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First-principles-based thermodynamic description of solid copper using the tight-binding approach
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A tight-binding model is fit to first-principles calculations for copper that include structures distorted ac-
cording to elastic constants and high-symmetry phonon modes. With the resulting model the first-principles-
based phonon dispersion and the free energy are calculated in the quasi-harmonic approximation. The resulting
thermal expansion, the temperature and volume dependence of the elastic constants, the Debye temperature,
and the Gru¨neisen parameter are compared with available experimental data.
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I. INTRODUCTION

Density-functional theory ~DFT! first-principles
electronic-structure methods describe anomaly free so
such as elemental copper successfully. They achieve
accuracy for quantities such as bulk properties,1 surface re-
laxation and lattice dynamics of the surface,2 as well as the
epitaxial Bain path and elastic constants.3 DFT methods are
routinely used to compute the zero-temperature internal
ergyF0(V), but also can be used to calculate the free ene
contributions from the ionsFI(V,T) and the electrons
FE(V,T) resulting in a complete equation of state

F~V,T!5F0~V!1FI~V,T!1FE~V,T!. ~1!

However, the required computational effort is expensive,
an alternative efficient evaluation at all volumes and te
peratures would be desirable.

In this paper we use the computationally less demand
tight-binding ~TB! total energy model in conjunction with
well chosen first-principles calculations. In particular, we u
the functional fitting forms developed at the U.S. Naval R
search Laboratory~NRL! for computing the total energy
within the TB formalism, i.e., without an external potentia4

The model is fit to and accurately reproduces a set of fi
principles calculations with a speed-up of many orders
magnitude. In addition, transferability~i.e., a TB parametri-
zation that is accurate for a wide variety of crystal structu
and atomic arrangements! has been successfully demo
strated for semiconductors as well as for simple and tra
tion metals.4 We believe that the TB method can be used a
highly accurate, but computationally more efficient, sur
gate for a full first-principles-based approach to calculate
equation of state for solids.

Copper is frequently used as a test material for theoret
methods.5 In this paper we have~1! developed an improved
fit for copper that is accurate for phonons and~2! used this
model to calculate a wide range of temperature- and volu
dependent thermodynamic quantities.

Copper is furthermore widely employed as a press
standard in high-pressure research.6,7 This use is based on
correcting P(V) data taken along the shock Hugoniot8 to
room temperature. Such corrections employ model assu
0163-1829/2002/65~23!/235114~10!/$20.00 65 2351
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tions about the volume dependence of the Gru¨neisen param-
eter g(V), which is difficult to measure independentl
Shock heating increases with pressure, making the cor
tions more significant at high pressure. It is therefore imp
tant to develop theoretical techniques for an accurate pre
tion of g for copper at high pressure.

Phonons play a major role in the calculations of therm
dynamic quantities, and the TB fits are adjusted to m
accurately calculate them. Structures corresponding to h
symmetry phonon modes are shown here to aid in refin
the model; the resulting phonon density of states can the
used to determine the free energy and hence all thermo
namic quantities of interest. The precision required to cal
late phonon frequencies is an order of magnitude higher t
that for the lattice constant or bulk modulus,9 making this a
stringent test for the validity of the tight-binding approach
general and the copper model in particular.

The ion-ion free energy of Eq.~1! is often separated into
harmonic and anharmonic parts

FI~V,T!5FH~V,T!1FA~V,T!. ~2!

Normally, the harmonic component is not a function of vo
ume, but is calculated from the effect of small displaceme
about the zero-temperature equilibrium lattice. In our cal
lations, we use the quasiharmonic approximation, which c
siders small displacements at any fixed volume~lattice con-
stant! within the harmonic approximation, and hence o
phonon frequencies become volume dependent. Howe
our phonon frequencies are calculated at zero temperatur
any given volume, and are not temperature dependent.

The anharmonic part of the free energy involves ter
that arise from the potential energy of the lattice when it
expanded beyond the harmonic part to higher than sec
order. Such terms are needed at high temperatures, whe
phonon amplitudes are large, and ultimately lead to melti
They are also needed to explain thermal expansion eff
when the harmonic part is based on the equilibrium volum
The quasiharmonic approximation can handle thermal
pansion and the Gru¨neisen parameter accurately through t
volume dependence of the phonons at low temperature
sufficiently high temperatures, the quasiharmonic appro
mation breaks down when the phonon amplitudes beco
©2002 The American Physical Society14-1
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large, and additional anharmonic phonon-phonon correct
are necessary@as indicated in Eq.~2!#. We have not included
these anharmonic types of effects in our calculations. He
we always setFA(V,T)50, and our calculations will be
come less reliable at very high temperatures~near melting!.

In the following section we introduce the basic ideas
the tight-binding method and the first-principles method u
to generate the fitting database, and then describe our
fitting procedures. In the subsequent section we present
culated results for the thermodynamic properties and c
pare them with experiment.

II. FITTING THE MODEL

A. Tight-binding electronic structure

The tight-binding approach is essentially a parametri
version of the first-principles calculations and hence is ord
of magnitude more computationally efficient. In DFT met
ods the secular equation

Hc i ,v5e i ,vSc i ,v , ~3!

is constructed directly from approximate solutions to the f
many-body Hamiltonian, and involves a self-consistent
tential that is solved iteratively; whereas in the TB approa
the elements of the Hamiltonian~and the overlap matrix!
themselves have been parameterized. Only two-center te
are considered.10 For the nonorthogonal tight-binding mod
described here this requires 73 fitted parameters.

Of those parameters, thirty each are used to describe
intersite matrix elements of the Hamiltonian and of the ov
lap matrix. For each combination of symmetries (l l 8m) the
form11 is

hll 8m~r !5~all 8m1bll 8mr !e2c
ll 8m
2

r f c~r !, ~4!

sll 8m~r !5~ āl l 8m1b̄l l 8mr !e2 c̄
l l 8m
2

r f c~r !, ~5!

wheref c51/(11e2(r 2r 0)) is a multiplicative factor included
to ensure a smooth cutoff with increasing distance. In
calculations we have setr 0516.0 Bohr radii.

The remaining 13 parameters determine the on-site te
which allows the parametrization to be applied to structu
not included in the fitting database. A measure of the vale
electron density

r5(
iÞ j

e2l2r i j f c~r i j !, ~6!

wherer i j is the interatomic distance, serves to describe
on-site energy

ea5ea
01ea

1r2/31ea
2r4/31ea

3r2, ~7!

for the three orbital typesa, i.e.,s, p, andd. These terms are
somewhat similar to an embedded-atom-like form in that
energy changes depending on the nearby arrangemen
atoms, and may approximately account for self-consiste
effects as the atoms move around.
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B. Full potential LAPW method

The first-principles quality of the tight-binding model re
sults from fitting to full potential linear augmented plan
wave ~LAPW! calculations using the reliableWIEN97 pro-
gram suite.12 The parameters for the first-principles calcul
tions are listed in Table I.

The LAPW method divides space into spherical regio
centered on the atoms and the remaining interstitial reg
The radius of the spheres, the muffin-tin radiusRm , must be
chosen such that the spheres do not overlap. The basis f
tions used to represent the wave function are adapted to
regions: radial solutions to the Schro¨dinger equation in the
spheres, plane waves in the interstitial region. The w
functions then are found iteratively within density-function
theory, constrained to match at the boundaries of the dif
ent regions.

C. Initial fitting procedure

We first fit the TB method to predict energy differenc
between the ground-state and nonequilibrium structures.
fitting database included first-principles energies calcula
for the cubic structures. In addition to the total energies
these structures, it proved to be crucial to fit the energy ba
at high-symmetry points in reciprocal space.15,16 By decom-
posing the electronic wave function in terms of the symme
character of the eigenvalues17 the bands are guided to th
correct ordering.

The total energies and the band energies can be calcu
by starting with a very crude initial tight-binding model th
ignores intersite terms;15 the errors are then minimized ut
lizing standard nonlinear least squares algorithms.18

Figure 1 shows theT50 fcc Cu phonon dispersion~see
Sec. III A for details of the calculation! for the model from
this initial fitting procedure.15 The long-wavelength mode
nearG are well described, the short-wavelength modes n
the zone boundary display somewhat high frequencies
particular the longitudinal modes.

The reasonable agreement for phonons near the zone
ter G can be understood by considering the elements of
fitting database. The bulk modulus, i.e., a linear combinat
of the elastic constants, is implicitly included in the fit. Whi
this does not guarantee accurate elastic constants, i.e.,

TABLE I. Parameters used in theWIEN97 calculations. The
choice for thek-point mesh size was not so much convergence a
was a balance between accuracy and a reasonable number o
points to fit.

exchange-correlation functional GGA~Ref. 13!
muffin-tin radius,Rm 2.0 a.u.
local orbitals~Ref. 14! s, p, andd
Gmax 20.0
R-MT* K-MAX 9.0
k-point mesh 103 ~cubic, tetragonal!

638312 ~frozen phonons!
636310 ~trigonal!

Fermi-Dirac smearing 0.002 Ry
4-2
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agreement for the slopes of the dispersion nearG, it does set
the right scale. Furthermore, the fit includes the bcc str
ture, which is related to the fcc crystal by a tetragonal str
corresponding to the long-wave-vector limit of the longit
dinal mode in the@00j# direction. The database lacks an
information related to the short-wave-vector modes.

D. Fitting procedure with distorted structures

In order to construct a model with an improved phon
dispersion the database was expanded to include addit
information on the phonons, in particular, structures that
snapshots of the crystal deformed by particular phon
modes, i.e., frozen phonons. The undistorted and disto
crystal structures are treated on the same footing in the fi
principles calculations and the fitting procedure, implici
including the differences in energy and hence the frequen
of the phonon modes.

FIG. 2. Structures and volumes in the fitting database. Sym
are theWIEN97 results, dashed lines are the initial fit, solid lines a
the improved fit for~a! simple structures~sc, bcc, fcc!, ~b! the fcc
crystal with trigonal and tetragonal distortions, and~c! the fcc crys-
tal with distortions corresponding to the longitudinal and transve
phonons at the reciprocal-space high-symmetry pointX. The initial
copper model is based on the data shown in~a!, the improved
model is fit to all the data.

FIG. 1. Phonon dispersion of the initial tight-binding model f
copper at the experimental equilibrium volume and zero temp
ture ~solid lines!. Crosses are measured neutron crystal spectr
eter data at 80 K~Ref. 19!.
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The longitudinal and the transverse mode at the hi
symmetry point X@q5(0,0,1)# were chosen because of th
large discrepancy in frequency~see Fig. 1! and because the
distorted structures require only a doubling of the unit ce
These distorted structures are considered as additional,
tinct structures in the database, to be fit to over a range
volumes.

The initial fit for copper already contains some of th
character of distortions related to the elastic constants:
bulk modulus is explicitly included in the energy as a fun
tion of volume, and the tetragonal distortion of the fcc crys
is somewhat reflected by fitting to the bcc structure. F
completeness, tetragonally and trigonally distorted fcc cr
tals were added to the fit as distinct structures. These a
tional structures barely influence the model resulting fro
the fit; however, the fitting process converges much m
quickly when they are included.

The cubic structures that were included in the initial
differ from each other by an energy scale of fractions

ls

e

FIG. 3. Errors in the fitting for~a! simple structures~sc, bcc,
fcc!, ~b! the fcc crystal with trigonal and tetragonal distortions, a
~c! the fcc crystal with distortions corresponding to the longitudin
and transverse phonons at the reciprocal space high-symmetry
X. Dashed lines are to guide the eye.

FIG. 4. Transferability of the improved model. Symbols a
WIEN97 results, dashed lines are the initial tight-binding model, so
lines are improved tight-binding model.

a-
-

4-3



e
ud
ro
ze
om
ic
ie
c

nt
rg
e
ra

as
ng
ar

f

n
ch
ec

fit
c
a
m
l

s
th

he
ed
gie
fit
di
ro
th

th
es

es,
of

nal
lon-
n
on
ing
d to

ted
the

h-

the
r
s
to

he

or a
er,
ies
ete-
ong
he
ell
ed
The
ws

t the
e

al
il-
ood
al

ing

de
hth-
pec-
-

RUDIN, JONES, GREEFF, AND ALBERS PHYSICAL REVIEW B65 235114
electron volts. Phonons require a model tuned to discern
ergies on a scale that is approximately an order of magnit
smaller. This could be a problem since the minimization p
cedure tends to ignore small energy differences. For fro
phonons at the zone boundary, where neighboring at
move against each other, it turns out that amplitudes wh
are still within the harmonic regime can produce energ
that differ from the undistorted structure by fractions of ele
tron volts. The distortions corresponding to elastic consta
however, need to be exaggerated for them to give la
enough energy differences. The trigonal distortion used h
compresses the base angle from 90° to 75°, while the tet
onal distortion changes thec/a ratio from unity to 1.9.

Figure 2 shows the energy values in the fitting datab
alongside those of the initial and improved tight-bindi
models. The volumes of the first-principles calculations
limited to structures where the muffin-tin radiusRm is
smaller than the nearest-neighbor distance, particularly
the strongly-distorted fcc structures the choice ofRm
52.0 a.u. prohibits strong compression. No such limitatio
exist for the tight-binding approach; the volumes for whi
the model is appropriate will become clear in the next s
tion.

Figure 3 shows the errors in the improved model’s
Compared to the initial fit, errors for the simple, cubic stru
tures remain about the same. The errors for the tetragon
distorted structures are small around the equilibrium volu
(11.93 Å3), but show a tendency to increase as the crysta
compressed. The form of the matrix elements@Eq. ~4!# can-
not be expected to allow a high-quality fit at all volume
indeed when only a subset of data points are included in
fit the errors show no radical change.

Including the distorted structures in the fit improves t
transferability of the model. Figure 4 shows the improv
agreement between tight-binding and first-principles ener
for the diamond structure, which is not included in the
The transferability to a structure of such a different coor
nation is not guaranteed, and our initial model did not rep
duce the diamond energies well, nor did the model of
NRL group.5

Figure 5 shows the phonon dispersion calculated with
improved model. Including the distorted fcc structur

FIG. 5. Phonon dispersion of the improved tight-binding mo
~solid lines! compared to the experimental data~crosses! ~Ref. 19!.
The slopes nearG and the two frequencies atX are effectively part
of the fitting data.
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clearly refines the agreement with the measured valu
though the curves do not overlap perfectly: the dispersion
the low-lying transverse modes in the@0j1# direction shows
a different character, and the high-frequency longitudi
modes remain somewhat large. The discrepancy of the
gitudinal frequency atL suggests including this data point i
the fit. However, a first-principles, frozen-phonon calculati
of this mode shows better agreement with the tight-bind
model than with experiment and was therefore not adde
the database.

Figure 6 shows the phonon density of states calcula
with the improved model. The general shape agrees with
data calculated from the Born–von Ka´rmán force constants
fitted to the experimental phonon dispersion along hig
symmetry directions.19,20 The difference in maximum fre-
quencies and the peak near 7 THz can be attributed to
discrepancy in the dispersion of the longitudinal mode neaL
in the @jjj# direction. The tight-binding density of state
displays more structure around 4 THz, which may be due
modes in low-symmetry directions that are not part of t
experimental force-constant model.

The distorted structures added to the fit indeed make f
model that is better suited for phonon calculations. Howev
while the additional constraints improve the total energ
described by the model, the electronic band structure d
riorates. Figure 7 shows the electronic band structure al
two sample high-symmetry directions of fcc copper at t
experimental volume. While the initial model agrees w
with the first-principles band structure, the model improv
for thermodynamic quantities loses the good agreement.
resulting electronic density of states, shown in Fig. 8, sho
the same discrepancy; however, the density of states a
Fermi energy is quite similar, which is important for th
temperature-dependent influence of the electrons~see be-
low!. It is possible that a better or more flexible function
form for the distance dependence of the intersite Ham
tonian and overlap matrices are necessary to keep the g
transferability and the good agreement with the individu
energy bands.

III. CALCULATIONS WITH THE TB MODEL

A. Force constants

The force constants are calculated from the tight-bind
model by the direct-force method,21–24which relies on evalu-

l
FIG. 6. Phonon density of states. The Dashed line is the eig

nearest-neighbor model fit to the measured neutron crystal s
trometer data~Refs. 19,20!, solid lines are calculated from the im
proved tight-binding model.
4-4
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FIRST-PRINCIPLES-BASED THERMODYNAMIC . . . PHYSICAL REVIEW B 65 235114
ating the forces on all atoms in a simulation cell in which
reference atom (0,i ) has been displaced. The large simu
tion cell consists of primitive cells transposed by vectorsl.
Due to periodic boundary conditions on the simulation c
the force on an atom (l , j ) is in response to the displace
reference atom (0,i ) as well as its images transposed
vectorsL

F~ l , j !52(
L

f~ l , j ;L ,i !•u~0,i !, ~8!

i.e., we are actually calculating the cumulant force const

fC~ l , j ;0,i !5(
L

f~ l , j ;L ,i !. ~9!

The components of the cumulant force constant are, in
harmonic regime, given by

fab
C ~ l , j ;0,i !52

]Fb~ l , j !

]ua~0,i !
'2

Fb~ l , j !

ua~0,i !
. ~10!

The calculation of the Hellmann-Feynman forces in t
tight-binding approach is achieved by evaluating the anal
derivatives of the Hamiltonian and overlap matrix eleme
and of the onsite terms.

FIG. 7. Electronic band structure of fcc copper at the exp
mental volume. Circles are first-principles results, solid lines are
~a! initial and ~b! improved tight-binding models.

FIG. 8. Electronic density of states for fcc copper at the exp
mental volume. The Fermi energy is atE50. Dashed line is the
first-principles result, solid line is the improved TB model.
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The frequencies of the phonons with a given wave vec
q are found by diagonalizing the corresponding dynami
matrix D(q), which in turn is the Fourier transform of th
system’s force constants

Dab~q!5
1

M (
l , j ,i

fab
C ~ l , j ;0,i !eiq•(r j 2r i1 l ). ~11!

If the force constants are known for every pair of atoms,
dynamical matrix and hence the frequencies are easily ev
ated for any wave vector.

The direct-force method is exact within the quasih
monic approximation and the particular model if the forc
vanish inside the simulation cell. Computational resour
often limit the system size such that the forces do not van
at the boundary, as in the calculations presented here;
calculations are correct for wave vectors commensurate w
the simulation cell and are a good approximation for int
mediate values ofq.

The evaluation of Eq.~11! involves only the atoms in the
simulation cell. In cases where the edge of the simulat
cell limits the range of the forces before they actually van
special care must be taken to ensure that no symmetries
lost. In particular, the inversion symmetry is lost if the re
erence atom (0,i ) is not in the center of the simulation cel
Atoms that break the inversion symmetry with respect to
reference atom have to be duplicated~with adjusted weight!
and transposed with a basis vector of the simulation cel
reinstate the symmetry.

The cubic symmetry of the fcc crystal allows the calcu
tion of the force constants at a particular volume with
single displacement of the basis atom. Distorted fcc str
tures no longer have the cubic symmetry, the calculation
the force constants therefore requires the forces to be ev
ated for the basis atom displaced in all three Cartesian di
tions separately. For all calculations the simulation cell co
tained 108 atoms and a mesh of 43434 k points was used.

B. Thermodynamics

As indicated by Eq.~1!, the free energy is the interna
energy from the tight-binding calculation with entropic term
added from the electrons and the ions. In both terms
relevant physical quantity is the density of states~DOS!. The
electronic DOS,n(E), the occupation of which is given by
the Fermi distributionf (E,T)5@e(E2Ef )/(kBT)11#21, deter-
mines the electrons’ contribution to the entropy25

Sel~T!52kBE @ f ln f 1~12 f !ln~12 f !#n~E!dE.

~12!

The phonon DOS,g(v), contributes through the zero-poin
energy,

Uzero5
1

2EV
\vg~v!dv, ~13!

as well as the temperature-dependent free energy26

i-
e

i-
4-5
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RUDIN, JONES, GREEFF, AND ALBERS PHYSICAL REVIEW B65 235114
FH~T,V!5kBTE
V

ln@12e2\v/kBT#g~V,v!dv. ~14!

Both DOS are calculated in the tight-binding calculation
the phonon DOS comes from evaluating the dynamical m
trix for a fine mesh of wave vectors in the first Brilloui
zone, and the electronic DOS results similarly from evalu
ing the eigenvalues on a fine mesh. A small Gaussian is u
to smear the spectrum of the finite mesh~each phonon or
electron energy eigenvalue at eachq or k point in the Bril-
louin zone! to make it continuous. The width of the Gaus
ians is chosen as small as possible while keeping the D
smooth and continuous. Both meshes are chosen fine en
so the resulting contributions to the free energy are c
verged. The contribution to the free energy from the el
trons is on the order of a few percent of that of the phono
although at low temperatures~where both contributions ar
very small! and small volumes the percentage rises to ab
10%.

Figure 9 shows the resulting free energy as a function
volume for temperatures between 0 to 1400 K~at ambient
pressure copper melts at 1356 K; melting is an anharmo
effect that lies outside the scope of the quasiharmonic tr
ment! in 100 K increments. A comparison with the free e
ergy for the bcc phase shows the fcc structure at lower
energy for all temperatures and volumes, indicating that
model agrees with experiment in that respect.

The free energy as a function of volume and tempera
determines the thermal expansion. The temperat
dependent lattice constant derived from the tight-bind
model is shown in the inset of Fig. 9 along with the expe
mental values. As is typical for GGA calculations, the tigh
binding model overestimates the equilibrium volume
1.4%. The calculated linear expansion coefficient is co

FIG. 9. Free energy calculated in the quasi-harmonic appr
mation. The free energies are shown for temperatures from
1400 K in 100 K increments, relative to theT50 K free energy.
Inset: calculated lattice constant~dashed line! and experimental val-
ues~circles! ~Ref. 27! as a function of temperature. Also shown
the calculated lattice constant before taking into account the z
point energy~diamond!.
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pared to experimental data in Fig. 10 and shows good ag
ment, in particular the characteristic temperature, which
determined by the phonon characteristic temperatures~see
below!.

The shape of the free energy as a function of volume
temperature directly provides the temperature dependenc
the bulk modulusB(T) which is calculated by fitting a sec
ond order Birch equation of state.28 The bulk modulus is
related to two of the elastic constants byB(T)5 1

3 @C11(T)
12C12(T)#. The temperature dependence of the other ela
constants, determined by tetragonal@C11(T)2C12(T)# and
trigonal strain@C44(T)#, is calculated in two steps. TheT
50 value results from calculating the energy of the app
priately strained crystal and finding the quadratic chan
The temperature-dependent value is calculated by follow
the same procedure but with the free energy of the strai
crystal, which is found by calculating the phonon DOS
that structure and then evaluating Eq.~14!.

Figure 11 shows the calculated temperature-depende
of the elastic constants. The thermal expansion is implic
included in the calculation of the bulk modulus, a derivati
with respect to the volume. For the trigonal and tetrago

i-
to

o-

FIG. 10. Linear expansion coefficient for copper. Experimen
values are represented as diamonds~Ref. 27!, the result from the
tight-binding model is the solid curve.

FIG. 11. Elastic constants as a function of temperature. Exp
mental values are represented as diamonds~Ref. 29!. For the tetrag-
onal and trigonal distortions we show the temperature depend
of the constant based on calculations at volumes appropriate fT
50 andT5300 K.
4-6
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FIRST-PRINCIPLES-BASED THERMODYNAMIC . . . PHYSICAL REVIEW B 65 235114
strain the thermal expansion is accounted for by finding
equilibrium volume for each temperature and then calcu
ing the effect of the strain on the free energy of that volum
Figure 12 shows the calculatedT50 elastic constants as
function of volume.

A similar calculation could be done to determined t
temperature dependence of frozen phonons. However,
important to point out that the calculated temperature dep
dence is done within a quasiharmonic approximation, a
hence is valid only for not too high temperatures. What
more of interest is the temperature dependence due to an
monic effects arising from large amplitudes of the atom
motions, which sample anharmonic parts of the interato
potentials. These type of effects are probably best calcul
in self-consistent phonon theories.30–32 Such theories are a
huge computational overhead beyond quasiharmonic the
and are beyond the scope of this paper.

The phonon characteristic temperatures, which are
fined as moments of the phonon density of states33

ln~kBu0!5^ ln~\v!&BZ , ~15!

kBu15
4

3
^\v&BZ , ~16!

and

kBu25F5

3
^~\v!2&BZG1/2

, ~17!

are shown in Fig. 13. The approximate rule of thumbu2
'u1'e1/3u0 holds nicely for the calculated values~inset!.

At temperatures below the phonon characteristic temp
tures individual phonon modes must be considered se
rately, because they contribute to the crystal’s thermal pr
erties with weights depending on their frequency relative
the temperature. The weight of a mode of branchs with wave
vectorq is determined by the heat capacity for that mode

FIG. 12. Elastic constants as a function of volume. Experime
values at the equilibrium volume are shown as crosses~Ref. 29!,
first-principles results as symbols and results from the impro
tight-binding model as solid lines.
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cs~q!5
]

]T

\vs~q!

eb\vs(q)21
. ~18!

The sum of these individual heat capacities as a function
temperature agrees well with calorimetric data; the comp
son is plotted in Fig. 14 in terms of the Debye temperat
uD , which is found such that the Debye model’s heat cap
ity

cV59kBS T

uD
D 3E

0

uD /T x4ex

~ex21!2 dx ~19!

is the same as the heat capacity calculated for the ti
binding model at the same temperature.

The shape of the Debye temperature plotted against t
perature remains very similar with compression; the cu
itself is shifted upwards with the same volume depende
as the characteristic phonon temperatures. The heat cap
of each individual phonon mode, combined with the Gru¨n-
eisen parameter of that mode

gq,s52
d ln vs~q!

d ln V
, ~20!

l

d

FIG. 13. Phonon characteristic temperatures. Symbols are f
the experimental phonon density of states~Ref. 33!, lines are the
tight-binding results. Inset: deviations from the rule of thumbu2

'u1'e1/3u0.

FIG. 14. Debye temperature at the equilibrium volume. Symb
are from calorimetric experiments~Refs. 34,35!, solid line is the
tight-binding result.
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determines the Gru¨neisen parameter

g5
( q,s gq,scv,s~q!

( q,s cv,s~q!

. ~21!

At high temperatures (T.u2), where all phonon modes con
tribute equally,g'g05d ln u0 /d ln r. At low temperatures
only the acoustic phonon modes contribute.

Figure 15 compares the tight-binding results for the Gr¨n-
eisen parameter with available data. For densities up to
13 g/cm3 the results roughly agree with the rule of thum
thatgr5const. Our values are slightly below the experime
tal values, indicating that the phonon frequencies do not
crease with compression as rapidly as they should.

Figure 15 also shows the calculated temperature de
dence of the Gru¨neisen parameter. At low temperatur
(T&40 K! the plot shows a fair amount of structure relati
to the high-temperature curve. This can be understood f
the phonon dispersion shown in Fig. 5, where the low
branch is in the@jjj# direction and becomes flat around
THz, frequencies that become relevant in their contribut
to the specific heat at temperatures around a third of t
energy, i.e., around 50 K. This branch is the lowest a
hence appears first with increasing temperature, furtherm
it appears with a lot of weight as there are eight spatial
rections corresponding to these modes.

At low temperatures the phonon contribution to the h
capacity is proportional toT3 and vanishes more rapidly tha
the electronic contribution, which is linear in temperatu
Figure 16 shows the calculated coefficient of the electro
contribution to the heat capacity

FIG. 15. ~a! Grüneisen parameter calculated fromu0 ~solid
line!, experimental value~circle!, and gr5const ~dashed lines!.
The long-dashed line goes through the data point of Wallace~Ref.
33!, the short-dashed is from Hayeset al. ~Ref. 36!. ~b! Calculated
temperature dependence of the Gru¨neisen parameter. Shown are th
results fromT50 K to T540 K in 5 K increments as well as th
high-temperature result.
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gel5
p2

3
kB

2n~EF!, ~22!

which is proportional to the density of states at the Fer
energyn(EF). Compression of the crystal reducesn(EF),
i.e., gel decreases monotonically.

IV. SUMMARY

The work presented here is aimed at~1! improving the
tight-binding fit of copper specifically for the calculation o
thermodynamic properties and~2! investigating the transfer
ability and range of applicability of the improved model. F
the model to be reliable in calculating thermodynamic pro
erties, it must produce a phonon dispersion in good ag
ment with experiment. The initial model was fit to firs
principles calculations of the total energy at a series
different volumes for the cubic crystal structures. The da
base of first-principles calculations was extended here to
clude fcc structures distorted to reflect high-symmetry p
non modes and the elastic constants; fitting to the exten
database yields the improved model which indeed deliv
phonon frequencies significantly closer to the experimen
values.

From the phonon density of states the free energy w
calculated, in the quasiharmonic approximation, as a fu
tion of volume and temperature. The temperature dep
dence of the minimum of the free energy directly yields t
thermal expansion and the linear expansion coefficient, b
in good agreement with experiment. The elastic constants
somewhat improved over the initial model, though discre
ancies with experiment remain evident.

The quantities in the previous paragraph depend on
umes only in the vicinity of theT50 equilibrium volume.
The volumes used for the cubic and the distorted fcc str
tures in the fit extend over a wide range; the equilibriu
volume is not treated any differently than other values~down
to 9.7 Å3, the smallest volume for which distorted structur
were fit!. This gives some confidence that the model app
to a range beyond the equilibrium volume and its immedi
vicinity.

Within the quasiharmonic approximation the volume d
pendence of the phonon frequencies gives a nonzero G¨n-

FIG. 16. Coefficient of the electronic contribution to the he
capacity. Diamond is the measured value~Ref. 37!, solid line is the
tight-binding calculation~using a 243 k-point mesh with a Fermi-
Dirac smearing of 225 meV!.
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eisen parameter; the results calculated from the TB mo
roughly agrees with the empiricalgr5const. The magnitude
is somewhat low, i.e., the compression-induced stiffening
the crystal remains somewhat weaker than is experimen
measured.

The compression at which the model clearly fails can
seen from the Gru¨neisen parameter as well as the volum
dependences of the elastic constants, the electronic cont
tion to the heat capacity, and the characteristic phonon t
peratures. All of these entities vary monotonically with co
pression until the volume reaches approximately 8 Å3, i.e.,
a density of roughly 13 g/cm3, at which point unphysica
behavior appears.

The unphysical behavior points to the limitations of t
model. The Hamiltonian and overlap matrix elements
described by a functional form which can at best appro
mate the actual behavior within a limited range. For an
tended range either the functional form must be modifi
. B

hy
-

nd
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et

p

. J

m

st

ho

f
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e.g., by including higher-order terms in Eq.~4!, as has been
done in a more recent NRL TB copper potential used in R
5. The need for modification can also be seen in the e
tronic band structure, which is degraded by the fitting
distorted fcc structures.

ACKNOWLEDGMENTS

We thank Jon Boettger, Matthias Graf, David Schife
and Duane Wallace for helpful and encouraging discussio
This research is supported by the Department of Ene
under Contract No. W-7405-ENG-36. All FLAPW
calculations were performed using theWIEN97 package.12

Some of the calculations were performed at the Natio
Energy Research Scientific Computing Center~NERSC!,
which is supported by the Office of Science of the U.S. D
partment of Energy under Contract No. DE-AC0
76SF00098.
in

th.

ci-
n

i,
o-
1N. Troullier and J.L. Martins, Phys. Rev. B43, 1993
~1991!.

2C.Y. Wei, S.P. Lewis, E.J. Mele, and A.M. Rappe, Phys. Rev
57, 10 062~1998!.

3F. Jona and P.M. Marcus, Phys. Rev. B63, 094113~2001!.
4R.E. Cohen, M.J. Mehl, and D.A. Papaconstantopoulos, P

Rev. B 50, 14 694~1994!; M.J. Mehl and D.A. Papaconstanto
poulos,ibid. 54, 4519~1996!; S.H. Yang, M.J. Mehl, and D.A.
Papaconstantopoulos,ibid. 57, R2013~1998!.

5Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, a
J.D. Kress, Phys. Rev. B63, 224106~2001!.

6W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandre
N.W. Ashcroft, N.C. Holmes, and G.R. Gathers, Phys. Rev. L
60, 1414~1988!.

7H.K. Mao, P.M. Bell, J.W. Shaner, and D.J. Steinberg, J. Ap
Phys.49, 3276~1978!.

8R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W
Carter, inHigh Velocity Impact Phenomena, edited by R. Kin-
slow ~Academic, New York, 1970!.

9S. G. Louie, inElectronic Structure, Dynamics, and Quantu
Structured Properties of Condensed Matter, edited by D. T.
Devreese and P. van Camp~Plenum, New York, 1985!, p. 335.

10J.C. Slater and G.F. Koster, Phys. Rev.94, 1498~1954!.
11The (l l 8m) symmetries are (sss), (sps), (sds), (pps),

(pds), (dds), (ppp), (pdp), (ddp), and (ddd), as first sug-
gested by J.C. Slater and G.F. Koster, Phys. Rev.94, 1498
~1954!.

12P. Blaha, K. Schwarz, and J. Luitz,WIEN97, A Full Potential Lin-
earized Augmented Plane Wave Package for Calculating Cry
Properties~Technical Universita¨t Wien, Austria, 1999!.

13J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,
3865 ~1996!.

14D. J. Singh,Planewaves, Pseudopotentials and the LAPW Met
~Kluwer, Boston, 1994!.

15M. D. Jones and R. C. Albers~unpublished!.
16D. A. Papaconstantopoulos,Handbook of the Band Structure o

Elemental Solids~Plenum, New York, 1986!.
s.

t.

l.

.

al

d

17J. F. Cornwell,Group Theory and Electronic Energy Bands
Solids~North-Holland, Amsterdam, 1969!.

18J. E. Dennis, Jr., D. M. Gay, and R. E. Welsch, ACM Trans. Ma
Softw. 7, 348 ~1981!.

19G. Nilsson and S. Rolandson, Phys. Rev. B7, 2393
~1973!.

20P. H. Dederichs, H. Schober, and D. J. Sellmyer,Landolt-
Börnstein, Numerical Data and Functional Relationships in S
ence and Technology, edited by K.-H. Hellwege and J. L. Olse
~Springer-Verlag, Berlin, 1981!, Vol. 13a, p. 50.

21K. Kunc and R.M. Martin, Phys. Rev. Lett.48, 406
~1982!.

22S. Wei and M.Y. Chou, Phys. Rev. Lett.69, 2799~1992!.
23W. Frank, C. Elsa¨sser, and M. Fa¨hnle, Phys. Rev. Lett.74, 1791

~1995!.
24K. Parlinski, Z.Q. Li, and Y. Kawazoe, Phys. Rev. Lett.78, 4063

~1997!.
25R. K. Pathria,Statistical Mechanics~Pergamon, Oxford, 1972!, p.

139.
26R. K. Pathria,Statistical Mechanics~Pergamon, Oxford, 1972!, p.

76.
27Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desa

Thermal Expansion: Metallic Elements and Alloys, Therm
physical Properties of Matter~IFI/Plenum, New York, 1975!,
Vol. 12, p. 77.

28F. Birch, J. Geophys. Res.83, 1257~1978!.
29W.C. Overton, Jr. and J. Gaffney, Phys. Rev.98, 969~1955!; Y.A.

Chang, L. Himmel, and J.P. Neumann, J. Appl. Phys.37, 3567
~1966!.

30R.C. Albers and J.E. Gubernatis, Phys. Rev. B23, 2782
~1981!.

31P. Choquard,The Anharmonic Crystal~Benjamin, New York,
1967!.

32D. Wallace, Thermodynamics of Crystals~Dover Publications,
Mineola, NY, 1998!.

33Duane C. Wallace, Phys. Rev. E56, 1981~1997!.
4-9



,

RUDIN, JONES, GREEFF, AND ALBERS PHYSICAL REVIEW B65 235114
34T.C. Cetas, C.R. Tilford, and C.A. Swenson, Phys. Rev.174, 835
~1968!.

35D.L. Martin, Can. J. Phys.38, 17 ~1960!.
36D. Hayes, R. S. Hixson, and R. G. McQueen, inShock Compres-

sion of Condensed Matter, edited by M. D. Furnish, L. C.
23511
Chhabildas, and R. S. Hixson~American Institute of Physics
Melville, 2000!, p. 483.

37N. W. Ashcroft and N. D. Mermin,Solid State Physics~W. B.
Saunders Company, Philadelphia, 1976!, p. 49.
4-10


