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Odd-even binding effect from random two-body interactions

Thomas Papenbrock,1 Lev Kaplan,2 and George F. Bertsch2

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
2Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195

~Received 26 February 2002; published 18 June 2002!

Systematic odd-even binding energy differences in finite metallic particles are usually attributed to mean-
field orbital energy effects or to a coherent pairing interaction. We show analytically and numerically that a
purely random two-body Hamiltonian can also give rise to an odd-even staggering. We explore the character-
istics of this chaotic mechanism and discuss distinguishing features with respect to the other causes of stag-
gering. In particular, randomness-induced staggering is found to be a smooth function of particle number, and
the mechanism is seen to be largely insensitive to the presence of a magnetic field.
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I. INTRODUCTION

Interacting finite fermionic systems such as atomic nuc
metallic clusters,1 and small metallic grains2 display an odd-
even staggering in ground-state energies, i.e., the bin
energy of an even-number system is larger than the a
metic mean of its odd-number neighbors. There are two w
known mechanisms that can give rise to this stagger
namely, the Kramers degeneracy in the mean-field Ham
tonian and the BCS mechanism arising from an attrac
effective interaction. In nuclei, the BCS pairing mechani
resulting from a residual nucleon-nucleon interaction
dominant,3 but the mean-field or orbital energy effect ma
also be significant in the lighter nuclei.4 Surprisingly, many
basic phenemona normally associated with pairing can
arise from random interactions. The behavior of rando
interaction ensembles has mostly been studied in a nuc
physics context5–11 but there has also been some study
spectra in the context of small metallic grains.12

In the case of metallic clusters of fewer than a hund
atoms, the orbital energy effect is rather strong and stag
ing is seen for species that do not exhibit superconductiv
This effect can be easily understood using a jellium mode
density functional theory.13 On the other hand, the staggerin
effect seen in Ref. 2 may have some contribution from
BCS pairing mechanism. A number of theoretical stud
have been made14 using techniques applicable to large fini
systems.15 Taking a uniform mean-field spectrum and an
tractive pairing interaction with constant coupling, one o
serves a smooth crossover from BCS superconductivity
the bulk to the few-electron regime. For small systems,
gap is of the size of the mean level spacing and thus ce
to be an indicator for pairing. Nevertheless, strong pair
correlations and odd-even staggering persist as the sy
size decreases.

In a grain with irregular boundaries, one expects that
electron orbitals will have a chaotic character and theref
the interaction will have a random as well as a regular p
In this paper we will introduce such an interaction and stu
its typical effects on the binding systematics. Our Ham
tonian thus includes attractive and repulsive pairing inter
tions as well as more general two-body interactions. T
assumption of randomness is motivated as follows: For
0163-1829/2002/65~23!/235120~8!/$20.00 65 2351
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clei it is well known that the residual interaction leads
fluctuation properties in wave functions and energy lev
that are similar to those of random matrices taken from
Gaussian orthogonal ensemble.16 In the case of small metal
lic grains or quantum dots, one may assume that their irre
lar shape leads to chaoticity in the single-particle wa
functions.17 This in turn causes randomness in those tw
body matrix elements that link four different orbitals wit
each other. Matrix elements between pairs of orbitals that
related by time-reversal symmetry need not necessarily
random, and these determine the ‘‘coherent’’ terms of
interaction.

A realistic Hamiltonian for quantum dots or small metall
grains would thus conserve total spin and include sp
independent one-body terms, random two-body interactio
and coherent interactions that are nonrandom but have at
tive and repulsive components. The most general Ham
tonian to study generic properties when all these features
included may be written as

H5(
i ,s

« icis
† cis1(

i
~u1ui8!ci↑

† ci↓
† ci↓ci↑

1(
i j

(
s1s2s3s4

@~w01w0,i j8 !^s1us2&^s3us4&

1~w11w1,i j8 !^s1usW us2&•^s3usW us4&#cis1

† cj s2

† cj s3
cis4

1(
i j

~g1gi j8 !ci↑
† ci↓

† cj↓cj↑

1(
i jkl

(
s1s2s3s4

@v0,i jkl ^s1us2&^s3us4&

1v1,i jkl ^s1usW us2&•^s3usW us4&#cis1

† cj s2

† cks3
cls4

. ~1!

Here the coherent parts of the interaction are represe
by the terms with coefficientsu, ws , andg. The fluctuating
parts of the interaction are represented by the terms con
ing u8, ws8 , g8, andvs . These fluctuating parts are typicall
taken from ensembles with a Gaussian distribution; they
thus characterized by the width of the Gaussian. The sin
particle term« i sets the energy scale and may often be ta
©2002 The American Physical Society20-1
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to give a uniform spacing of levels without loss of generali
This full Hamiltonian is difficult to study due to its man
parameters. There have been many studies in the lim
which fluctuation effects are only included in the sing
particle Hamiltonian« i .18–21 We consider a very differen
limit, neglecting the coherent terms in the interaction a
assuming thevs term to dominate the fluctuating parts. Pro
erties of such random two-body interaction ensembles h
been studied extensively in nuclear physics.22–25

When the Hamiltonian of the nuclear shell model w
modeled in this way, it was found that the spectral proper
were quite regular for the ground states. As examples
mentionJP501 ground-state dominance in shell model c
culations with random interactions,5–9 band structure in in-
teracting boson models with random couplings,10 structure in
ground-state wave functions of two-body rando
ensembles,26 and an odd-even binding effect in filling a larg
shell.11 In the context of quantum dots, the random two-bo
interactions were found strongly to favor singlet ground-st
spins.12,27Recently, this structure has been investigated us
the group symmetry of the random Hamiltonians.28 These
findings suggest that the structure of interacting many-b
systems is to some extent already determined by the ran
the interaction alone, and one does not need all the detai
the interaction. We will show that odd-even staggering a
fits into this picture and is not solely a consequence of
attractive pairing force.

This paper is organized as follows. In Sec. II we introdu
the Hamiltonian and discuss the odd-even effects aris
from the one-body part alone. Section III contains analyti
results for the odd-even staggering due to a random t
body interaction~some technical details of this analytic
analysis are included in the Appendix!. The crossover be
tween the mean-field regime and the regime of strong in
actions is numerically investigated in Sec. IV. The effects
breaking time-reversal symmetry are studied in Sec. V.
nally, we give a summary.

II. HAMILTONIAN AND STAGGERING INDICATOR

As discussed in the Introduction, we will consider e
sembles of Hamiltonians including only a single-particle e
ergy and a random two-body interaction. We write this in t
form

H5(
i 51

M

« i~ci↑
† ci↑1ci↓

† ci↓!1C0 (
a,a8spin-0 pairs

v0aa8A0a
† A0a8

1C1 (
b,b8spin-1 pairs

v1bb8A1b
† A1b8 . ~2!

The first term represents the mean-field contribution, wh
« i is the single-particle energy associated with orbitali, and
ci↑ , ci↓ are the one-particle annihilation operators for th
orbital. As usual, we assume an ordering« i<« i 11. The sec-
ond and third terms represent the interaction for pairs hav
spin S equal to 0 and 1, respectively. The operatorsA0a in
the second term are spin-singlet two-particle annihilation
eratorsA0a5(ci↓cj↑2ci↑cj↓)/A2(11d i j ) with a standing
23512
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for the set of orbital pairsi j . The A1b in the third line are
similarly defined for spin-triplet pairs.

The randomness assumption tells us that there is no
ferred basis within either theS50 or S51 sector of two-
body states. The couplingsvsaa8 then should be taken from
the Gaussian orthogonal random-matrix ensemble~GOE!.
We fix the variance of thevs to be unity for off-diagonal
elements. The GOE then satisfies

^v0aa8
2 &511daa8 , ~3!

where^•••& indicates an ensemble average and similarly
v1bb8 . We are concentrating for now on the case of tim
reversal symmetry, so the matricesv0 and v1 are real and
symmetric. The case of broken time-reversal symmetry
the presence of a magnetic field will be considered in Sec

The prefactorsC0 and C1 allow us to consider arbitrary
strengths of the spin-0 and spin-1 couplings relative to e
other and relative to the single-particle level spacing. As
will see below, several qualitatively different regimes f
ground-state staggering are possible within this simple r
dom model, depending on the valuesC0 andC1 as well as
on particle density.

Let us denote the ground-state energy of theN-body sys-
tem asE(N). A useful staggering indicator is the empiric
pairing gap

D~N![
1

2
@E~N11!22E~N!1E~N21!#. ~4!

This three-point observable is essentially the ‘‘curvature’’
second derivative of the binding energy with respect to p
ticle numberN. Positive~negative! D(N) indicates that the
binding energy of theN-body system is larger~smaller! than
the arithmetic mean of the binding energies of its neighbo
We have an odd-even staggering wheneverD(N) staggers
with N.

It is instructive to consider the trivial case where residu
interactions are negligible, i.e.,C05C150. Then the
N-particle ground-state energy is given byE(N)52( i 51

N/2 « i

for N even andE(N)5E(N21)1« (N11)/2 for N odd. Here
N may range between 0 and 2M , whereM is the number of
available orbitals. One obtains for the empirical pairing g

D~N!5H ~« (N/2)112«N/2!/2>0 for N even,

0 for N odd.
~5!

Thus, there is a trivial odd-even staggering due to the me
field alone. In what follows we will mainly be interested i
the effects of interactions, and in the effects of adding
magnetic field. For odd-number systems, a nonzero valu
the empirical pairing gap must be due to interactions, a
this allows one easily to discriminate mean-field effects fro
interactions. Such a discrimination is more difficult for eve
number systems and has recently been studied in mean-
plus pairing Hamiltonians.4,29,30We will see in Sec. IV how
mean-field effects can be distinguished from stagger
caused by complex~or random! interactions. Note that an
0-2
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ODD-EVEN BINDING EFFECT FROM RANDOM TWO- . . . PHYSICAL REVIEW B 65 235120
electric charging energyEcharge5cN(N21) leads only to a
N-independent constant shiftD(N)→D(N)1c and can
therefore be neglected.

III. EFFECTS FROM RANDOM
TWO-BODY INTERACTIONS

We now imagine the opposite situation from that of t
previous section, i.e., we consider the regime« i50 where
mean-field effects are negligibly weak compared with
random two-body interaction. In this limit one might assum
that all odd-even effects should disappear. Surprisingly,
turns out not to be the case. Instead, we find persistent
even staggering arising only from the random two-body
teractions; stronger binding energies for even-N systems are
typically obtained in numerical simulations.

To understand this result analytically, we first note that
spectral density of a system with two-body interactions
proaches a Gaussian shape in the many-body l
N→`.31,32 The ground-state energies for different partic
number or spin sectors are then largely determined by
widthsATrH2 ~Refs. 12,27! of the corresponding Gaussian
scaling as

E'bATrH2, ~6!

where it is assumed without loss of generality that TrH50.
The prefactorb depends of course on the details of the d
viations of the spectral shape from an exact Gaussian fo
since these deviations cut off the tails of the Gaussian. F
lowing an analysis along the lines of Ref. 31, where
spectral shape is expanded in terms of Hermite polynom
and then estimating the coefficients of these polynomi
one may conjecture that the prefactorb should scale as lnN
with the number of particles in the system. In any case,
our purposes it is sufficient that this prefactor var
smoothly with N without significant staggering, which i
confirmed by numerical simulations. Equation~6! is known
to provide a good qualitative explanation for some obser
behavior of low-lying spectra, even for moderate numbers
particles where the Gaussian approximation is far from va
For example, a comparison of TrH2 for different spin sectors
helps to explainJ50 total spin dominance among th
ground states of random interacting many-body systems.12,27

A. Dilute limit

Applying this approach to the present problem, we ne
then to understand how TrH2 depends on the number o
particles and other parameters of the system. For simpli
we consider first the dilute limitN!M with a pureS50
two-body coupling (C150).

From previous work, it is known that for evenN the
ground state comes always from the sector of total spiJ
50. In the dilute limit, a typical basis state in this sector h
the form

uCJ50&522N/2)
z51

N/2

~ai z↓
† aj z↑

† 2ai z↑
† aj z↓

† !u0&, ~7!
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where theN orbitals i z , j z are all distinct. One easily check
that the number ofS50 pairs in this state is (N212N)/8,
since the particles on orbitalsi z and j z for a givenz are in an
S50 combination by construction, while the remainin
(N222N)/2 pairs have a probability 1/4 of being in a singl
combination. Any of theseS50 pairs, labeled bya8 in Eq.
~2!, may be annihilated by theC0 term in the Hamiltonian.
Another S50 pair a must then be created; there areM2/2
choices fora in the dilute limit. Thus, simply by counting
the number of terms in theC0 part of the Hamiltonian in Eq.
~2! that may act on a total spinJ50 basis state we find

Tr(evenN!M )H
25C0

2 M2~N212N!

8
~8!

for N even andN!M .
Similarly, for oddN the preferred many-body ground sta

has total spinJ51/2. The typical basis state has the form

uCJ51/2&522N/2ak↑
† )

z51

N/2

~ai z↓
† aj z↑

† 2ai z↑
† aj z↓

† !u0&, ~9!

where we takeJz511/2 without loss of generality, and th
indicesi z , j z , andk are all distinct. This state contains on
(N212N23) singlet pairs, resulting in

Tr(odd N!M )H
25C0

2 M2~N212N23!

8
. ~10!

The O(1/N2) difference in the widths explains the odd-eve
staggering in ground-state energies. Intuitively, the resul
easy to understand: the ground state of the odd-N system is
forced to have a slightly higher total spin, resulting in
slightly smaller fraction of spin-0 pairs and consequently
smaller effect of theC0 term in the Hamiltonian. This in the
end is what leads to weaker binding for the odd-N system.

The above analysis also gives a quantitative prediction
the size of the staggering effect. Assuming in accorda
with Eq. ~6! that the ratio of ground-state energies is prop
tional to the ratio of the widths, we find

uEevenNu5uEodd NuS 11
3

2N2D ~11!

for largeN in the dilute limit and therefore

D~N!C0
5~21!N

3

2N2 uE~N!u ~12!

to leading order. We may compare this with the size of
pairing gap for the mean-field dominated system. In the p
vious section, we saw thatD(N)5D/2 on average forN
even, whereD is the mean level spacing of the singl
particle spectrum. This can be normalized, however, in u
of the binding energy. This binding energy, i.e., half t
many-body spectral width, isuEu'MND/2 in the mean-field
case. So the average pairing gap has the size

D~N!mean-field5
1

MN
uE~N!u ~13!
0-3



e,
in

es
an
e
e-
r

e
of

ce
it

m
ob

w
io
ve
d

ng
th
la

ic

e

o
a

ob
I

fu
e

d
es

f

r-
ble
us-

s

rum
.
dot
on,
s

m
he

ri-

ists
eld

ng,

e
re-
b-
stag-
the
for
om

o-
an-
ing
n
es

er

r-
ng

e in
ian
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for even N, which surprisingly issmaller than the pure
interaction-induced pairing gap in the dilute limitN!M .

At finite particle densityr52N/M , mean-field-induced
and interaction-induced stagger are of comparable siz
characteristic difference being the vanishing of the pair
gapD(N) for oddN in the mean-field case, Eq.~5!, which is
absent for the pure interacting theory. In addition, in the pr
ence of fluctuations in the single-particle spectrum, me
field inducedD(N) will itself fluctuate between successiv
even values ofN, while interaction-induced stagger is pr
dicted to be smooth. These analytic predictions will be ve
fied numerically in Sec. IV below.

B. General results for finite density

The above derivation, though strictly valid only in th
dilute limit, in fact provides a correct intuitive explanation
the stagger at any density for a pureS50 two-body interac-
tion. Handling theS51 interaction requires more care, sin
the qualitative behavior will depend strongly on the dens
r. We therefore need the exact expressions for TrH2 in vari-
ous particle number and spin sectors. These expressions
be straightforwardly, though perhaps rather tediously,
tained by applying the original Hamiltonian, Eq.~2!, to vari-
ous basis states and evaluating the norm.

The full results are presented in the Appendix. There
find that for a pure singlet random interaction, the predict
of Eq. ~12! for the size of the staggering, obtained abo
only in the dilute limit, is in fact confirmed as a lower boun
for arbitrary densities in the many-body limitN→`:

~21!ND~N!C0
>

3

2N2 uE~N!u. ~14!

The situation is more complex for a pure triplet coupli
(C050), since here the ground state may be a state of ei
minimal or maximal spin. In this case we see using formu
given explicitly in the Appendix that a critical densityrcrit
exists below which there is no staggering, while above wh
interaction-induced staggering of orderuE(N)u/N2 appears,
just as in the singlet case. As the singlet coupling is turn
on, rcrit decreases, reaching 0 atC05C1. Thus, odd-even
staggering with stronger binding for even-N systems is pre-
dicted to be a very general consequence of random two-b
interactions, present for pure-singlet and pure-triplet inter
tions as well as in the intermediate case.

IV. CROSSOVER BETWEEN MEAN-FIELD REGIME
AND STRONG TWO-BODY INTERACTIONS

The analytical results of the previous sections were
tained for pure one-body or pure two-body interactions.
this section we will study the odd-even staggering for the
Hamiltonian ~2! numerically. To this purpose we draw th
random matricesv0 and v1 in Eq. ~2! from the GOE and
compute the ground-state energies of Hamiltonian of Eq.~2!
for several particle numbersN. This procedure is repeate
many times for eachN to obtain ensemble-averaged valu
for the ground state energiesE(N) and the empirical pairing
gap defined in Eq.~4!. In what follows we set the number o
23512
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single-particle orbitals toM510, and obtain ensemble ave
ages from 200 runs. The largest matrices of the ensem
have dimension 63 504; their ground states are computed
ing the sparse matrix solverARPACK.33

We have to assign values to the single-particle energie« i
of the mean field and to the coupling constantsC0 andC1 of
the two-body interactions. We assume a mean-field spect
with level spacings« i 112« i that are Wigner distributed
This is consistent with the assumption that our quantum
or metallic grain has irregular shape. To study the transiti
we multiply the single-particle energies with a factor cow
and set the spin-0 couplingC0(w)5sinw. Herew is in the
rangewP@0,p/2# and thus parametrizes the transition fro
the mean field to the regime of strong interactions. T
spin-1 couplingC1 is set to zero. Figure 1 shows the empi
cal pairing gap~4! as a function of particle numberN for
parameter valuesf50,p/12,p/2.

We see from Fig. 1 that the odd-even staggering pers
throughout this transition. In the absence of the mean fi
(f5p/2), the staggering decreases slowly with increasingN
and then increases again very close to the maximal filli
when the number of holes becomes small andr approaches
unity in Eq. ~A4!. Its envelope depends smoothly onN if
only even or only odd values ofN are considered. Thes
qualitative results are fully consistent with the analytical p
dictions obtained in Sec. III and in the Appendix. The a
sence of such a smooth envelope thus indicates that the
gering is instead dominated by mean-field effects, as in
w50 line in Fig. 1. Similar observations have been made
pairing-plus-quadrupole in Ref. 29. Note that the rand
interactions drive the empirical pairing gapD(N) to negative
values for oddN; in this sense the staggering is more pr
nounced in the presence of interactions than in the me
field regime. Note also that the magnitude of the stagger
itself contains only little information since the transitio
from the noninteracting to the interacting Hamiltonian do
not correspond to a transition in a physical system.

FIG. 1. Empirical pairing gap as a function of particle numb
for parameterw50 ~full line!, w5p/12 ~dashed line!, and w
5p/2 ~dotted line; graph scaled by a factor 1/2 for display pu
poses! shows the transition from the mean-field regime to stro
interactions in the spin-0 channel. Note that the pairing gapD(N) is
dimensionless here and in all following figures; the energy scal
our calculation is set by the overall energy scale of the Hamilton
~see text!.
0-4
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We repeat these calculations in Fig. 2 for the case of v
ishing spin-0 coupling,C050, and set the spin-1 coupling t
C1(w)5sinw. Again, odd-even staggering persists throug
out the transition. In the regime of strong interactions
magnitude of the empirical pairing gap increases with
creasingN for even N. The situation is reversed for od
values ofN. Leaving out very small systems (N53), the
envelopes for even and oddN are still smooth enough to
discriminate mean-field effects from interaction-induc
pairing.

Finally, we consider the case of equally strong spin-0 a
spin-1 couplings and setC0(w)5C1(w)5sinw. Figure 3
shows that this case is qualitatively similar to the case
pure spin-1 coupling, since triplet pairs outnumber sing
pairs by a 3:1 ratio in the large-N limit. Again, the
interaction-induced staggering exhibits a smooth envel
and can therefore clearly be distinguished from mean-fi
effects.

FIG. 2. Empirical pairing gap as a function of particle numb
for parameterw50 ~full line!, w5p/12 ~dashed line!, and w
5p/2 ~dotted line; graph scaled by a factor 1/2 for display p
poses! shows the transition from the mean-field regime to stro
interactions in the spin-1 channel.

FIG. 3. Empirical pairing gap as a function of particle numb
for parameterw50 ~full line!, w5p/12 ~dashed line!, and w
5p/2 ~dotted line; graph scaled by a factor 1/2 for display p
poses! shows the transition from the mean-field regime to stro
interactions.
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V. MAGNETIC FIELD EFFECTS

BCS-like pairing results from strong correlations betwe
fermions in time-reversed orbitals. Thus, these correlati
can be destroyed by a sufficiently strong breaking of tim
reversal symmetry. Examples of this well-known pheno
enon are the breakdown of electronic superconductivity
the presence of sufficiently strong magnetic fields and
reduction of pairing correlations in rapidly rotating and d
formed nuclei. In this section we want to study how breaki
time-reversal symmetry affects the odd-even staggering
systems with a random two-body interaction. Having met
lic grains in mind we thus consider the effect of a magne
field. To be definite, we take a uniformB field in thez direc-
tion. This leads to Zeeman splitting and adds the followi
one-body term to the Hamiltonian:

HB5mB(
i 51

M

~ci↑
† ci↑2ci↓

† ci↓!, ~15!

which also breaks rotational symmetry, i.e., only the proj
tion of the total spinJz remains conserved. Here,m is an
appropriate constant. A second effect consists of the mo
cation of the random two-body interaction. Provided t
time-reversal symmetry breaking induces splittings that
larger than the mean level spacing, the random matr
v0aa8 and v1bb8 in the Hamiltonian~2! have to be drawn
from the Gaussian unitary ensemble~GUE!. Accordingly,
Eq. ~3! for the S50 matrix v0aa8 and the corresponding
formula for theS51 matrix v1bb8 have to be replaced by

^uv0aa8u
2&5^uv1bb8u

2&51. ~16!

This reduces the variance of the diagonal matrix elements
a factor of two when compared to the GOE. Considering
random two-body interaction alone, this effect introduc
only small corrections of order 1/N2 to the results presente
in the previous sections and in the Appendix.

Let us consider the trivial case where residual interacti
can be neglected. TheB-dependent pairing gap then becom

D~N,B!5H 1
2 ~«N/2112«N/2!2mB for N even,

mB for N odd.
~17!

The odd-even staggering thus decreases with increa
magnetic field and disappears when the Zeeman split
2mB equals half the mean level spacing^« i 112« i&. Note
that Eq.~17! ceases to be applicable for stronger magne
fields. In the limit of very largeB fields, the ground state
becomes spin polarized~i.e., has maximal spinJ5N/2) and
any odd-even staggering disappears. Note also that a br
ing of time-reversal symmetry leads to a positive pairing g
at oddN and can thereby easily be distinguished from t
effects of interactions.

We now include again the random two-body interactio
and compute the empirical pairing gap as the magnetic fi
is switched on. The number of single-particle orbitals isM
56. At vanishing magnetic field we assume an equidist
mean-field spectrum with unit spacing. The two-body ra

r

-
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r
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g
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dom interactions have fixed couplingsC05C151/10. We
add the Zeeman Hamiltonian~15! to the system and increas
the Zeeman splitting 2mB from zero to its maximal value
^« i 112« i&/2. Simultaneously, the variance of the imagina
part of the random matrix elements is increased from zer
one, being held proportional to the Zeeman splitting. Fig
4 shows that the odd-even staggering decreases with inc
ing Zeeman splitting. The remaining staggering is due to
interactions, which are relatively weak in this example; t
transition from the GOE to the GUE in the random two-bo
matrix is very mild. For strong two-body interactions th
odd-even staggering remains strong when time-reversal s
metry is broken. Thus, the breaking of time-reversal inva

FIG. 4. Empirical pairing gap as a function of particle numb
for various strengths of the magnetic field: 2mB/^« i 112« i&
50,1/4,1/2~full line, dotted line, dashed line!.
ax
o
it

23512
to
e
as-
e

e

m-
-

ance has only mild effects on the ground-state structure
strongly interacting systems. This finding is consistent wit
recent study of time-reversal symmetry breaking in t
nuclear shell model with random two-body interactions.34

VI. SUMMARY

We have shown analytically and numerically that rando
two-body interactions cause an odd-even staggering in in
acting few-fermion systems such as small metallic grains
quantum dots. Interactions tend to smooth out the odd-N and
even-N dependence of the pairing gaps and can thereby
discriminated from the nonsmooth mean-field staggering.
expected, the breaking of time reversal symmetry leads
decrease of the odd-even staggering; this trend can, how
be countered by sufficiently strong two-body interactions
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APPENDIX

The derivation of interaction-induced staggering in S
III was obtained in the dilute limitN!M . For general values
of N and M and couplingsC0 and C1, a straightforward
counting procedure results in the exact expressions

r

TrJ50H25
C0

213C1
2

64
N2~2M2N!21

N

16
@C0

2~2M21MN2N2!23C1
2~2M227MN13N2!#

1
N

16
$C0

2@6M1N22Nd~12d!#23C1
2@10M213N22Nd~11d!#%1

N

16
@8C0

2224C1
2~21d!# ~A1!

TrJ51/2H
25

C0
213C1

2

64
N2~2M2N!21

N

16
@C0

2~2M21MN2N2!23C1
2~2M227MN13N2!#

1
1

16
$C0

2~23M219MN2N2/2!13C1
2@M2215MN131N2/212N2d~11d!#%

1
1

16
@C0

2~29M111N22Nd!13C1
2~9M231N28Nd!#1

3

64
@213C0

2173C1
2# ~A2!

TrJ5N/2H
25

C1
2

4
@N2~M2N!22N~M225MN14N2!1N~7N23M !24N#. ~A3!
be
In each of the three above expressions for minimal and m
mal spin states, terms are ordered by their relative imp
tance in the many-body limit at finite density, i.e., in the lim
N→` with r[N/2M5const. The leading term isO(N4) in
i-
r-
the many-body limit, and this leading term is seen to
manifestly symmetric under particle-hole exchangeN→2M
2N for the minimal-spin states~of course the maximal spin
statesJ5N/2 exist only forN<M ). At subleading order, the
0-6
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symmetry is broken due to anticommutation relations
tween the creation and annihilation operators in Eq.~2!. At
both leading and first subleading order, TrH2 is clearly iden-
tical for theJ50 andJ51/2 states, indicating that the sta
gering can occur only atO(1/N2), entirely consistent with
our dilute analysis in Sec. III. It is also at this second su
leading order that we first encounter the dimensionless qu
tity d, which we did not need to consider in the dilute a
proximation. d, taking values 0<d<1, represents the
fraction of particles in the basis state that live on dou
occupied orbitals.

As discussed above, for a pureS50 coupling (C1 van-
ishing!, ground states come always from the sector of m
mal spin, and thus we are led to consider the quantity

TrS50H22TrS51/2H
2

TrS51/2H
2

5
326r~12r!28r2d~12d!

N2~12r!2 >
3

2N2 ,

~A4!

where terms of higher order in the 1/N expansion have bee
dropped, and the last inequality is easily checked for all p
sible values of filling fractionr and double occupancy frac
tion d. Thus, our original estimate, Eq.~12!, obtained using
the dilute approximation, is confirmed as a lower bound
the amount of predicted pairing gap

~21!ND~N!C0
>

3

2N2 uE~N!u. ~A5!

The situation is more complex for a pureS51 coupling
(C050), since here the ground state may be a state of ei
minimal or maximal spin, depending on the densityr. Com-
paring Eqs.~A1!, ~A2! with Eq. ~A3! at leading order in the
many-body limit, we see easily thatJ5N/2 is preferred at
e

.

23512
-

-
n-
-

i-

s-

o

er

very low density,r,rcrit5(522A3)/13'0.118, but as den-
sity increases a transition should occur to ground state
minimal spin. The preference for maximal spin at low de
sity is obvious, since high-spin states clearly maximize
fraction of particle pairs with aligned spins (S51 instead of
S50). On the other hand, the physical reason for the tra
tion to minimal-spin ground states even with a pureS51
coupling forr.rcrit is that at high enough density there a
relatively few other high-spin states that a given high-s
state can couple to.

The relevant result for our purpose here is that at l
densities there is no predicted stagger in the many-b
limit, in accordance with Eq.~A3!, but for r.rcrit minimal-
spin states again become dominant. A calculation comple
analogous to the one in Eq.~A4! tells us that once again th
pairing gapD is positive ~negative! for even ~odd! N and
proportional to 1/N2 times the magnitude of the binding en
ergy. Thus,

D~N!C1
50 ~r,rcrit!,

~21!ND~N!C1
>

0.027

N2 uE~N!u ~r.rcrit!. ~A6!

The above analysis generalizes easily to the generic
where the two coefficientsC0 andC1 are both nonzero. Fo
C0.C1, ground states are always expected to come from
minimal-spin sector, leading to positive pairing gapD pro-
portional to 1/N2 times the binding energy. ForC1.C0, on
the other hand, there will be a transition between no pair
gap at low density to positive pairing gap at higher dens
the critical densityrcrit approaching 0.118 forC1@C0 and
approaching 0 atC05C1.
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