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Emergence of a confined state in a weakly bent wire
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~Received 31 July 2001; published 23 May 2002!

In this paper we use a simple straightforward technique to investigate the emergence of a bound state in a
weakly bent wire. We show that the bend behaves like an infinitely shallow potential well, and in the limit of
small bending angle (w!1) and low energy the bend can be presented by a simple one-dimensionald-function
potential,V(x)52(2Acbw2)d(x) wherecb>2.1.

DOI: 10.1103/PhysRevB.65.233101 PACS number~s!: 72.10.Fk, 73.21.2b, 03.65.Ge
is

er
s

at
rg

t

at
e
nd
o

d

ve
-

to
-
th
st
on

b

tic
ys
th

y

e

lik

h
n-
e
th
h
nd

it
o

p-
s

kly

r
ill

ves

ple

tate

wn
the
at

n of

s-
to

ide

m:
It was well known for decades that the electric transm
sion of a quantum wire~and, in general, any waveguide! is
strongly affected by the wire’s boundaries’ topology. Nev
theless, since 1989 many researchers have validated a
prising finding. Exner and Seba1 were the first to show that a
smoothly curved waveguide holds a confined eigenst
whose energy is lower than the waveguide’s cutoff ene
This bound state exists even when there is no change in
waveguide’s width. Avishai and coworkers2 have used an
elegant variational proof not only to show that a bound st
exists in a broken wire, but also to evaluate its eigenvalu
the limit of small bending angle. Later on Goldstone a
Jaffe3 generalized these findings and proved that any wire
constant width withany bendwill support at least one boun
state~provided the wire eventually straightens!

While the presence of such bound states was well pro
by many authors4–8 their existence is still a puzzling prob
lem.

Carini et al.7 suggested a qualitative explanation as
why bends~and, of course, bulges! produce an effective at
traction and, therefore, a bound state. By substituting in
Schrödinger equation a trial wave function for the lowe
bound state the problem is reduced to a one-dimensi
~1D! one. They showed that in this case the bend can
regarded as an attractive~it is always negative! 1D potential.
In 1D, such a potential always has a bound state.

Their qualitative description holds only in the adiaba
approximation, i.e., when the wire’s curvature is alwa
small and slowly changing. In the extreme case, where
bend occurs at a single point~like the one discussed b
Avishai et al.,2 see Fig. 1!, such reasoning~which cannot be
applied! would yield an effective potential well, whos
length is proportional to the bending anglew ~note that the
potential depth is almost independent ofw). For such a po-
tential well the lowest bound-state eigenenergy goes
2w.2

Similarly, according to Sols and Macucci,4 the bend can
be regarded as a small resonator whose effective widt
slightly larger than that of the waveguide in which it is i
troduced. This larger effective width accounts for the low
minimum energy for propagation, while the effective leng
of the resonator is proportional to the bend’s angle. Suc
simplified qualitative description again predicts bou
eigenenergy, which is proportional to2w2. These evalua-
tions, however, contradict the result of Ref. 2, in which
was proven that the eigenenergy is quartic with respect tw
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~for small bending angles!. The quartic dependence also a
pears in mildly curved wire~see Ref. 9, and reference
therein!.

The discrepancy appears since in the regime of wea
bending wire~i.e., small bending angle! these simplified pic-
tures~the cavity picture, for example! cannot be applied. Fo
example, in the cavity picture most of the wave function w
be distributedoutsidethe cavity.

In this paper we show that in this case the bend beha
like an infinitely shallow well~ISW!, and that in the low-
energy regime it can be replaced by ad-function potential in
a 1D wire,10 and, therefore, cannot be presented by a sim
2D cavity.

There are several methods to calculate the bound-s
eigenenergies of a bent wire~or waveguide!. The most direct
~and probably the most common! method is to divide the
wire into three parts: before the bend~a perfect lead!, the
bent region, and after the bend~a perfect lead!. This method
is usually used for a circular bend~or for one at right angles!,
and thus, the complete set of wave functions is well kno
both in the bending region and in the perfect leads. Thus,
solution is straightforward after matching these solutions
the different regions’ boundaries.

This method was carried out by Schultet al.5 to calculate
the eigenenergies of an electron caught at the intersectio
two narrow ~but totally diagonal! channels; Sols and
Macucci4 and Lent6 used this method to calculate the tran
mission through a circular bend. It has also been used
calculate multiple bound states in a sharply bent wavegu
by Carini et al.,7 and in ~long! circular bends by Lin and
Jaffe.8

A similar method is to use the Green-function formalis
this approach was taken by Goldstone and Jaffe,3 again for a
right angle~but rectangular! bend.

FIG. 1. An illustration of the bent wire.
©2002 The American Physical Society01-1



e
a
c

nc

n

te
e

d

in
tr

i

to

ch
to
is
n
b
n

hi

he

le
fo

re

th

er
,

ro
ith

ry
on

the
e
nc-

ve

BRIEF REPORTS PHYSICAL REVIEW B 65 233101
These two methods work very well for relatively larg
bending angles. However, for low bending angles they
not very efficient, since they require extremely high accura
of the solutions of the Bessel functions. Since the differe
between the bound-state eigenenergy and the cutoff~thresh-
old! energy is proportional tow4,2,9, then even forw51022

~not to mention smaller angles!, the calculations require a
accuracy~for the Bessel function zeros! which is higher than
1029.

A third popular method of calculating the bound-sta
eigenenergies is to discretize the wave function over the
tire 2D volume, and either by iteration5 or by a similar re-
laxation method7 to calculate the low-lying eigenvalues an
eigenfunctions of the problem.

Again, this method cannot be used in the small bend
angle regime since this would require extremely large ma
ces. For example, in the casew51022, the wave function
will decay within a distance 104 times larger than the wire’s
width. Therefore, in order to obtain the required accuracy
the transversal direction~i.e., the wire’s width!, the matrix
will be too large to handle.

The best ~and most elegant! method to calculate the
bound-state eigenenergy is the variational one~which was
used in Ref. 2!. However, this method cannot be applied
the scattering case.

Hence, we use a slightly different and simpler approa
We do not divide the wire into three regions but rather in
only two, and the only matching of the wave function
carried out at the bending axis. Therefore, no Bessel fu
tions are required, and much higher accuracy can
achieved. Moreover, we match directly the wave functio
and, therefore, no overlapping integrals are necessary, w
makes it a very simple technique.

The geometry of the problem is illustrated in Fig. 1. T
stationary-state Schro¨dinger equation reads

¹2c~r !1@v2V~r !#c~r !50, ~1!

~again we use the units\52m51). V is the potential of the
wire’s walls ~i.e., V50 inside the wire andV5` on the
outside! andv is the particle’s energy.

Except for the bend, the system geometry is very simp
therefore, the space can be divided into two regions: be
the bend~say, left region! and beyond it~say, right region!.
To simplify the notations we use different axes in each
gion: (x,y) and (x8,y8), respectively~see Fig. 1!.

Should a bound state exist, it can be presented in
following way:11

cB
L~x,y!5 (

n51

`

dn sin~kny!eanx for the left region,

cB
R~x8,y8!5 (

n51

`

dn sin~kny8!e2anx8 for the right region,

~2!

the subscript ‘‘B’’ represents bound state, and the sup
scripts ‘‘L ’’ and ‘‘ R’’ designate the left and right regions
respectively, and
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kn[np ~3!

and

an[A~np!22v. ~4!

The strategy is the following:11 cB
L is a solution in the

entire left region. We do not sayyet that this is the right one,
but this is definitely a solution, because it solves the Sch¨-
dinger equation in the entire left region, and it agrees w
the boundary conditions of this region~except, for the mo-
ment, the one atx>0). The same argument applies tocB

R : it
solves the Schro¨dinger equation and maintains the bounda
conditions in the entire right region. Therefore it is a soluti
in that entire region.

Now, we need to find the right coefficients (dn), which
will take care of the boundary condition at the break, i.e.,
continuity of the wave function and its derivative at th
break boundary. In order to do so, we match the wave fu
tion and its derivative atN different points on this line, then
we take the limitN→` and show that the solution~and the
coefficients! converges to a specific function.

Let us define a new set of coordinates:

S j

h D[S cosw sinw

2sinw cosw
D S x

yD 5S cosw 2sinw

sinw cosw
D S x8

y8
D .

~5!

Then the wave function on the left side of the bend is

(
n51

`

dn sin@kn~j sinw1h cosw!#exp@an~j cosw2h sinw!#

~6!

and on the right side is

(
n51

`

dn sin@kn~2j sinw1h cosw!#exp@2an~j cosw

1h sinw!#. ~7!

With these notations in mind, the matching of the wa
function should take place atj50.

Limiting the calculations toN modes, gluing of the wave
function derivative atj50, i.e. requiring that]cB /]juj50
50, leads to a single equation withN variables. To solve
them, we quantizeh:11

hm[
m21

~N21!cosw
, ~8!

for 1<m<N. ~These are theN points where the matching
takes place.!

The prescribed substitution solves this problem:N vari-
ables andN equations, which can be written as

(
n51

N

Mnmtn50, ~9!

where
1-2
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Mnm[2@Mnm
1 1Mnm

2 #exp~2anhm sinw!, ~10!

Mnm
1 [kn sinw cos~knhm cosw!,

and

Mnm
2 [an cosw sin~knhm cosw!.

Clearly, a solution~a bound state! exists only when the
matrix determinant vanishes,

uMnmu50. ~11!

Solving Eq.~11! numerically forN→` one finds that a
confined solution exists and converges to

vb→v0[p22cbw4, ~12!

where the proportionality constant converges to the theo
ical value,2

cb→2.10 . . . . ~13!

Now, if our assumption is correct, and the bend can
presented as an ISW in a 1D system in the limitsw→0 and
v2p2→0 then, it can be replaced by the following 1
point potential10 ~in a 1D wire!:

V~x!52~2Acbw2!d~x! ~14!

and the 1D transmission is obtained in straightforward m
ner,

t5
1

12 iAcbw2/D
, ~15!

where

D[Av2p2,

~when the transmission is discussed the energy is above
threshold energy andD is real!.

In order to show that this 1D approximation is accura
for the limits w,D→0, we will evaluate the transmission i
the direct approach.

Assume that the incident wave fromx52` is

c inc~x,y!5 (
n51

`

sin~kny!@an exp~ i k̃nx!1r n exp~2 i k̃nx!#,

~16!

while the transmitted one (x8→`) is

c tran~x8,y8!5 (
n51

`

tn sin~kny8!exp~ i k̃nx8!, ~17!

wherean , r n , and tn are the incident, reflected, and tran
mitted coefficients, respectively„note that if an5dn1 then
t @Eq. ~15!# .t1 @Eq. ~17!#; kn[np, and k̃n[Av2(np)2

~i.e., k̃n5 ian).
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After transforming to the new coordinates~5! and solving
by following Ref. 11 we obtain the transmission coefficie
as a function of the bending angle for a given set of coe
cientsan .

The log-log plot of 12ut1u2 as a function of the bend
angle is shown in Fig. 2. As can be seen from this figure,
~15!, which predicts

12ut1u2;cbw4/D2, ~18!

~for small angles!, is a very good approximation.
Hence, in the energy regimecbw4/D2!1, the scattering

wave function can be reduced to a 1D scattering problem
the following separation of coordinates:

c~ x̃,ỹ!.sin~p ỹ!c1~ x̃! ~19!

where

x̃,ỹ5H x,y for x,0

x8,y8 for x8.0
~20!

andc1 obeys the 1D Schro¨dinger equation

2
]c1

] x̃2
2~2Acbw2!d~ x̃!c15D2c1. ~21!

Equation~19! also predicts the bound eigenstate with hi
accuracy,

cB.sin~p ỹ!exp~2Acbw2ux̃u!. ~22!

Clearly, this approximation is accurate forux̃u→`.

FIG. 3. Wire with rough boundaries can be presented as a w
with multiple bends.

FIG. 2. Plot of the normalized reflection (12ut1u2)D2/cb as a
function of the bend anglew. This plot validates the approximatio
of Eq. ~18!.
1-3
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Equation~21! can easily be generalized to a wire with a
arbitrary number of bends~i.e., a rough boundaries wire, se
Fig. 3!. Such a wire with rough boundaries can be presen
by

2
]c1

] x̃2
22Acb(

j 51

N

w j
2d~ x̃2 x̃ j !c

15D2c1. ~23!

Before summarizing, it may be of interest to compare E
~18!, i.e., the low-energy scattering over the bend, to scat
ing over a point impurity:12 when the impurity is located a
distance« from the wire’s boundary, the wire’s transmissio
should hold the relation
B

23310
d

.
r-

12ut1u2;ci«
4/D2, ~24!

where the impurity’s parameters are manifested in the c
ficient ci .

To summarize, in this paper we investigated the em
gence of a bound state in a bent wire. It was shown tha
the limit of small bending angle and low energy the syst
can be reduced to a 1D scattering problem, where the b
acts as ad-function potential, i.e.,V(x)52(2Acbw2)d(x).
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