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Spectral functions in itinerant electron systems with geometrical frustration
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The Hubbard model with geometrical frustration is investigated in a metallic phase close to half-filling. We
calculate the single particle spectral function for the triangular lattice within dynamical cluster approximation,
which is further combined with noncrossing approximation and fluctuation exchange approximation to treat the
resulting cluster Anderson model. It is shown that frustration due to nonlocal correlations suppresses short-
range antiferromagnetic fluctuations and thereby assists the formation of heavy quasiparticles near half-filling.

DOI: 10.1103/PhysRevB.65.233103 PACS number~s!: 71.10.Fd, 71.27.1a
v
r
,
n
s
-
-
om
ric
n

le

io

ap
th
n
ic
rk

ap

te
e-

o
sa
th

ca
o
s

or
all
s-

s

a
c

m
th
e

a-
l

e

o-

e

ith
ls

uster
Recently, geometrically frustrated metallic systems ha
attracted much attention, for which a wide variety of inte
esting phenomena have been discovered. For instance
compound LiV2O4 with pyrochlore structure, which is give
by a corner-sharing network of tetrhedra of V ions, exhibit
heavy fermion behavior.1 Also, another pyrochlore com
pound Y(Sc)Mn2 ~Ref. 2! shows a quantum spin-liquid be
havior down to low temperatures. These interesting phen
ena are considered to be closely related to geomet
frustration3–8 induced by the strong Coulomb interactio
with specific geometry of the lattice.

Among theoretical approaches to strongly correlated e
tron systems, dynamical mean field theory~DMFT! ~Ref. 9!
is one of the most successful methods to describe var
physical properties. In DMFT the self-energy is given as
local quantity, which is justified in the limit of large
dimensions.11,10 This method has been known as a good
proximation even in three dimensions. However, since
self-energy becomes local in DMFT, nonlocal charge a
spin correlations, which are essential for treating geometr
frustration, cannot be properly described in this framewo
In order to deal with such nonlocal correlations, various
proaches beyond the DMFT have been proposed.12–16

Among others, the dynamical cluster approximation~DCA!
~Refs. 17–21! may provide a systematic way to incorpora
nonlocal correlations. In DCA, the lattice problem is r
placed by the corresponding cluster one embedded in an
fective medium determined self-consistently. This meth
has the following nice features: the algorithm is fully cau
and the approximation can be improved systematically if
cluster size is increased.

In this paper, we investigate the effects of geometri
frustration on the Hubbard model. In particular, we focus
the triangular lattice, which is known as a prototypical sy
tem having strong geometrical frustration. Since it is imp
tant to incorporate short-range correlations systematic
we employ DCA, which is further combined with noncros
ing approximation~NCA! ~Refs. 22,23! to solve the local
problem. We also use a weak-coupling approach by mean
fluctuation exchange approximation~FLEX! ~Ref. 24! for the
local problem, which should be complementary to the tre
ment of NCA. By calculating the one-particle spectral fun
tion as well as the total density of states in these approxi
tions, we discuss how geometrical frustration effects
formation of heavy quasiparticles in a metallic phase clos
half-filling.
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We start with the single-band Hubbard model,

H52t (
^ i , j &s

cis
† cj s2t8 (

^ i , j 8&s
cis

† cj 8s1U(
i

ni↑ni↓ , ~1!

wherecis(cis
† ) is the annihilation~creation! operator of an

electron with spins at the i th site, andU represents the
Coulomb repulsion. We introduce two kinds of hopping p
rameterst and t8(<t) to study the effects of geometrica
frustration systematically8 @Fig. 1~a!#.

In order to apply DCA to the frustrated lattice system, w
first introduce theNc discrete cluster-momentaK ,17–21which
are defined as

K5na11ma2 , ~2!

a15S 2p

ANc

,
2p

A3Nc
D , a25S 0,

4p

A3Nc
D , ~3!

wheren andm denote the integral number andK should be
within the first Brillouin zone~BZ!. Next, we divide the
original BZ into the subregions specified by the cluster m
menta~coarse-graining cells!; an example ofNc54 is shown
schematically in Fig. 1~b!. Therefore, in our treatment th
coarse-grained Green function,17–21

Ḡs~K ,z!5
1

N8
(

k̃

1

z2eK1 k̃2Ss~K ,z!
, ~4!

FIG. 1. ~a! Schematic representation of triangular lattice w
electron hoppingst andt8. ~b! Example of the coarse-graining cel
in the BZ for the triangular lattice, where the cluster sizeNc54 and
the dashed line denotes the first BZ. The dots represent the cl
momentaK .
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BRIEF REPORTS PHYSICAL REVIEW B 65 233103
is specified by the cluster momentumK . Here, N85N/Nc
whereN is the number of total lattice sites. The summati
over k̃ is taken within the coarse-graining cell.

In order to obtain the coarse-grained Green function,
now map the Hubbard lattice model to the cluster Ander
model.19 By solving this effective cluster problem, we ca
obtain the cluster self-energyS(K ,z), so that the coarse
grained Green function is determined self-consistently. T
the one-particle spectral function and the total DOS are gi
by the standard formula,

As~K ,v!52
1

p
Im Ḡs~K ,v!; ~5!

rs~v!5
1

Nc
(
K

As~K ,v!. ~6!

We numerically iterate the above procedure until the c
culated quantities converge within desired accuracy. In
following discussions, we shall deal with a paramagnetic m
tallic phase. We sett51 as the unit of the energy for sim
plicity.

In order to solve the cluster problem mentioned above,
make use of NCA,19 which is expected to provide reliabl
results in the temperature range we are now interested
Since the dimension of the cluster Hamiltonian is 4Nc, so that
the numerical calculation becomes much more difficult w
the increase of the number of cluster momenta. We pra
cally take the cluster size,Nc54 within the NCA in this
paper. Note that we have neglected off-diagonal terms in
cluster resolvents, since those are known to be less impo
for discussing the one-particle spectra.19 We show our results
calculated forT50.6 below, since this temperature is reaso
ably low for our system to exhibit essential properties due
the electron correlations.

Let us first discuss the total DOS in the system w
strong frustration. In Fig. 2, we show the DOS for the tria
gular lattice at half-filling with isotropic hopping,t85t. For

FIG. 2. Total DOS for the triangular lattice with DCA~solid
line! and DMFT~dashed line! at half-filling, respectively. Here, the
cluster sizeNc54. The energy is measured from the Fermi lev
(v50). The parameters are chosen ast85t, U56.0, and the tem-
peratureT50.6 (t is taken as the unit of the energy!. The inset
shows DOS for the noninteracting tight-binding model on the sa
lattice.
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the triangular lattice, DOS calculated by DMFT has a man
body peak around the Fermi level (v;0), which implies the
formation of heavy quasiparticles due to the Hubbard int
action. We note here that the DCA recovers the DMFT
Nc51. Even if short-range nonlocal correlations are tak
into account by DCA, the many-body peak still persists
though it becomes slightly smaller than that of DMFT.

This Fermi-liquid-like behavior is contrasted to the ca
of the square lattice with nearest neighbor hopping. In
latter case, it is known that a pseudo-gap structure in D
which is developed by the Hubbard interaction, prevents
formation of quasiparticles19 when the system is at half
filling where short-range antiferromagnetic fluctuations a
most relevant~see also Fig. 3!. Our results in the triangula
lattice shows that antiferromagnetic correlations are stron
suppressed in the frustrated lattices, resulting in the form
tion of heavy quasiparticles even at half-filling. Note that
both of these two lattices, the Mott insulator is stabilized

To investigate how antiferromagnetic fluctuations are s
pressed by geometrical frustration, we changet8 continu-
ously, and observe what happens for the DOS and the o
particle spectral functions on the triangular lattice. T
results are shown in Fig. 3. Note that the effect of frustrat
becomes less important with the decrease oft8. As t8 de-
creases fromt, the heavy quasi-particle band around t
Fermi level is obscured, and then the pseudogap is develo
after frustration is suppressed. From the one-particle spe
function for each momentum, shown in Figs. 3~b!–3~d!, we
can figure out which contribution is most relevant to t
quasiparticle formation~or suppression! under strong frustra-
tion. Since the state withK5(0,0) is away from the Ferm
level, the overall structure is not changed byt8. However the
spectrum forK5(p,p/A3), which is energetically degene
ate with that forK5(p,2p/A3), crosses the Fermi surfac
being easily affected by frustration. Whent8 is equal tot,

l

e
FIG. 3. ~a! Total DOSr(v) and ~b!–~d! one-particle spectra

functions A(K ,v) corresponding to theK5(0,0), (p,p/A3) @or
(p,2p/A3)] and (0,2p/A3) for various choices of the hoppin
amplitude:t85t ~solid line!, t850.5t ~dashed!, and t850.0 ~dot-
ted!. The other parameters are as in Fig. 2.
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BRIEF REPORTS PHYSICAL REVIEW B 65 233103
where frustration is very strong, heavy quasiparticles
formed around the Fermi level. With decreasing frustrati
the heavy quasiparticle band splits, and the pseudogap be
to develop explicitly around the Fermi level. Therefore, t
low energy physics in this system is mainly controlled by t
state withK5(p,p/A3) @or K5(p,2p/A3)].

In order to further confirm the above statements, we h
numerically estimated the renormalization factor, which
defined as

ZK5S 12
] R S~K ,v!

]v Uv50D 21

. ~7!

In Fig. 4 we show the results obtained for the moment
K5(p,p/A3) close to the Fermi level. It is seen from Fi
4~a! that the renormalization factor for the triangular latti
is reduced with the increase ofU for the fully frustrated case
(t85t). As mentioned above, this indicates that the effect
mass near the Fermi level is enhanced byU, forming well-
defined heavy quasiparticles. Whent8/t is decreased from
unity with U being fixed, the effect of frustration become
less important, so that the system has a tendency to b
insulator with strong antiferromagnetic fluctuations. In th
case, we encounter an anomalous behavior in the renor
ization factor calculated numerically for the triangular la
tice, as seen from Fig. 4. Namely, the renormalization fac
increases ast8 decreases, and diverges aroundt8/t;0.4, be-
low which it takes negative values. This anomalous beha
in ZK is closely related to the formation of a dip-structure
the spectrum, which reflects the enhancement of antife
magnetic fluctuations. The negative values ofZK should be
considered as an artifact of fitting the numerical data with
formula ~7! even for the case with a dip structure.

So far, we have treated the effective cluster model
NCA, which may be an efficient approximation in the inte
mediate coupling regime. Here, we take a weak-coupling
proach using FLEX to solve the effective cluster proble
Since FLEX is a perturbative method with respect to
Coulomb interactionU, it may give results complimentary t
those of NCA. We here confirm the conclusion of the NC
approach by investigating effects of frustration on the tria
gular lattice in Fig. 1~a!. Shown in Fig. 5 are the total DOS
the one-particle spectral function and the corresponding s
energy calculated for the triangular lattice at half-filling.

In the case oft850, a pseudogap develops around t
Fermi level in the total DOS as well as in the one-parti

FIG. 4. Renormalization factor for the triangular lattice.~a!
U-dependence (t85t) and ~b! t8-dependence (U56.0). Here,K
5(p,p/A3). The other parameters are as in Fig. 2.
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spectral function asU increases, which is consistent with th
QMC results20,21 and also with those obtained by NCA. It i
seen that the pseudogap disappears with the increase ot8,
similarly to the results of NCA. However, it is not clearl
seen from this figure whether a heavy quasiparticle ban
indeed formed, since the bump structure in the DOS ab
the Fermi level (t850.5t and 1.0t) is much effected by the
van Hove singularity. Nevertheless, we can see a tendenc
the formation of Fermi quasiparticles by observing t
imaginary part of the self-energy in the larget8 regime@Fig.
5~c!#. Namely, whent8 is absent, the imaginary part of th
self-energy has a sharp peak structure aroundv;0, which is
quite different from the Fermi-liquid behavior. Howeve
with increasingt8, its shape changes from the peak to
concave structure, which is similar to a conventional Fer
liquidlike behavior. We have also checked that qualitative
analogous behaviors can be found in the system of diffe
cluster size,Nc516 and 64. Therefore, we confirm the co
clusion of the NCA approach that frustration assists the f
mation of Fermi quasiparticles by effectively suppressing
antiferromagnetic fluctuations.

We wish to mention here that our results are consist
with some experimental findings, e.g., the large specific-h
coefficient found in the pyrochlore compound, Y(Sc)Mn2,2

which is a typical example of geometrically frustrated met
lic systems.

In summary, we have investigated the Hubbard mo
with geometrical frustration by employing the triangular la
tice as a typical example. Applying DCA combined wi
NCA and FLEX to the Hubbard model in a paramagne
metallic phase close to the Mott insulator, we have calcula
the one-particle spectral function. Based on the results
tained by both approaches, we have demonstrated how

FIG. 5. ~a! DOS r(v), ~b! one particle spectral function
A(K ,v) @K5(p,p/A3)#, and ~c! imaginary part of the self-
energyS(K ,v) for U53.0, T50.6 at half-filling. The cluster size
Nc used for the calculation is 36.
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BRIEF REPORTS PHYSICAL REVIEW B 65 233103
metrical frustration suppresses antiferromagnetic cor
tions, and then assists the formation of a heavy quasipar
band near the Mott insulating phase.
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6M. D. Núñez-Regueiro and C. Lacroix, Phys. Rev. B63, 014417

~2001!.
7S. Fujimoto, Phys. Rev. B64, 085102~2001!.
8T. Kashima and M. Imada, J. Phys. Soc. Jpn.70, 3052~2001!; H.

Morita, S. Watanabe, and M. Imada, cond-mat/0203020~unpub-
lished!.

9A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, R
Mod. Phys.68, 13 ~1996!.

10E. Müller-Hartmann, Z. Phys. B: Condens. Matter74, 507~1989!.
11W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
12P. G. J. van Dongen, Phys. Rev. B50, 14 016~1994!.
13A. Schiller and K. Ingersent, Phys. Rev. Lett.75, 113 ~1995!.
B

.

14Tran Minh-Tien, Phys. Rev. B58, 15 965~1998!.
15A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B62, R9283

~2000!.
16G. Kotliar, S. Y. Savrasov, G. Pa´lsson, and G. Biroli, Phys. Rev

Lett. 87, 186401~2001!.
17M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, a

H. R. Krishnamurthy, Phys. Rev. B58, R7475~1998!.
18M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamu

thy, Phys. Rev. B61, 12 739~2000!.
19Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Eur. Phys. J

13, 613 ~2000!.
20S. Moukouri and M. Jarrell, Phys. Rev. Lett.87, 167010~2001!.
21M. Jarrell, Th. Maier, C. Huscroft, and S. Moukouri, Phys. Rev.

64, 195130~2001!.
22N. E. Bickers, Rev. Mod. Phys.59, 845 ~1987!.
23Th. Pruschke and N. Grewe, Z. Phys. B: Condens. Matter74, 439

~1989!.
24N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. L

62, 961 ~1989!.
3-4


