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Morphology transitions at vicinal Cu surfaces based on entropic step-step interaction and diffusion
along steps

Heike Emmerich
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Str. 38, D-01187 Dresden, Germany

~Received 25 July 2001; revised manuscript received 7 February 2002; published 4 June 2002!

An extension of the Burton-Cabrera-Frank model including diffusion along steps and entropic step-step
interaction is introduced. This extended model is successfully applied to simulate recent experiments at vicinal
Cu surfaces@T. Maroutianet al., Phys. Rev. Lett.83, 4353~1999!#. In particular, the rise of two qualitatively
different morphologies can be explained by the competition of the four distinct driving and restoring forces of
the model implying different directions for the growth of instabilities along the step edges. In addition, a linear
stability analysis of the extended model is carried out. The result is a wavelength for the fastest growing mode
which is larger than the one predicted by Bales and Zangwill and in agreement with the experiments.
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During molecular beam epitaxy~MBE! appropriate con-
ditions for the controlled growth of vicinal surfaces can
fine tuned and one can fabricate either atomistically flat
nanostructured surfaces. The ability to exert control on str
turing along the growth direction and fabricate substra
with smallest-scale built-in periodicities normal to the su
face is well advanced. Efforts to better determine functio
properties of a grown substrate now focus on the late
structuring within one layer of growth. One direction alon
this line is to make use of the inherent instabilities due to
dynamics of the growth process itself.1 A necessary first step
is to understand the basic wavelengths of those inheren
stabilities in addition to the kind of morphologies which w
develop.

More then ten years ago, Bales and Zangwill2 predicted
that a growing vicinal surface should undergo a step me
dering instability when kinetic step-edge barriers suppr
the attachments of atoms to descending steps.3 According to
their analysis, a straight step is linearly unstable against
turbations with wavelengths larger thanlc52pA2GLD and
a fastest growing wavelength atlu5A2lc (G5Vg/kBT,
LD5Dceq

0 /Fl 2). Here F denotes the deposition rate,D the
diffusion constant for diffusionon the terraces,ceq

0 the equi-
librium concentration of a straight step,g the step stiffness
V the atomic area, andkBT the thermal energy. Even thoug
the meandering instability has meanwhile been observe
experiments and simulations,4 the quantitative prediction o
the Bales-Zangwill analysis could not be recovered in ma
of those experimental findings. This point received much
terest in view of recent experiments by Maroutianet al.5 at
CEA Saclay. Analytical efforts to resolve the disagreem
between experimental measurements and theoretical pr
tion led to a precise study of the limit of desorptionle
growth. To derive a single evolution equation this case
the interesting feature of displaying a singularity in the sp
of multiscale expansion.6 As a result, meander wavelength
larger than the ones predicted by Bales and Zangwill can
explained, however, without reaching the order of expe
mental observations.7 Other efforts center around the inve
tigation of an extra diffusion currentalongstep edges.8 Such
a current triggers an asymmetry in energy barriers for ato
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attaching at kinks from different step-edge directions,
so-called kink Ehrlich-Schwoebel effect~KESE!.9,10 The
KESE can either destabilize or stabilize steps depending
whether the slope of the meander instability is greater or
than 1. In Ref. 5 calculations including a stabilizing KES
current along steps were compared to the further conjec
that islands might nucleate at step edges and thereby co
tute a still different wavelength of instability. It appeared th
including this assumption produced a better fit to the exp
mental wavelength values.

A different light was shed on these investigations by e
periments which revealed that a morphology qualitativ
different from the meandering one can develop on a vici
surface as well, with growth conditions being exactly t
same as for the meandering morphology except for a dif
ent polar angle of the vicinal.11 This morphology can be
characterized by the absence of one global growth direc
and thereby resembles the so-calleddegenerated
morphology.12 Thus the inadequacy of theoretical approach
to explain the difference between the wavelength of insta
ity predicted by Bales and Zangwill and the one observ
experimentally was further revealed by the failure to expl
this degenerated morphology. Note that the surface of the
in-phase meandering morphology displayed in the scann
tunnel microscope~STM! topograph in their Fig. 1~b! ~Ref.
5! was wrongly identified as Cu~1,1,17! and is in fact a
Cu~0,2,24! surface. The true Cu~1,1,17!, on the other hand
displays adegenerated morphology.11

In this paper I will introduce a different model which ca
explain the rise of two different morphologies as well as th
basic wavelengths including KESE currents plus entro
step-step repulsion in the classical Burton-Cabrera-Fr
~BCF! model.13 It is the competition between the destabili
ing and the stabilizing forces combined in this extended B
model ~EBCF model! which results into two different kinds
of morphologies depending on the difference in magnitude
orthogonal driving forces. In contrast to the widely us
Monte Carlo models19,20 for the simulation of vicinal surface
growth, as a continuum model the EBCF allows for a ma
ematical stability analysis. This reveals an analytical expr
sion for the basic wavelength of the meander instabi
which is in agreement with recent experimental observatio
©2002 The American Physical Society06-1



th
s
al
at
de
d

th
.e
5
d

ns

a
n

te
g

C
nd

s

t
p

n-
w
tia
is

ge
t

ca
ia
14
Th
to
o

or-
of

a

ng

c-
to

h
ting
be
king
he
a-
sta-
ep.

un-

in

om
ale
;

he

BRIEF REPORTS PHYSICAL REVIEW B 65 233406
Moreover, careful investigations with the model elucidate
fact, that to explain~i! the correct morphology transition
plus ~ii ! the correct wavelength formation at Cu vicinals,
four of the driving and restoring forces explained underne
in detail have to be taken into consideration. This mo
resolves these four physical components as well as the
namics resulting from their interaction explicitly.

To get an impression of the basic ideas underlying
EBCF model let us start with the one-sided BCF model, i
the model formulated by Burton, Cabrera, and Frank in 19
for the case of complete suppression of attachment of a
toms to descending steps. This one-sided BCF model co
tutes amoving boundary problemof a diffusion-relaxation
equation for the dynamics of the adatoms on the terraces
two boundary conditions for the conservation of mass a
the conservation of energy at the steps, respectively:

] tc5D¹2c2
1

t
c1F, ~1!

ceq5ceq
0
•~11kVg̃/kBT!, ~2!

vn5DV
]c

]n
. ~3!

Here c and k denote the areal adatom density and the s
curvature, respectively.g̃ refers to the step stiffness takin
into account its fourfold anisotropy. Equations~2! and~3! are
to be evaluated at the front of each step. For vicinal
surfaces in the temperature range of the experiments u
discussion a current involving the diffusion coefficientDm
along the kinked steps is operative.8 Following the notation
of Pierre-Louiset al. in Ref. 10 this diffusion along step
plus its anisotropy due to KESE can be included in themov-
ing boundary problemabove by adding2]xJk to the right-
hand side of Eq.~3!, whereJk refers to the KESE curren
given by Eqs.~2! and ~3! of Ref. 10. For a meandering ste
with local slopeuM u.1 it reads

Jk5
Fs

'~12uM u!M
Ls1uM u

, ~4!

where Ls denotes the KESE length andFs
' the respective

incident flux.Jk is a function of the local slope of the mea
dering step with respect to the straight step. Since gro
proceeds in the direction of minimal step stiffness, the ini
orientation of the meandering instability is aligned with th
direction of minimal step stiffness. Assuming the step ed
to be infinitesimal sections of a surface perpendicular
~001!, the orientational dependency of the step stiffness
be determined in direct analogy to the calculation of var
tions of surface tension with surface orientation in Ref.
The appropriate potential is a Lennard-Jones potential.
result is the^130& orientation of edges as the direction
minimize step stiffness. This implies that this direction
minimal step stiffness encloses an angleu0 of approximately
63.5° with the straight steps in case of Cu~1,1,17!, whereas
u0 is approximately 71.5° in the case of Cu~0,2,24!. u0 has
to be taken into account as part ofg̃, i.e.,
23340
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g̃5g̃0@12e4 cos~u2u0!#, ~5!

whereg̃0 refers to the step stiffness of a straight step,e4 to
the material’s crystalline anisotropy andu to the angle be-
tween the normal vector of a straight step and the local n
mal of the meandering step. With an initial orientation
instabilities in the^130& direction, destabilizingJk currents
of different magnitudes are triggered with respect to
straight step direction in either^110& or ^100&. To evaluate
Jk a quantitative value for the KESE lengthLs is required.
The diffusion barrier for the jump of a single adatom alo
the step edge in thê130& direction is;0.39 eV picturing it
as an alternation of one jump with a barrier of 0.26 eV su
ceeded by one jump with barrier of 0.52 eV according
Ref. 19. From this the KESE lengthLs can be derived as
0.20163103. The resulting j k current densities for
Cu~0,2,24! versus Cu~1,1,17! differ by one order of magni-
tude: for Cu~0,2,24! j k takes a value of 3.5518
31027 (Å s)21, whereas for Cu~1,1,17! j k53.1915
31028 (Å s)21. Despite their different magnitudes in bot
cases KESE currents are destabilizing, favoring unsatura
amplitude growth. Wavelengths of instabilities turn out to
even less than in the BCF model. As a consequence, ta
into account KESE as the only additional driving force in t
BCF model cannot explain the experimental work by T. M
routian and co-authors. An obvious antagonist of the de
bilizing KESE is the repulsion due to the succeeding st
Entropic as well as elastic interactions16 have to be taken into
account. Since the step interaction energyA is small com-
pared to the entropic repulsion in the temperature ranges
der discussion15, it is sufficient to extend Eq.~2! by taking
into account the suppression of step wandering:

ceq5ceq
0 1

k

kBT
•S Vg̃ceq

0 1
~pkBT!2

6l 2g̃
D , ~28!

vn5DV
]c

]n
2]xJ. ~38!

The additional term (pkBT)2/6l 2g̃ is the step interaction
parameter withl the width of the terraces. Equations~1!,
(28), and (38) constitute the extended BCF model~EBCF!.
Its simulation withT5280 K, F5331023 monolayers/s,
l 521.7 Å, Dm51026 cm2/s, ceq

0 58.20831026 Å21, and

g̃51.034 eV/Å yields two morphologies for the Cu~0,2,24!
surface~Fig. 1! and the Cu~1,1,17! ~Fig. 2!, respectively~no
desorption!.

The four components regulating growth of instabilities
the EBCF model are:

~i! enhancement of growth via the gradient of the adat
diffusion field normal to the interface setting the length sc
LD as a primary wavelength of the meandering instability

~ii ! restore via step stiffness~corr. length scale:G);
~iii ! driving of amplitude growth via KESE~scale:Ls);
~iv! restore via entropic repulsion ~scale: LS

56g l 2/kBTp2) .
In the situation depicted by Fig. 2 the magnitude of t

KESE current derivative]xJ is negligibly small. The remain-
6-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 233406
ing forces due to entropic and step stiffness effects ac
directions perpendicular to each other. The result of t
competition of perpendicular forces of equal strength is
degenerated morphologyas observed in other contexts wi
an analogous competition of driving forces.12

In Fig. 1 the KESE current contributes to the evolution
surface morphology. It has a component which is oppose
the entropic forces reducing their overall effect. The mag

FIG. 1. In-phase meandering according to numerical simulati
of the EBCF model. The parameters of the simulation are calibra
to Fig. 1~b! in Ref. 5. GU refers to grid units of the underlyin
numerical grid. A train of 15 steps with periodic boundary con
tions in the lateral direction is displayed. Horizontal boundary c
ditions are periodic as well. Space calibration leads to roughly
grid units corresponding to 1 Å. Asymmetry with respect to they
axis is a consequence ofu0 in Eq. ~5!.

FIG. 2. The degeneratedmorphology as obtained in simula
tions. Same as in Fig. 1 except a different scale of 1 GU co
sponding to 1 Å and taking into account the different vicina
@namely Cu~1,1,17! versus Cu~0,2,24!# via a different angle be-
tween the alignment of straight steps and the direction of mini
step stiffness~i.e., u0). A train of 25 steps with the first step grow
ing towards infinity is displayed. This simulation result is in go
agreement with the degenerated morphology recorded for
Cu~1,1,17! after deposition of about 20 monolayers~ML’s ! at F
5531023 ML’s/s at surface temperature 285 K via STM topogr
phy ~Ref. 11!.
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tude of the remaining driving force due to this KESE curre
is ten times smaller then the magnitude of the adatom di
sion field gradient in the direction of minimal step stiffnes
The precise factor, evaluated via the simulation, is 11.129
Fig. 1 averaged over 500 time steps. Due to the domina
of LD , growth can proceed in the direction of minimal ste
stiffness.

To understand the basic wavelength of the instability
two new length scalesLS andLs , set by entropic interaction
as in Eq. (28) and by an anisotrop diffusion current along th
step as in Eq. (38) respectively, have to be taken into a
count. Equations~1!, (28), and (38) constitute a system with
a type-I bifurcation.17 Its dispersion relation can be evaluate
in an analogy to a dilute binary alloy undergoing direction
solidification18. For G!ŁS the resulting expression to lead
ing order reads

lu5A2pS LD•G•ŁS

4 D 1/3

12A2p
GLs

3l T
. ~6!

Here l T52D/v0, wherev0 denotes the velocity of a straigh
step. Equation~4! replaces Eq.~1! in Ref. 5. It is sufficient in
the most interesting temperature range 2.8–3.831023 K21,
where it displays deviations from an Arrhenius-type beh
ior, which increases with increasing temperature. Nevert
less, it is in good agreement with the experimental data~Fig.
3!. Simulations of the EBCF model also support this expr
sion.

The EBCF model explains two relevant interesting resu
for growth at vicinal surfaces, namely the experimenta
observed deviation from the Bales-Zangwill instability a
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-
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l

FIG. 3. The ‘‘1’’ data points are taken from Ref. 5 and give th
wavelength measurements recorded there. The dashed line i
solution of Eq.~4!. Crosses with error bars are data points obtain
from simulation with the EBCF. There are limitations to a prec
wavelength measure in simulations. Due to the horizontal perio
boundary conditions wavelengths are always a divider of the s
tem’s width. Enlarging this system width systematically until t
rise of a further cell as well as restricting the width until the extin
tion of one of the cells allows the determination of upper and low
bounds. Data points are the mean of these bounds which thems
are taken into account via the error bars, thus each data point
result of up to 15 simulations with different system widths.
6-3



th
th
r
e
o

e
er

e
as

d
de
op

th

tion
er
es
t

ich
ted.

ar
e to

e
en
H.
et-
b-

BRIEF REPORTS PHYSICAL REVIEW B 65 233406
the rise of adegenerated morphology. I am not aware of any
other model which allows for an analytical waveleng
analysis as well as for a quantitative investigation of
morphology transition via explicit consideration of all fou
competing driving and restoring forces discussed here. Th
results are related to experimental findings in the group
H.-J. Ernst. The new basic wavelength predicted theor
cally from the EBCF model can be observed as initial p
turbation of the step at the Cu~0,2,24! as well as the
Cu~1,1,17! surfaces. The qualitative difference between th
morphologies, i.e., whether a surface displays an in-ph
meandering @Cu~0,2,24!# or a degenerated structure
@Cu~1,1,17!# after deposition of a few monolayers, depen
on the magnitude of the angle between the direction of
stabilizing and restoring forces. Time scales for the devel
ment from initial perturbation to the fulldegeneratedmor-
phology could not be compared with experiments due to
,
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lack of experimental data. It seems an interesting ques
whetherin situ transitions from one morphology to the oth
can be obtained via a change in the ratio of driving forc
~e.g., by lowering temperature during the experimen!.
Whether this morphology transition displays features wh
resemble a true phase transition remains to be investiga

The diffusion relaxation Eq.~1! is solved on a quadratic
grid. The interface is discretized separately by curviline
segments and respective interpolations from the interfac
the grid.

I thank T. Maroutian for sending me a STM picture of th
true Cu~1,1,17! surface morphology as well as M. Rusan
for sending me Ref. 20 prior to publication. Comments by
Müller-Krumbhaar as well as assistance by T. Ihle when g
ting started on explicit solvers for moving boundary pro
lems are gratefully acknowledged.
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