h|gh enough density there are

proximation. d, taking values €d<1, represents the relatively few other high-spin states that a given high-spin

fraction of particles in the basis state that live on doublystate can couple to.

occupied orbitals. The relevant result for our purpose here is that at low
As discussed above, for a puge=0 coupling C; van-  densities there is no predicted stagger in the many-body

ishing), ground states come always from the sector of minijimit, in accordance with Eq(A3), but for p> p;x minimal-

mal spin, and thus we are led to consider the quantity ~ spin states again become dominant. A calculation completely

analogous to the one in EGA4) tells us that once again the

Trs—oH?*~Trs_1,H?  3-6p(1-p)—8p°d(1-d) _ 3  pajring gapA is positive (negative for even (odd N and
Tre_1,H?2 N?(1—p)? 2N?’  proportional to 1IN? times the magnitude of the binding en-
(A4) ergy. Thus,
where terms of higher order in theNLexpansion have been A(N)e,=0 (p<per),

dropped, and the last inequality is easily checked for all pos-

sible values of filling fractiorp and double occupancy frac- 0027

tion d. Thus, our original estimate, E¢L2), obtained using (—DNA(N)e.= —|E(N)| (p>pei).  (AB)
the dilute approximation, is confirmed as a lower bound to N o

the amount of predicted pairing ga
P P 9 9ap The above analysis generalizes easily to the generic case

N 3 where the two coefficient€, andC, are both nonzero. For
(=1 A(N)Co2 W|E(N)|- (AS) Co>C4, ground states are always expected to come from the
minimal-spin sector, leading to positive pairing gappro-

The situation is more complex for a puB=1 coupling  portional to 1N? times the binding energy. F&,>C,, on
(Cy=0), since here the ground state may be a state of eithéhe other hand, there will be a transition between no pairing
minimal or maximal spin, depending on the dengityCom-  gap at low density to positive pairing gap at higher density,
paring Eqs(Al), (A2) with Eq. (A3) at leading order in the the critical densityp.; approaching 0.118 fo€,>C, and
many-body limit, we see easily thdt=N/2 is preferred at approaching 0 a€y=C;.
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