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Analysis of guided resonances in photonic crystal slabs
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We present a three-dimensional analysis of guided resonances in photonic crystal slab structures that leads
to a new understanding of the complex spectral properties of such systems. Specifically, we calculate the
dispersion diagrams, the modal patterns, and transmission and reflection spectra of these resonances. From
these calculations, a key observation emerges involving the presence of two temporal pathways for transmis-
sion and reflection processes. Using this insight, we introduce a general physical model that explains the
essential features of complex spectral properties. Finally, we show that the quality factors of these resonances
are strongly influenced by the symmetry of the modes and the strength of the index modulation.
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[. INTRODUCTION insight that involves the presence of two temporal pathways
in the transmission and reflection processes. Based on this
Photonic crystal slabs are a particularly important class ofnsight, we introduce a general and intuitive theory, which
photonic crystal structures. A photonic crystal slab consists!ses only interference and energy conservation arguments, to
of a two-dimensionally periodic index contrast introduced€xplain all the complex features in the spectral lineshapes.
into a high-index guiding layefFig. 1). These structures Finally, we analyze the angular and structural dependences
support in-plangguided modeshat are completely confined of the_ _gw_ded resonances, and we show the wide ranges of
by the slab without any coupling to external radiations.tunability in quality factors for these resonances.
These guided modes allow control of light within the layer at
the wavelength scale. Therefore, the slab structure may pro4l. BAND STRUCTURE OF THE GUIDED RESONANCES
vide the basic substrate for large-scale on-chip integration of
photonic components and circufts
In addition to in-plane waveguiding, photonic crystal
slabs can also interact with external radiations in comple
and interesting ways. Of particular importance here is th

Since the spectral features of the guided resonances in a
photonic crystal slab will turn out to depend critically on
Jheir modal properties, it is helpful to begin our discussion
é(vith a brief overview of the band structure properties of

presence ofjuided resonanceis the structure$:° Similar ~ 1'€S€ resonances. Throughout this paper, our model system
jill consist of a square lattice of air holes introduced into a

to the guided mode, a guided resonance also has its electrq: A . : .
g g ielectric slab(Fig. 1). The thickness of the slab is @5and

magnetic power strongly confined within the slab. Unlike the _ . ) .
guided mode, however, the resonance can couple to extern%lf radius of the holes is G2 wherea is the lattice constant.
’ ’ The dielectric constant of slab is 12, which roughly corre-

radiation. Therefore, guided resonances can provide an effi- he dielectri P ical
cient way to channel light from within the slab to the exter- SPONds to the dielectric constant of Si or GaAs at optica

nal environment. This property has been exploited in design&’@velengths. For such a structure, because of the transla-
of novel photonic-crystal-based light-emitting diod&4? tional symmetries within the plane of_the slabs, the phy3|cal
laserst”8 and directional output coupletSin addition, the properties of the slabs can be described by a band diagram

guided resonances can significantly affect the transmissioffidt relates the frequencies Ogé‘" the three-dimensional
and reflection of externally incident light, resulting in com- Modes to the in-plane wave vectorsThe band diagram can

plex resonant line shapes that are useful in filterP® pomputed by a preconditioned conjugate gradient minimi-
applications2° zation of a Maxwell operator expanded on a plane-wave

The purpose of this paper is to present a novel analysis Jpasis™
guided resonances in photonic crystal slabs. Our analysis
elucidates a variety of complex spectra phenomena associ-
ated with these resonances. We compute the dispersion dia-
grams and the eigenfield distributions of these resonances
with a plane-wave band-structure computation method. We
then perform finite-difference time-domain simulations to
determine the transmission and reflection spectra and to vi-
sualize in real time the interaction between the resonances FIG. 1. Photonic crystal slab structure consisting of a square
and incident light. Emerging from these simulations is a keylattice of air holes introduced into a high-index dielectric slab.
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photonic crystal slab. The structure is shown in the inset of and
FIG. 2. Band structure fofa) even and(b) odd modes in a  consists of a square lattice of air holes with a radius ofQrro-
uniform dielectric slab. The slab has a thickness ofaOdhd a  duced into a high-index dielectric slab with a dielectric constant of
dielectric constant of 12. The band structure is plotted in a reducedl? and a thickness of a5 (a is the lattice constant. Even and
zone scheme, assuming a square lattice with lattice corstamte ~ 0dd symmetries are defined with respect the mirror plane parallel to
even and odd symmetries are defined with respect the mirror plan@€ slab. The gray region is the continuum of radiation modes. Solid
parallel to the slab. The lines here are the guided modes. The solifes outside the gray region are guided modes. Solid lines within
lines represent doubly degenerate states, while the dashed lines rdp€ gray region are guided resonances.
resent singly degenerate states. The gray regions are the continuum

of radiation modes. Compared with the band diagram of the uniform dielectric

slab, the band diagram of a photonic crystal slab structure
To understand the origins of different types of modes in adisplays important similarities and differences. For our
photonic crystal slab, let us first briefly review the band dia-model system as shown in Fig. 1, the band diagrams for the
gram of a uniform dielectric slab. For this purpose, we con-even and odd modes are plotted in Fig&)3and 3b), re-
sider a uniform slab with a thickness of 8,5and a dielectric  spectively. Modes below the light line are stbbna fide
constant of 12. The band diagram for this structure is plottedjuided modes with infinite lifetime, in spite of the large in-
in Fig. 2. Here we exhibit the band diagram using a reduceddex contrast introduced by the air holes. The guided modes
zone scheme assuming a square lattice with a lattice constaalbove the light line, on the other hand, can now couple to
a. The lines here correspond to the guided modes that amadiation modes and possess a finite lifetime. These modes
confined within the slab, while the gray region correspondgherefore becomeguided resonancesThey are called
to the continuum of radiation modes. Radiation modes lig'guided” since they are closely related to the guided mode
above thdight line, which is defined as the boundary of the bands in a uniform slab and should therefore retain signifi-
gray region. We separate the guided modes into even or odthnt portions of the electromagnetic power within the dielec-
modes, characterized with respect to the mirror plane parallgtic slab.
to the slab. The lowest-order even modes have their electric The presence of the air holes in the crystal also lowers the
fields parallel to the slab, while the lowest-order odd modedranslational symmetry of the structure from a continuous
have their magnetic field parallel to the slab. Because of thene to a discrete one and thereby reduces the degeneracy of
use of the reduced-zone scheme, some of the guided mod#® bands. At mosk points, (except for the special poinis,
exist above the light line. These modes, however, do noX, and M), the bands are now singly degenerate. At the
couple to radiation modes because of the underlying continysoint, the point group supports a two-dimensional irreducible
ous translational symmetry of the structure. Also, we note theepresentation, allowing for the existence of doubly degener-
existence of doubly degenerate bands at mlappints and ate states. Therefore, the fourfold degeneracy af tip@int
the occurrence of a four fold degeneracy atlhgoint. (The  for a uniform slab splits in the presence of the air holes, as
I" point refers to a zero value of thevector parallel to the clearly seen in Fig. 4, where we plot the frequencies of the
plane of periodicity. resonant modes at as a function of the radius of the holes.
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FIG. 4. Frequencies of the resonance$ ats a function of the FIG. 6. Cross section of the computational domain for the cal-

radius of the holes in the slab. The slab has a dielectric constant @ulation of transmission and reflection coefficients through a pho-
12 and a thickness of (85 The modes are fourfold degenerate in tonic crystal slab. The coordinate system is also shown. The com-
the structure without holes. For structures with holes, the fourfoldoutational domain encloses a single unit cell of the crystal. Bloch
degeneracy is broken, resulting in a pair of doubly degenerate stat@9undary conditions are imposed on the four surfaces perpendicular
and two singly degenerate states. to the slab. The PML absorbing boundary conditions are imposed at

the top and bottom surfaces. A plane of dipole sources generates the
As the radius of the holes increases, the modes separate infwident plane waves. The transmitted and reflected amplitudes are
a pair of doubly degenerate states and two s|ng|y degenera{@termined by reCOfding the fields at the monitor pOintS pOSitioned
states. at both sides of the structure.

For the crystal structure witli=0.20a, we show the _ . . .
power density distribution of the first resonant band’an ~ 1hese questions will be addressed in the next session by
Fig. 5. The mode is singly degenerate with a frequency finite-difference time-domain simulations.
=0.35x2xc/a. Since any singly degenerate mode should
belong to a one-dimensional irreducible representation, the  !ll. TIME-DOMAIN ANALYSIS OF THE GUIDED
power density distribution of the mode should possess the RESONANCES
full symmetry of the lattice. This can be seen in Figa)5
which shows the spatial distribution of the power density on ) . o ]
a slice parallel to the slab. Also, the resonant nature of this The computational domain for our finite-difference time-
mode is exhibited in Fig. ®), which shows that the power domain S_tu0|§'2 is shown in Fig. 6. The domain includes a
density is strongly confined within the slab. single unit cell of the crystal. On the top and bottom surfaces

The band-structure computations thus allow us to examof the computational domain, we impose the Perfectly
ine the dispersion, the field distributions, and the symmetrjMatched LayePML) absorbing boundary conditioR$ For
properties of the guided resonances. For a complete undele remaining four surfaces that are perpendicular to the slab,
standing of these resonances, however, we must also stutie impose a Bloch periodic boundary condition on the elec-
their lifetimes and their interactions with external radiations.tric fields E:

A. Computational methods

E(r+a)=e K 3E(r). )

Herea s a lattice vector of the square lattice angs a wave
vector that is parallel to the slab. We note that by Bloch’s
theoremk is a conserved quantity in the scattering process.
3 69 & We generate an incident plane wave by placing a source
plane consisting of oscillating dipoles near the top surface of
the computational domain. For two dipoles in the plane that
are separated by a distance vectowe set the relative phase

(b)

horizontal cut vertical cut between them to be'*"). Therefore, in combination with
the boundary condition as specified in Hd), the source
Power density in E-field plane generates an incident plane wave with a parallel wave
0 - vector componerk. In addition, the amplitudes of the dipole

moments are set to oscillate at a constant frequency with a

FIG. 5. Spatial distribution of the power density in electric fields Gaussian profile to create a temporal pulse. This computa-
on (a) a horizontal slice anéb) a vertical slice for the lowest-order tional setup thus allows us to calculate the response functions
singly degenerate resonancelatThe lines indicate the position of Of the structure at a givek for a wide range of frequencies
the interface between dielectric and air. The white color representé) a single simulation runiNotice that this is not a constant
low intensity and the dark color represents high intensity, as indiincidence angle calculation. At a fixed parallel wave vector
cated by the color bar at the bottom of the figure. k, the incidence angle changes with frequency.
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(@ of the crystal. At higher frequencies, as the incident wave
1 7 probes more details of the crystal structuse,starts to de-
s 08r ‘ viate from e 4. Within the frequency range in Fig. 7, i.e.,
3 06f Vil ( between 0.2%2xc/a and 0.6 2wc/a, we have found
g 04l H ﬂ that a frequency-dependent dielectric constant
S o2l IS
= 0 S e 05 e1(w)=—14.16w°+15.180+7.18 2
) gives a very good fit of the backgrouiEig. 7). The fit here
1 corresponds to varying, from 10.62 atw=0.25x27c/a to
0.8 |- 1L 11.5 atw=0.60x 27rc/a. (As a comparison, the average di-
5 o8] L\\ 1 \J electric constant for the crystal is 10.&herefore, except for
8 o4l f\ { the sharp resonance features, the background of the spectra
® o2 for the crystal can be adequately accounted for using the
0 VA w model of a uniform dielectric slab with a frequency-
0.25 0.35 0.45 0.55 dependent dielectric function.
Frequency (2nc/a)
FIG. 7. (a) Transmission andb) reflection spectra. The solid C. Line shape analysis
lines are for the photonic crystal structure shown in Fi@).3The Superimposed upon the smooth background in the spectra

dashed lines are for a uniform dielectric slab with a frequency+y, the crystals are sharp resonant features. Such features
dependent dielectric constant, as defined in(@).and a thickness ;14 from the guided resonances of the slab. In most cases,
of 0.5a. The incide_nt wave is polarized and has a parallel wave the line shapes for these resonances are asymmetric and
vector along thex directionk,=0.2x 2m/a. rather complicated. Extensive experimental and theoretical
work has been performed for guided resonances in structures

The transmission and reflection spectra are obtained byith one-dimensionally periodic index variatiéfi-3* For
first Fourier transforming the recorded time sequence of fiel&tructures with two-dimensional periodicity, these resonances
amplitudes at their respective monitor poinfé/e note that have also been studied numerically using the rigorous
monitoring the field amplitudes only at the two monitor coupled-wave analysi€RCWA) method® and, analytically,
points is valid for the frequency range<2mc/a, where no  ysing vector coupled-mode thediy*>Here we would like to
diffraction occurs). The spectra are then normalized with re- present a novel analysis from a time-domain perspective. We
spect to the incident pulse, which is calculated in an identic il observe important features in the time-domain Signa_
simulation in vacuum without the slab structure. For reflectyres of the resonances. And based upon the observation, we
tion, the normalization step is preceded by subtracting thguill introduce a general and intuitive model to account for
incident pulse. the underlying physics.

The transmission and reflection spectra are related to the
time-varying fields by a Fourier transformation. It is there-
fore informative to examine the time dependence of the

Using the computational setup as described in Sec. Ill lfields. As an example, we show in FigiaBthe electric field
we calculate the transmission and reflection coefficients aimplitude at the transmission monitor point as a function of
variousk points for the structure as shown in Fig. 1. In the time steps for the calculation that gives the spectra shown in
case wher&=%Xx0.2x2/a, the calculated spectra for the Fig. 7. The time sequence consists of two distinct stag-
s-polarized incident wave are shown in Fig. TAn  es: an initial pulse and a tail of long decay.
s-polarized wave has its electric field perpendicular to the The presence of these two stages indicates the existence
plane of incidence. In this case, the electric field is polarizedf two pathways in the transmission processes. The first
along they direction) The spectra consist of sharp resonantpathway is a direct transmission process, where a portion of
features superimposed upon a smoothly varying backgrounghe incident energy goes straight through the slab and gener-

The background in Fig. 7 resembles Fabry-Perot oscillaates the initial pulse. The Fourier transformation of the initial
tions when light interacts with a uniform dielectric slab. To pulse should account for the background in the transmission
clearly see this, we fit the background to the spectra of &pectra. The second pathway is an indirect transmission pro-
uniform slab, which are shown as dashed lines in Fig. 7. Theess, where the remaining portion of the incident energy ex-
uniform slab has the same thickness oféD&s the crystal, cites the guided resonances. The power in the resonances
and the light is incident with the same polarization at thethen decays slowly out of the structure and produces the long
same parallel wave vect&r=%Xx0.2x27/a. The dielectric  decaying tail. By Fourier transforming the decaying tail, we
constant of the uniform slab;, as obtained by the fitting obtain the typical symmetric Lorentzian line shapes, as
procedure, represents an effective dielectric constant for thehown in Fig. 8). The analysis of the resonant line shape
photonic crystal. Due to the presence of the holes, syde  thus allows us to determine the quality fac@rof the reso-

a slowly varying function of the frequency. At low frequen- nance[The quality factoiQ is defined asv/(Sw), wherew is
cies, the wavelength of incident light is large, andfor this  the center frequency anél is the resonant linewidth. A
polarization approaches the average dielectric constggt few examples of th& values for this structure are 360 for

B. Transmission and reflection spectra
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(a) are 180° out of phase. Thus, the signs in &j.are different
001 for modes with different mirror-plane symmetry properties.
The factorf can in fact be determined purely by energy
conservation arguments. We note that

Field amplitude

r|?+]t?=1. (5)
oot oo w000 o000 80000 100000 Moreover, since 4 andty are the transmission and reflection
timestep coefficients through a uniform slab with the appropriate ef-
©) fective dielectric constant, we should have
]
Z sl |rgl?+tgl>=1. (6)
)
c
g osr Constraints(5) and (6) together uniquely determine the
= %4 factorf. Plugging Eqgs(3), (4), and(6) into Eq.(5), we have,
5 o2l Ll for any w,
5]
% 0 LA {
0.26 0.3 0.35 0.4 0.45 0.5 0.55 ’)/2 y
Frequency (2rc/a) N — T | P
||(0)_O)o)2+’)’2 |||d d|\/m

FIG. 8. (a) Field amplitude at the monitor point as a function of
time step for the same calculation as shown in Fig. 7. Notice the
existence of two separate stages: an initial pulse and a long de- Xcogarg f)—argty=ry)
caying tail.(b) Fourier transformation of the amplitude as shown in

(a) from time step 20 000—100 000. The spectral intensity exhibits
Y
— arcco{

V(w—wg)*+ v

the resonance ab=0.31(2wc/a) and 2500 for the reso- @

nance atw=0.36(2wc/a). The transmission property, there-

fore, is determined by the interference between the direct an@hich can only be satisfied if

the indirect pathways. The same observation can be made for _ N

the reflected amplitude as well. In solid-state and atomic f==(tg*rq). 8)

physics, similar interference phenomena are commonly ret is interesting to note here that the factas independent of

ferred to as the Fano resonanééSuch a temporal interfer- the resonant linewidthy.

ence phenomenon has also been analyzed previously for sur- The parametersy andty represent the background of the

face plasmons in metallic thin film&. spectra. Therefore, as discussed earlier in Sec. IlIB, such
Taking into consideration the interference between thesparameters can be determined by fitting the background to

two pathways, we can construct a simple and intuitive modethe response spectra of a uniform slab, as

that quantitatively explains the line shape. We express the

Lorentzian line shapes.

transmitted amplitudé and the reflected amplitudeas fol- . kio— k§1 .
lows: T sin(k,.h)
_ 20" z1
fa= K2+ k2 ’ ©
y cogk;h) —i ~— sin(k,.h)
= - z 2k ok z
t td+fi(w—w0)+’y’ 3 z0Kz1
ty= ! (10
F=rgf— @ d cogk h)—iMsin(k h
- i(o—wg)+y 2 2Kz0Kz1 “

for a plane wave with parallel wave vectay, incident from
yacuum with a dielectric constaat=1, through a uniform
dielectric slab with a thicknesk and a dielectric constant
£1.2* The parameterk,, andk,; in Egs.(9) and(10) repre-
sent the wave vector components along thexis in the
piform slab and are defined as

Herety andry are the direct transmission coefficientsg
andv are the center frequencies and widths of the Lorentzial
from the resonance, and the factas the complex amplitude
of the resonant mode.

The plus and minus sign in E¢4) corresponds to reso-
nant modes that are even and odd, respectively, with respeH
to the mirror plane parallel to the slab. We note that the 2
Lorentzian functions in Eqs.3) and (4) correspond to the Ky0= "\ /80—2_ kf(, (12)
decaying amplitudes of the resonances to the reflection and c
transmission sides of the slab, respectively. For an even

mode, the decaying amplitudes to the two sides of the slab w 2 (12)
are in phase, while for an odd mode the decaying amplitudes c
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In obtaining Egs.(9) and (10), we assume a positive-

frequency convention, in order to be consistent with the c
Lorentzian functions that we have chosen for the resonance 2
in Egs.(3) and(4). g
We note, in particular, whety=1 andr4=0, from Egs. @
(3), (4), and(8), the reflection and transmission coefficients ;_E ' theory
become 02 - ' O simulations
0 ¥ 1 L
i(0—wg) 0.3 0305 0.31 0315 0.32
t= m (13 (2) Frequency (2xc/a)
and 1
y 5 0.8
r=¥—m—. 14 ? o
+I(w—wo)—i—'y (14 Ué 0.6
[7]
. . 04 |-
The line shapes thus become symmetric, and the structure "_f“
behaves as a narrow-band reflector with a Lorentzian reflec- 02
tivity line shape. This scenario was noted previously by 0 | . |
Wang and Magnussdf.In the general case whep+0, on 035 0355 0.36 0.365 0.37
the other hand, the line shape becomes asymmetric. The (0 Frequency (2xc/a)

transmission can vary from 0% to 100% within a very nar-
row frequency range. A small shift in the resonant frequency FIG. 9. Comparison of theory and simulations. The empty
may therefore lead to a drastic change in the response funeircles in(a) and (b) are numerical results taken from Fig(ay,
tion. This effect may be exploited in the design of optical which corresponds to the two lowest-frequency resonances. The
switches. solid lines are theoretical predictions from E@8), (8), (9), and

We compare our theoretical predictions, as defined b);10). The parameters of the theory for the two resonancegare
Egs. (3), (4), (8), (9), and (10), to the numerical results for @o=0.3076<2mcla, 7:4-19]><_15074X27TC/3 and (b) o
the first two resonances shown in Fig.(Both of these reso- =0.3601x2mc/a, y=7.2483<10 °x2mc/a.
nances are even. The frequencywy and the widthy of
each resonance are determined from the simulations. The To further explore the wave vector dependence of the
only fitting parameter here is the effective dielectric constanfesonance, in Fig. 11 we plot the quality factors of the reso-
e1(w), which we take from Eq(2). The theoretical results nances as a function &, for the four lowest bands in Fig.
thus obtained are shown as solid lines in Fig. 9. The theont0. For bands with different symmetry properties, the behav-
agrees completely with the numerical simulations. iors of the quality factors are very different. Tig factors

D. Wave vector dependence of the resonances ——e— incident wave with s-polarization

— < — incident wave with p-polarization

To explore the wave vector and polarization dependences
of the resonances, we performed calculations at different val-
ues ofk,, for an incident wave that is eithsror p polarized.
(The s polarization has the electric field perpendicular to the
plane of incidence, while the polarization has the magnetic
field perpendicular to the plane of incidenceWe deter-
mine the position and width of the resonances by Fourier
transforming the decaying tail, as discussed earlier in Sec.
[l C. The results are summarized in Fig. 10, where we show
the frequencies of the resonances as a functiok, ofinci-
dent waves with different polarizations excite different reso-
nances, since the two polarizations possess different symme- 0'30 0_65 o1 0is 0.0
tries with respect to thgzmirror plane. k_(2n/a)

We note that, in Fig. 10, some of the bands do not con- X
tinue to thel” point. In other words, certain resonanced at FIG. 10. Frequencies of the resonances as a functidg 6dr
do not couple to either polarization of the incident wave. Athe structure as shown in Fig. 1 as determined from the time-
closer examination of Fig. 10 reveals that all these uncouple@omain simulations. The solid circles correspond to the resonances
resonances are singly degenerate. Previously, this effect wasat are excited by thp-polarized incident wave: the open circles
observed experimentally by Pacradetial}* and discussed correspond to the resonances that are excited bys{pelarized
theoretically by Paddon and Youlfgand Ochiai and incident waves. Notice that some of the bands do not continue to
Sakod&® k.= 0, indicating the existence of uncoupled state¥.at

0.45

I
~

Frequency (2rnc/a)
=}
a &
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4 0.25 0.3 035 0.4 045 05 055 06
1
2 1 I 1
R 0.05 0.1 0.5 0.2 0.8 / r=0.104
Ky (2n/a) o6 |
FIG. 11. Quality factor as a function d&f, for the four lowest 04 - \
bands in Fig. 10. The solid lines correspond to modes that connect c o2l (B
to the doubly degenerate state at thepoint. The dashed lines [s) '
correspond to modes that connect to the singly degenerate state at a"’, 0 ‘ ‘ ‘ :
theT point. = 0.25 0.3 035 04 045 05 055 0.6
[72] 1 \
. c
approach a constant &s vanishes for the modes that con- S  ggl r=0.1
nect to the doubly degenerate state$ afor the modes that = e
connect to the singly degenerate states, on the other hand, the 0.6 I-
Q factors of the modes diverge. The calculation clearly dem- 0.4 L
onstrates that the symmetry of the modes can significantly o2 (c)
influence the photon lifetime of the resonances. l
O ] L | L ] L
E. Radius dependence of the resonance ?'25 0.3 035 04 045 05 055 06
In addition to symmetry-related effects, the lifetime of the )
resonances is also strongly influenced by the radius of the 08 - r=0.203
holes. At the limit where the radius of the holes approaches 0.6
zero, theQ factor for all the resonances should diverge, since
the resonances asymptotically become true guided modes. To 041
demonstrate this effect, we plot in Fig. 12 the transmission 0.2 |- (d)
spectra at normal incidence for four different structures with 0 T !
the radius varying from 0.@bto 0.2(. The spectral feature 0.95 03 035 04 045 05 055 0.6
for the resonances indeed becomes sharper as the radius be- F )
comes smaller. For the lowest-order resonanceQtfactor requency {(enc

varies from approximately 5000 at=0.0%, to 213 atr
=0.20a. At a larger radius, theQ factor should be even slab structures with a radius ¢d) 0.05, (b) 0.10g, (c) 0.15, and

lower. B , _ (d) 0.20a. All structures have a thickness of 8.%nd a dielectric
The tunability of the quality factor with respect to the gnstant of 12.

radius of the holes is important for light-emitting diode

(LED) and laser applications. For photonic-crystal resonant-

cavity LED structures, optimal efficiency occurs when the . -

linewidth of the resonances become comparable to the lind?Y the presence of these resonances. The line shapes exhibit

width of the emitte?® On the other hand, for a laser struc- complex asymmetric characteristics. We show that all the

ture, a high resonance is typically desirable for threshold Complexities in the line shapes can be accounted for with a

reduction. Therefore, as we have demonstrated in this pape¥imple analytic model describing the interference between

photonic crystal slab structures are very versatile and can bdirect transmissiottor reflection and the exponential decay-

specifically tailored for different light-emitting applications. ing amplitudes of the resonances. We also demonstrate that
the quality factor of these resonances is strongly influenced

IV. SUMMARY by the symmetry of the modes and the radius of the holes.

FIG. 12. Transmission spectra at normal incidence for crystal

In summary, we present a three-dimensional frequency
and time-domain analysis of resonances in photonic crystal
slab structures. These resonances are strongly confined with
the dielectric slab and yet at the same time are coupled to This work was supported in part by the Material Research
radiation modes. For external light incident upon these slabsscience and Engineering Center program of the National
the transmission and reflection spectra are strongly modifie@cience Foundation under Award No. DMR-9400334.
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