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Extended states in a one-dimensional generalized dimer model
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The transmission coefficient for one-dimensional systems is given in terms of Chebyshev polynomials using
the tight-binding model. This result is applied to a system composed of two impurities located bihaitesn
of a host lattice. It is found that the system has extended states for several values of the energy. Analytical
expressions are given for the impurity site energy in terms of the electron’s energy. The number of resonant
states grow like the number of host sites between the impurities. This property makes the system interesting
since it is a simple task to design a configuration with resonant energy very close to the Ferriiclevel
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Since the seminal paper of Andersbithe problem of N2=2x\A—1, (4)
localization has been fundamental for the understanding of ) ) .
electronic transport in one-dimensional disordered systemgvhere X=TrM. Itis easy to verify that higher powers &f
The discovery of extended or delocalized states in system@'€
with correlated disorder has renewed interest in the transport

properties of electrons for parti%l]JS[L%r configurations of the o= (A =1\ -2x, ®)
lattice. Different types of systerfis” have been demon-
strated to have exﬁgnded stgtes either with diagonal or non- N=(8C - AN~ (4 1), ®)
diagonal disorder, or both. . .

One of the first systems studied was the so-called random : : @
dimer model(RDM),%? in which a certain number of dimers N
(two adjacent impuritieswere introduced randomly into the A= Pn-1A = Pn-2, ®
host lattice. Extended states with resonant energies equal ghd by virtue of the Cay]ey_Ham”ton theorem, we can con-
the site energy of the impurity were found. clude

In this paper, we describe a system consisting of two im-
purities hosted in a regular lattice and separated igttice M"=p,_ M—p,_,. 9)

sites. This system is studied using the tight-binding Hamil- _ _ .
tonian and the transfer matrix method. In addition, we usd\Cte that the above formalism applies to a general matrix

the Cayley-Hamilton theorem to express the transmission cd¥N0Se only requirement is to have a unit determinant. In the
efficient in terms of the Chebyshev polynomials of the secc@S€ Of rank-2 matrices, the polynomials coincide with the

ond kind™ The transmission coefficient can be related to the>¢cond-kind Chebyshev polynomials. The above results can
conductance of the system through the Landauer fordfula. P& applied to either continuotfs® as well to discrete type

Consider a generaixn matrix M whose characteristic attices _ , _ . .
equation can always be written as In the following we consider the discrete one-dimensional

chain in the tight-binding approximatidfi;” for which we
A"=Cp A" Cro A" 24+ Cy. (1)  have the Hamiltonian

We can write

H=2 eln)(n|+VX [|n){n+1]+|n)(n—1]], (10
NTFL=N"N=(Ch_ +Cpp\" ! ) "
n—2 where € is the site energy an¥l is the hopping amplitude
+(Cn-1Cnat Crog A" -+ @ petween nearest sites. The resultant Sdimger equation is
and so on for higher powers af. In general the above equa- B

tion will have the form iCh(t)=enCn(t) +Cnia(t) +Cpy(t), (1Y

n+m_ n-1 n-2, . 0 wherec,(t) is the probability amplitude for an electron to be

A= Pnem- N Prm oA AL ) e afrer the substitutiore,,(t) = C,exp(~iEt), whereE
where thep; are polynomials in the trace and the minors ofis the energy of the electron, we get the equation
M. Now recall the Cayley-Hamilton theoréfnif p(\)=0 is
the characteristic equation &, thenp(M)=0; that is, the C..+C :E—fn
matrix M is also a “root” of the characteristic equation. The n+it=n-l \%
implication of this is that we can always write powéd' *N
in terms of simpler expressions involvingl"~! and the

Ch, (12

with the equivalent matrix representation

polynomialsp; . _
In the case of a rank-2 transfer matrix with determinant (C““) — 2%n 1) Cn ) (13
equal to 1, the characteristic equation is Cn 1 0/\Chy
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wherex,=(E— €,)/2V. The above matrix is called the trans-

fer matrix M of the siten. If we define

xn+1=(c””), (14)
Cn
Eq. (12) takes the more compact form
Xn+1=MpXy, (15
and we will have
N
xN+1=(i1jl Mi)xl. (16)
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FIG. 1. Transmission for the trimer with site energy=1.8.
The resonance appearskt0.8.

Consider an electron impinging on a sample that begins at

siten=1 and ends at site=N. The electron amplitudes will
be given by

n<1,

17

Aeikn+ Be*ikn
”_‘Ce”‘”+ De " n=N.

The transmission coefficierit will be given by|C/A|? and
we obtain

T(N,X)=4(1—x*){[ (Myy— My) + (M~ My X]?

+(my+my)i(1-xH)} L, (18

Recently, there has been much attention devoted to the
RDM. In this model, two adjacent impurities are put in an
otherwise regular chain. The result is that we have extended
states present in the chain when the energy of these states is
equal to the site energy of the impurities. The extended states
are still there when the dimer is placed randomly in the
chain.

As another application of Eq18), we consider an ex-
ample which consists in introducing two impurities not nec-
essarily adjacent in a regular lattice. We call this system a
“generalized dimer.”

In this system we have two impurities with equal site

where them;; are the elements of the total transfer matrix energies separated by a linear chainNoites with energy

given in Eq.(16) and x=E/2=cosk, so we are taking/

equal to zerdthe fact that the site energy is set to zero is not

=1. Note that them;; matrix elements contain all the physi- relevant since the site energy differences is what really mat-
cal information about the system that we are considering as @rg. Thenx=E/2 andx, = (E— €,)/2. The total transfer ma-

sample.
If we consider a piece of a chain with sites of equal

energyey embedded in a host lattice of site energy 0, some-

times referred in the literature as Birmer, Eq.(15) becomes

Xyn+1=MyXq, (19)

and we can apply the Cayley-Hamilton theorem to get

2XoUn-1—Un-2

MN_ _UNfl
lJNfl

: 20
Uy, (20)

where the Chebyshev polynomials depend wrg=(E
— €g)/2. Equation(18) becomes

T(N,X,Xo) = (1= x?)[ U _1(1—xx0)?
+(XUn—1—Un_2)%(1-x5)]"L (2D

If we take the limite,=0, thenx=x, and we get a regular
system(all site energies are the sank is easy to see that in
this case the above equation gives 1. As an example of

trix for the system will be of the form

Mr=M;(Mg)"My, (22)

whereM is the transfer matrix corresponding to the impu-
rity site andM o corresponds to the regular sites. We can now
use resulf20) and obtain

4x2Fy—2xUn_1—F1 Up_1—2x;:Fg

L —un it 2xF, ~Fq

(23

where x=E/2, x;=(E—¢€,)/2, Fg=2xUy_1—Uy_», and
F1=2x;Un_1—Uy_». Now that we know the total transfer
matrix elements, we can substitute them in E@) in order
to obtain the transmission through the whole sample. It is
clear that the polynomials are evaluatedxatince they de-
scribe the regular part of the sample.

Using the transfer matrix23), we can apply Eq(18) to
get the transmission coefficient for this system. Since the
presence of the generalized dimers in the chain introduce

use of the above result, we consider a trimer with site energgorrelations in it, it is expected that particular values of the
€0=1.8. In Fig. 1 we plot the transmission as a function ofenergy will produce transparent states. Unlike the RDM,
the energy. We can see that1 at an energy of 0.8. These where any site energy equal to the resonant energy produces
resonant values of energy are giving explicitly in Ref. 8 asa transparent states, we find that for this system, only certain

E=¢p+2 cosu, where u=(i+1)#/N andi=0,1,... N
—2. In our example we havl=3; therefore we have two

values are allowed.
A relevant feature of this system is that, aside for this set

resonances & =0.8 andE=2.8, the latter lies outside the of energies, there are also other valuesEdfor which the

bandwidth.

transmission is also equal to 1. For any value of the impurity
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FIG. 2. Curves satisfying the conditioh=1 for E and ¢, val- FIG. 3. Resonant energies as a function of the number of host

ues as indicated. Only the cafds-1,2,3 are displayed. sites between the impurities. Hegg=1.

energy, one can always find one or more resonant energigaPart from the trivial casé&=0, theN=1 andN=2 cases
The number of resonant energies increases as the number Ve no extended states wher=¢;. Cases ofN=3 will
host sites between the impurities. This can be seen in Fig. 2lways have resonant energies, but only for very particular

where we have plotted pairs of values of energy and sit&/alues. . .
energy that produce a transparent state. Only the cases for In Table I, the resonant energies wHer €, are given for

1-3 host sites are shown. Even though the figure shows l=1-6. Other values foN>6 can be easily found. The

blank space between the points, the real data are continuougiportant point here is to notice the following two observa-

For example, the relationship betweepandE is tions: (1) the number of resonant states is twice the number
of the host sites in the generalized dimeiN()2 (2) The reso-

e — E®-2 for N=1 (24) nant energy folN host sites is also a resonant energy for any
. E ' multiple of N. For example, foN=3, we haveE=1, which
is also a resonant energy ftf=6,9,12 . ... Likewise, E
E3-3E =2 is a resonant energy ftd=4,8,12 ..., and so on.
flzﬂ for N=2, (25 Aside for this set of energies, there are also other values
of E# €, for which the transmission is also equal to 1. In
4 2 fact, for any value of the impurity energy, one can always
E*—4E“+2 . )
e=———— for N=3. (26)  find one or more resonant energies. The number of resonant
E3-2E energies increases as the number of host sites between the

o . impurities. It is not exactly equal tNl in all cases because it
Similar expressions can be found for other valuesNof il depend on the crossing of the line of constantwith

The horizontal line is the case of zero site enefggular  the curves in Fig. 2. As we can see, there is a minimum value

lattice) for which we know that a continuous set of resonantior which we will haveN+ 1 states. This is shown in Fig. 3.

energies exists. The diagonal line across the figure has be@gptice also from Fig. 3 that, given the Fermi energy of the

added to show those cases for whiEks €, (see also Table gystem, one can find a resonant energy close enough to it for

I). From the crossing of this line with the curves we noticeg relatively smallN.

that the case ol =3 has two values of energy«(1 and 1. In conclusion, we obtained the formula for the transmis-
sion coefficient in a compact and straightforward way, mak-

ing use of the Cayley-Hamilton theorem and the transfer ma-
trix method. We applied this formula in two cas€b) for the
n-dimer system and obtained previous results &jdfor a
N €1 new system that we called a generalized dimer, consisting of
two impurities embedded in the host lattice. This system was

TABLE |. Resonant energies for the caBe- €;. Only systems
with N smaller than 7 are shown.

1 0
2 0 found to have resonant energies #+ €, and also for val-
3 0. +1 ues ofE+# €;. The number of these energies grows like the
4 0, =2 number of host sites between the impurities, This is an
5 1+‘ ; 1-5 important feature of the system, since, by varymhg)ne.can

0, + 5 ¥ find a resonant energy close enough to the Fermi energy
6 0,*1, +3 level. We believe that these kind of systems will be good

candidates for the design of actual physical devices.
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