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Emergence of a confined state in a weakly bent wire
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In this paper we use a simple straightforward technique to investigate the emergence of a bound state in a
weakly bent wire. We show that the bend behaves like an infinitely shallow potential well, and in the limit of
small bending anglef<1) and low energy the bend can be presented by a simple one-dimensitumaition
potential,V(x) = — (2/cp@?) 5(X) wherec,=2.1.
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It was well known for decades that the electric transmis<for small bending anglgsThe quartic dependence also ap-
sion of a quantum wiréand, in general, any waveguidis  pears in mildly curved wire(see Ref. 9, and references
strongly affected by the wire’s boundaries’ topology. Never-therein.
theless, since 1989 many researchers have validated a sur- The discrepancy appears since in the regime of weakly
prising finding. Exner and Sebwaere the first to show that a bending wire(i.e., small bending anglehese simplified pic-
smoothly curved waveguide holds a confined eigenstatdures(the cavity picture, for exampleannot be applied. For
whose energy is lower than the waveguide’s cutoff energyexample, in the cavity picture most of the wave function will
This bound state exists even when there is no change in tHee distributedoutsidethe cavity.
waveguide’s width. Avishai and coworkérbave used an In this paper we show that in this case the bend behaves
elegant variational proof not only to show that a bound statdike an infinitely shallow well(ISW), and that in the low-
exists in a broken wire, but also to evaluate its eigenvalue i@nergy regime it can be replaced by-unction potential in
the limit of small bending angle. Later on Goldstone anda 1D wire;° and, therefore, cannot be presented by a simple
Jaffé generalized these findings and proved that any wire oD cavity.
constant width withany bendwill support at least one bound There are several methods to calculate the bound-state
state(provided the wire eventually straightens eigenenergies of a bent wifer waveguide The most direct

While the presence of such bound states was well provefgnd probably the most commpmethod is to divide the
by many authofs ® their existence is still a puzzling prob- Wwire into three parts: before the bertd perfect leag the
lem. bent region, and after the befa perfect leag This method

Carini et al.” suggested a qualitative explanation as tois usually used for a circular bertdr for one at right anglgs
why bends(and, of course, bulgggproduce an effective at- and thus, the complete set of wave functions is well known
traction and, therefore, a bound state. By substituting in th&oth in the bending region and in the perfect leads. Thus, the
Schralinger equation a trial wave function for the lowest solution is straightforward after matching these solutions at
bound state the problem is reduced to a one-dimensionahe different regions’ boundaries.

(1D) one. They showed that in this case the bend can be This method was carried out by Schattal® to calculate
regarded as an attractivit is always negativelD potential.  the eigenenergies of an electron caught at the intersection of
In 1D, such a potential always has a bound state. two narrow (but totally diagonal channels; Sols and

Their qualitative description holds only in the adiabatic Macuccf and Lent used this method to calculate the trans-
approximation, i.e., when the wire’s curvature is alwaysmission through a circular bend. It has also been used to
small and slowly changing. In the extreme case, where thealculate multiple bound states in a sharply bent waveguide
bend occurs at a single poirilike the one discussed by by Cariniet al.” and in (long) circular bends by Lin and
Avishai et al.? see Fig. 1, such reasoningwhich cannot be Jaffe®
applied would yield an effective potential well, whose A similar method is to use the Green-function formalism:
length is proportional to the bending angke(note that the this approach was taken by Goldstone and Jaffgain for a
potential depth is almost independent¢yf. For such a po- right angle(but rectangularbend.
tentigl well the lowest bound-state eigenenergy goes like
— . L 20

Similarly, according to Sols and Macuccthe bend can } /
be regarded as a small resonator whose effective width is
slightly larger than that of the waveguide in which it is in-
troduced. This larger effective width accounts for the lower
minimum energy for propagation, while the effective length
of the resonator is proportional to the bend’s angle. Such a y
simplified qualitative description again predicts bound \/
eigenenergy, which is proportional te ¢2. These evalua- x
tions, however, contradict the result of Ref. 2, in which it
was proven that the eigenenergy is quartic with respegt to FIG. 1. An illustration of the bent wire.
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These two methods work very well for relatively large Ko=nm ®)
bending angles. However, for low bending angles they are
not very efficient, since they require extremely high accuracy"md
of the solutions of the Bessel functions. Since the difference 5
between the bound-state eigeé:lnzegnergy and the c(Ituﬁsf;- an=\(nm)"~ .
old) energy is proportional te*,*~, then even forp=10" . . . L
(not to m%%tiorg sr%aller angqu;asthe calculations (fequire an The strategy is the following: ¢E is a solution in the

accuracy(for the Bessel function zerpsvhich is higher than ~ €Ntire left region. We do not sggetthat this is the right one,
10°°. but this is definitely a solution, because it solves the Schro

A third popular method of calculating the bound-statedinger equation in _the entire I_eft region, and it agrees with
he boundary conditions of this regidexcept, for the mo-

eigenenergies is to discretize the wave function over the erl - . L
tire 2D volume, and either by iteratidror by a similar re- Ment the one at=0). The same argument appliesyf: it

laxation methodto calculate the low-lying eigenvalues and SCIVes the Schidinger equation and maintains the boundary
eigenfunctions of the problem. conditions in the entire right region. Therefore it is a solution

Again, this method cannot be used in the small bendindn that entire region. _ . .
angle regime since this would require extremely large matri- NOW, we need to find the right coefficientsly), which
ces. For example, in the cage=10"2, the wave function Wil take care of the boundary condition at the break, i.e., the
will decay within a distance f0times larger than the wire's continuity of the wave function and its derivative at the

width. Therefore, in order to obtain the required accuracy iPréak boundary. In order to do so, we match the wave func-
the transversal directiofi.e., the wire's width, the matrix tion and its derivative al different points on this line, then

4

will be too large to handle. we take the limitN— and show that the solutiofand the
The best(and most elegaptmethod to calculate the CO€fficients converges to aspemﬁc_functpn.
bound-state eigenenergy is the variational ¢which was Let us define a new set of coordinates:

the scattering case.

Hence, we use a slightly different and simpler approach.
We do not divide the wire into three regions but rather into
only two, and the only matching of the wave function is
carried out at the bending axis. Therefore, no Bessel func-
tions are required, and much higher accuracy can be.
achieved. Moreover, we match directly the wave function, ; ; i
and, therefore, no overlapping integralgare necessary, whickF1 dn SirTkn( £ sin+ 7 cOS¢) Jexid an( £ COS@ =7 SiNg) ]
makes it a very simple technique. (6)

The geometry of the problem is illustrated in Fig. 1. The
stationary-state Schdinger equation reads

used in Ref. 2 However, this method cannot be applied to .
(5)_( cose sing

| —sing cose

CoSp —sSing
~Ising cose

:; y y, .

Then the wave function on the left side of the bend is

and on the right side is

©

V2Y(r)+[w=V(N]%(r)=0, D> d, sifk,(— &sing+ 7 cose)Jexy — a,(£cose
=1
(again we use the unifs=2m=1). V is the potential of the "
wire’s walls (i.e., V=0 inside the wire and/=« on the +7sing)]. (7)

outsidg and w is the particle’s energy. . _ o .
Except for the bend, the system geometry is very simple; With these notations in mind, the matching of the wave
therefore, the space can be divided into two regions: beforfinction should take place &t=0.

the bend(say, left region and beyond itsay, right region Limiting the galculations .td\l modgg, gluing of the wave
To simplify the notations we use different axes in each refunction derivative at¢=0, i.e. requiring thawyg/dé|;—o
gion: (x,y) and ',y'), respectively(see Fig. 1 =0, leads to a single equation witk variables. To solve

Should a bound state exist, it can be presented in ththem, we quantizey:**
following way:*

m—1

* N—1)cose’
Pa(x,y)= >, d,sin(k,y)e®* for the left region,

n=1 for 1=m=N. (These are thé\ points where the matching
takes place.
R _ o, _ _ The prescribed substitution solves this problévnvari-
l//B(X',Y'):nZl dnsin(k,y’)e” ™ for the right region, ables andN equations, which can be written as

)

N
the subscript B” represents bound state, and the super- nzl Momta=0, ©)
scripts “L” and “ R” designate the left and right regions,
respectively, and where

oo
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Mnm=—[MgmtMaplexp— annmsing),  (10) 1073
M! =k, sing codk,7m COSe), 1
10723
and -
2 _ : NE E
M7= a, cose sin(k, n,, Cose). i
= 103
Clearly, a solution(a bound stateexists only when the — ~
matrix determinant vanishes, E
-16
My =0. 11 10 ' '
Mol (19 ol o e
Solving Eq.(11) numerically forN—oo one finds that a ¢
confined solution exists and converges to FIG. 2. Plot of the normalized reflection ¢llt;|?)A%/c, as a
5 4 function of the bend angle. This plot validates the approximation
Wp— Wo=T""Cpho ", (12) of Eq. (18)

where the proportionality constant converges to the theoret-

ical value? After transforming to the new coordinatés) and solving

by following Ref. 11 we obtain the transmission coefficient
cp—2.10. .. . (13)  @s a function of the bending angle for a given set of coeffi-
cientsa, .

Now, if our assumption is correct, and the bend can be The log-log plot of 1-|t;|* as a function of the bend
presented as an ISW in a 1D system in the ligits 0 and ~ @ngle is shown in Fig. 2. As can be seen from this figure, Eq.
w—1m2—0 theon, it can be replaced by the following 1D (15), which predicts
point potential’ (in a 1D wire): 1 [ty P~y A2, 19

V(X)=—(2\/cpe?) 8(x) (14)  (for small angley is a very good approximation.
L . _ Hence, in the energy regimg,¢*/A%<1, the scattering
and the 1D transmission is obtained in straightforward mang, o« function can be reduced to a 1D scattering problem via

ner, the following separation of coordinates:
S 15 w(xy) =sin(my) (%) (19
. 2 1
1-i\epe?/A where
where x,y for x<O

Xy= (20)

A=Vo— 72, x",y" for x'>0

N . .
(when the transmission is discussed the energy is above tl‘?é]d ¥ obeys the 1D Schrtinger equation

threshold energy and is rea). ayt
In order to show that this 1D approximation is accurate — —— —(2cpp?) 8(X) Yt = A2yt (21)

for the limits ¢,A— 0, we will evaluate the transmission in e

the direct approach.

Assume that the incident wave frorE —« is Equation(19) also predicts the bound eigenstate with high

accuracy,
Pine(X,y)= 2, sin(k,y)[a, exp(ik,x)+r,exp —ik,x)], Yg=sin(my)exp — cp@?X]). (22
n=1
(16) Clearly, this approximation is accurate fiof — .

while the transmitted onex(—») is

wtran<x',y'>=n§1tnsimknyvexminx'), (17)

wherea,, r,, andt, are the incident, reflected, and trans-

mitted coefficients, respectivelgnote that ifa,= &,; then j
t [EQ; (19)] =t; [Eq. (17)]; ky=nm, andk,=w—(nm) FIG. 3. Wire with rough boundaries can be presented as a wire
(.e., kp=iay). with multiple bends.
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Equation(21) can easily be generalized to a wire with an 1—|t;]?~cie*/A?,
arbitrary number of bendg.e., a rough boundaries wire, see
Fig. 3). Such a wire with rough boundaries can be presented

by where the impurity’s parameters are manifested in the coef-
i N ficientc; .
20~ =\ 1 a2.1 To summarize, in this paper we investigated the emer-
a E_Z\/C—bgl PrOUX)Ur=ATr (23 gence of a bound state in a bent wire. It was shown that in
the limit of small bending angle and low energy the system
Before summarizing, it may be of interest to compare Eqcan be reduced to a 1D scattering problem, where the bend
(18), i.e., the low-energy scattering over the bend, to scatteracts as as-function potential, i.e.V(x) = — (2/cpe?) 5(X).
ing over a point impurity> when the impurity is located a
distances from the wire’s boundary, the wire’s transmission | would like to thank Professor Mark Azbel and Professor
should hold the relation Yshai Avishai for enlightening discussions.
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