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First-principles-based thermodynamic description of solid copper using the tight-binding approach

Sven P. Rudit,M. D. Jones, C. W. Greeff: and R. C. Albers
1Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Department of Physics and Center for Computational Research, University at Buffalo, The State University of New York, Buffalo,
New York 14260
(Received 25 December 2001; published 10 June 002

A tight-binding model is fit to first-principles calculations for copper that include structures distorted ac-
cording to elastic constants and high-symmetry phonon modes. With the resulting model the first-principles-
based phonon dispersion and the free energy are calculated in the quasi-harmonic approximation. The resulting
thermal expansion, the temperature and volume dependence of the elastic constants, the Debye temperature,
and the Groeisen parameter are compared with available experimental data.
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[. INTRODUCTION tions about the volume dependence of thé igigen param-
eter y(V), which is difficult to measure independently.

Density-functional  theory (DFT) first-principles  Shock heating increases with pressure, making the correc-
electronic-structure methods describe anomaly free solidgons more significant at high pressure. It is therefore impor-
such as elemental copper successfully. They achieve higiant to develop theoretical techniques for an accurate predic-
accuracy for quantities such as bulk propertissirface re- tion of y for copper at high pressure.
laxation and lattice dynamics of the surfdcas well as the Phonons play a major role in the calculations of thermo-
epitaxial Bain path and elastic constah®FT methods are dynamic quantities, and the TB fits are adjusted to more
routinely used to compute the zero-temperature internal eraccurately calculate them. Structures corresponding to high-
ergy®,(V), but also can be used to calculate the free energgymmetry phonon modes are shown here to aid in refining
contributions from the ionsF,(V,T) and the electrons the model; the resulting phonon density of states can then be

Fe(V,T) resulting in a complete equation of state used to determine the free energy and hence all thermody-
namic quantities of interest. The precision required to calcu-
FI(V,T)=®(V)+F(V,T)+Fe(V,T). (1) late phonon frequencies is an order of magnitude higher than

that for the lattice constant or bulk modufisjaking this a

However, the required computational effort is expensive, angtringent test for the validity of the tight-binding approach in
an alternative efficient evaluation at all volumes and tem-general and the copper model in particular.
peratures would be desirable. The ion-ion free energy of Eq1) is often separated into

In this paper we use the computationally less demandingarmonic and anharmonic parts
tight-binding (TB) total energy model in conjunction with
well chosen first-principles calculations. In particular, we use FI(V,T)=F4(V,T)+FA(V,T). (2
the functional fitting forms developed at the U.S. Naval Re-
search LaboratoryNRL) for computing the total energy Normally, the harmonic component is not a function of vol-
within the TB formalism, i.e., without an external potenflal. ume, but is calculated from the effect of small displacements
The model is fit to and accurately reproduces a set of firstabout the zero-temperature equilibrium lattice. In our calcu-
principles calculations with a speed-up of many orders olations, we use the quasiharmonic approximation, which con-
magnitude. In addition, transferability.e., a TB parametri- siders small displacements at any fixed volufiadtice con-
zation that is accurate for a wide variety of crystal structurestany within the harmonic approximation, and hence our
and atomic arrangementhias been successfully demon- phonon frequencies become volume dependent. However,
strated for semiconductors as well as for simple and transieur phonon frequencies are calculated at zero temperature for
tion metals! We believe that the TB method can be used as any given volume, and are not temperature dependent.
highly accurate, but computationally more efficient, surro- The anharmonic part of the free energy involves terms
gate for a full first-principles-based approach to calculate thehat arise from the potential energy of the lattice when it is
equation of state for solids. expanded beyond the harmonic part to higher than second

Copper is frequently used as a test material for theoreticabrder. Such terms are needed at high temperatures, when the
methods’ In this paper we havél) developed an improved phonon amplitudes are large, and ultimately lead to melting.
fit for copper that is accurate for phonons a2 used this  They are also needed to explain thermal expansion effects
model to calculate a wide range of temperature- and volumewhen the harmonic part is based on the equilibrium volume.
dependent thermodynamic quantities. The quasiharmonic approximation can handle thermal ex-

Copper is furthermore widely employed as a pressurgansion and the Gneisen parameter accurately through the
standard in high-pressure reseat¢hrhis use is based on volume dependence of the phonons at low temperature. At
correcting P(V) data taken along the shock Hugofiiad  sufficiently high temperatures, the quasiharmonic approxi-
room temperature. Such corrections employ model assumpnation breaks down when the phonon amplitudes become
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large, and additional anharmonic phonon-phonon corrections TABLE I. Parameters used in thenene7 calculations. The

are necessafjas indicated in E¢(2)]. We have not included choice for thek-point mesh size was not so much convergence as it
these anharmonic types of effects in our calculations. Henc#as a balance between accuracy and a reasonable number of data
we always sefF,(V,T)=0, and our calculations will be- points to fit.

come less reliable at very high temperatugesar melting.

In the following section we introduce the basic ideas oféXxchange-correlation functional GARef. 13
the tight-binding method and the first-principles method usednuffin-tin radius,Ry, 2.0 a.u.
to generate the fitting database, and then describe our Tical orbitals(Ref. 14 s, p, andd
fitting procedures. In the subsequent section we present camax 20.0
culated results for the thermodynamic properties and comR-MT*K-MAX 9.0
pare them with experiment. k-point mesh 18 (cubic, tetragonal
6Xx8X% 12 (frozen phonons
Il. FITTING THE MODEL 6x 6x10 (trigonal)
Fermi-Dirac smearing 0.002 Ry

A. Tight-binding electronic structure

The tight-binding approach is essentially a parametrized _
version of the first-principles calculations and hence is orders B. Full potential LAPW method
of magnitude more computationally efficient. In DFT meth-  The first-principles quality of the tight-binding model re-
ods the secular equation sults from fitting to full potential linear augmented plane
wave (LAPW) calculations using the reliable/EN97 pro-
Hii v =€ .Sty (3 gram suite'®> The parameters for the first-principles calcula-

is constructed directly from approximate solutions to the fuIItions are listed in Table I.
ectly PP X The LAPW method divides space into spherical regions
many-body Hamiltonian, and involves a self-consistent po-

. : ) : ) : centered on the atoms and the remaining interstitial region.
tential that is solved iteratively; whereas in the TB approachl.he radius of the spheres, the muffin-tin radRjs, must be
the elements of the Hamiltoniatand the overlap matrjx chosen such that the spheres do not overlap. The basis func-

;hrirziilgizserzzg?:gffhne%ercrﬂf;grléﬁgi t(l)nhli/a’\rl] %}ﬁenﬁéég{rﬁ%ns used to represent the wave function are adapted to the
' g g 9 regions: radial solutions to the Scllinger equation in the

described here this requires 73 fitted parameters. Sé)heres, plane waves in the interstitial region. The wave

. of _those parameters, thirty each are _used to describe tr}unctions then are found iteratively within density-functional
intersite matrix elements of the Hamiltonian and of the over-

lap matrix. For each combination of symmetridf’ (n) the thetory, _constramed to match at the boundaries of the differ-
formi! is ent regions.

2 g
(1) = (@t Byl )€ Cm f (1), (4 C. Initial fitting procedure

We first fit the TB method to predict energy differences
= - 2, between the ground-state and nonequilibrium structures. The
S (1) = (@rmet By )€ (), ®) fitting databags];e included first-princigles energies calculated
wheref .= 1/(1+e?" ") is a multiplicative factor included for the cubic structures. In addition to the total energies of
to ensure a smooth cutoff with increasing distance. In outhese structures, it proved to be crucial to fit the energy bands
calculations we have set=16.0 Bohr radii. at high-symmetry points in reciprocal space® By decom-
The remaining 13 parameters determine the on-site term§0sing the electronic wave function in terms of the symmetry
which allows the parametrization to be applied to structure§haracter of the eigenvaliéshe bands are guided to the

not included in the fitting database. A measure of the valencgorrect ordering. _
electron density The total energies and the band energies can be calculated

by starting with a very crude initial tight-binding model that
) ignores intersite terms, the errors are then minimized uti-
p=2 e Muf(ry), (6)  lizing standard nonlinear least squares algorithfns.
Figure 1 shows thd=0 fcc Cu phonon dispersiofsee

7
wherer;; is the interatomic distance, serves to describe the>€C. Il A for details of the calculatigrfor the model from

on-site energy this initial fitting proceduré?” The long-wavelength modes
nearl” are well described, the short-wavelength modes near
ea=93+ eip2/3+ eip4/3+ eiPZ, (7)  the zone boundary display somewhat high frequencies, in

particular the longitudinal modes.
for the three orbital typea, i.e.,s, p, andd. These terms are The reasonable agreement for phonons near the zone cen-
somewhat similar to an embedded-atom-like form in that théer I' can be understood by considering the elements of the
energy changes depending on the nearby arrangements fitfing database. The bulk modulus, i.e., a linear combination
atoms, and may approximately account for self-consistencgf the elastic constants, is implicitly included in the fit. While
effects as the atoms move around. this does not guarantee accurate elastic constants, i.e., good
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FIG. 1. Phonon dispersion of the initial tight-binding model for
copper at the experimental equilibrium volume and zero tempera-
ture (solid lineg. Crosses are measured neutron crystal spectrom-
eter data at 80 KRef. 19. FIG. 3. Errors in the fitting for@ simple structuregsc, bcc,

fce), (b) the fcc crystal with trigonal and tetragonal distortions, and

for the sl f the di . it d (c) the fcc crystal with distortions corresponding to the longitudinal
agreement for the slopes of the dispersion rfigat does set and transverse phonons at the reciprocal space high-symmetry point

the right scale. Furthermore, the fit includes the bcc strucy pashed lines are to guide the eye.
ture, which is related to the fcc crystal by a tetragonal strain

corresponding to the long-wave-vector limit of the longitu-
dinal mode in thd 00£] direction. The database lacks any
information related to the short-wave-vector modes.

10 12 14 16 18 20
Volume (A3)

The longitudinal and the transverse mode at the high-
symmetry point X[ g=(0,0,1)] were chosen because of the
large discrepancy in frequendgee Fig. 1 and because the
distorted structures require only a doubling of the unit cell.
These distorted structures are considered as additional, dis-

tinct structures in the database, to be fit to over a range of
In order to construct a model with an improved phononyolumes.

dispersion the database was expanded to include additional The initial fit for copper already contains some of the
information on the phonons, in particular, structures that argharacter of distortions related to the elastic constants: the
snapshots of the crystal deformed by particular phonomulk modulus is explicitly included in the energy as a func-
modes, i.e., frozen phonons. The undistorted and distorteglon of volume, and the tetragonal distortion of the fcc crystal
crystal structures are treated on the same footing in the firsis somewhat reflected by fitting to the bcc structure. For
principles calculations and the fitting procedure, implicitly completeness, tetragonally and trigonally distorted fcc crys-
including the differences in energy and hence the frequenciegils were added to the fit as distinct structures. These addi-
of the phonon modes. tional structures barely influence the model resulting from
the fit; however, the fitting process converges much more

D. Fitting procedure with distorted structures

AT T, quickly when they are included.
-35 @) d (b 1 s The cubic structures that were included in the initial fit
1 [\R erigonal . differ from each other by an energy scale of fractions of
% Id 11 ]
= 40 4t - _
= L1 |sc 4+ - 5.0
<8 L 1, tetlragonal i F
& 45 - @ | diamond
g L _
F t bee B < L i
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FIG. 2. Structures and volumes in the fitting database. Symbols 30 I |
are thewiEN97 results, dashed lines are the initial fit, solid lines are | |
the improved fit for(a) simple structuressc, bcc, fcg, (b) the fcc — 1'2 — 2'0 : 2'4 e
crystal with trigonal and tetragonal distortions, disgithe fcc crys- Volume (A%
tal with distortions corresponding to the longitudinal and transverse
phonons at the reciprocal-space high-symmetry p¥irthe initial FIG. 4. Transferability of the improved model. Symbols are
copper model is based on the data shown(dp the improved  wieN97 results, dashed lines are the initial tight-binding model, solid
model is fit to all the data. lines are improved tight-binding model.
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FIG. 6. Phonon density of states. The Dashed line is the eighth-
nearest-neighbor model fit to the measured neutron crystal spec-
trometer datgRefs. 19,20, solid lines are calculated from the im-
proved tight-binding model.

FIG. 5. Phonon dispersion of the improved tight-binding model
(solid lines compared to the experimental ddtaosses (Ref. 19.
The slopes nedr and the two frequencies tare effectively part
of the fitting data.

clearly refines the agreement with the measured values,

. . hough the curves do not overlap perfectly: the dispersion of
elegtron volts. Phonons require a model tuned to dlscerrj e Igw—lying transverse modes i?]izt)h@gl] )éirection Ehows
ergies on a_scale that is apprOX|ma_1ter an O“?'e_f O_f m_agnltudg different character, and the high-frequency longitudinal
smaller. This cou!d be a problem since Fhe minimization proy,odes remain somewhat large. The discrepancy of the lon-
cedure tends to ignore small energy dlﬁerences. For froze@itudinal frequency at suggests including this data point in
phonons at the zone boundary, where neighboring atomge fit. However, a first-principles, frozen-phonon calculation
move against each other, it turns out that amplitudes whiclyf this mode shows better agreement with the tight-binding
are still within the harmonic regime can produce energiesmodel than with experiment and was therefore not added to
that differ from the undistorted structure by fractions of elec-the database.
tron volts. The distortions corresponding to elastic constants, Figure 6 shows the phonon density of states calculated
however, need to be exaggerated for them to give largavith the improved model. The general shape agrees with the
enough energy differences. The trigonal distortion used herdata calculated from the Born—von Kaan force constants
compresses the base angle from 90° to 75°, while the tetraditted to the experimental phonon dispersion along high-
onal distortion changes th&a ratio from unity to 1.9. symmetry directions??° The difference in maximum fre-

Figure 2 shows the energy values in the fitting databasg@uencies and the peak near 7 THz can be attributed to the
alongside those of the initial and improved tight-binding discrepancy in the dispersion of the longitudinal mode hear
models. The volumes of the first-principles calculations ard" the [£££] direction. The tight-binding density of states
limited to structures where the muffin-tin radilR, is  diSplays more structure around 4 THz, which may be due to
smaller than the nearest-neighbor distance, particularly fof?des in low-symmetry directions that are not part of the
the strongly-distorted fcc structures the choice R, expirm:jgntal f%rce-constanté?jozel. he fit indeed make f
=2.0 a.u. prohibits strong compression. No such limitations The distorted structures added to the fit indeed make for a

exist for the tiaht-binding approach: the volumes for which model that is better suited for phonon calculations. However,
i del i 9 ; tg ﬁlpb ’ | i th i while the additional constraints improve the total energies
tioen model IS appropriate will become clear In the next SeCyeagerined by the model, the electronic band structure dete-

. , . ... riorates. Figure 7 shows the electronic band structure along
Figure 3 shows the errors in the improved model's fit.;yo sample high-symmetry directions of fcc copper at the
Compared _to the initial fit, errors for the simple, cubic Struc'experimental volume. While the initial model agrees well
tures remain about the same. The errors for the tetragonallyjit the first-principles band structure, the model improved
distorted structures are small around the equilibrium volumeg, thermodynamic quantities loses the good agreement. The
3 . . .
(11.93 &), but show a tendency to increase as the crystal igegylting electronic density of states, shown in Fig. 8, shows
compressed. The form of the matrix elemejts. (4)] can-  {he same discrepancy; however, the density of states at the
not be expected to allow a high-quality fit at all volumes; permj energy is quite similar, which is important for the
indeed when only a subset of data points are included in th‘t’emperature—dependent influence of the electrtsee be-
fit the errors show no radical change. . low). It is possible that a better or more flexible functional
Including the distorted structures in the fit improves theform for the distance dependence of the intersite Hamil-
transferability of the model. Figure 4 shows the improvediynian and overlap matrices are necessary to keep the good

agreement between tight-binding and first-principles e”ergieﬁansferability and the good agreement with the individual
for the diamond structure, which is not included in the fit. energy bands.

The transferability to a structure of such a different coordi-

nation is not guaranteed, and our initial model did not repro- IIl. CALCULATIONS WITH THE TB MODEL
duce the diamond energies well, nor did the model of the
NRL group’.s A. Force constants

Figure 5 shows the phonon dispersion calculated with the The force constants are calculated from the tight-binding
improved model. Including the distorted fcc structuresmodel by the direct-force methdd;>*which relies on evalu-
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The frequencies of the phonons with a given wave vector

U@ - ® q are found by diagonalizing the corresponding dynamical
I ] matrix D(q), which in turn is the Fourier transform of the

2T 7 system’s force constants

0.0

1 .
D“B(q):M;i q‘)gﬂ(l,j;O,i)elq.(rj*riH)_ (11)

If the force constants are known for every pair of atoms, the
dynamical matrix and hence the frequencies are easily evalu-
ated for any wave vector.

The direct-force method is exact within the quasihar-
monic approximation and the particular model if the forces
r X wr X W vanish inside the simulation cell. Computational resources
FIG. 7. Electronic band structure of fcc copper at the eXperi_often limit the system size such that the forces do not vanish
mental volume. Circles are first-principles results, solid lines are th@lt the t_>oundary, as in the calculations presented here; Fhe
(a) initial and (b) improved tight-binding models. calcu]aﬂong are correct for wave vectors commensurate with
the simulation cell and are a good approximation for inter-

ating the forces on all atoms in a simulation cell in which amediate values of. _ _
reference atom(;i) has been displaced. The large simula-  The evaluation of Eq(11) involves only the atoms in the
tion cell consists of primitive cells transposed by vectors S|mullat.|on cell. In cases where the edge of the S|mulat_|on
Due to periodic boundary conditions on the simulation Ce||,ceII |I'mItS the range of the forces before they actually vqnlsh
the force on an atoml (j) is in response to the displaced SPecial care must be taken to ensure that no symmetries are

reference atom Qi) as well as its images transposed by lost. In particul-ar,. the iqversion symmetry is_lost if the ref-
vectorsL erence atom(;i) is not in the center of the simulation cell.

Atoms that break the inversion symmetry with respect to the
] o . reference atom have to be duplicai@dth adjusted weight
F(l.h)= _; f(LJ ;L. -u(0,i), (8)  and transposed with a basis vector of the simulation cell to
reinstate the symmetry.
i.e., we are actually calculating the cumulant force constant The cubic symmetry of the fcc crystal allows the calcula-
tion of the force constants at a particular volume with a
#C(1,j:0,)=> &(l,j:L,i). (9) single displacement of the bgsis atom. Distorted fcc struc-
- L — tures no longer have the cubic symmetry, the calculation of

Electronic Band Energies (Ry)

the force constants therefore requires the forces to be evalu-
Sted for the basis atom displaced in all three Cartesian direc-
tions separately. For all calculations the simulation cell con-
OF 5(1,]) Fa(lj) tained 108 atoms and a mesh 0£4X 4 k points was used.

Cilini)e _ _
¢a,8(|rjiov|)_ &ua(O,i)~ Ua(o,i). (10)

The components of the cumulant force constant are, in th
harmonic regime, given by

B. Thermodynamics

The calculation of the Hellmann-Feynman forces in the . . .
tight-binding approach is achieved by evaluating the analytic As indicated t?y Eq:(l),_ the free energy 1S ihe ".“ema'
derivatives of the Hamiltonian and overlap matrix elementsSNerdy from the tight-binding calculat_lon with entropic terms
and of the onsite terms. added from the electrons and the ions. In both terms the

relevant physical quantity is the density of state©S). The
3 : : : electronic DOSNn(E), the occupation of which is given by
the Fermi distributionf (E, T)=[e(E~E/(keD+ 1771 deter-
mines the electrons’ contribution to the entrGpy

=)}
T

S.(T)= —ka [fInf+(1—f)In(1—f)In(E)dE.
(12

Electronic DOS (eV™)
e
T

The phonon DOSg(w), contributes through the zero-point

energy,
-10
Energy (eV) 1
FIG. 8. Electronic density of states for fcc copper at the experi- Uzers Zfﬂhwg(w)dw, 13
mental volume. The Fermi energy is B=0. Dashed line is the
first-principles result, solid line is the improved TB model. as well as the temperature-dependent free eArgy
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FIG. 10. Linear expansion coefficient for copper. Experimental
1400 K E values are represented as diamof®sf. 27, the result from the
‘ tight-binding model is the solid curve.
8 10 12 14

volume (A") pared to experimental data in Fig. 10 and shows good agree-
ment, in particular the characteristic temperature, which is

FIG. 9. Free energy calculated in the quasi-harmonic approxi- . S
mation. The free energies are shown for temperatures from 0 t etermined by the phonon characteristic temperat(ses

1400 K in 100 K increments, relative to tie=0 K free energy. elox\b. h h . | d
Inset: calculated lattice constafutashed linpand experimental val- The shape of the free energy as a function of volume an

ues(circles (Ref. 27 as a function of temperature. Also shown is {€mperature directly provides the temperature dependence of

the calculated lattice constant before taking into account the zerdh€ bulk modulusB(T) which is calculated by fitting a sec-
point energy(diamond. ond order Birch equation of stat®.The bulk modulus is

related to two of the elastic constants BYT)=3[C,,(T)
+2Cx(T)]. The temperature dependence of the other elastic
FH(TlV):kBTf In[1—e "*T]g(V,w)dw. (14) constants, determined by tetragof@él;;(T) —C,4(T)] and
Q trigonal strain[C,4(T)], is calculated in two steps. ThE
=0 value results from calculating the energy of the appro-
Both DOS are calculated in the tight-binding calculations,priately strained crystal and finding the quadratic change.
the phonon DOS comes from evaluating the dynamical maThe temperature-dependent value is calculated by following
trix for a fine mesh of wave vectors in the first Brillouin the same procedure but with the free energy of the strained
zone, and the electronic DOS results similarly from evaluatcrystal, which is found by calculating the phonon DOS of
ing the eigenvalues on a fine mesh. A small Gaussian is usaflat structure and then evaluating Efj4).
to smear the spectrum of the finite me&ach phonon or Figure 11 shows the calculated temperature-dependence
electron energy eigenvalue at eaglor k point in the Bril-  of the elastic constants. The thermal expansion is implicitly
louin zong to make it continuous. The width of the Gauss-included in the calculation of the bulk modulus, a derivative

ians is chosen as small as possible while keeping the DOith respect to the volume. For the trigonal and tetragonal
smooth and continuous. Both meshes are chosen fine enough

so the resulting contributions to the free energy are con- 150
verged. The contribution to the free energy from the elec-
trons is on the order of a few percent of that of the phonons,
although at low temperaturds/here both contributions are
very smal) and small volumes the percentage rises to about
10%.

Figure 9 shows the resulting free energy as a function of
volume for temperatures between 0 to 1400 ambient
pressure copper melts at 1356 K; melting is an anharmonic
effect that lies outside the scope of the quasiharmonic treat-
men) in 100 K increments. A comparison with the free en-
ergy for the bcc phase shows the fcc structure at lower free
energy for all temperatures and volumes, indicating that the
model agrees with experiment in that respect. 0 ‘

The free energy as a function of volume and temperature 0 500 1000 1500
determines the thermal expansion. The temperature- T
dependent lattice constant derived from the tight-binding FiG. 11. Elastic constants as a function of temperature. Experi-
model is shown in the inset of Fig. 9 along with the experi-mental values are represented as diamdRes. 29. For the tetrag-
mental values. As is typical for GGA calculations, the tight- onal and trigonal distortions we show the temperature dependence

binding model overestimates the equilibrium volume byof the constant based on calculations at volumes appropriaté for
1.4%. The calculated linear expansion coefficient is com=0 andT=300 K.

Elastic Constants (GPa)

235114-6



FIRST-PRINCIPLES-BASED THERMODYNAML . . . PHYSICAL REVIEW B 65 235114

T T T T /II__l_\
600 | . M2r 4T H
600 N o 101 7 e
N <€ Lo on=l
500 \\*\\\ ® 1 T IR R
& ) - N 8 10 12 A
S S 400 \*\\\\ density (g/em’) |
E 400 -
£ < L
3 ® 300
E L
B 200 200
8
0 . . | 1 | 1 1 |
8 10 12 14 13 12 11 10 9 8
Volume (A3) density (g/cm3)

FIG. 12. Elastic constants as a function of volume. Experimental FIG. 13. Phonon characteristic temperatures. Symbols are from
values at the equilibrium volume are shown as crogBes. 29, the experimental phonon density of stat@ef. 33, lines are the
first-principles results as symbols and results from the improvedight-binding results. Inset: deviations from the rule of thub
tight-binding model as solid lines. ~ 0,~e30,.
strain the thermal expansion is accounted for by finding the 9 hodq)
equilibrium volume for each temperature and then calculat- CQ)=—=— (18

N hw 1"
ing the effect of the strain on the free energy of that volume. T effodd—1

Figure 12 shows the calculatéid=0 elastic constants as a The sum of these individual heat capacities as a function of

function of volume. _ temperature agrees well with calorimetric data; the compari-
A similar calculation could be done to determined theggy is plotted in Fig. 14 in terms of the Debye temperature

temperature dependence of frozen phonons. However, it ig_ which is found such that the Debye model’'s heat capac-
important to point out that the calculated temperature depens

dence is done within a quasiharmonic approximation, and
hence is valid only for not too high temperatures. What is 3 ropiT x4

more of interest is the temperature dependence due to anhar- Cv= 9kB( f mdx (19
monic effects arising from large amplitudes of the atomic

motions, which sample anharmonic parts of the interatomiés the same as the heat capacity calculated for the tight-
potentials. These type of effects are probably best calculatedinding model at the same temperature.

in self-consistent phonon theorigs3? Such theories are a  The shape of the Debye temperature plotted against tem-
huge computational overhead beyond quasiharmonic theorgerature remains very similar with compression; the curve

.
o

and are beyond the scope of this paper. itself is shifted upwards with the same volume dependence
The phonon characteristic temperatures, which are deas the characteristic phonon temperatures. The heat capacity
fined as moments of the phonon density of stites of each individual phonon mode, combined with the Gru
eisen parameter of that mode
In(kg o) =(In(i))gz, (15
dinwy(Q)
4 Vqs_' dinv ' (20)
k501:§<ﬁw>az: (16)

360

and

1/2 340 1

: 7

5 2
kgt,= §<(ﬁw) )6z

320 =] 5]
OLoD0n0o g ob

are shown in Fig. 13. The approximate rule of thurp

~ 0;~e*3g, holds nicely for the calculated valuésse.
At temperatures below the phonon characteristic tempera- 300 ‘ ‘ ‘

tures individual phonon modes must be considered sepa- 0 100 T(K)ZOO 300

rately, because they contribute to the crystal's thermal prop-

erties with weights depending on their frequency relative to  FIG. 14. Debye temperature at the equilibrium volume. Symbols

the temperature. The weight of a mode of braselith wave  are from calorimetric experiment®Refs. 34,35, solid line is the

vectorq is determined by the heat capacity for that mode tight-binding resuilt.

Debye Temperature 8, (K)
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T > L |
2.0 high T~ -——~ . 1.0 :
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—_ Volume (AS)
; 1.5
FIG. 16. Coefficient of the electronic contribution to the heat
Lo- N 0K ] capacity. Diamond is the measured va(&ef. 37, solid line is the
o~ I I

tight-binding calculation(using a 24 k-point mesh with a Fermi-

8 ) 10 Dirac smearing of 225 meV

Density p (g/cms)

FIG. 15. (@) Gruneisen parameter calculated frofiy (solid 2

a
line), experimental valudcircle), and yp=const (dashed lines 7e|=?kén(EF)’ (22
The long-dashed line goes through the data point of WallRes.
33), the short-dashed is from Hayesal. (Ref. 36. (b) Calculated ~ which is proportional to the density of states at the Fermi
temperature dependence of the @gisen parameter. Shown are the energyn(Eg). Compression of the crystal reduceéEg),
results fromT=0 Kto T=40 Kin 5 K increments as well as the j.e., ve decreases monotonically.
high-temperature result.

, o IV. SUMMARY
determines the Gneisen parameter

The work presented here is aimed (&} improving the
tight-binding fit of copper specifically for the calculation of
2 thermodynamic properties arig) investigating the transfer-
0.5 Ya,5Co,s(4) ability and range of applicability of the improved model. For
L (21 the model to be reliable in calculating thermodynamic prop-
qus c, s(q) erties, it must produce a phonon dispersion in good agree-
ment with experiment. The initial model was fit to first-
principles calculations of the total energy at a series of
At high temperaturesT(> 6,), where all phonon modes con- different volumes for the cubic crystal structures. The data-
tribute equally, y=~vyo=dIn 6,/dIn p. At low temperatures base of first-principles calculations was extended here to in-
only the acoustic phonon modes contribute. clude fcc structures distorted to reflect high-symmetry pho-
Figure 15 compares the tight-binding results for therGru non modes and the elastic constants; fitting to the extended
eisen parameter with available data. For densities up to nealatabase yields the improved model which indeed delivers
13 glcnt the results roughly agree with the rule of thumb phonon frequencies significantly closer to the experimental
thatyp=const. Our values are slightly below the experimen-values.
tal values, indicating that the phonon frequencies do not in- From the phonon density of states the free energy was
crease with compression as rapidly as they should. calculated, in the quasiharmonic approximation, as a func-
Figure 15 also shows the calculated temperature depemion of volume and temperature. The temperature depen-
dence of the Gmueisen parameter. At low temperaturesdence of the minimum of the free energy directly yields the
(T=40 K) the plot shows a fair amount of structure relative thermal expansion and the linear expansion coefficient, both
to the high-temperature curve. This can be understood frorn good agreement with experiment. The elastic constants are
the phonon dispersion shown in Fig. 5, where the lowessomewhat improved over the initial model, though discrep-
branch is in thg £££] direction and becomes flat around 3 ancies with experiment remain evident.
THz, frequencies that become relevant in their contribution The quantities in the previous paragraph depend on vol-
to the specific heat at temperatures around a third of theiomes only in the vicinity of thelf =0 equilibrium volume.
energy, i.e., around 50 K. This branch is the lowest andrhe volumes used for the cubic and the distorted fcc struc-
hence appears first with increasing temperature, furthermorres in the fit extend over a wide range; the equilibrium
it appears with a lot of weight as there are eight spatial divolume is not treated any differently than other val(g®wvn
rections corresponding to these modes. to 9.7 A3, the smallest volume for which distorted structures
At low temperatures the phonon contribution to the heatwvere fij. This gives some confidence that the model applies
capacity is proportional t&° and vanishes more rapidly than to a range beyond the equilibrium volume and its immediate
the electronic contribution, which is linear in temperature.vicinity.
Figure 16 shows the calculated coefficient of the electronic Within the quasiharmonic approximation the volume de-
contribution to the heat capacity pendence of the phonon frequencies gives a nonzera-Gru
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eisen parameter; the results calculated from the TB moded.g., by including higher-order terms in Ed), as has been

roughly agrees with the empiricado=const. The magnitude done in a more recent NRL TB copper potential used in Ref.
is somewhat low, i.e., the compression-induced stiffening ob6. The need for modification can also be seen in the elec-
the crystal remains somewhat weaker than is experimentallironic band structure, which is degraded by the fitting to

measured. distorted fcc structures.
The compression at which the model clearly fails can be
seen from the Gmeisen parameter as well as the volume ACKNOWLEDGMENTS
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