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Analysis of guided resonances in photonic crystal slabs
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We present a three-dimensional analysis of guided resonances in photonic crystal slab structures that leads
to a new understanding of the complex spectral properties of such systems. Specifically, we calculate the
dispersion diagrams, the modal patterns, and transmission and reflection spectra of these resonances. From
these calculations, a key observation emerges involving the presence of two temporal pathways for transmis-
sion and reflection processes. Using this insight, we introduce a general physical model that explains the
essential features of complex spectral properties. Finally, we show that the quality factors of these resonances
are strongly influenced by the symmetry of the modes and the strength of the index modulation.
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I. INTRODUCTION

Photonic crystal slabs are a particularly important class
photonic crystal structures. A photonic crystal slab cons
of a two-dimensionally periodic index contrast introduc
into a high-index guiding layer~Fig. 1!. These structures
support in-planeguided modesthat are completely confine
by the slab without any coupling to external radiation
These guided modes allow control of light within the layer
the wavelength scale. Therefore, the slab structure may
vide the basic substrate for large-scale on-chip integratio
photonic components and circuits.1–8

In addition to in-plane waveguiding, photonic cryst
slabs can also interact with external radiations in comp
and interesting ways. Of particular importance here is
presence ofguided resonancesin the structures.9–15 Similar
to the guided mode, a guided resonance also has its ele
magnetic power strongly confined within the slab. Unlike t
guided mode, however, the resonance can couple to exte
radiation. Therefore, guided resonances can provide an
cient way to channel light from within the slab to the exte
nal environment. This property has been exploited in desi
of novel photonic-crystal-based light-emitting diodes,11,16

lasers,17,18 and directional output couplers.19 In addition, the
guided resonances can significantly affect the transmis
and reflection of externally incident light, resulting in com
plex resonant line shapes that are useful in fil
applications.9,20

The purpose of this paper is to present a novel analysi
guided resonances in photonic crystal slabs. Our anal
elucidates a variety of complex spectra phenomena ass
ated with these resonances. We compute the dispersion
grams and the eigenfield distributions of these resonan
with a plane-wave band-structure computation method.
then perform finite-difference time-domain simulations
determine the transmission and reflection spectra and to
sualize in real time the interaction between the resonan
and incident light. Emerging from these simulations is a k
0163-1829/2002/65~23!/235112~8!/$20.00 65 2351
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insight that involves the presence of two temporal pathw
in the transmission and reflection processes. Based on
insight, we introduce a general and intuitive theory, whi
uses only interference and energy conservation argument
explain all the complex features in the spectral lineshap
Finally, we analyze the angular and structural dependen
of the guided resonances, and we show the wide range
tunability in quality factors for these resonances.

II. BAND STRUCTURE OF THE GUIDED RESONANCES

Since the spectral features of the guided resonances
photonic crystal slab will turn out to depend critically o
their modal properties, it is helpful to begin our discussi
with a brief overview of the band structure properties
these resonances. Throughout this paper, our model sy
will consist of a square lattice of air holes introduced into
dielectric slab~Fig. 1!. The thickness of the slab is 0.5a, and
the radius of the holes is 0.2a, wherea is the lattice constant
The dielectric constant of slab is 12, which roughly corr
sponds to the dielectric constant of Si or GaAs at opti
wavelengths. For such a structure, because of the tran
tional symmetries within the plane of the slabs, the physi
properties of the slabs can be described by a band diag
that relates the frequencies of all the three-dimensio
modes to the in-plane wave vectors.1,2 The band diagram can
be computed by a preconditioned conjugate gradient mini
zation of a Maxwell operator expanded on a plane-wa
basis.21

FIG. 1. Photonic crystal slab structure consisting of a squ
lattice of air holes introduced into a high-index dielectric slab.
©2002 The American Physical Society12-1
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To understand the origins of different types of modes i
photonic crystal slab, let us first briefly review the band d
gram of a uniform dielectric slab. For this purpose, we co
sider a uniform slab with a thickness of 0.5a, and a dielectric
constant of 12. The band diagram for this structure is plot
in Fig. 2. Here we exhibit the band diagram using a reduc
zone scheme assuming a square lattice with a lattice con
a. The lines here correspond to the guided modes that
confined within the slab, while the gray region correspon
to the continuum of radiation modes. Radiation modes
above thelight line, which is defined as the boundary of th
gray region. We separate the guided modes into even or
modes, characterized with respect to the mirror plane par
to the slab. The lowest-order even modes have their ele
fields parallel to the slab, while the lowest-order odd mod
have their magnetic field parallel to the slab. Because of
use of the reduced-zone scheme, some of the guided m
exist above the light line. These modes, however, do
couple to radiation modes because of the underlying cont
ous translational symmetry of the structure. Also, we note
existence of doubly degenerate bands at manyk points and
the occurrence of a four fold degeneracy at theG point. ~The
G point refers to a zero value of thek vector parallel to the
plane of periodicity.!

FIG. 2. Band structure for~a! even and~b! odd modes in a
uniform dielectric slab. The slab has a thickness of 0.5a and a
dielectric constant of 12. The band structure is plotted in a redu
zone scheme, assuming a square lattice with lattice constanta. The
even and odd symmetries are defined with respect the mirror p
parallel to the slab. The lines here are the guided modes. The
lines represent doubly degenerate states, while the dashed line
resent singly degenerate states. The gray regions are the conti
of radiation modes.
23511
a
-
-

d
-

ant
re
s
e

dd
lel
ric
s
e
es

ot
u-
e

Compared with the band diagram of the uniform dielect
slab, the band diagram of a photonic crystal slab struct
displays important similarities and differences. For o
model system as shown in Fig. 1, the band diagrams for
even and odd modes are plotted in Figs. 3~a! and 3~b!, re-
spectively. Modes below the light line are stillbona fide
guided modes with infinite lifetime, in spite of the large in
dex contrast introduced by the air holes. The guided mo
above the light line, on the other hand, can now couple
radiation modes and possess a finite lifetime. These mo
therefore becomeguided resonances. They are called
‘‘guided’’ since they are closely related to the guided mo
bands in a uniform slab and should therefore retain sign
cant portions of the electromagnetic power within the diel
tric slab.

The presence of the air holes in the crystal also lowers
translational symmetry of the structure from a continuo
one to a discrete one and thereby reduces the degenera
the bands. At mostk points,~except for the special pointsG,
X, and M!, the bands are now singly degenerate. At theG
point, the point group supports a two-dimensional irreduci
representation, allowing for the existence of doubly degen
ate states. Therefore, the fourfold degeneracy at theG point
for a uniform slab splits in the presence of the air holes,
clearly seen in Fig. 4, where we plot the frequencies of
resonant modes atG as a function of the radius of the hole

d-

ne
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ep-
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FIG. 3. Band structure for~a! even and~b! odd modes in a
photonic crystal slab. The structure is shown in the inset of a
consists of a square lattice of air holes with a radius of 0.2a intro-
duced into a high-index dielectric slab with a dielectric constant
12 and a thickness of 0.5a. ~a is the lattice constant.! Even and
odd symmetries are defined with respect the mirror plane paralle
the slab. The gray region is the continuum of radiation modes. S
lines outside the gray region are guided modes. Solid lines wi
the gray region are guided resonances.
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As the radius of the holes increases, the modes separate
a pair of doubly degenerate states and two singly degene
states.

For the crystal structure withr 50.20a, we show the
power density distribution of the first resonant band atG in
Fig. 5. The mode is singly degenerate with a frequencyv
50.3532pc/a. Since any singly degenerate mode sho
belong to a one-dimensional irreducible representation,
power density distribution of the mode should possess
full symmetry of the lattice. This can be seen in Fig. 5~a!,
which shows the spatial distribution of the power density
a slice parallel to the slab. Also, the resonant nature of
mode is exhibited in Fig. 5~b!, which shows that the powe
density is strongly confined within the slab.

The band-structure computations thus allow us to exa
ine the dispersion, the field distributions, and the symme
properties of the guided resonances. For a complete un
standing of these resonances, however, we must also s
their lifetimes and their interactions with external radiation

FIG. 4. Frequencies of the resonances atG as a function of the
radius of the holes in the slab. The slab has a dielectric consta
12 and a thickness of 0.5a. The modes are fourfold degenerate
the structure without holes. For structures with holes, the fourf
degeneracy is broken, resulting in a pair of doubly degenerate s
and two singly degenerate states.

FIG. 5. Spatial distribution of the power density in electric fiel
on ~a! a horizontal slice and~b! a vertical slice for the lowest-orde
singly degenerate resonance atG. The lines indicate the position o
the interface between dielectric and air. The white color repres
low intensity and the dark color represents high intensity, as in
cated by the color bar at the bottom of the figure.
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These questions will be addressed in the next session
finite-difference time-domain simulations.

III. TIME-DOMAIN ANALYSIS OF THE GUIDED
RESONANCES

A. Computational methods

The computational domain for our finite-difference tim
domain study22 is shown in Fig. 6. The domain includes
single unit cell of the crystal. On the top and bottom surfac
of the computational domain, we impose the Perfec
Matched Layer~PML! absorbing boundary conditions.23 For
the remaining four surfaces that are perpendicular to the s
we impose a Bloch periodic boundary condition on the el
tric fields E:

E~r1a!5ei ~k•a!E~r !. ~1!

Herea is a lattice vector of the square lattice andk is a wave
vector that is parallel to the slab. We note that by Bloc
theorem,k is a conserved quantity in the scattering proce

We generate an incident plane wave by placing a sou
plane consisting of oscillating dipoles near the top surface
the computational domain. For two dipoles in the plane t
are separated by a distance vectorr , we set the relative phas
between them to beei (k"r ). Therefore, in combination with
the boundary condition as specified in Eq.~1!, the source
plane generates an incident plane wave with a parallel w
vector componentk. In addition, the amplitudes of the dipol
moments are set to oscillate at a constant frequency wi
Gaussian profile to create a temporal pulse. This comp
tional setup thus allows us to calculate the response funct
of the structure at a givenk for a wide range of frequencie
in a single simulation run.~Notice that this is not a constan
incidence angle calculation. At a fixed parallel wave vec
k, the incidence angle changes with frequency.!

of

d
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FIG. 6. Cross section of the computational domain for the c
culation of transmission and reflection coefficients through a p
tonic crystal slab. The coordinate system is also shown. The c
putational domain encloses a single unit cell of the crystal. Blo
boundary conditions are imposed on the four surfaces perpendic
to the slab. The PML absorbing boundary conditions are impose
the top and bottom surfaces. A plane of dipole sources generate
incident plane waves. The transmitted and reflected amplitudes
determined by recording the fields at the monitor points positio
at both sides of the structure.
2-3
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The transmission and reflection spectra are obtained
first Fourier transforming the recorded time sequence of fi
amplitudes at their respective monitor points.~We note that
monitoring the field amplitudes only at the two monit
points is valid for the frequency rangev,2pc/a, where no
diffraction occurs.! The spectra are then normalized with r
spect to the incident pulse, which is calculated in an ident
simulation in vacuum without the slab structure. For refle
tion, the normalization step is preceded by subtracting
incident pulse.

B. Transmission and reflection spectra

Using the computational setup as described in Sec. I
we calculate the transmission and reflection coefficients
variousk points for the structure as shown in Fig. 1. In t
case wherek5 x̂30.232p/a, the calculated spectra for th
s-polarized incident wave are shown in Fig. 7.~An
s-polarized wave has its electric field perpendicular to
plane of incidence. In this case, the electric field is polariz
along they direction.! The spectra consist of sharp resona
features superimposed upon a smoothly varying backgro

The background in Fig. 7 resembles Fabry-Perot osc
tions when light interacts with a uniform dielectric slab. T
clearly see this, we fit the background to the spectra o
uniform slab, which are shown as dashed lines in Fig. 7. T
uniform slab has the same thickness of 0.5a as the crystal,
and the light is incident with the same polarization at t
same parallel wave vectork5 x̂30.232p/a. The dielectric
constant of the uniform slab«1 , as obtained by the fitting
procedure, represents an effective dielectric constant for
photonic crystal. Due to the presence of the holes, such«1 is
a slowly varying function of the frequency. At low frequen
cies, the wavelength of incident light is large, and«1 for this
polarization approaches the average dielectric constant«avg

FIG. 7. ~a! Transmission and~b! reflection spectra. The solid
lines are for the photonic crystal structure shown in Fig. 3~a!. The
dashed lines are for a uniform dielectric slab with a frequen
dependent dielectric constant, as defined in Eq.~2!, and a thickness
of 0.5a. The incident wave iss polarized and has a parallel wav
vector along thex directionkx50.232p/a.
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of the crystal. At higher frequencies, as the incident wa
probes more details of the crystal structure,«1 starts to de-
viate from «avg. Within the frequency range in Fig. 7, i.e
between 0.2532pc/a and 0.6032pc/a, we have found
that a frequency-dependent dielectric constant

«1~v!5214.16v2115.18v17.18 ~2!

gives a very good fit of the background~Fig. 7!. The fit here
corresponds to varying«1 from 10.62 atv50.2532pc/a to
11.5 atv50.6032pc/a. ~As a comparison, the average d
electric constant for the crystal is 10.6.! Therefore, except for
the sharp resonance features, the background of the sp
for the crystal can be adequately accounted for using
model of a uniform dielectric slab with a frequenc
dependent dielectric function.

C. Line shape analysis

Superimposed upon the smooth background in the spe
for the crystals are sharp resonant features. Such feat
come from the guided resonances of the slab. In most ca
the line shapes for these resonances are asymmetric
rather complicated. Extensive experimental and theoret
work has been performed for guided resonances in struct
with one-dimensionally periodic index variation.24–31 For
structures with two-dimensional periodicity, these resonan
have also been studied numerically using the rigoro
coupled-wave analysis~RCWA! method20 and, analytically,
using vector coupled-mode theory.13,15Here we would like to
present a novel analysis from a time-domain perspective.
will observe important features in the time-domain sign
tures of the resonances. And based upon the observation
will introduce a general and intuitive model to account f
the underlying physics.

The transmission and reflection spectra are related to
time-varying fields by a Fourier transformation. It is ther
fore informative to examine the time dependence of
fields. As an example, we show in Fig. 8~a! the electric field
amplitude at the transmission monitor point as a function
time steps for the calculation that gives the spectra show
Fig. 7. The time sequence consists of two distinct st
es: an initial pulse and a tail of long decay.

The presence of these two stages indicates the exist
of two pathways in the transmission processes. The
pathway is a direct transmission process, where a portio
the incident energy goes straight through the slab and ge
ates the initial pulse. The Fourier transformation of the init
pulse should account for the background in the transmiss
spectra. The second pathway is an indirect transmission
cess, where the remaining portion of the incident energy
cites the guided resonances. The power in the resona
then decays slowly out of the structure and produces the l
decaying tail. By Fourier transforming the decaying tail, w
obtain the typical symmetric Lorentzian line shapes,
shown in Fig. 8~b!. The analysis of the resonant line sha
thus allows us to determine the quality factorQ of the reso-
nance.@The quality factorQ is defined asv/~dv!, wherev is
the center frequency anddv is the resonant linewidth.# A
few examples of theQ values for this structure are 360 fo

-
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ANALYSIS OF GUIDED RESONANCES IN PHOTONIC . . . PHYSICAL REVIEW B 65 235112
the resonance atv50.31(2pc/a) and 2500 for the reso
nance atv50.36(2pc/a). The transmission property, there
fore, is determined by the interference between the direct
the indirect pathways. The same observation can be mad
the reflected amplitude as well. In solid-state and atom
physics, similar interference phenomena are commonly
ferred to as the Fano resonances.32 Such a temporal interfer
ence phenomenon has also been analyzed previously for
face plasmons in metallic thin films.33

Taking into consideration the interference between th
two pathways, we can construct a simple and intuitive mo
that quantitatively explains the line shape. We express
transmitted amplitudet and the reflected amplituder as fol-
lows:

t5td1 f
g

i ~v2v0!1g
, ~3!

r 5r d6 f
g

i ~v2v0!1g
. ~4!

Here td and r d are the direct transmission coefficients,v0
andg are the center frequencies and widths of the Lorentz
from the resonance, and the factorf is the complex amplitude
of the resonant mode.

The plus and minus sign in Eq.~4! corresponds to reso
nant modes that are even and odd, respectively, with res
to the mirror plane parallel to the slab. We note that
Lorentzian functions in Eqs.~3! and ~4! correspond to the
decaying amplitudes of the resonances to the reflection
transmission sides of the slab, respectively. For an e
mode, the decaying amplitudes to the two sides of the s
are in phase, while for an odd mode the decaying amplitu

FIG. 8. ~a! Field amplitude at the monitor point as a function
time step for the same calculation as shown in Fig. 7. Notice
existence of two separate stages: an initial pulse and a long
caying tail.~b! Fourier transformation of the amplitude as shown
~a! from time step 20 000–100 000. The spectral intensity exhi
Lorentzian line shapes.
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are 180° out of phase. Thus, the signs in Eq.~4! are different
for modes with different mirror-plane symmetry propertie

The factorf can in fact be determined purely by energ
conservation arguments. We note that

ur u21utu251. ~5!

Moreover, sincer d andtd are the transmission and reflectio
coefficients through a uniform slab with the appropriate
fective dielectric constant, we should have

ur du21utdu251. ~6!

Constraints~5! and ~6! together uniquely determine th
factor f. Plugging Eqs.~3!, ~4!, and~6! into Eq.~5!, we have,
for any v,

22u f u2
g2

~v2v0!21g2 52u f uutd6r du
g

A~v2v0!21g2

3cosFarg~ f !2arg~ td6r d!

2arccosS g

A~v2v0!21g2D G ,

~7!

which can only be satisfied if

f 52~ td6r d!. ~8!

It is interesting to note here that the factorf is independent of
the resonant linewidthg.

The parametersr d andtd represent the background of th
spectra. Therefore, as discussed earlier in Sec. III B, s
parameters can be determined by fitting the background
the response spectra of a uniform slab, as

r d5

i
kz0

2 2kz1
2

2kz0kz1
sin~kz1h!

cos~kz1h!2 i
kz0

2 1kz1
2

2kz0kz1
sin~kz1h!

, ~9!

td5
1

cos~kz1h!2 i
kz0

2 1kz1
2

2kz0kz1
sin~kz1h!

, ~10!

for a plane wave with parallel wave vectorkx , incident from
vacuum with a dielectric constant«051, through a uniform
dielectric slab with a thicknessh and a dielectric constan
«1 .34 The parameterskz0 andkz1 in Eqs.~9! and~10! repre-
sent the wave vector components along thez axis in the
uniform slab and are defined as

kz05A«0

v2

c2 2kx
2, ~11!

kz15A«1

v2

c2 2kx
2. ~12!

e
e-
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In obtaining Eqs.~9! and ~10!, we assume a positive
frequency convention, in order to be consistent with
Lorentzian functions that we have chosen for the resona
in Eqs.~3! and ~4!.

We note, in particular, whentd51 andr d50, from Eqs.
~3!, ~4!, and~8!, the reflection and transmission coefficien
become

t5
i ~v2v0!

i ~v2v0!1g
~13!

and

r 57
g

i ~v2v0!1g
. ~14!

The line shapes thus become symmetric, and the struc
behaves as a narrow-band reflector with a Lorentzian refl
tivity line shape. This scenario was noted previously
Wang and Magnusson.26 In the general case whenr dÞ0, on
the other hand, the line shape becomes asymmetric.
transmission can vary from 0% to 100% within a very n
row frequency range. A small shift in the resonant frequen
may therefore lead to a drastic change in the response f
tion. This effect may be exploited in the design of optic
switches.

We compare our theoretical predictions, as defined
Eqs. ~3!, ~4!, ~8!, ~9!, and ~10!, to the numerical results fo
the first two resonances shown in Fig. 7.~Both of these reso-
nances are even.! The frequencyv0 and the widthg of
each resonance are determined from the simulations.
only fitting parameter here is the effective dielectric const
«1(v), which we take from Eq.~2!. The theoretical results
thus obtained are shown as solid lines in Fig. 9. The the
agrees completely with the numerical simulations.

D. Wave vector dependence of the resonances

To explore the wave vector and polarization dependen
of the resonances, we performed calculations at different
ues ofkx , for an incident wave that is eithers or p polarized.
~The s polarization has the electric field perpendicular to t
plane of incidence, while thep polarization has the magneti
field perpendicular to the plane of incidence.! We deter-
mine the position and width of the resonances by Fou
transforming the decaying tail, as discussed earlier in S
III C. The results are summarized in Fig. 10, where we sh
the frequencies of the resonances as a function ofkx . Inci-
dent waves with different polarizations excite different res
nances, since the two polarizations possess different sym
tries with respect to theyz-mirror plane.

We note that, in Fig. 10, some of the bands do not c
tinue to theG point. In other words, certain resonances aG
do not couple to either polarization of the incident wave
closer examination of Fig. 10 reveals that all these uncoup
resonances are singly degenerate. Previously, this effect
observed experimentally by Pacradoniet al.14 and discussed
theoretically by Paddon and Young13 and Ochiai and
Sakoda.25
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To further explore the wave vector dependence of
resonance, in Fig. 11 we plot the quality factors of the re
nances as a function ofkx for the four lowest bands in Fig
10. For bands with different symmetry properties, the beh
iors of the quality factors are very different. TheQ factors

FIG. 9. Comparison of theory and simulations. The emp
circles in ~a! and ~b! are numerical results taken from Fig. 7~a!,
which corresponds to the two lowest-frequency resonances.
solid lines are theoretical predictions from Eqs.~3!, ~8!, ~9!, and
~10!. The parameters of the theory for the two resonances are~a!
v050.307632pc/a, g54.1913102432pc/a and ~b! v0

50.360132pc/a, g57.24833102532pc/a.

FIG. 10. Frequencies of the resonances as a function ofkx for
the structure as shown in Fig. 1 as determined from the tim
domain simulations. The solid circles correspond to the resona
that are excited by thep-polarized incident wave: the open circle
correspond to the resonances that are excited by thes-polarized
incident waves. Notice that some of the bands do not continu
kx50, indicating the existence of uncoupled states atG.
2-6
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ANALYSIS OF GUIDED RESONANCES IN PHOTONIC . . . PHYSICAL REVIEW B 65 235112
approach a constant askx vanishes for the modes that co
nect to the doubly degenerate states atG. For the modes tha
connect to the singly degenerate states, on the other hand
Q factors of the modes diverge. The calculation clearly de
onstrates that the symmetry of the modes can significa
influence the photon lifetime of the resonances.

E. Radius dependence of the resonance

In addition to symmetry-related effects, the lifetime of t
resonances is also strongly influenced by the radius of
holes. At the limit where the radius of the holes approac
zero, theQ factor for all the resonances should diverge, sin
the resonances asymptotically become true guided mode
demonstrate this effect, we plot in Fig. 12 the transmiss
spectra at normal incidence for four different structures w
the radius varying from 0.05a to 0.20a. The spectral feature
for the resonances indeed becomes sharper as the radiu
comes smaller. For the lowest-order resonances, theQ factor
varies from approximately 5000 atr 50.05a, to 213 at r
50.20a. At a larger radius, theQ factor should be even
lower.

The tunability of the quality factor with respect to th
radius of the holes is important for light-emitting diod
~LED! and laser applications. For photonic-crystal resona
cavity LED structures, optimal efficiency occurs when t
linewidth of the resonances become comparable to the l
width of the emitter.35 On the other hand, for a laser stru
ture, a high-Q resonance is typically desirable for thresho
reduction. Therefore, as we have demonstrated in this pa
photonic crystal slab structures are very versatile and ca
specifically tailored for different light-emitting applications

IV. SUMMARY

In summary, we present a three-dimensional freque
and time-domain analysis of resonances in photonic cry
slab structures. These resonances are strongly confined
the dielectric slab and yet at the same time are couple
radiation modes. For external light incident upon these sla
the transmission and reflection spectra are strongly mod

FIG. 11. Quality factor as a function ofkx for the four lowest
bands in Fig. 10. The solid lines correspond to modes that con
to the doubly degenerate state at theG point. The dashed lines
correspond to modes that connect to the singly degenerate sta
the G point.
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constant of 12.
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