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Extended states in a one-dimensional generalized dimer model

P. Ojeda, R. Huerta-Quintanilla, and M. Rodrı´guez-Achach
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~Received 11 March 2002; published 28 May 2002!

The transmission coefficient for one-dimensional systems is given in terms of Chebyshev polynomials using
the tight-binding model. This result is applied to a system composed of two impurities located betweenN sites
of a host lattice. It is found that the system has extended states for several values of the energy. Analytical
expressions are given for the impurity site energy in terms of the electron’s energy. The number of resonant
states grow like the number of host sites between the impurities. This property makes the system interesting
since it is a simple task to design a configuration with resonant energy very close to the Fermi levelEF .
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Since the seminal paper of Anderson,1 the problem of
localization has been fundamental for the understanding
electronic transport in one-dimensional disordered syste
The discovery of extended or delocalized states in syst
with correlated disorder has renewed interest in the trans
properties of electrons for particular configurations of t
lattice. Different types of systems2–10 have been demon
strated to have extended states either with diagonal or n
diagonal disorder, or both.

One of the first systems studied was the so-called rand
dimer model~RDM!,2,3 in which a certain number of dimer
~two adjacent impurities! were introduced randomly into th
host lattice. Extended states with resonant energies equ
the site energy of the impurity were found.

In this paper, we describe a system consisting of two
purities hosted in a regular lattice and separated byN lattice
sites. This system is studied using the tight-binding Ham
tonian and the transfer matrix method. In addition, we u
the Cayley-Hamilton theorem to express the transmission
efficient in terms of the Chebyshev polynomials of the s
ond kind.11 The transmission coefficient can be related to
conductance of the system through the Landauer formul12

Consider a generaln3n matrix M whose characteristic
equation can always be written as

ln5Cn21ln211Cn22ln221•••1C0 . ~1!

We can write

ln115lnl5~Cn21
2 1Cn22!ln21

1~Cn21Cn221Cn23!ln221••• ~2!

and so on for higher powers ofl. In general the above equa
tion will have the form

ln1m5pn1m21ln211pn1m22ln221•••1pml0, ~3!

where thepj are polynomials in the trace and the minors
M. Now recall the Cayley-Hamilton theorem13: if p(l)50 is
the characteristic equation ofM, thenp(M )50; that is, the
matrix M is also a ‘‘root’’ of the characteristic equation. Th
implication of this is that we can always write powersMn1N

in terms of simpler expressions involvingMn21 and the
polynomialspj .

In the case of a rank-2 transfer matrix with determina
equal to 1, the characteristic equation is
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l252xl21, ~4!

where 2x5TrM . It is easy to verify that higher powers ofl
are

l35~4x221!l22x, ~5!

l45~8x324x!l2~4x221!, ~6!

A A ~7!

ln5pn21l2pn22 , ~8!

and by virtue of the Cayley-Hamilton theorem, we can co
clude

Mn5pn21M2pn22 . ~9!

Note that the above formalism applies to a general ma
whose only requirement is to have a unit determinant. In
case of rank-2 matrices, the polynomials coincide with
second-kind Chebyshev polynomials. The above results
be applied to either continuous14,15 as well to discrete type
lattices.

In the following we consider the discrete one-dimensio
chain in the tight-binding approximation,16,17 for which we
have the Hamiltonian

H5(
n

enun&^nu1V(
n

@ un&^n11u1un&^n21u#, ~10!

wheree is the site energy andV is the hopping amplitude
between nearest sites. The resultant Schro¨dinger equation is

i ċn~ t !5encn~ t !1cn11~ t !1cn21~ t !, ~11!

wherecn(t) is the probability amplitude for an electron to b
at siten. After the substitutioncn(t)5Cnexp(2iEt), whereE
is the energy of the electron, we get the equation

Cn111Cn215
E2en

V
Cn, ~12!

with the equivalent matrix representation

S Cn11

Cn
D 5S 2xn 21

1 0 D S Cn

Cn21
D , ~13!
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wherexn5(E2en)/2V. The above matrix is called the tran
fer matrix M of the siten. If we define

Xn115S Cn11

Cn
D , ~14!

Eq. ~12! takes the more compact form

Xn115MnXn , ~15!

and we will have

XN115S )
i 51

N

Mi D X1 . ~16!

Consider an electron impinging on a sample that begin
siten51 and ends at siten5N. The electron amplitudes wil
be given by

cn5H Aeikn1Be2 ikn, n<1,

Ceikn1De2 ikn, n>N.
~17!

The transmission coefficientT will be given by uC/Au2 and
we obtain

T~N,x!54~12x2!$@~m212m12!1~m222m11!x#2

1~m111m22!
2~12x2!%21, ~18!

where themi j are the elements of the total transfer mat
given in Eq. ~16! and x5E/25cosk, so we are takingV
51. Note that themi j matrix elements contain all the phys
cal information about the system that we are considering
sample.

If we consider a piece of a chain withN sites of equal
energye0 embedded in a host lattice of site energy 0, som
times referred in the literature as anN-mer, Eq.~15! becomes

XN115M0
NX1 , ~19!

and we can apply the Cayley-Hamilton theorem to get

MN5S 2x0UN212UN22 2UN21

UN21 2UN22
D , ~20!

where the Chebyshev polynomials depend onx05(E
2e0)/2. Equation~18! becomes

T~N,x,x0!5~12x2!@UN21
2 ~12xx0!2

1~x0UN212UN22!2~12x2!#21. ~21!

If we take the limite050, thenx5x0 and we get a regula
system~all site energies are the same!. It is easy to see that in
this case the above equation givesT51. As an example of
use of the above result, we consider a trimer with site ene
e051.8. In Fig. 1 we plot the transmission as a function
the energy. We can see thatT51 at an energy of 0.8. Thes
resonant values of energy are giving explicitly in Ref. 8
E5e012 cosm, where m5( i 11)p/N and i 50,1, . . . ,N
22. In our example we haveN53; therefore we have two
resonances atE50.8 andE52.8, the latter lies outside th
bandwidth.
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Recently, there has been much attention devoted to
RDM. In this model, two adjacent impurities are put in a
otherwise regular chain. The result is that we have exten
states present in the chain when the energy of these stat
equal to the site energy of the impurities. The extended st
are still there when the dimer is placed randomly in t
chain.

As another application of Eq.~18!, we consider an ex-
ample which consists in introducing two impurities not ne
essarily adjacent in a regular lattice. We call this system
‘‘generalized dimer.’’

In this system we have two impurities with equal s
energies separated by a linear chain ofN sites with energy
equal to zero~the fact that the site energy is set to zero is n
relevant since the site energy differences is what really m
ters!. Thenx5E/2 andx15(E2e1)/2. The total transfer ma-
trix for the system will be of the form

MT5M1~M0!NM1 , ~22!

whereM1 is the transfer matrix corresponding to the imp
rity site andM0 corresponds to the regular sites. We can n
use result~20! and obtain

MT5S 4x1
2F022x1UN212F1 UN2122x1F0

2UN2112x1F0 2F0
D ,

~23!

where x5E/2, x15(E2e1)/2, F052xUN212UN22, and
F152x1UN212UN22. Now that we know the total transfe
matrix elements, we can substitute them in Eq.~18! in order
to obtain the transmission through the whole sample. I
clear that the polynomials are evaluated atx since they de-
scribe the regular part of the sample.

Using the transfer matrix~23!, we can apply Eq.~18! to
get the transmission coefficient for this system. Since
presence of the generalized dimers in the chain introd
correlations in it, it is expected that particular values of t
energy will produce transparent states. Unlike the RD
where any site energy equal to the resonant energy prod
a transparent states, we find that for this system, only cer
values are allowed.

A relevant feature of this system is that, aside for this
of energies, there are also other values ofE for which the
transmission is also equal to 1. For any value of the impu

FIG. 1. Transmission for the trimer with site energye151.8.
The resonance appears atE50.8.
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energy, one can always find one or more resonant ener
The number of resonant energies increases as the numb
host sites between the impurities. This can be seen in Fig
where we have plotted pairs of values of energy and
energy that produce a transparent state. Only the case
1–3 host sites are shown. Even though the figure show
blank space between the points, the real data are continu
For example, the relationship betweene1 andE is

e15
E222

E
for N51, ~24!

e15
E323E

E221
for N52, ~25!

e15
E424E212

E322E
for N53. ~26!

Similar expressions can be found for other values ofN.
The horizontal line is the case of zero site energy~regular
lattice! for which we know that a continuous set of resona
energies exists. The diagonal line across the figure has
added to show those cases for whichE5e1 ~see also Table
I!. From the crossing of this line with the curves we noti
that the case ofN53 has two values of energy (21 and 1!.

FIG. 2. Curves satisfying the conditionT51 for E ande1 val-
ues as indicated. Only the casesN51,2,3 are displayed.

TABLE I. Resonant energies for the caseE5e1. Only systems
with N smaller than 7 are shown.

N e1

1 0
2 0
3 0, 61
4 0, 6A2
5

0, 6
11A5

2
, 6

12A5
2

6 0, 61, 6A3
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Apart from the trivial caseE50, theN51 andN52 cases
have no extended states whenE5e1. Cases ofN>3 will
always have resonant energies, but only for very particu
values.

In Table I, the resonant energies whenE5e1 are given for
N51 –6. Other values forN.6 can be easily found. The
important point here is to notice the following two observ
tions: ~1! the number of resonant states is twice the num
of the host sites in the generalized dimer (2N). ~2! The reso-
nant energy forN host sites is also a resonant energy for a
multiple of N. For example, forN53, we haveE51, which
is also a resonant energy forN56,9,12, . . . . Likewise, E
5A2 is a resonant energy forN54,8,12, . . . , and so on.

Aside for this set of energies, there are also other val
of EÞe1 for which the transmission is also equal to 1.
fact, for any value of the impurity energy, one can alwa
find one or more resonant energies. The number of reso
energies increases as the number of host sites betwee
impurities. It is not exactly equal toN in all cases because
will depend on the crossing of the line of constante1 with
the curves in Fig. 2. As we can see, there is a minimum va
for which we will haveN11 states. This is shown in Fig. 3
Notice also from Fig. 3 that, given the Fermi energy of t
system, one can find a resonant energy close enough to
a relatively smallN.

In conclusion, we obtained the formula for the transm
sion coefficient in a compact and straightforward way, ma
ing use of the Cayley-Hamilton theorem and the transfer m
trix method. We applied this formula in two cases:~1! for the
n-dimer system and obtained previous results and~2! for a
new system that we called a generalized dimer, consistin
two impurities embedded in the host lattice. This system w
found to have resonant energies forE5e1 and also for val-
ues ofEÞe1. The number of these energies grows like t
number of host sites between the impurities,N. This is an
important feature of the system, since, by varyingN, one can
find a resonant energy close enough to the Fermi ene
level. We believe that these kind of systems will be go
candidates for the design of actual physical devices.

FIG. 3. Resonant energies as a function of the number of h
sites between the impurities. Heree151.
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