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Quasiparticle excitations and ballistic transport in the mixed state of mesoscopic superconductor

A. S. Mel’nikov1,2 and V. M. Vinokur2
1Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, GSP-105, Russia
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As the size of the superconducting sample with a few fluxoids is less than the dephasing length new physics
comes into play. The quasiparticle excitations in vortices form coherent quantum-mechanical states providing
thus a possibility to control the phase-coherent transport through the sample by changing the number of
fluxoids and their configuration. Thus, mesoscopic samples with a few vortices realize a new type of magneti-
cally tunable Andreev waveguides. The sample conductance measured in the direction of the applied magnetic
field is determined by the transparency of different multivortex configurations~giant multiquanta vortices and
vortex molecules! which form a set of quantum channels. The transmission coefficient for each channel is
controlled by multiple Andreev reflections within the vortex cores and at the sample edge. These interference
processes result in a stepwise and/or oscillating behavior of the conductance as a function of the applied
magnetic field. This is a vortex-based switch with the magnetic field playing the role of the gate voltage.
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Modern microfabrication techniques opened a route
studies of small superconducting structures of the size
several coherence lengths. The pioneering works1,2 revealed
a rich variety of different phases within given fluxoid state
Magnetic field can penetrate the sample in the form o
poligonlike vortex molecule or individual vortices can mer
forming multiquanta giant vortex. This transformation occu
via the second-order phase transition. First-order izom
transitions between the different configurations of vor
molecule seen as branching of the magnetization curves
also take place. Numerical Ginzburg-Landau calculatio
~see, e.g., Ref. 3! confirmed that indeed vortices either mer
into a single giant vortex with a certain winding numberm or
arrange in stable moleculalike configurations4 with vortex
spacinga. The appealing question now is what are the res
ing electronic states associated with different fluxoid str
tures and how do structural transitions in the vortex state
a mesoscopic superconductor affect its electronic proper
The low lying quasiparticle~QP! states bound at the isolate
vortex core carrying the flux quantumf05p\c/ueu were
found first by Caroli, de Gennes, and Matricon5 and can be
viewed as the formation of standing quasiparticle waves
to Andreev reflection of quasiparticles from the superc
ducting gap profileD(rW) confining the vortex core. The
quantitative theory of the quasiparticle states is based on
Bogolubov–de Gennes~BdG! equations, and ins supercon-
ductors the QP spectrum for small values of the angular
mentum quantum numberm is5 «m5mD/(krj), whereD is
the gap value far from the vortex axis,j is the coherence
length,kr5ukW'u,kW' is the wave vector in the plane perpe
dicular to the vortex, andm is half an odd integer. This is th
so-calledanomalous branchof the QP energy, which, a
function of m, varies from2D to D crossing zero as the
impact parameterb5m/ukW'u of the particle in the core varie
from 2` to 1`.

In this paper we report our findings on peculiarities of t
electronic structure of the QP Andreev states in a few-flux
superconductor~FFS!. We also analyze the phase-cohere
0163-1829/2002/65~22!/224514~11!/$20.00 65 2245
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transport through these states and demonstrate that con
tance due to Andreev states in FFS’s reveals a variety
oscillating behaviors. In particular, we find that local ballis
conductance can alternate between the finite and the n
zero values as a function of magnetic field. In this regime
mesoscopic superconductor thus realizes a quantum vo
switch where the external magnetic field plays the role
gate voltage.6

The bound states in the core can barely feel the prese
of the neighboring vortices as long as the intervortex d
tancea is much larger than the coherence lengthj, i.e., as
long asH!Hc2(a@j). The formation of multiquanta vorti-
ces in infinite samples is not energetically favorable, wh
can be understood as a result of the strong repulsion fo
between the singly quantized vortices. On the contrary
small enough mesoscopic samples multiquanta struct
may become stable forH,Hc2 due to compression force
from shielding Meissner currents pushing vortices to the c
ter of the sample. As the distances between vortices com
to the coherence lengtha<j, wave functions overlap, inter
ference effects come into play, and fundamentally new f
tures of the QP spectrum, controlled by the geometry of b
the vortex molecule and the sample, appear as a resu
confinement. In small samples with radiusR comparable to
the coherence length the behavior of the vortex states
also be strongly affected by the edge electronic states.
finite magnetic field suppresses order parameter near the
edge creating a potential well for quasiparticles. Bound q
siparticle states form due to both normal quasiparticle refl
tion at the disk edge and Andreev reflection from the bou
ary of the classically unpenetratable region. The local den
of states~DOS! in such mesoscopic disc~measured, e.g., by
the STM technique! should exhibit strong oscillations as
function of magnetic field. At the disk edge the period
these oscillations~with an increase in magnetic field! should
correspond to the flux quantum, while at the disk center o
can observe two-quanta periodic behavior~which is caused,
in fact, by the Aharonov-Bohm effect!.
©2002 The American Physical Society14-1
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The distinctive features of the electronic states in a m
tivortex configuration stem from their underlying mech
nism, the multiple Andreev reflections from
superconducting—normal-metal boundaries which
formed in an applied magnetic field. The phase-coher
quasiparticle transport in the direction perpendicular to
disk plane should be strongly influenced by this Andre
interference pattern. It was Giaver first who in his clas
work7 noticed that when magnetic flux gets trapped in
superconductor, the small normal areas in parallel with
perconducting areas appear that influence transport cha
teristics. We find that phase-coherent transport carried by
quasiparticle Andreev states associated with these norma
mains realizes another of Giaver’s visions:7 ‘‘Finally I would
like to propose a different tunneling experiment: an expe
ment to determine if it is possible to tunnel through a sup
conductor. If so we have an ideal triode, because I
change the tunneling probability by changing the biasing
tential of the superconductor.’’ We focus here on anot
possibility to control this tunneling probability by changin
the number of vortex lines in a mesoscopic sample. A qu
particle incident upon the sample with a trapped vortex
propagate along the flux line provided its energy coincid
with a certain energy level in the core. Otherwise, if th
resonance condition is not fulfilled the wave function a
pears to decay along the vortex line at a certain decay le
Ld . The ratio of this length to the sample thicknessL deter-
mines the single-particle tunneling probability through t
sample. The conducting channels withLd.L are open for
single-particle tunneling, while the transport through t
channels withLd!L is possible only because of two-partic
Andreev processes. Because of the suppression of the o
parameter in the vortex core the maximum decay lengthLd
appears to be much larger than the coherence lengthj ~in the
absence of vorticesLd,j). Changing the number and con
figuration of vortices we can control the transparency of
sample with respect to single-particle tunneling.

I. QUANTUM MECHANICS OF QUASIPARTICLES
IN A FEW-FLUXOID DISK

The magnetic field induced low-energy branches in
quasiparticle spectrum appear due to:~i! decrease in the en
ergy threshold for QP’s binding to the sample edge, cau
by both the suppression of the superconducting order par
eter near the edge in a strong field and by the Doppler s
of the quasiparticle energy~such a mechanism results in fo
mation of the surface bound states8,9! and~ii ! vortex penetra-
tion into the sample and, thus, formation of normal vorte
core regions confining quasiparticles.

A. The model

The quantum mechanics of quasiparticles is governed
the Bogolubov–de Gennes theory@We do not consider here
ultrasmall samples~see, e.g., Ref. 10 and references there!
having a quantum level spacingd« comparable with the bulk
superconducting gap. So in our cased«!D the conventional
~mean field! theory of superconductivity can be applied.#. In
a conventional s-wave superconductor BdG equations a
22451
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ĥ0S 2 i¹1
p

f0
AW Du~rW !1D~rW !v~rW !5«u~rW !, ~1!

2ĥ0S i¹1
p

f0
AW D v~rW !1D* ~rW !u~rW !5«v~rW !, ~2!

where (u,v) are the particlelike and holelike parts of the Q
wave function andD ~energy gap! is the order paramete
used in the Ginzburg-Landau~GL! theory. The correspond
ing one-particle Hamiltonianĥ0 in the most simple isotropic
case takes the form

ĥ0~kW !5\2kW2/~2M !2EF ,

whereEF is the Fermi energy andM is the electron effective
mass.

For simplicity and also in order to relate to the most co
mon experimental situation, we consider a thin disk of t
thicknessd,l (l is the London penetration depth! and ra-
dius R!leff5l2/d. We use a cylindrical coordinate syste
(r ,u,z) with the z axis chosen perpendicular to the disk a
origin at the disk center. The boundary conditions at the e
of the disk areu(R,u)50,v(R,u)50. In order to describe
vortex molecules of general symmetry the order param
can be conveniently written in the form

D5D0@C~r !eimu1D~r !#,

where C is a general solution of the GL equations for
multiquanta vortex located at the disk center in an exter
magnetic fieldH. The asymptotical behavior of theC func-
tion at small distancesr !r c ~where r c is the core radius!
from the disk center is given by the expressionC;(r /r c)

m.
Near the disk edge the order parameterC is also suppressed
by the supercurrents. The functionD is used to describe the
splitting of a giant multiquanta vortex into individual vort
ces which are situated at a certain distancea from the disk
center. This function is assumed to decay exponentially w
an increase of distancer at a certain length scaler d;r c .
Thus, for a small size of a vortex molecule (a!r c)D(0)
}(a/r c)

m. It can be shown that forD(r )50 the QP angular
momentum is conserved and the eigenfunctionsŵ5(u,v)
can be written in the form5

ŵm5exp~ ikzz1 imu1 i ŝzmu/2! f̂ m~r !, ~3!

where thef̂ m(r ) function is determined from the following
set of equations:

ŝz

\2

2M F2 f̂ rr9 2
1

r
f̂ r81S m

r
1ŝz

M

\
Vs~r ! D 2

f̂ 2kr
2 f̂ G1ŝxD f̂

5« f̂ . ~4!

The orbital momentum quantum numberm is an integer
for evenm, and half an odd integer for oddm values. Here
ŝx ,ŝy ,ŝz are Pauli matrices,kr

21kz
25kF

2 , and
4-2
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QUASIPARTICLE EXCITATIONS AND BALLISTIC . . . PHYSICAL REVIEW B 65 224514
Vs5
\

2M S m

r
1

2p

f0
AuD

is a superfluid velocity. For small disks of the radiusR
!leff we can neglect the screening effects and the ve
potential can be taken in the formAu52Hr /2.

B. Edge bound states

We start with the analysis of the spectrum of QP’s bou
to the disk edge. The surface bound states appear due t
formation of a potential well caused by normal reflection
the surface and Andreev reflection at magnetic field indu
spatial variations of the order parameter and superfl
velocity.8,9 To obtain the spectrum as a function of the ang
lar momentum and magnetic field we follow the standa
quasiclassical procedure described, for instance, in Re
and take the solution in the form

f̂ m5ÂeiS1c.c.

Far from the vortex cores the quasiclassical approxima
appears to be justified since both the superfluid velocityVs

and the GL order parameterC.A124M2j2Vs
2/\2 change

on a length scale which is much larger than the cohere
lengthj. For fields close to the field of the first vortex ent
(H;H* 5f0 /pRj) the supercurrent density results in
rather strong suppression of the order parameter abso
value as well as in a rather large Doppler shift~of the order
of the gap value! of the energy of states with large impa
parameters. As a consequence, the low-energy excita
appear to be localized near the disk edge. The spectrum
the states bound to the disk edge can be found using
Bohr-Sommerfeld quantization rule

E
r t

1

~P12P2!dr5p~n1g!. ~5!

Herer5r /R,n is an integer,g is a quasiclassical constan
of the order of unity,r t is a coordinate of the turning poin
and the momentaP65R(Sr8)6 that are found from BdG
equations have the form

P6
2

kF
2R2

5q2S 12
b̃2

r2D 6
2

kFj

3AFE1
qb̃

2r S rH

H*
2

mj

rRD G 2

1S rH

H*
2

mj

rRD 2

21, ~6!

where q5kr /kF , E5«/D0, and b̃5m/(krR) is a dimen-
sionless impact parameter andm is an orbital momentum
quantum number. Bound quasiparticle states form due
both normal quasiparticle reflection at the disc edge and
dreev reflection from the boundaryr 5r t5r tR of the classi-
cally unpenetratable region~see Fig. 1!. To the lowest order
in j/R the turning pointr t is determined by the expressio
22451
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H*

H
A12S E1

qb̃H

2H*
D 2G . ~7!

For the Meissner state of the disk (m50) one finally
obtains

FH b̃,S H*

H D 2F12S E1
qb̃H

2H*
D 2G J 5

pjqH* ~n1g!

RH
,

~8!

F~ b̃,x!5A12b̃2A12x1~ b̃22x!ln
A12b̃21A12x

Aub̃22xu
.

For impact parametersb̃ close to unity ~i.e., for large
angular momentam;krR) and kr /kF5q51 eachnth en-
ergy branch has a minimum as a function of two variabl
impact parameterb̃ and momentumkr ~see also Fig. 4 in
Ref. 6!. These two-dimensional local minima result in th
appearance of a set of discontinuities~steplike structure! in
the energy and magnetic field dependences of the densi
states~DOS!.

The above results for edge states can be easily extend
the case where a multiquanta vortex (mÞ0) is located at the
center of the sample. To this end one merely has to rep
the magnetic fieldH by the expressionH2mH* j/R. This
simple recipe works only for low-energy levels correspon
ing to the classically allowed regions near the disk ed
@r t.AmjH* /(RH)#. By increasing the magnetic field on
induces transitions between the states with different numb
m and, as a consequence, switching between energy bran
with different m occurs. Each fluxoid entering the disk re
duces the depth of the edge potential well for QP excitati
and thus shifts the localized levels to higher energies. U
further increase of the magnetic field the screening curr
and therefore the depth of the potential well increase
bound states are pressed down. Then next vortex come
the states jump up again, resulting thus in oscillations of
DOS with the perioddH;f0 /R2. The amplitude of such
oscillations grows as in the sizeR decreases; therefore suc
oscillations are observable only in mesoscopic samples w
the sufficiently small radii.

FIG. 1. Normalized quasiclassical radial momentumP vs dis-
tance from the disc center and classically allowed regions for e
tronic states bound to the disk edge.r t is the turning point.
4-3
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C. Multiquanta flux structures

Now we turn to the QP states which are bound to vorti
penetrating the sample. To start with we consider the m
simple case when all the votices merge into a single g
vortex with a winding numberm. m51 corresponds to a
conventional singly quantized vortex. According to gene
theory,11 the number of anomalous energy branches~per
spin! crossing the Fermi level should be equal tom. For a
vortex carrying an odd number of the flux quanta one of t
energy branches crosses Fermi level at zero impact pa
eter and, thus, is responsible for the peak in the DOS at
vortex center. On the contrary, for a vortex with an ev
numberm there is no such an energy branch and no pea
the vortex center. All anomalous branches in this case c
the Fermi level at finite impact parametersm;krr c , where
r c is the core radius. Generally the spatial distribution of
DOS has the shape of rings with radii of the order ofj. The
number of rings is determined by the winding number. R
cently such solutions have been studied numerically i
number of works.12–14 An analytical approach for the de
scription of QP states in multiquanta vortices can be de
oped using the quasiclassical method. Following the pro
dure described, e.g., in Ref. 15 one can consider a m
with a step pair potential and obtain the QP energy vs
dimensionless impact parameterb5m/(krj)5b̃R/j:

Enm5
1

112xc /q S p

2
2pn1m arctan

xc

b

1E
xc

`mbe2(xc2x)/q

x21b2
dxD , ~9!

xc5Abc
22b2, bc5r c /j, andn is an integer.

For low energies«!D0(E!1) we can linearize the
energy spectrum for each anomalous branch:Enm(b)
.anm(bnm2b), where the coefficient

anm5
m

bcA12~bnm /bc!
2@112~bc /q!A12~bnm /bc!

2#

is of the order unity, and an approximate expression forbnm
reads14

bnm* .6bccos
p~122n!

2m
,

12m

2
,n,

11m

2
.

Each energy branch crossing zero energy at a nonzero im
parameter is characterized by a certain numbern ~for the
branch withbnm50 then number changes with a change
the impact parameter sign!. Making use of the quasiclassica
approach we also can find the corresponding spatial distr
tion of the density of states~DOS!. Convolving the DOS
with the thermal broadening function we obtain the quan
which is directly related to the local zero-bias tunneli
conductance for transport between two reservoirs and, t
can be probed by scanning tunneling spectrosc
measurements.16 In the clean limit the expression for thi
finite temperature tunneling conductance reads
22451
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g~r !5gNE
2`

1` N~«,r !d«

4NFT cosh2~«/2T!
, ~10!

wheregN is the normal state conductance andN(«,r ) is the
QP density of states. Shown on Figs. 2 and 3 is a normal
tunneling conductanceg(r )/gN corresponding tom52,3
which generally, has a shape of rings with radii of the ord
of j @T;D0 /(kFj);kFr c520A2 for m52 and kFr c

540/A3 for m53#. The number of rings is determined b
the winding number.

D. Vortex molecules

Now we derive quasiparticle DOS in the vortex molecu
state. In macroscopic samples the structures consistin
several vortices witha,j or multiquanta vortex solutions
are energetically unfavorable due to the strong repuls
forces between the singly quantized vortices. On the c
trary, in mesoscopic samples such structures appear s
even forH!Hc2, since Meissner currents push few vortic

FIG. 2. Local zero bias tunneling conductanceg(r )/gN for a
multiquanta vortex withm52; x,y coordinates are measured
1/kF , T;D/(kFj), kFr c520A2.

FIG. 3. Local zero bias tunneling conductanceg(r )/gN for a
multiquanta vortex withm53; x,y coordinates are measured
1/kF , T;D/(kFj), kFr c540/A3.
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QUASIPARTICLE EXCITATIONS AND BALLISTIC . . . PHYSICAL REVIEW B 65 224514
present in the sample close together. Then the electr
states in a vortex molecule witha<j differ strongly from
the ones for isolated vortices due to the essential interfere
effects. The quantum-mechanical motion of low-energy q
siparticles is determined by the geometry of the vortex m
ecule involved. In small molecules splitting can be treated
a pertubation.

For a finite size of a vortex molecule (DÞ0) the harmon-
ics characterized by differentm interact and the angular mo
mentum is no more a good quantum number. Neverthe
for small molecules the wave functions can be obtained
ing the pertubation theory which allows us to clarify th
main qualitative features in the behavior of the local DOS
the first order of this pertubation theory the wave functio
for a mf0- vortex molecule take the form

ŵm5ŵm
(0)1a2ŵm2m

(0) 1a1ŵm1m
(0) , ~11!

a25
1

Em2Em2m
E

0

`

um2mvmD~r !rdr , ~12!

a15
1

Em2Em1m
E

0

`

umvm1mD~r !rdr , ~13!

where (um ,vm)5 f̂ m
(0) is the wave function for a gian

m-quanta vortex. A qualitative~and most simple! picture can
be obtained if we consider the asymptotical behavior of w
functions and DOS in the small distance limitr ,r c and
neglect the Andreev reflection inside this domain~put the
gap D50 in BdG equations, i.e., consider a model with
step pair potential15!. The zero order terms in QP wave fun
tions take the form

f̂ m
(0).AS eigmJum1m/2u~krr !

Jum2m/2u~krr !
D , ~14!

where the constantA;Akr /r c is determined from normal
ization condition and the phasegm5pn depends on the en
ergy branch number and is determined from the match
with a large distance solution. The above approximation
lows us to estimate the coefficientsa6 for a certain branch
characterized by a numbern:

a1.
krjeigmr d

2

manmr c
2 S a

r c
D mE

0

`

Jum1m/2u
2 ~krr dx!e2x2

xdx ~15!

@we have assumed hereD5(a/j)mexp(2r2/rd
2)#. Evaluating

the integrals one obtains

a1.
krjr d

2eigm

2manmr c
2 S a

r c
D m

I um1m/2uS ~krr d!2

2 De2(kr r d)2/2,

~16!

whereI m is the modified Bessel function. Using the asym
totical expressions for these functions we get the final e
mate
22451
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a1.
r djeigm

2Apmanmr c
2 S a

r c
D m

, a252a1exp~ igm2m2 igm!.

~17!

To simplify calculations one can take a cylindrical Ferm
surface without much loss in generality, so thatkz depen-
dence may be neglected,kr5kF ~such a choice is well justi-
fied for NbSe2), and finally arrive at the local DOS for a
vortex molecule:

N~«,r !5A2(
m

d~«2«nm!$~Jum1m/2u
2 ~kFr !

1tnmJum1m/2u~kFr !@Jum13m/2u~kFr !cos~mu

1gm1m!2Jum2m/2u~kFr !cos~mu1gm!#%,

~18!

wheretnm52ua1u.
One can observe that as soon as the constituent sin

quanta vortices in a giantm vortex start to separate, each rin
of the maximal DOS around a giant fluxoid splits intom
peaks. With an increase in the sizea of the molecule and,
accordingly, in vortex spacing, several of the DOS pea
merge and finally onlym peaks at the centers of individua
vortices survive. The specific peak structure in the DOS d
tribution around a small-size vortex molecule is a direct co
sequence of quantum-mechanical interference of Andr
states. As a next natural step we calculate the zero-bias
neling conductance in the clean limit taking into account
finite temperature effect. Typical spatial distributions of t
tunneling conductance for two particular cases of 2f0- and
3f0-vortex molecules (m52 andm53) are shown in Figs.
4 and 5. Here we choose the following parameters:tnm

50.7,T;D0 /(kFj),kFr c520A2 for m52, and kFr c

540/A3 for m53. The multipeak structure inside the core
a small-size molecule is surely smeared due to the finite l
time and temperature effects. Thus, we can conclude tha

FIG. 4. Local zero bias tunneling conductance for a vortex m
ecule with m52; x,y coordinates are measured in 1/kF , T
;D/(kFj), kFr c520A2.
4-5



gh
es

e
ct
z

ns
se
e

t a

s

y
i
w
s
n

ule
s
is
w
fi-
a
w
d

th
l

-

por-
h
uct-

the
ort

as a
al
ct
nel

the
ore
of
the

ra-
a
we
ty of
ith

tion
its

re-
n-

r-

rded

is
m-

iven

rong
n be
um
ing

t

is

to
els

an-

o
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nontrivial behavior of the local DOS discussed above mi
become observable in the cleanest mesoscopic sampl
low temperatures.

II. BALLISTIC TRANSPORT ALONG VORTEX LINES
IN MESOSCOPIC SUPERCONDUCTORS:

FLUX SENSITIVE ANDREEV WAVEGUIDES

In this section we turn to the description of phas
coherent transport properties of a few fluxoid supercondu
~FFS!. Consider mesoscopic superconducting disc squee
between the leads connected to two normal reservoirs@see
also Fig. 1~a! in Ref. 6#. Hereafter we assume the dimensio
of a few-fluxoid sample to be much less than the pha
breaking length~characterizing the distance at which th
phase coherence of the quantum-mechanical state is los
determined by the rate of inelastic scattering!. This assump-
tion seems to be reasonable since the typical dimension
few-fluxoid samples used in recent experiments2 are of the
order of several coherence lengthsj;\VF /D (VF is the
Fermi velocity!. For simplicity we also neglect the impurit
scattering and, thus, restrict ourselves to the ballistic lim
The idea now is that in the sufficiently thin discs and lo
temperatures the ballistic transport will be carried by qua
particles tunneling through the sample. Then every additio
flux quantum entering the disc to form the vortex molec
or the multiquanta giant vortex will open an additional tran
port channel giving rise thus to a steplike increase in the d
conductance. The quantum-mechanical motion of lo
energy quasiparticles~and hence the transmission coef
cient! is determined by the geometry of a vortex molecule
well as by the geometry of a mesoscopic sample. Now
quantify this idea and develop a theory of the vortex me
ated ballistic transport in FFS’s.

In the homogeneous superconducting disc~without vorti-
ces! of the thickness larger than the coherence length
zero bias conductance for each normal-meta
superconductor boundary atT50 is provided only by two-
particle Andreev processes~single-particle tunneling is sup

FIG. 5. Local zero bias tunneling conductance for a vortex m
ecule with m53; x,y coordinates are measured in 1/kF , T
;D/(kFj), kFr c540/A3.
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pressed because of the superconducting gap!. The
contribution of these processes to the conductance is pro
tional toT 2, whereT is a probability of transmission throug
the barrier separating the normal lead and the supercond
ing sample.

Within the most simple phenomenological approach
influence of vortices entering the sample on the transp
characteristics can be described if we view a vortex core
normal tube with the DOS coinciding with that in the norm
metal.17 A more profound theoretical description of the effe
of trapped vortices on the properties of Josephson tun
junctions is based on the analysis of the modification of
Green’s functions of superconducting electrodes in the c
region.18 If we choose to apply this model for the estimate
conductance along the vortex line we immediately obtain
value proportional to the standard Sharvin’s conductance

GN}T
e2kF

2j2

\
.

The above estimate can be correct only for finite tempe
tures T.D/(kFj) since the QP spectrum in the core of
singly quantized vortex is gapped. Using this estimate
assume that the conductance is determined by the densi
of states integrated over the vortex core and convolved w
the thermal broadening function. Thus, such a considera
is based, in fact, on a transfer Hamiltonian approach and
validity is known to depend on the nature of the barrier
gion . This approach is obviously correct for incoherent tu
neling into vortex states~the part of electron momentum pa
allel to the barrier plane is not conserved!. In the case of
coherent tunneling the above arguments should be rega
with caution. In this case the in-plane momentum~perpen-
dicular to the vortex axis! should be conserved and, thus,
determined by its values allowed within the core. For inco
ing particles with a certain energy«!D the allowed in-plane
momenta for the states propagating along the core are g
by the expressionkr.mD/(«j). This restriction on the
quantum numbers of transverse modes results in a st
suppression of vortex conductance. A simple estimate ca
suggested in the spirit of Landauer approach if we just s
up the contributions of different transverse modes assum
equal transparencies for all modes (}T):

G;
e2

\
T (

m
f @«m~kz50!#, ~19!

where f is the Fermi distribution function. In the limi
D/(kFj)!T!D we can replace the sum overm by the inte-
gral and finally obtain the following estimate for th
intermediate-temperature region:

G;
e2

\
TkFj

T

D
.

Such a suppression of conductance is directly related
the fact that the Caroli–de Gennes–Matricon energy lev
are determined only by two quantum number:m andkz . A
set of levels corresponding to the change in the third qu
tum number~which is, in fact, the radial part of momentum!
is shifted to higher energies («;D). This effective reduction

l-
4-6
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of the system dimensionality results in the fact that cond
tance is proportional to the core radius and not to its are

All the above consideration is based on the assump
that the only contribution to the vortex conductance com
from the resonant temperature-activated transport thro
the Caroli–de Gennes–Matricon energy states, which
propagate along the flux line. However, even for zero te
perature the single particle transport along the vortex lin
possible due to the tunneling of electrons through the sam
of a finite thicknessL. Provided the energy of an incomin
electron does not coincide with the Caroli–de Genne
Matricon levels QP states decay into the sample due to m
tiple Andreev reflections from the boundaries of the vor
core over a certain characteristic distanceLd . The channels
which satisfy the conditionLd.L ~these channels are ope
for single particle tunneling! will contribute the conductance
of the mesoscopic system. The lengthLd is a characteristic
scale for convertion of normal current of incoming electro
into the superflow. In a macroscopic superconducting sys
the core states do not contribute to the electroconducti
along the vortex lines since the normal current injected i
the sample converts to supercurrent at a length scale whi
less than the sample sizeL. In other words, in this case th
quasiparticle channels are shunted by the condensate.

Thus, in order to find FFS conductance in a finite leng
sample we have to describe the decay of the Andreev s
along the vortex line. We are interested in the states at z
energy which can not propagate along the line because o
finite minigap in the core. Let us start from the BdG equ
tions ~4! for a single vortex line, which are written for radia
parts of electronlike and holelike wave functions. Note th
we assume here thekz momentum to be complex valued t
describe the electronic states with arbitrary energies«. It is
obvious that if the energy coincides with a certain discr
CdGM level thekz momentum will be real and we mus
obtain the standard electronic states propagating along
vortex waveguide. Otherwise the imaginary part of thekz

momentum will give us the inverse decay length for ele
tronic wave functions.

A. Propagation of quasiparticles along a normal metal
cylinder in a superconductor in the absence of supercurrents

„VsÄ0…

We start from the consideration of the caseVs50 and
analyze the possibility to obtain the states localized in thexy
plane~and decaying in thez direction! because of the well in
the gap potentialD(r ). Provided the gap is zero within th
domain r ,a, this situation corresponds to the states in
normal metal cylinder of the radiusa which is placed into a
superconductor. Usual Andreev states with realkz are
gapped: if we takea;j andkr;kF the minimum energy is
of the order ofD(`). There are no states with realkr for «
50.

For the particular case«50 we can write the BdG equa
tions ~4! in the form of two decoupled equations if we tak
the wave functions in the form
22451
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f̂ 5C1S 1

i D 1C2S 1

2 i D . ~20!

The equations for the functionsC1 andC2 read

@ ĥ6 iD~r !#C650, ~21!

ĥ5
\2

2M S 2
]2

]r 2
2

1

r

]

]r
1

m2

r 2
2kr

2D . ~22!

The behavior of wave functions can be easily understo
using the following simple analogy in standard electrod
namics. Equation~21! describes the propagation of waves
a waveguide with waveguide faces made of metal with fin
conductivity which depends onr and, thus, complex dielec
tric constant takes the form

«d517
i2kF

jkr
2

d~r !,

whered(r )5D(r )/D(`). The skin depth in waveguide face
is proportional to the coherence length. Such an analogy
lows one to conclude immediately that the waves with m
mentum close to the waveguide axis decay most slo
along this axis since the dissipation in waveguide faces
this case is minimal. We can also note that the waves w
momenta direction far from the waveguide axis cann
propagate and decay at a length of the order of the wa
guide radius.

Let us now discuss the solution of Eq.~21! in more detail.
Within the standard quasiclassical approximation~assuming
krj@1) this solution can be written in the form~we take the
equation for C1 for definiteness! C15g1(r )Hm

(1)(krr )
1g2(r )Hm

(2)(krr ), where Hm
(1,2)(krr ) are Hankel functions

and g1,2 are slowly varing envelopes. Far from the norm
metal cylinder (r @a,D5const) we have the two exact solu
tions Hm

(1,2)(rAkr
222ikF /j). Inside the normal metal cylin-

der (D50) there are also two exact solutionsHm
(1,2)(krr ). To

avoid a divergence of the wave function forr→0 we must
match the two independent solutions at the origin and ob
Bessel function for smallr. One can see that for nonzer
imaginary part of the wave vectorAkr

222ikF /j only one of
Hankel functions@i.e., Hm

(2)(rAkr
222ikF /j)# can exist at

large distances since another Hankel function appears to
verge for r→`. As a result, if we neglect small scatterin
~caused by the gap inhomogeneity! between the waves de
scribed by the envelopesg1,2 ~in quasiclassical approxima
tion such scattering is zero! we cannot obtain the solution
regular at the origin. The only way to get such a soluti
within the quasiclassical approximation is to p
Im(Akr

222ikF /j)50 ~which allows us to consider both
Hankel functions at large distances!, i.e., we must take
Re(kr)Im(kr)5kF /j, i.e., Im(kz)5kF /@jRe(kz)#. The cor-
responding decay length along thez direction in this case
appears to be the same as for the case of homogeneou
4-7
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perconductor without normal-metal cylinder. Such modes
not localized in the (xy) plane—they are not waveguidelik
solutions.

To get a waveguidelike solution we must go beyond
quasiclassical approximation and take account of the inte
tion of the waves described by the envelopesg1,2. This scat-
tering is indeed small~at least forkr@1/j! but it is this
mechanism which allows us to obtain modes propagatin
the waveguide. Such observation of the important role
nonquasiclassical corrections for the description of quasi
ticles moving rapidly in the direction parallel to the norma
metal–superconductor interface is in agreement with
analysis19,20 of the bound states in SNS sandwiches. To o
tain the solution we can consider a simple model with a st
like gap potentialD50 for r ,a and D5D0 for r .a. For
r .a we must consider only one of the Hankel functio
which decays with an increase in r: C1

5T1Hm
(2)(rAkr

222ikF /j). Inside the normal cylinder (r
,a) the general solution can be taken in the formC1

5Hm
(2)(krr )1R1Hm

(1)(krr ). One can match the wave func
tion and its first derivative at the NS boundary and obtain
reflection (R1) and transmission (T1) amplitudes. In the
limit kr

2j/kF@1 ~which is easy to get even forkr!kF) and
kra.m the reflection coefficient is

R15R0exp@22ikra1 ip~m11!#, ~23!

whereR0.kF /@2(Rekr)
2j#!1 is the nonquasiclassical re

flection coefficient from the NS boundary. Note that the sa
procedure can be made forC2 : the reflection amplitude in
this case takes the form

R25R0exp@2ikra2 ip~m11!#. ~24!

To obtain the solution regular at the origin we must p
R651 ~in this case the sum of Hankel functions inside t
cylinder equals to the Bessel function!. As a result, Re(kr)
appears to be quantized: Re(kr)5pn/a1p(m11)/(2a),
wheren is an integer. The imaginary part ofkr also appears
to be nonzero: Im(kr)50.5a21ln L, where we assumeL
5R0

21@1. The corresponding expression for the imagina
part of kz reads Im(kz)5Re(kr)(ln L)/@2Re(kz)a#. The
above solution exist only for Im(kz),kF /@jRe(kz)# @or in
other words Im(kr),kF /(Re krj), i.e., Re(kr)/kF
,2(lnL)21a/j#. The parameterL215R0 is the key param-
eter which controls the deviations from the quasiclass
model. In quasiclassical approximation we must takeL5`
and the waveguidelike modes disappear.

If we do not take the steplike model for the gap~which
overstimates theR0 value! and consider a more realisti
slowly changing gap profile~at a length scale of the orderj),
the reflection coefficient appears to be even smaller anL
parameter is larger. Nevertheless the corresponding ch
in the decay length could be not so large because of
logarithmic dependence of this length on theL parameter.
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B. Propagation of quasiparticles
along the singly quantized vortex

The nonzeroVs is responsible for the interaction of th
above waveguidelike solutionsC1 and C2 . To take ac-
count of such interaction we assume this mechanism
dominate only inside the core. As a result, we can treat
problem in several steps:~i! we calculate the nonquasiclas
sical reflection from the core boundary disregarding theVs
term near this boundary,~ii ! we consider the core regio
following Refs. 5,15 to take account of the evolution of t
relative phase between electronlike and holelike parts of
wave function caused by the Doppler shift. The first st
gives us the expression for wave function near the c
boundary, which can be used as a boundary condition for
solution inside the core:

f̂ 5Hm
(1)~krr !FbS eih1

e2 ih1
D 1aR1S e2 ih2

eih2
D G

1Hm
(2)~krr !FaS e2 ih3

eih3
D 1bR2S eih4

e2 ih4
D G . ~25!

At the core boundaryh15h25h35h45p/4. The final con-
dition on the nonquasiclassical reflection coefficients after
matching procedures reads

sin~«m /D0!.
R11R2

11R0
2

, ~26!

where«m is the CdGM spectrum for a singly quantized vo
tex. If we consider rather smallm values (m!krr c) and
neglect the terms proportional toR0

2 the expression~26! can
be rewritten as follows:

R11R252R0cos@2krr c2p~m11!#.«m /D0 . ~27!

The inverse decay length along thez axis is given by the
expression

Im kzn.
Re krn

2Rekznr c
ln~L«m /D0!, ~28!

where theL5R0
21 parameter should be determined from t

nonquasiclassical reflection problem discussed in Sec. I
Re krn5pn/r c1p(m11)/(2r c) and theL«m /D0 value is
assumed to be large. One can see that the appearance
superfluid velocity results in an increase of the decay len
because of the small minigap value. For quasiparticles w
momenta almost parallel to the vortex axis the decay len
appears to be much larger than the coherence length.

C. Propagation of quasiparticles along the multiquanta vortices

The above consideration can be generalized for the c
of a multiquanta vortex with a certain winding numberm.
Using the analogous procedure one obtains Eq.~26!, where
«m is a set of anomalous branches discussed in Sec. I.
inverse decay length is given by the expression
4-8
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Im kzn.
Re krn

2Rekznr c
arccosh@L sin~«m /D0!/2#. ~29!

The core radius is known to increase with an increase
the winding numberm ~see, e.g., Ref. 14!. According to Eq.
~29! this fact results in the increase of the QP decay length
should also be noted that for multiquanta vortices a fin
number of bound states withLd5` appear to exist even a
«50 ~there is no minigap contrary to the case of sing
quantized vortex!. For each anomalous energy branch th
exists such a zero energy bound state characterized by
momentumkr;m/r c .

D. Conductance of a singly quantized vortex:
Large area contacts

Let us estimate the ballistic conductance of the vor
of a certain lengthL. We assume that the superconducti
disk with the vortex is placed between two normal-me
reservoirs. Provided the transparency of the tunnel barr
~which separate superconductor and these reservoirs! is small
enough, the contribution of two-particle Andreev pr
cesses is suppressed. Let us estimate only the conduc
contribution associated with the channels open for single
ticle tunneling along the vortex line. Each mode decay
along the vortex provides the conductance contribut
}e2exp@22Im(kz)L#/\. The total contribution from the
single particle processes can be written as

G0}
e2

\
T(

m
(

n
exp~22ImkznL !, ~30!

where kzn is determined from Eq.~28!. The value Rekrn
meets the condition Rekrn.m/r c ~otherwise the turning
point m/kr of the Hankel function appears to be outside t
core region!. The maximum Rekrn value is determined by
the Fermi wave vector (Rekrn,kF). As a result, we can pu
Rekrn5pn/r c , where nmin,n,nmax, nmin;m, and nmax
;kFj. We assume here that the transmission coefficienT
through the barrier is the same for all channels~in a more
realistic model this coefficient surely depends on the qu
tum numbers!. Takingj,L,j2kF one can see that the ma
contribution to the conductanceG0 is provided by the modes
with momenta almost parallel to the vortex axis. As a res
we can put Rekz.kF in Eq. ~28! and write the conductanc
in the form

G0}
e2

\
T(

m
(
m

nmax

expS 2
pnL ln~Lm/n!

kFr c
2 D . ~31!

Replacing the sums overm and n by the integrals one
obtains

G0}
e2

\
TE

0

1`

dmE
m

nmax
dn expS 2

pnL ln~Lm/n!

kFr c
2 D .

~32!
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Neglecting the weak logarithmic dependence vsn in Eq.
~32! we can evaluate the above integrals and obtain the fi
expression for the ballistic conductance

G0}
e2

\
T~kFj!2

j2

L2~ ln L!2
. ~33!

Comparing this expression with the Sharvin’s conductance
the normal wire of the radiusj, one can see that the decay
quasiparticle states along the vortex line results in a decre
of the Sharvin’s conductance by the factorj2/@L2(ln L)2#.
For mesoscopic samples withL of the order of severalj
this single particle contribution can be comparable w
the two-particle Andreev contribution (}T 2). For largeL
values (L.kFj2) the power law decay of the conductan
vs L should be replaced by the exponential depende
;exp@2L lnL/(kFj2)#. Thus, in the largeL limit the current
through the single particle channels is shunted by the su
current.

E. Conductance of a multiquanta vortex: large area contacts

With an increase in magnetic field we change the wind
number and hence a number of single particle channels.
large area contacts~with area larger than both the core radi
and intervortex distance! all these vortex channels contribu
to the conductance and, as a result, we obtain a step
conductance behavior vs magnetic field@see also Fig. 1~b! in
Ref. 6#. For vortex structures consisting ofm separated sin-
gly quantized vortices one can expect that the total cond
tance is given by the sum of isolated vortex contributio
GS(m)5mG0. For giant vortices or vortex molecules th
dependence ofGS vs m becomes more complicated and
mainly determined by them dependence of the effective cor
radiusr c(m):

GS}
e2

\
T @kFr c~m!#2

r c
2~m!

L2
. ~34!

Note that the zero energy states provide an additio
contribution to conductance of the order
(e2/\)TkFr c(m)2@m/2#, where square brackets denote
integer part.

F. Conductance of multiquanta vortices: Small area contacts

For point contacts with an area of the contact mu
smaller than the area of the giant vortex corer c we should
take account of the dependence of the transmission co
cient T vs m. As a result, the efficiency of single particl
channels depends on the winding numberm and point con-
tact position.

At small distances from the giant vortex center the wa
functions have Bessel asymptotics and, thus, vanish in
the domainr ,um1m/2u/kr . As a result, for point contac
positioned at the giant vortex center the transmission coe
cient should also vanish for modes withum1m/2u.krd,
where d!r c is the contact radius. Thus, in this case w
should takenmin;max@mrc /d,rc /d# and the expression for th
conductance reads
4-9
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G0}
e2

\
T(

m
(
nmin

nmax

expS 2
pnL ln~Lmn!

kFr c
2 D , ~35!

where Lmn5L«m(krn)/D0. For odd winding numbers the
spectrum has a branch crossing Fermi level atm50
@«m(krn)/D0;m/(krnr c);m/n,Lmn;Lm/n#. For even
winding numbers there is no such an energy branch and
small m we should take«m(krn)/D0;1 and Lmn;L. For
rather small contact radiusd,L/(kFr c) the terms in the sum
~35! vanish very fast with an increase inn andm: the main
contribution to the conductance comes from the first te
with minimal n and m. The conductance for odd and eve
winding numbersm takes the form

Godd}
e2

\
T expS 2

L ln~Ld/r c!

kFr cd
D ,

Geven}
e2

\
T expS 2

L lnL

kFr cd
D .

For the ratio of conductances we obtain

Geven

Godd
;S d

r c
D L/kFr cd

!1.

The suppression of the conductanceGeven is caused by the
absence of the anomalous energy branch crossing F
level atm50 for even winding numbers. Such an odd-ev
effect results in alternating behavior of conductance a
function of magnetic field@Fig. 1~b! in Ref. 6#. Generally the
behavior of conductance vs magnetic field is determined
the interplay of steplike and oscillating contributions.

III. CONCLUSIONS

To summarize, we have developed a theory of quasipa
cle excitations in the vortex state of mesoscopic superc
ductors. We have found spatial distribution of the QP den
of states, investigated ballistic transport through the vor
.
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cores and analyzed the regimes of alternating and step
behaviors of conductance. The steps on the dependenc
conductance vs magnetic field are associated with the fi
order phase transitions between the states with diffe
winding numbers and, thus, should exhibit strong hystere
Note, that the oscillatory behavior on the STS characteris
~vs magnetic field! at the disk center as well as the suppre
sion of the gap value at the disk edge by a magnetic field
hysteresis have been observed in recent experiments21 car-
ried out on mesoscopic In disks. A similar behavior of t
conductance is observed in so-called Andreev interfero
eters~see Ref. 22 for review! measuring the phase differenc
between two superconductors. Thus, the transport meas
ments of a superconducting disk with a few fluxoids provi
a possibity to realize a new type of mesoscopic Andre
interferometers~or fluxometers!. Another possibility to real-
ize such Andreev fluxometer is to consider the electron tra
port through superconducting constrictions~of the minimum
diameter of several coherence lengths! in a strong magnetic
field which destroy the superconducting order paramete
the bulk. In such a strong field a superconducting nucle
with a few trapped vortices can still exist inside the constr
tion and result in quantum behavior of conductance vs m
netic field. A simple example of such a system is a superc
ducting STM tip. Alternatively a constriction can b
fabricated by the technique23 based on pressing a norm
metal STM tip to a superconducting substrate.
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