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Accurate density functionals: Approaches using the adiabatic-connection
fluctuation-dissipation theorem

Martin Fuchs and Xavier Gonze
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Fully nonlocal exchange-correlation functionals derived from the adiabatic-connection fluctuation-
dissipation theorem can go beyond local or gradient corrected functionals and include the van der Waals
interaction. We implement three functionals of this class, in a pseudopotential plane-wave framework,~1! using
the random-phase approximation~RPA!, ~2! adding to the RPA short-range correlations (RPA1), and ~3!
including density fluctuations through an exchange kernel. We find the binding energy of the H2 and Be2
molecules described, by all three functionals, within 0.1 eV accuracy.
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Kohn-Sham density-functional theory1,2 is an important
method for electronic structure calculations of comp
~bio-! molecular and solid-state systems. In this theory,
electronic energyE@n# is established as a functional of th
electron densityn, and includes the exchange-correlati
~XC! energyEXC@n# to account for many-electron interac
tions. Practical calculations always use approximations
the XC energy~whose exact functional form is not known,
variance with all other components ofE@n#). The usual
local-density~LDA ! ~Ref. 2! and generalized gradient ap
proximations~GGA’s! ~Ref. 3! often yield a realistic accoun
of solids, surfaces, and molecules, in particular of their eq
librium atomic structure. Regarding molecular interactio
and the related potential energy surfaces, GGA’s h
marked a major advance over the LDA, but yet more ac
rate functionals are needed to resolve critical shortcomin
GGA’s ~1! still fail to predict molecular dissociation energie
and heats of reaction with chemical accuracy~to within 50
meV!, ~2! tend to underestimate activation energy barrie
and, like the LDA, ~3! do not properly describe van de
Waals interactions between distant subsystems.

Progress can be achieved by explicitly considering
truly nonlocal nature of both exchange and correlati
which ~semi-! local approximations such as the LDA or GG
cannot account for. Hybrid functionals4,5 that combine the
exact nonlocal~Fock! exchange with local-density func
tionals usually perform more accurately than pure GGA6

though not systematically within chemical accuracy and w
limitations for molecular transition states. van der Wa
forces, on the other hand, are due to long-range correlati
as such they are beyond the scope of the LDA, GGA’s,
hybrid schemes and rather require a fully nonlocal corre
tion functional.

In this study we demonstrate that accurate, fully nonlo
exchange-correlation functionals can be implemented as
proximations to the exact adiabatic-connection fluctuati
dissipation theorem~ACFDT! ~Ref. 7! for the exchange-
correlation energy of an electronic system,
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Here xl(r ,r 8; iu) is the imaginary-frequency density re
sponse function of the system with the electrons interac
by a scaled Coulomb potentialle2/ur2r 8u and moving in a
modified external potential such that the density stays
same as for the physical (l51) ground state. Forl50, one
deals with the noninteracting Kohn-Sham system; its
sponse function is given explicitly by the Kohn-Sham eige
statesfks(r ) and eigenvalues«ks as

x0~r ,r 8; iu !5 (
s,k,l

~gks2g ls!

i\u2~« ls2«ks!

3fks* ~r !f ls~r !f ls* ~r 8!fks~r 8!, ~2!

where the sum includes all occupied (gks51) and unoccu-
pied (gks50) states. Forl.0, the interacting and the
Kohn-Sham response functions are related by a Dyson-
screening equation

xl~r ,r 8; iu !5x0~r ,r 8; iu !1E d3r 1d3r 2x0~r ,r1 ; iu !

3 f l
HXC~r1 ,r2 ; iu !xl~r2 ,r 8; iu !, ~3!

with the Coulomb and exchange-correlation kern
f l

HXC(r ,r 8; iu)5le2/ur2r 8u1 f l
XC(r ,r 8; iu) established in

the context of time-dependent density-functional theor8

The set of Eqs.~1!–~3! may be refered to as ACFDT forma
ism and formally yields the exact density-function
exchange-correlation energy.

The correlation part ofEXC and the exchange part can b
separated as shown in Ref. 9: The exchange energyEX is
equal to the expansion Eq.~1! with xl set tox0, or, equiva-
lently, to the well-known expression

EX@n#52
e2

2 (
s

E d3r d3r 8

U(
k

occ

fks* ~r !fks~r 8!U2

ur2r 8u
,

~4!

and the correlation energy is defined asEC@n#5EXC@n#
2EX@n#. For practical purposes one needs to use an appr
mation for the frequency-dependent, spatially nonlocal k
nel f l

XC(r ,r 8; iu) whose explicit form is unknown.
©2002 The American Physical Society09-1
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MARTIN FUCHS AND XAVIER GONZE PHYSICAL REVIEW B65 235109
We consider three different functionals, built on two a
proximate XC kernels. The first kernel, within the rando
phase approximation~RPA!, amounts to neglecting exchang
and correlation effects inf l

HXC altogether, settingf l
XC2RPA

50. The RPA still treatsEX exactly and includes van de
Waals interactions,9 but misses important contributions from
short-range correlations.10 Following Ref. 10 we therefore
also combine the RPA with a local-density correction
short-range correlationsEC

sr@n#5EC
LDA@n#2EC

LDA2RPA@n#,
whereEC

LDA2RPA@n# is the local-density approximation base
on the RPA correlation energy of the homogeneous elec
gas; this defines the RPA1 correlation energyEXC

RPA1@n#
5EXC

RPA@n#1EC
sr@n#. Note that the RPA1 is exact in the limit

of the homogeneous electron gas. Kurth and Perde10

showed thatEC
sr implies only small corrections to molecula

binding energies and suggest that both the RPA and
RPA1 could achieve chemical accuracy for these energ
Alternatively, we include exchange effects, i.e., between l
spin electrons, by considering the~approximate! frequency-
independent exchange kernel of Petersilka, Gossmann,
Gross11 ~PGG kernel!,

f l
XC2PGG~r ,r 8!52le2(

s

U(
k

occ

fks* ~r !fks~r 8!U2

n~r !n~r 8!ur2r 8u
. ~5!

In one- and two-electron systems the PGG exchange ke
is exact: It eliminates unphysical self-correlation and, unl
the RPA or RPA1, leads to zero correlation energy for on
electron systems.

So far the above ACFDT formalism has been applied
the ~van der Waals! attraction between jellium slabs, as we
as the asymptotic atom-atom van der Waals interaction9,12,13

or, with some simplification, the asymptotic interactions
any neutral fragments.14 Applications to chemically bonded
molecules~and real solids! have been lacking, mainly be
cause solving Eq.~3! for general three-dimensional densiti
has been considered as computationally intractable. H
ever, recently, Furche has implemented the RPA and RP1
ACFDT functionals15 and examined~1! the atomization en-
ergies of a dozen of molecules;~2! N2 equilibrium bond
length, vibrational frequency, and dissociation curve. H
implementation~based on atomic orbitals! has an overallN6

scaling, whereN is the size of the atomic orbital basis. H
finds that the RPA and RPA1 atomization energies are usu
ally smaller than the experimental ones, and have an ove
accuracy comparable to the GGA.

In the present work, we analyze the behavior of the th
above-defined functionals, for the He atom and the H2 and
Be2 molecules. We show that the PGG kernel gives a fu
tional qualitatively as accurate as the RPA and the RPA1. In
particular, all three are able to describe correctly the bond
of Be2, a weakly bonded system not examined by Furche,
which LDA and GGA perform poorly. Our implementation
based on plane waves and pseudopotentials, scales a
fourth power of the system size, significantly improvin
Furche’s scaling.
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In our implementation,16 the system is placed in a larg
supercell with periodic boundary conditions. The initi
Kohn-Sham ground-state calculation is carried out within
LDA. Accurate normconserving nonlocal pseudopotenti
are used to represent the electron-ion interactions.17 The re-
sponse functions and kernels are treated in the plane-w
representation defined, e.g., forx0GG8( iu), by x0(r ,r 8,iu)
5(G,G8x0GG8( iu)eiG•re2 iG8•r8, where G is a reciprocal-
lattice vector. We obtain the Kohn-Sham response funct
thanks to the sum over states in Eq.~2! and solve the Dyson
equation~3! as the system of linear equations

(
G1 ,G2

~dGG1
2x0GG2

f lG2G1

HXC !xlG1G85x0GG8 , ~6!

using the RPA or PGG kernels. To obtainEXC we evaluate
the correlation energy as

EC5E
0

1

dl
\

2pE0

`

du(
G

4pe2

G2
$x0GG~ iu !2xlGG~ iu !%,

~7!

and add onEX which we compute similarly.18 For the l
integration we use the fourth order Gauss-Legendre qu
rature which proved to be accurate for the present syste
For theu integration we follow the Gauss quadrature sche
of Ref. 19, using 20~He!, 18 (H2), and 24 (Be2) supports,
such that the exchange energies calculated from Eqs.~1! and
~4! agree to within 1 meV. We solve Eq.~6! repetitively for
the particular set ofu andl parameters. Our algorithm scale
asMoccMunoccN

2 to set up the Kohn-Sham response functi
andN3 to solve the Dyson equation, whereN is the size of
the xlGG8 matrices, andMocc (Munocc) is the number of oc-
cupied~unoccupied! Kohn-Sham states.

We have carefully tested the convergence of our calcu
tions with respect to the computational parameters involv
For the results reported below we used fcc supercells co
sponding to a nearest image distance of 12~He!, 15 (H2),
and 22 bohr (Be2). The plane-wave cutoff energy in the in
tial Kohn-Sham calculations was set to 16~He!, 30 (H2) and
12.5 hartrees (Be2), and to 12~He and H2), and 8 hartrees

FIG. 1. Full lines: coupling strength decomposition of the co
relation energy for the He atom. The area above each curve re
sents the corresponding correlation energy. Dashed lines: the li
slope of the full lines atl50.
9-2
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(Be2) in the calculation of the response functions. The Koh
Sham response functions included unoccupied states u
eigenenergies of 8~He!, 5.4 (H2), and 2.5 hartrees (Be2).
Using these parameters we estimate to obtain RPA bind
energies to within 30 meV and absolute correlation energ
to within 100 meV.

Figures 1 and 2 present thel integrand of Eq.~7!, noted
d/dl EC(l), for the two-electron systems He and H2 ~RPA
and PGG kernels!. Figure 3 shows this quantity for the Be2
dimer and the two separate Be atoms. The integral
d/dl EC(l) is the correlation energy. Its bending with r
spect to the linear slope at the origin~displayed in Figs. 1
and 2 by dashed lines! plays an important role in the desig
of ~hybrid! schemes based on the adiabatic-connec
formalism21,22 or Görling-Levy perturbation theory.23

From Figs. 1 and 2, it is clear that the RPA and PG
kernels give quite different correlation energies. For the
atom, the RPAEC is 278 mhartree, while the PGGEC is
244 mhartree, in excellent agreement with the exact co
lation energy20 of 243 mhartree: the PGG kernel correct
couples only the two opposite spin electrons, while the R
leads to a spurious self-correlation of the like spin electro
However, the addition ofEC

sr gives the RPA1 value of
243 mhartree, also in excellent agreement with

FIG. 3. Coupling strength decomposition of the correlation
ergy for two Be atoms and the Be2 dimer with the experimenta
internuclear distance of 4.63 bohr. The shaded areas give the c
lation energy contribution to the binding energy of the Be2 dimer.

FIG. 2. As in Fig. 1 but for the H2 dimer with the experimenta
internuclear distance of 1.4 bohr.
23510
-
to

g
s

f

n

e

e-

A
s.

e

experiment.10 For comparison, in the LDA,EC is
2112 mhartree, and in the GGA,EC is 242 mhartree.

The bending of the curves for He and H2 shown in Figs. 1
and 2 is rather moderate, but much more pronounced
Be2, as shown in Fig. 3. The analysis of the latter effe
shows that it is due to the small energy separation betw
the ground-state (2s)2 and the excited 2s2p configuration
The correlation energy contribution to the binding ener
shown by the shaded areas, is markedly different wh
evaluated from the linear slope of the curves atl50, instead
from the full curves.

For the H2 and Be2 dimers, we have computed the bind
ing energy, bond length, and harmonic vibrational frequ
cies, and compared them with those obtained in the LD
GGA, exact Kohn-Sham exchange~EXX!, and accurate
quantum-chemical treatments, and with respect to exp
ment. These results are presented in Tables I and II. As c
cerns binding energies, with both the RPA and RPA1, we
reach an excellent 0.04 eV accuracy. As argued by Kurth
Perdew,10 the RPA error cancels when taking energy diffe
ences of systems with the same number of electrons. W
the PGG kernel we obtain a slightly lower binding ener

-

re-

TABLE I. Calculated properties of the H2 dimer. Shown are the
binding energyEb , bond lengthd0, and harmonic vibrational fre-
quencyve . The zero-point vibrational energy has been subtrac
from the experimental value forEb .

Eb(eV) d0 (bohr) ve (103 cm21)

LSDA 24.92 1.44 4.35
GGA 24.54 1.41 4.49
EXX 23.64 1.38 4.63
RPA 24.72 1.39 4.50
RPA1 24.75 1.40 4.48
PGG 24.85 1.40 4.52

Exacta 24.7466 1.4008
Expt.b 24.75 1.40 4.401

aReference 24.
bCited from Ref. 24.

TABLE II. Calculated properties of the Be2 dimer ~see Table I!.
Values in parentheses have been obtained using a pseudopot
derived from an atomic calculation within the LDA.

Eb(eV) d0 (bohr) ve(cm21)

LSDA 20.56 4.52 378
GGA 20.43 4.57 361
EXX 10.45(10.41)
RPA 20.08(20.13) 4.55 311
RPA1 20.06(20.10) 4.59 298
PGG 20.07(20.12) 4.60 225

CI a 20.1107 4.627 268.2
Expt.b 20.098 4.63 275.8

aConfiguration interaction~CI! calculation of Ref. 25.
bCited from Ref. 25.
9-3
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MARTIN FUCHS AND XAVIER GONZE PHYSICAL REVIEW B65 235109
compared to the RPA in the case of H2, while for Be2 it
performs as well. Note that Be2 is a particularly difficult
system: bonding and antibonding orbitals are equally oc
pied, making it a zero bond-order system. Its experime
bonding energy is about 40 times smaller than the one of2,
and the reasonably successful description of the latter wi
LDA, GGA, or EXX is at variance with the large overbind
ing of Be2 found within LDA or GGA, or the complete lack
of binding within EXX. For Be2, we note that a pseudopo
tential derived from an atomic calculation within the LD
instead of the EXX resulted in somewhat lower binding e
ergies, as shown in Table. II, without, however, affecting o
above conclusions.
As concerns bond lengths and vibrational frequencies for2,
we obtain reasonable results within RPA, RPA1, and PGG,
albeit the associated numerical errors forbid us to claim
provement over LDA and GGA~that are actually quite
good!. For Be2, we see some improvement of the bon
length description, and a 60% reduction of the error of
vibrational frequencies compared to experiment. The R
1 and PGG kernel are seen to increase, i.e., improve
bond length compared to the RPA.
os
an

le

Le

s
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The ACFDT density functionals are able to describe v
der Waals interactions between separated fragments
shown by other authors. In the present study, we have im
mented three different ACFDT functionals~RPA, RPA1,
and PGG! in a plane-wave pseudopotential framework. Th
deliver accurate molecular properties, even in such a diffic
case as Be2, where LDA, GGA, or EXX fail qualitatively.
Although Furche has shown that, for a dozen molecules,
overall error in the binding energies is on the order of t
GGA one, we believe that the ACFDT class of functiona
has the potential to perform significantly better than t
GGA’s or hybrid functionals, as the present GGAs have be
optimized during several decades. In particular,~1! we have
not tried to adjust or to hybridize these functionals,~2! the
time-dependent LDA kernel, which defines a fourth fun
tional ~see, e.g., Ref. 26!, should be implemented, as well a
energy-adjusted kernels.27

We thank John Perdew, John Dobson, Kieron Burke, a
Manfred Lein for stimulating discussions. This project w
funded by the ‘‘Pole d’attraction interuniversitaire’’ P4/1
and the FRFC Project No. 2.4556.99. X.G. thanks the FN
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