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Spectral functions in itinerant electron systems with geometrical frustration
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The Hubbard model with geometrical frustration is investigated in a metallic phase close to half-filling. We
calculate the single particle spectral function for the triangular lattice within dynamical cluster approximation,
which is further combined with noncrossing approximation and fluctuation exchange approximation to treat the
resulting cluster Anderson model. It is shown that frustration due to nonlocal correlations suppresses short-
range antiferromagnetic fluctuations and thereby assists the formation of heavy quasiparticles near half-filling.
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Recently, geometrically frustrated metallic systems have We start with the single-band Hubbard model,
attracted much attention, for which a wide variety of inter-
esting phenomena have been discovered. For instance, the
compound Li\O, with pyrochlore structure, which is given H=—t > clc,—t' > ¢l ,+UX nyni, (1)
by a corner-sharing netgvTork of tetrhedra of V ions, exhibits a (LD (ii")e '
ggﬁ\rﬁ; :(e(g::')ol\r/‘lab(%h;\_/'z) ‘SAFESV’S anth;r:tu?%/rggmgirguigotrﬁe ) whereci(,(giT(,) |s_the ann|h|_lat|or_1(creat|0tj operator of an
havior down to low temperatures. These interesting phenom@'IeCtron with Spina at t.he'th site, and_U represents the
ena are considered to be closely related to geometricat®ulomb repuls,lon. We introduce two kinds of hopping pa-
frustratio 8 induced by the strong Coulomb interaction Fameterst and t'(<t) to study the effects of geometrical
with specific geometry of the lattice. frustration systematicaffy{Fig. 1(a)]. _

Among theoretical approaches to strongly correlated elec- In order to apply DCA to the frustrated lattice system, we
tron systems, dynamical mean field the¢BMFT) (Ref. 9 firstintroduce théN, discrete cluster-momentd,*’~*which
is one of the most successful methods to describe variouare defined as
physical properties. In DMFT the self-energy is given as a
local quanti% which is justified in the limit of large K=na;+may, (2

dimensions*° This method has been known as a good ap-

proximation even in three dimensions. However, since the

self-energy becomes local in DMFT, nonlocal charge and a = 2_7T 2m a=|0 4w 3)
spin correlations, which are essential for treating geometrical VUUNG V3N T LT BN

frustration, cannot be properly described in this framework.

In order to deal with such nonlocal correlations, various apwheren andm denote the integral number aikdshould be
proaches beyond the DMFT have been propdéetf. within the first Brillouin zone(BZ). Next, we divide the
Among others, the dynamical cluster approximat{@CA)  original BZ into the subregions specified by the cluster mo-
(Refs. 17—21 may provide a systematic way to incorporate menta(coarse-graining cellsan example oN.=4 is shown
nonlocal correlations. In DCA, the lattice problem is re- schematically in Fig. (b). Therefore, in our treatment the
placed by the corresponding cluster one embedded in an e¢oarse-grained Green functibfi,?

fective medium determined self-consistently. This method

has the following nice features: the algorithm is fully causal o 1 1
and the approximation can be improved systematically if the Gy(Kz2)=— 2 (4)
cluster size is increased. N™ &

In this paper, we investigate the effects of geometrical
frustration on the Hubbard model. In particular, we focus on
the triangular lattice, which is known as a prototypical sys-
tem having strong geometrical frustration. Since it is impor-
tant to incorporate short-range correlations systematically,
we employ DCA, which is further combined with noncross- f
ing approximation(NCA) (Refs. 22,23 to solve the local
problem. We also use a weak-coupling approach by means of ;
fluctuation exchange approximati@RLEX) (Ref. 24 for the t
local problem, which should be complementary to the treat-
ment of NCA. By calculating the one-particle spectral func-  FIG. 1. () Schematic representation of triangular lattice with
tion as well as the total density of states in these approximaelectron hoppingsandt’. (b) Example of the coarse-graining cells
tions, we discuss how geometrical frustration effects then the BZ for the triangular lattice, where the cluster dize=4 and
formation of heavy quasiparticles in a metallic phase close tehe dashed line denotes the first BZ. The dots represent the cluster
half-filling. momentaK.
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FIG. 2. Total DOS for the triangular lattice with DCfsolid
line) and DMFT (dashed lingat half-filling, respectively. Here, the
cluster sizeN.=4. The energy is measured from the Fermi level
(w=0). The parameters are chosentast, U=6.0, and the tem-
peratureT=0.6 (t is taken as the unit of the enejgyThe inset
shows DOS for the noninteracting tight-binding model on the same
lattice. FIG. 3. (a) Total DOS p(w) and (b)—(d) one-particle spectral

functions A(K, ) corresponding to th& =(0,0), (m,/+/3) [or
is specified by the cluster momentuh Here, N'=N/N.  (&,—#//3)] and (0,27/\/3) for various choices of the hopping
whereN is the number of total lattice sites. The summationamplitude:t’=t (solid line), t'=0.5t (dasheg, andt’=0.0 (dot-

overk is taken within the coarse-graining cell. ted. The other parameters are as in Fig. 2.

In order to obtain the coarse-grained Green function, we . ]
now map the Hubbard lattice model to the cluster Andersorihe triangular lattice, DOS calculated by DMFT has a many-
model’® By solving this effective cluster problem, we can Pody peak around the Fermi leveb{-0), which implies the
obtain the cluster self-energy(K,z), so that the coarse- formation of heavy quasiparticles due to the Hubbard inter-
grained Green function is determined self-consistently. Thefction. We note here that the DCA recovers the DMFT for

the one-particle spectral function and the total DOS are givelc=1. Even if short-range nonlocal correlations are taken
by the standard formula, into account by DCA, the many-body peak still persists al-

though it becomes slightly smaller than that of DMFT.
1 This Fermi-liquid-like behavior is contrasted to the case
A K,w)=——=ImG (K, w); (5 of the square lattice with nearest neighbor hopping. In the
& latter case, it is known that a pseudo-gap structure in DOS,
which is developed by the Hubbard interaction, prevents the
1 formation of quasiparticlé$ when the system is at half-
pg(w)_N—Z A (K, ). ©® o . : :
P illing where short-range antiferromagnetic fluctuations are
most relevantsee also Fig. B Our results in the triangular
We numerically iterate the above procedure until the caldattice shows that antiferromagnetic correlations are strongly
culated quantities converge within desired accuracy. In théuppressed in the frustrated lattices, resulting in the forma-
following discussions, we shall deal with a paramagnetic metion of heavy quasiparticles even at half-filling. Note that in
tallic phase. We set=1 as the unit of the energy for sim- both of these two lattices, the Mott insulator is stabilized.
plicity. To investigate how antiferromagnetic fluctuations are sup-
In order to solve the cluster problem mentioned above, wé@ressed by geometrical frustration, we changecontinu-
make use of NCA? which is expected to provide reliable ously, and observe what happens for the DOS and the one-
results in the temperature range we are now interested iparticle spectral functions on the triangular lattice. The
Since the dimension of the cluster Hamiltonian %5 4s0 that ~ results are shown in Fig. 3. Note that the effect of frustration
the numerical calculation becomes much more difficult withbecomes less important with the decrease’ofAs t' de-
the increase of the number of cluster momenta. We practicreases fromt, the heavy quasi-particle band around the
cally take the cluster sizeé\.=4 within the NCA in this Fermilevel is obscured, and then the pseudogap is developed
paper. Note that we have neglected off-diagonal terms in thafter frustration is suppressed. From the one-particle spectral
cluster resolvents, since those are known to be less importafitnction for each momentum, shown in Figgb3-3(d), we
for discussing the one-particle Sped?aj_\/e show our results can figure out which contribution is most relevant to the
calculated fofT = 0.6 below, since this temperature is reason-quasiparticle formatiofor suppressionunder strong frustra-
ably low for our system to exhibit essential properties due tdion. Since the state witk =(0,0) is away from the Fermi
the electron correlations. level, the overall structure is not changedtbyHowever the
Let us first discuss the total DOS in the system withspectrum forlK = (7, 7/ \/3), which is energetically degener-
strong frustration. In Fig. 2, we show the DOS for the trian-ate with that fork = (7, — 7/ \/3), crosses the Fermi surface,
gular lattice at half-filling with isotropic hoppind, =t. For  being easily affected by frustration. Wheh is equal tot,
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FIG. 4. Renormalization factor for the triangular lattide)
U-dependencet(=t) and (b) t’'-dependence {=6.0). Here,K
= (ar,7/\/3). The other parameters are as in Fig. 2.

where frustration is very strong, heavy quasiparticles are
formed around the Fermi level. With decreasing frustration,
the heavy quasiparticle band splits, and the pseudogap begins
to develop explicitly around the Fermi level. Therefore, the
low energy physics in this system is mainly controlled by the
state withK = (7, 7/+/3) [or K = (,— m//3)].

In order to further confirm the above statements, we have rig 5. (3 DOS p(w), (b) one particle spectral function
numerically estimated the renormalization factor, which isp(k ) [K=(m,#/y3)], and (c) imaginary part of the self-
defined as energy> (K,w) for U=3.0, T=0.6 at half-filling. The cluster size

N, used for the calculation is 36.
_ ( 1 IR2Z(K,w)
K=

-1
P w—O) . (7)
. . spectral function abl increases, which is consistent with the
In Fig. 4 we show the results obtained for the momentquMC resultd%2t and also with those obtained by NCA. It is
K =(m,m/\/3) close to the Fermi level. It is seen from Fig. geen that the pseudogap disappears with the increase of
4(a) that the renormalization factor for the triangular lattice similarly to the results of NCA. However, it is not clearly

is reduced with the increase bffor the fully frustrated case seen from this figure whether a heavy quasiparticle band is

('=1). As mennoneq abovg, this indicates that_the eﬁeCt'Vemdeed formed, since the bump structure in the DOS above
mass near the Fermi level is enhancedUyyforming well-

. oo L the Fermi level { =0.5 and 1.@) is much effected by the
defined heavy quasiparticles. Whefit is decreased from . .
unity with U being fixed, the effect of frustration becomes van Hove singularity. Nevertheless, we can see a tendency to

less important, so that the system has a tendency to be (,me formation of Fermi quasiparticles by observing the

insulator with strong antiferromagnetic fluctuations. In this'maginary part of the self-energy in the largeregime[Fig.
case, we encounter an anomalous behavior in the renormat(c)].- Namely, whent” is absent, the imaginary part of the
ization factor calculated numerically for the triangular lat- S€lf-energy has a sharp peak structure araund, which is
tice, as seen from Fig. 4. Namely, the renormalization factofiuite different from the Fermi-liquid behavior. However,
increases a8 decreases, and diverges arounti~0.4, be- ~ With increasingt’, its shape changes from the peak to a
low which it takes negative values. This anomalous behaviogoncave structure, which is similar to a conventional Fermi
in Z is closely related to the formation of a dip-structure in liquidlike behavior. We have also checked that qualitatively
the spectrum, which reflects the enhancement of antiferrcanalogous behaviors can be found in the system of different
magnetic fluctuations. The negative valuesZgf should be cluster sizeN.=16 and 64. Therefore, we confirm the con-
considered as an artifact of fitting the numerical data with theclusion of the NCA approach that frustration assists the for-
formula (7) even for the case with a dip structure. mation of Fermi quasiparticles by effectively suppressing the
So far, we have treated the effective cluster model byantiferromagnetic fluctuations.
NCA, which may be an efficient approximation in the inter- We wish to mention here that our results are consistent
mediate coupling regime. Here, we take a weak-coupling apwith some experimental findings, e.g., the large specific-heat
proach using FLEX to solve the effective cluster problem.coefficient found in the pyrochlore compound, Y(Sc)Mn
Since FLEX is a perturbative method with respect to thewhich is a typical example of geometrically frustrated metal-
Coulomb interactiotd, it may give results complimentary to lic systems.
those of NCA. We here confirm the conclusion of the NCA In summary, we have investigated the Hubbard model
approach by investigating effects of frustration on the trian-with geometrical frustration by employing the triangular lat-
gular lattice in Fig. 18). Shown in Fig. 5 are the total DOS, tice as a typical example. Applying DCA combined with
the one-particle spectral function and the corresponding selNCA and FLEX to the Hubbard model in a paramagnetic
energy calculated for the triangular lattice at half-filling. metallic phase close to the Mott insulator, we have calculated
In the case ot’=0, a pseudogap develops around thethe one-particle spectral function. Based on the results ob-
Fermi level in the total DOS as well as in the one-particletained by both approaches, we have demonstrated how geo-
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