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Accurate density functionals: Approaches using the adiabatic-connection
fluctuation-dissipation theorem
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Fully nonlocal exchange-correlation functionals derived from the adiabatic-connection fluctuation-
dissipation theorem can go beyond local or gradient corrected functionals and include the van der Waals
interaction. We implement three functionals of this class, in a pseudopotential plane-wave franig&wsing
the random-phase approximatioRPA), (2) adding to the RPA short-range correlations (RPA and (3)
including density fluctuations through an exchange kernel. We find the binding energy of, taed-HBe
molecules described, by all three functionals, within 0.1 eV accuracy.
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Kohn-Sham density-functional thedry/is an important Here x,(r,r';iu) is the imaginary-frequency density re-
method for electronic structure calculations of complexsponse function of the system with the electrons interacting
(bio-) molecular and solid-state systems. In this theory, thehy a scaled Coulomb potentiak?/|r —r’| and moving in a
electronic energye[n] is established as a functional of the modified external potential such that the density stays the
electron densityn, and includes the exchange-correlation same as for the physicak & 1) ground state. Fox=0, one
(XC) energyExc[n] to account for many-electron interac- deals with the noninteracting Kohn-Sham system; its re-

tions. Practical calculations always use approximations fogponse function is given explicitly by the Kohn-Sham eigen-
the XC energywhose exact functional form is not known, at statesdy,(r) and eigenvalues,, as

variance with all other components &[n]). The usual

local-density(LDA) (Ref. 2 and generalized gradient ap- _ (Yko— Yio)
proximations(GGA's) (Ref. 3 often yield a realistic account xo(r,r’;iu)= E m

of solids, surfaces, and molecules, in particular of their equi- okl lo ko

librium atomic structure. Regarding molecular interactions X ¢ (Do SN o), (2)

and the related potential energy surfaces, GGAs have

marked a major advance over the LDA, but yet more accuwhere the sum includes all occupiegh(=1) and unoccu-
rate functionals are needed to resolve critical shortcominggied (y,,=0) states. ForA>0, the interacting and the
GGA's (1) still fail to predict molecular dissociation energies Kohn-Sham response functions are related by a Dyson-type
and heats of reaction with chemical accurdty within 50 screening equation

meV), (2) tend to underestimate activation energy barriers,

and, like the LDA, (3) do not properly describe van der . L 3 3 .

Waals interactions between distant subsystems. X (rr5iu) = xo(r,r ”UHJ d°r1d°roxo(r,ry;iu)
Progress can be achieved by explicitly considering the

truly nonlocal nature of both exchange and correlation, ><f{'xc(rl,rz;iu)h(rz,r’;iu), (©)]

which (semi) local approximations such as the LDAor GGA . .
cannot account for. Hybrid function&f that combine the Wit the Coulomb and  exchange-correlation —kemel
exact nonlocal(Fock exchange with local-density func- fx (F.r';iu)=Ae M =r' |+ 85 (rr ;iu)  established  in
tionals usually perform more accurately than pure GGA', the context of time-dependent density-functional thé&ory.
though not systematically within chemical accuracy and withThe set of Eqs(1)—(3) may be refered to as ACFDT formal-
limitations for molecular transition states. van der Waalsism and formally yields the exact density-functional
forces, on the other hand, are due to long-range correlationgxchange-correlation energy.
as such they are beyond the scope of the LDA, GGA’s, or The correlation part oEyc and the exchange part can be
hybrid schemes and rather require a fully nonlocal correlaseparated as shown in Ref. 9: The exchange engxgys
tion functional. equal to the expansion E@L) with x, set toyg, or, equiva-

In this study we demonstrate that accurate, fully nonlocalently, to the well-known expression
exchange-correlation functionals can be implemented as ap-

. . . . . . 2
proximations to the exact adiabatic-connection fluctuation-

occ

- . 2 * ’
dissipation theorem{(ACFDT) (Ref. 7 for the exchange- e? - ko1 Pro(r")
correlation energy of an electronic system, Ey[n]=— > > | d¥rd3 | | ,

o r—r’
11 e? (4
Exc[n]=——J dxfd3rd3r'— _ _ _
2J)o [r—r’] and the correlation energy is defined Bg[n]=Eyxc[n]

—Ex[ n]. For practical purposes one needs to use an approxi-
%jmduxh(r,r’;iu)Jrn(r)&(r—r’) L@ mation for the frequency-dependent, spatially nonlocal ker-
0

X . T .
nel fi‘c(r,r’;lu) whose explicit form is unknown.
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We consider three different functionals, built on two ap- 05 r
proximate XC kernels. The first kernel, within the random- . C
phase approximatiofRPA), amounts to neglecting exchange @ ] C
and correlation effects irf}*“ altogether, setting“" "™ £ 1 C
=0. The RPA still treat€Ey exactly and includes van der T ] r
Waals interaction$ but misses important contributions from fory 0.1 L
short-range correlatior!S. Following Ref. 10 we therefore 7@
also combine the RPA with a local-density correction for < ] r
short-range correlationsEY[n]=EPAn]—EPLARPn], = ] -
whereEc?* "™ n] is the local-density approximation based g 5 ] : C
on the RPA correlation energy of the homogeneous electror o o5 T
gas; this defines the RPA correlation energyEX-"[n] coupling parameter A

=ERPIn]+EZ n]. Note that the RPA: is exact in the limit _ _ -
of the homogeneous electron gas. Kurth and Peltlew FIG. 1. Full lines: coupling strength decomposition of the cor-
relation energy for the He atom. The area above each curve repre-

showed thaEg implies only small corrections to molecular . ) L ;

L . sents the corresponding correlation energy. Dashed lines: the linear
binding energies and suggest that both the RPA and thg . _

. . . slope of the full lines ah =0.

RPA+ could achieve chemical accuracy for these energies.
Alternatively, we include exchange effects, i.e., between like
spin electrons, by considering tliepproximatg¢ frequency-
independent exchange kernel of Petersilka, Gossmann, a
Gross! (PGG kerne),

In our implementatiort® the system is placed in a large
supercell with periodic boundary conditions. The initial
hn-Sham ground-state calculation is carried out within the
LDA. Accurate normconserving nonlocal pseudopotentials
are used to represent the electron-ion interacttéiiie re-

oce 2 sponse functions and kernels are treated in the plane-wave
2 Do) (1) representation defined, e.g., fepec(iu), by xo(r,r’,iu)
fXCPCGr 1) = —re?D, , —. (5 =366 Xooe (iU)e'® e """, where G is a reciprocal-
o n(r)n(r’)r—r’| lattice vector. We obtain the Kohn-Sham response function

thanks to the sum over states in E&) and solve the Dyson
In one- and two-electron systems the PGG exchange kerneQuation(3) as the system of linear equations
is exact: It eliminates unphysical self-correlation and, unlike
the RPA or RPA-, leads to zero correlation energy for one
electron systems.

So far the above ACFDT formalism has been applied to
the (van der Waalsattraction between jellium slabs, as well using the RPA or PGG kernels. To obtdifyc we evaluate
as the asymptotic atom-atom van der Waals interatfiofé ~ the correlation energy as
or, with some simplification, the asymptotic interactions of
any neutral fragment$’ Applications to chemically bonded 1 A (= 4re? ) )
molecules(and real solids have been lacking, mainly be-  Ec= fo dr ZL dU% ?{XQGG('U)_X)\GG(“J)}’
cause solving Eq3) for general three-dimensional densities @
has been considered as computationally intractable. How-
ever, recently, Furche has implemented the RPA and-RPA and add onEy which we compute similarly® For the \
ACFDT functional$® and examined1) the atomization en- integration we use the fourth order Gauss-Legendre quad-
ergies of a dozen of molecule§2) N, equilibrium bond rature which proved to be accurate for the present systems.
length, vibrational frequency, and dissociation curve. HisFor theu integration we follow the Gauss quadrature scheme
implementationbased on atomic orbitglas an overalN®  of Ref. 19, using 2QHe), 18 (H,), and 24 (Bg) supports,
scaling, whereN is the size of the atomic orbital basis. He such that the exchange energies calculated from @gysnd
finds that the RPA and RPA atomization energies are usu- (4) agree to within 1 meV. We solve E() repetitively for
ally smaller than the experimental ones, and have an overathe particular set afi and\ parameters. Our algorithm scales
accuracy comparable to the GGA. asM ocdM unocdN? to set up the Kohn-Sham response function

In the present work, we analyze the behavior of the thre@nd N® to solve the Dyson equation, whekis the size of
above-defined functionals, for the He atom and theadd the x,gg matrices, an o (M ynocd IS the number of oc-
Be, molecules. We show that the PGG kernel gives a funccupied(unoccupiedl Kohn-Sham states.
tional qualitatively as accurate as the RPA and the RPk We have carefully tested the convergence of our calcula-
particular, all three are able to describe correctly the bondingions with respect to the computational parameters involved.
of Be,, a weakly bonded system not examined by Furche, foFor the results reported below we used fcc supercells corre-
which LDA and GGA perform poorly. Our implementation, sponding to a nearest image distance of(#2), 15 (H,),
based on plane waves and pseudopotentials, scales as ted 22 bohr (Bg). The plane-wave cutoff energy in the ini-
fourth power of the system size, significantly improving tial Kohn-Sham calculations was set to (e), 30 (H,) and
Furche’s scaling. 12.5 hartrees (Bg, and to 12(He and H), and 8 hartrees

_ HXC _
(5%52 (5GG1 X0GG, f)\GZGl)X)\GlG' X0GG’ » (6)
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0 TABLE |. Calculated properties of the Hlimer. Shown are the
. L binding energyE,,, bond lengthd,, and harmonic vibrational fre-
EJ? E E guencyw,. The zero-point vibrational energy has been subtracted
£ ] - from the experimental value fdg, .
T ] b
: -0.1- — Ep(eV) do (bohr) we (16° cm™?)
< . o
W] - LSDA ~4.92 1.44 4.35
§ ] 3 GGA —4.54 1.41 4.49
© ] C EXX -3.64 1.38 4.63
0.2 - RPA —4.72 1.39 450
0 0.5 1 RPA+ —4.75 1.40 4.48
coupling parameter A PGG —4.85 1.40 4.52
FIG. 2. As in Fig. 1 but for the Kdimer with the experimental Exact® —4.7466 1.4008
internuclear distance of 1.4 bohr. Expt.b —4.75 1.40 4.401

) ) ) %Reference 24.
(Bey) in the calculation of the response functions. The Kohn+giieq from Ref. 24.

Sham response functions included unoccupied states up to

eigenenergies of 8He), 5.4 (H,), and 2.5 hartrees (Bp experiment® For comparison, in the LDA,Ec is
Using these parameters we estimate to obtain RPA binding 112 mhartree. and in the GéE is — 42 mh:';trtree
energies to within 30 meV and absolute correlation energie ’ c '
to within 100 meV.

Figures 1 and 2 present theintegrand of Eq(7), noted
d/d\ Ec(N), for the two-electron systems He ang HRPA
and PGG kerneJs Figure 3 shows this quantity for the Be
dimer and the two separate Be atoms. The integral o
d/d\ Ec(N\) is the correlation energy. Its bending with re-

spect to the linear slope at the origidisplayed in Figs. 1 evaluated from the linear slope of the curves at0, instead
and 2 by dashed lingplays an important role in the design from the full curves '

of (hybrid) schemes based on the adiabatic-connection For the H, and Be dimers, we have computed the bind-

il 22 S ; ) > comput
forrlgallsnl?:_ orchrgng L_f\(y p:artur?r?t[[o?hthelzqc)ﬁ q PGG|ng energy, bond length, and harmonic vibrational frequen-
rom ™gs. L and 2, I IS clear that the t an cies, and compared them with those obtained in the LDA,
kernels give quite different correlation energies. For the HeGGA exact Kohn-Sham exchang&XX), and accurate
atom, the RPAE¢ is —78 mhartree, while the PGE¢ is quantum-chemical treatments, and with respect to experi-

—44 mhartree, in excellent agreement with the exact Colez, oy Thege results are presented in Tables | and II. As con-

lation energy® of —43 mha(tree: .the PGG kerne[ correctly cerns binding energies, with both the RPA and RPAve

couples only the two opposite spin electrons, while the RP each an excellent 0.04 eV accuracy. As argued by Kurth and

leads to a spurious self-correlation of the like spin electronsp, o4 the RPA error cancels when taking energy differ-
" R ,

However, the addition oEZ gives the RPA- value of o caq of systems with the same number of electrons. With

—43 mhartree, also in excellent agreement with thee pGG kernel we obtain a slightly lower binding energy

S The bending of the curves for He ang hown in Figs. 1
and 2 is rather moderate, but much more pronounced for
Be,, as shown in Fig. 3. The analysis of the latter effect
shows that it is due to the small energy separation between
he ground-state (2%)and the excited 2s2p configurations.
he correlation energy contribution to the binding energy,
shown by the shaded areas, is markedly different when

0% T - TABLE II. Calculated properties of the Belimer (see Table)l
§ g Values in parentheses have been obtained using a pseudopotential
§ é g derived from an atomic calculation within the LDA.
s -0.14 —
g ¢ - Ey(eV) do (bohr)  wg(cm Y
2 023 T%e¢ LSDA ~0.56 4.52 378
w’ ] t GGA -0.43 4.57 361
3 - - EXX +0.45(+0.41)
© 033 F RPA —0.08(—0.13) 455 311
= I T . - RPA+ —0.06(-0.10) 4.59 298
0 0.5 1 PGG —0.07(-0.12) 4.60 225
coupling parameter A
cl2 —0.1107 4.627 268.2
FIG. 3. Coupling strength decomposition of the correlation en-gExpt.® —0.098 4.63 275.8

ergy for two Be atoms and the Belimer with the experimental
internuclear distance of 4.63 bohr. The shaded areas give the corrdConfiguration interactiofCl) calculation of Ref. 25.
lation energy contribution to the binding energy of the, Biamer. bCited from Ref. 25.
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compared to the RPA in the case of,Hvhile for Be, it The ACFDT density functionals are able to describe van
performs as well. Note that Beis a particularly difficult ~der Waals interactions between separated fragments, as
system: bonding and antibonding orbitals are equally occushown by other authors. In the present study, we have imple-
pied, making it a zero bond-order system. Its experimentanented three different ACFDT functionalRPA, RPAt,
bonding energy is about 40 times smaller than the one,of H @1d PGG in a plane-wave pseudopotential framework. They
and the reasonably successful description of the latter withif€!lVer accurate molecular properties, even in such a difficult
LDA, GGA, or EXX is at variance with the large overbind- CaS€ as Be where LDA, GGA, or EXX fail qualitatively.

ing of Be, found within LDA or GGA, or the complete lack Although Furche has shown that, for a dozen molecules, the

N . Il error in the binding energies is on the order of the
of binding within EXX. For Be, we note that a pseudopo- overa . :
tential derived from an atomic calculation within the LDA GGA one, we believe that the ACFDT class of functionals

instead of the EXX resulted in somewhat lower binding en12S the potential to perform significantly better than the

ergies, as shown in Table. Il, without, however, affecting our®CAS Or hybrid functionals, as the present GGAs have been

above conclusions. optim_ized during several dec.ac_ies. In particu@i},we have
As concerns bond lengths and vibrational frequencies for H UOI tried to adjust or to hybr|d|zg these_functlona(lz); the
we obtain reasonable results within RPA, RPAand PGG, t!me-dependent LDA kernel, whm_h defines a fourth func-
albeit the associated numerical errors forbid us to claim im-thnaI (see_, e.g. Ref. g%should be implemented, as well as
provement over LDA and GGAthat are actually quite energy-adjusted kernefs.

good. For Be, we see some improvement of the bond- We thank John Perdew, John Dobson, Kieron Burke, and
length description, and a 60% reduction of the error of theManfred Lein for stimulating discussions. This project was
vibrational frequencies compared to experiment. The RPAunded by the “Pole d’attraction interuniversitaire” P4/10
+ and PGG kernel are seen to increase, i.e., improve thand the FRFC Project No. 2.4556.99. X.G. thanks the FNRS

bond length compared to the RPA. (Belgium) for financial support.
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