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Quasiparticle excitations and ballistic transport in the mixed state of mesoscopic superconductors
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As the size of the superconducting sample with a few fluxoids is less than the dephasing length new physics
comes into play. The quasiparticle excitations in vortices form coherent quantum-mechanical states providing
thus a possibility to control the phase-coherent transport through the sample by changing the number of
fluxoids and their configuration. Thus, mesoscopic samples with a few vortices realize a new type of magneti-
cally tunable Andreev waveguides. The sample conductance measured in the direction of the applied magnetic
field is determined by the transparency of different multivortex configurafigiasmt multiquanta vortices and
vortex moleculeswhich form a set of quantum channels. The transmission coefficient for each channel is
controlled by multiple Andreev reflections within the vortex cores and at the sample edge. These interference
processes result in a stepwise and/or oscillating behavior of the conductance as a function of the applied
magnetic field. This is a vortex-based switch with the magnetic field playing the role of the gate voltage.

DOI: 10.1103/PhysRevB.65.224514 PACS nuniber74.25.Ha, 74.60.Ec

Modern microfabrication techniques opened a route foitransport through these states and demonstrate that conduc-
studies of small superconducting structures of the size ofance due to Andreev states in FFS’s reveals a variety of
several coherence lengths. The pioneering Wotkevealed  oscillating behaviors. In particular, we find that local ballistic
a rich variety of different phases within given fluxoid states.conductance can alternate between the finite and the near-
Magnetic field can penetrate the sample in the form of azero values as a function of magnetic field. In this regime the
poligonlike vortex molecule or individual vortices can merge mesoscopic superconductor thus realizes a quantum vortex
forming multiguanta giant vortex. This transformation occursswitch where the external magnetic field plays the role of
via the second-order phase transition. First-order izomerigate voltagé.
transitions between the different configurations of vortex The bound states in the core can barely feel the presence
molecule seen as branching of the magnetization curves caf the neighboring vortices as long as the intervortex dis-
also take place. Numerical Ginzburg-Landau calculationgancea is much larger than the coherence length.e., as
(see, e.g., Ref.)Xonfirmed that indeed vortices either mergelong asH <H,(a>&). The formation of multiquanta vorti-
into a single giant vortex with a certain winding numibeor  ces in infinite samples is not energetically favorable, which
arrange in stable moleculalike configuratibngith vortex  can be understood as a result of the strong repulsion forces
spacinga. The appealing question now is what are the resulthetween the singly quantized vortices. On the contrary, in
ing electronic states associated with different fluxoid StrUC'Sma” enough mesoscopic Samp|es mu|tiquanta structures
tures and how do structural transitions in the vortex state Ofnay become stable fad<H., due to compression forces
a mesoscopic superconductor affect its electronic propertieg,q, shielding Meissner currents pushing vortices to the cen-
The low lying quasiparticléQP) states bound at the isolated (o of the sample. As the distances between vortices compare
vortex core carrying the flux quanturto=mfic/|e| were to the coherence length< &, wave functions overlap, inter-

found first by Caroli, de Gennes, and Matriéand can be ference effects come into play, and fundamentally new fea-

viewed as the formaﬂon of sta_ndlng quasiparticle waves du‘taures of the QP spectrum, controlled by the geometry of both
to Andreev reflection of quasiparticles from the supercon-

) ] s o the vortex molecule and the sample, appear as a result of
ducting gap profileA(r) confining the vortex core. The ,nfinement. In small samples with radiRscomparable to
quantitative theory of the quaS|par_t|cIe states is based on thtﬂe coherence length the behavior of the vortex states will
Bogolubov—de Genne®dG) equations, and iis supercon-

also be strongly affected by the edge electronic states. The
ductors the QP spectrum for small values of the angular mo; . g .

5 . finite magnetic field suppresses order parameter near the disk
mentum quantum numbexr is® e, = uA/(k &), whereA is

o edge creating a potential well for quasiparticles. Bound qua-
the gap value far from the vortex axig,is the coherence siparticle states form due to both normal quasiparticle reflec-

length, k, =k, | .k, is the wave vector in the plane perpen- tion at the disk edge and Andreev reflection from the bound-
dicular to the vortex, ang is half an odd integer. This is the gy of the classically unpenetratable region. The local density
so-calledanomalous brancfof the QP energy, which, as of statesDOS) in such mesoscopic digmeasured, e.g., by
function of u, varies from—A to A crossing zero as the the STM techniqueshould exhibit strong oscillations as a
impact parameten= u/|k, | of the particle in the core varies function of magnetic field. At the disk edge the period of
from —o to +co, these oscillationswith an increase in magnetic figldhould

In this paper we report our findings on peculiarities of thecorrespond to the flux quantum, while at the disk center one
electronic structure of the QP Andreev states in a few-fluxoictan observe two-quanta periodic behavi@hich is caused,
superconductofFFS. We also analyze the phase-coherentin fact, by the Aharonov-Bohm effect
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The distinctive features of the electronic states in a mul- . T\ .. .
tivortex configuration stem from their underlying mecha- ho<—iV+ ¢—A>u(r)+A(r)v(r)=gu(r), (1)
nism, the multiple Andreev reflections from 0
superconducting—normal-metal boundaries which are
formed in an applied magnetic field. The phase-coherent —ﬁo
guasiparticle transport in the direction perpendicular to the
disk plane should be strongly influenced by this Andreev o )
interference pattern. It was Giaver first who in his classicvhere (i,v) are the particlelike and holelike parts of the QP
work’ noticed that when magnetic flux gets trapped in thevave function andA (energy gapis the order parameter
superconductor, the small normal areas in parallel with su4sed in the Ginzburg-Landa@L) theory. The correspond-
perconducting areas appear that influence transport charaielg one-particle Hamiltoniahg in the most simple isotropic
teristics. We find that phase-coherent transport carried by thease takes the form
guasiparticle Andreev states associated with these normal do-
mains realizes another of Giaver’s visiohinally | would ho(K)=7%2k?/(2M)—Eg,
like to propose a different tunneling experiment: an experi-
ment to determine if it is possible to tunnel through a superwhereE is the Fermi energy anil is the electron effective
conductor. If so we have an ideal triode, because | camnass.
change the tunneling probability by changing the biasing po- For simplicity and also in order to relate to the most com-
tential of the superconductor.” We focus here on anothemmon experimental situation, we consider a thin disk of the
possibility to control this tunneling probability by changing thicknessd<\ (\ is the London penetration deptand ra-
the number of vortex lines in a mesoscopic sample. A quasidius R<)\eﬂ:)\2/d_ We use a cylindrical coordinate system
particle incident upon the sample with a trapped vortex carfr, 9,z) with the z axis chosen perpendicular to the disk and
propagate along the flux line provided its energy coincidesrigin at the disk center. The boundary conditions at the edge
with a certain energy level in the core. Otherwise, if thisof the disk areu(R,8)=0u(R,6)=0. In order to describe
resonance condition is not fulfilled the wave function ap-vortex molecules of general symmetry the order parameter
pears to decay along the vortex line at a certain decay lengtban be conveniently written in the form
Ly4. The ratio of this length to the sample thicknésdeter-
mines the single-particle tunneling probability through the A=A [¥(r)e™+D(r)],
sample. The conducting channels wlth>L are open for
single-particle tunneling, while the transport through thewhere ¥ is a general solution of the GL equations for a
channels with_4<L is possible only because of two-particle multiquanta vortex located at the disk center in an external
Andreev processes. Because of the suppression of the orde@agnetic fieldH. The asymptotical behavior of th& func-
parameter in the vortex core the maximum decay lemgth tion at small distances<r. (wherer is the core radius
appears to be much larger than the coherence lehgththe  from the disk center is given by the expressiba- (r/r )™.
absence of vorticek3<£). Changing the number and con- Near the disk edge the order parameleis also suppressed
figuration of vortices we can control the transparency of theby the supercurrents. The functi@nis used to describe the

o(D+A*(NHu(r=eov(r), 2)

v+ A
I E—
P

sample with respect to single-particle tunneling. splitting of a giant multiquanta vortex into individual vorti-
ces which are situated at a certain distaadeom the disk
I. QUANTUM MECHANICS OF QUASIPARTICLES center. This function is assumed to decay exponentially with
IN A FEW-FLUXOID DISK an increase of distanceat a certain length scaley~r..

L ) . Thus, for a small size of a vortex molecula<r)D(0)
The mggneuc field induced low-energy bran_ches in theoc(a/rc)m. It can be shown that fab(r)=0 the QP angular
guasiparticle spectrum appear due (i9:decrease in the en- omentum is conserved and the eigenfunciia (Uv)
ergy threshold for QP’s binding to the sample edge, cauself! . ) 9 gns(u.v
an be written in the form

by both the suppression of the superconducting order paran(f-
eter near the edge in a strong field and by the Doppler shift . . .
of the quasiparticle energguch a mechanism results in for- e =explikz+iund+iomor2)f, (r), ()
mation of the surface bound steft@sand(ii) vortex penetra- X

tion into the sample and, thus, formation of normal vortex-where thef ,(r) function is determined from the following

core regions confining quasiparticles. set of equations:

A. The model . B2 . Lo (p oM 2 Y

) o ) Oy | =T — =t/ +| =40, Vr)| T=kif|+o,Af
The quantum mechanics of quasiparticles is governed by ~2M r r fi

the Bogolubov—de Gennes thedi/e do not consider here s
ultrasmall samplegsee, e.g., Ref. 10 and references therein =ef. 4)
having a quantum level spacidly comparable with the bulk ] ] .
superconducting gap. So in our casie<A the conventional The orbital momentum quantum numberis an integer

(mean field theory of superconductivity can be appliedn onr evenm, and half an odd integer for odu values. Here
a conventional s-wave superconductor BdG equations are oy,0y,0, are Pauli matricesk?+ k2=kZ, and
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is a superfluid velocity. For small disks of the radils

<\ We can neglect the screening effects and the vector 0

potential can be taken in the forf,=—Hr/2.

B. Edge bound states \

—10 rt/R 1 /R

We start with the analysis of the spectrum of QP’s bound
to the disk edge. The surface bound states appear due to the _ _ i : .
formation of a potential well caused by normal reflection at FIG. 1. Norm.al'zed quas'dass'cal radial m°me”“?""’s dis-
the surface and Andreev reflection at magnetic field inducedfnce from the disc center and classically allowed regions for elec-

. L _tronic states bound to the disk edgeis the turning point.
spatial variations of the order parameter and superflui

velocity®® To obtain the spectrum as a function of the angu-

lar momentum and magnetic field we follow the standard _ H* qbH 2
quasiclassical procedure described, for instance, in Ref. 9 pt=ma b'? 1-| E+ Rk (7)
and take the solution in the form 2H

For the Meissner state of the diskn&0) one finally

f,=AeS+c.c. obtains
Far from the vortex cores the quasiclassical approximation %\ 2 T\ 2 *(n+
appears to be justified since both the superfluid velo¢ity F[E(H—) 1-| E+ qu) ] = méqh™(n Y),
and the GL order parametdlf = \/1—4MZ2£2V2/4#2 change H 2H* RH

on a length scale which is much larger than the coherence ®)
length&. For fields close to the field of the first vortex entry _
V1-b%+V1-x

(H~H*=¢y/mRE) the supercurrent density results in a _ — _
rather strong suppression of the order parameter absolute F(b,x)=V1—b?y1—x+(b?—x)In —

value as well as in a rather large Doppler skidft the order V[b2—x|

of the gap valugof the energy of states with large impact

parameters. As a consequence, the low-energy excitations For impact parameterb close to unity(i.e., for large
appear to be localized near the disk edge. The spectrum @hgular momenta.~k,R) andk, /ke=q=1 eachnth en-
the states bound to the disk edge can be found using the&gy branch has a minimum as a function of two variables:

Bohr-Sommerfeld quantization rule impact parameteb and momentunk, (see also Fig. 4 in
Ref. 6. These two-dimensional local minima result in the
appearance of a set of discontinuitigseplike structurein

the energy and magnetic field dependences of the density of
states(DOS).

The above results for edge states can be easily extended to
the case where a multiquanta vortex=€ 0) is located at the
center of the sample. To this end one merely has to replace
the magnetic fieldH by the expressiotd —mH* £/R. This
simple recipe works only for low-energy levels correspond-
ing to the classically allowed regions near the disk edge

1
(Py—P_)dp=m(n+y). 5

Pt

Herep=r/R,n is an integeryy is a quasiclassical constant
of the order of unityp, is a coordinate of the turning point,
and the moment®.=R(S/). that are found from BdG
equations have the form

P2 o b? N 2 [pi>VméH*/(RH)]. By increasing the magnetic field one
KZR? R ; N induces transitions between the states with different numbers
mand, as a consequence, switching between energy branches
\/ gb[pH mé 2 pH m§)2 with different m occurs. Each quxo?d entering the digk re-
X E+—|——— ——-—1 =1, (6 duces the depth of the edge potential well for QP excitations
2p\H* PR H* PR and thus shifts the localized levels to higher energies. Upon

_ further increase of the magnetic field the screening current
where g=k; /kg, E=¢l/Ay, and b=u/(k,R) is a dimen- and therefore the depth of the potential well increase and
sionless impact parameter apdis an orbital momentum bound states are pressed down. Then next vortex comes in
guantum number. Bound quasiparticle states form due tthe states jump up again, resulting thus in oscillations of the
both normal quasiparticle reflection at the disc edge and AnDOS with the periodsH~ ¢,/R?. The amplitude of such
dreev reflection from the boundary=r,= pR of the classi- oscillations grows as in the siz decreases; therefore such
cally unpenetratable regioisee Fig. 1 To the lowest order oscillations are observable only in mesoscopic samples with
in ¢/R the turning pointp, is determined by the expression the sufficiently small radii.
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C. Multiquanta flux structures

Now we turn to the QP states which are bound to vortices
penetrating the sample. To start with we consider the most
simple case when all the votices merge into a single giant
vortex with a winding nhumbem. m=1 corresponds to a
conventional singly quantized vortex. According to general
theory!! the number of anomalous energy branclipsr
spin) crossing the Fermi level should be equalnto For a
vortex carrying an odd number of the flux quanta one of this
energy branches crosses Fermi level at zero impact param-
eter and, thus, is responsible for the peak in the DOS at the
vortex center. On the contrary, for a vortex with an even
numberm there is no such an energy branch and no peak at
the vortex center. All anomalous branches in this case cross -50 -50
the Fermi level at finite impact parameteis-k,r., where
r. is the core radius. Generally the spatial distribution of the FIG. 2. Local zero bias tunneling conductangg)/gy for a
DOS has the shape of rings with radii of the ordegofThe ~ multiquanta vortex withm=2; x,y coordinates are measured in
number of rings is determined by the winding number. Red/ke, T~A/(keg), Kero=2042.
cently such solutions have been studied numerically in a
number of works?~** An analytical approach for the de- +»  N(e,r)ds
scription of QP states in multiquanta vortices can be devel- g(r)=ng ' ,
oped using the quasiclassical method. Following the proce- —= ANET cosi(&/2T)
dure described, e.g., in Ref. 15 one can consider a model

with a step pair potential and obtain the QP energy vs th&/n€régy is the normal state conductance a(k,r) is the
di ionl . ¢ (k.6 =BR/& QP density of states. Shown on Figs. 2 and 3 is a normalized
imensionless impact parameies- u/(k:£) = & tunneling conductance(r)/gy corresponding tom=2,3

which generally, has a shape of rings with radii of the order

(10

1+2x./q\ 2 B =40/\3 for m=3]. The number of rings is determined by
o the winding number.
*mpe-e
+ f 'Bz—zdx> , (9)
X X+ D. Vortex molecules
X.=\B%= B% B.=r /& andnis an integer. Now we derive quasiparticle DOS in the vortex molecule

For low energiese<Ay(E<1) we can linearize the State. In macroscopic samples the structures consisting of
energy spectrum for each anomalous brandh;(g)  Several vortices witla<£ or multiquanta vortex solutions

=aym(Bam—B), Where the coefficient are energetically unfavorable due to the strong repulsion
forces between the singly quantized vortices. On the con-
m trary, in mesoscopic samples such structures appear stable

even forH<H_,, since Meissner currents push few vortices

Anm™
Bc v 1- (Bnm/BC)2[1+ Z(BC/Q) \/1_ (ﬂnmlﬁc)z]

is of the order unity, and an approximate expression3gy }
reads®
03,799y

m(1-2n) 1-m 1+m

* == S )
ﬁnm —BCCO 2m 1 2 n< 2 02

Each energy branch crossing zero energy at a nonzero impact
parameter is characterized by a certain numbéfor the 0.1y
branch withB,,=0 then number changes with a change of
the impact parameter sigriMaking use of the quasiclassical
approach we also can find the corresponding spatial distribu-
tion of the density of state@0S). Convolving the DOS
with the thermal broadening function we obtain the quantity
which is directly related to the local zero-bias tunneling -50 —50

conductance for transport between two reservoirs and, thus,

can be probed by scanning tunneling spectroscopy FIG. 3. Local zero bias tunneling conductangg)/gy for a
measurement?. In the clean limit the expression for this multiquanta vortex withm=3; x,y coordinates are measured in
finite temperature tunneling conductance reads ke, T~Al(Ke€), ker =40/3.
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present in the sample close together. Then the electronic
states in a vortex molecule with<¢ differ strongly from
the ones for isolated vortices due to the essential interference
effects. The quantum-mechanical motion of low-energy qua-
siparticles is determined by the geometry of the vortex mol-
ecule involved. In small molecules splitting can be treated as
a pertubation.

For a finite size of a vortex molecul® 0) the harmon-
ics characterized by different interact and the angular mo-
mentum is no more a good quantum number. Nevertheless
for small molecules the wave functions can be obtained us-
ing the pertubation theory which allows us to clarify the
main qualitative features in the behavior of the local DOS. In
the first order of this pertubation theory the wave functions

for a m¢y- vortex molecule take the form -50 -50
~ R R ~ FIG. 4. Local zero bias tunneling conductance for a vortex mol-
QD,L:<PELO)+ a_¢L02m+a+¢Eflm, (11 ecule with m=2; x,y coordinates are measured inkd/ T
~A/(Kgg), ker =202,
1 o0
a:E_—Eme U,-mv,D(r)rdr, (12 ( yEel v a\m
woH a=————|—|, a=—a.exXfliv, m—iv,).
ZJ;manmrc le
| uwdorar, a3 &
ay=——"—| Uy ryrdr,
+ EM_EM+m 0 uY ut+m

To simplify calculations one can take a cylindrical Fermi
where @,,0,)=f is the wave function for a giant surface without much loss in generality, so thatdepen-
m-quanta vortex. A qualitativéand most simplepicture can  dence may be neglectekl,= kg (such a choice is well justi-
be obtained if we consider the asymptotical behavior of wavdied for NbSe), and finally arrive at the local DOS for a
functions and DOS in the small distance limitir, and ~ vortex molecule:
neglect the Andreev reflection inside this dom#put the
gapA=0 in BdG equations, i.e., consider a model with a
step pair potentid?). The zero order terms in QP wave func- N(e,1) =A% 8(e—enmi (I, ma(Ker)
tions take the form #

F tamd|ut mi2 (KeM)[J) 4+ 3miz (Ker ) cogmé

14 + Vurm) = I u—miz(Ker)cogmo+y,) 1},

f(0)~A( ¢ mwm/z(krr))
(18

a Jj—miz(KiT)

where the constamh~ Kk, /r. is determined from normal-

ization condition and the phasg,= wn depends on the en- wheret,,=2|a|.

ergy branch number and is determined from the matching One can observe that as soon as the constituent single-
with a large distance solution. The above approximation alquanta vortices in a giamh vortex start to separate, each ring
lows us to estimate the coefficients. for a certain branch of the maximal DOS around a giant fluxoid splits into

characterized by a number peaks. With an increase in the siaeof the molecule and,
accordingly, in vortex spacing, several of the DOS peaks
krgeivﬂrg a\" (=, L, merge and finally onlym peaks at the centers of individual
ap=——73 | f J‘Mm,z‘(krrdx)e xdx (15) vortices survive. The specific peak structure in the DOS dis-
Ml \Te/ /0O tribution around a small-size vortex molecule is a direct con-

sequence of quantum-mechanical interference of Andreev
states. As a next natural step we calculate the zero-bias tun-
neling conductance in the clean limit taking into account the
finite temperature effect. Typical spatial distributions of the
(K rg)? (k)22 tunneling conductance for two particular cases @f,2and

e rd 3¢o-vortex moleculesi=2 andm=3) are shown in Figs.
(16) 4 and 5. Here we choose the following parametérs;

=0.7T~Ao/(ke&),kerc=20y2 for m=2, and Kkgr,
wherel , is the modified Bessel function. Using the asymp-=40//3 form=3. The multipeak structure inside the core of
totical expressions for these functions we get the final estia small-size molecule is surely smeared due to the finite life-
mate time and temperature effects. Thus, we can conclude that the

[we have assumed heEe:(alg)mexp(—rZ/rﬁ)]. Evaluating
the integrals one obtains

am

k. £rielvu
rC

 2magr?

.

||;/,+m/2|(
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pressed because of the superconducting ).gaphe
contribution of these processes to the conductance is propor-
tional to 72, whereT is a probability of transmission through
the barrier separating the normal lead and the superconduct-
ing sample.

Within the most simple phenomenological approach the
influence of vortices entering the sample on the transport
characteristics can be described if we view a vortex core as a
normal tube with the DOS coinciding with that in the normal
metal’’ A more profound theoretical description of the effect
of trapped vortices on the properties of Josephson tunnel
junctions is based on the analysis of the modification of the
Green’s functions of superconducting electrodes in the core
region?® If we choose to apply this model for the estimate of
-50 -50 conductance along the vortex line we immediately obtain the

. ) value proportional to the standard Sharvin's conductance
FIG. 5. Local zero bias tunneling conductance for a vortex mol-

ecule with m=3; x,y coordinates are measured inkd/ T e2k,2:§2
~AI(Ke&), Ker .=4013. GnxT- P

nontrivial behavior of the local DOS discussed above might The above estimate can be correct only for finite tempera-

become observable in the cleanest mesoscopic samples tates T>A/(kg€) since the QP spectrum in the core of a

low temperatures. singly quantized vortex is gapped. Using this estimate we
assume that the conductance is determined by the density of
of states integrated over the vortex core and convolved with

Il. BALLISTIC TRANSPORT ALONG VORTEX LINES the thermal broadening function. Thus, such a consideration
IN MESOSCOPIC SUPERCONDUCTORS: is based, in fact, on a transfer Hamiltonian approach and its
FLUX SENSITIVE ANDREEV WAVEGUIDES validity is known to depend on the nature of the barrier re-

gion . This approach is obviously correct for incoherent tun-

In this section we turn to the description of phase-neling into vortex stateg&he part of electron momentum par-
coherent transport properties of a few fluxoid superconductasllel to the barrier plane is not conseryeth the case of
(FFS. Consider mesoscopic superconducting disc squeezesbherent tunneling the above arguments should be regarded
between the leads connected to two normal reserfege  with caution. In this case the in-plane moment(oerpen-
also Fig. 1a) in Ref. 6]. Hereafter we assume the dimensionsdicular to the vortex axisshould be conserved and, thus, is
of a few-fluxoid sample to be much less than the phasedetermined by its values allowed within the core. For incom-
breaking length(characterizing the distance at which the ing particles with a certain energy<A the allowed in-plane
phase coherence of the quantum-mechanical state is lost antbmenta for the states propagating along the core are given
determined by the rate of inelastic scattejinbhis assump- by the expressiork,=uA/(g&). This restriction on the
tion seems to be reasonable since the typical dimensions gfuantum numbers of transverse modes results in a strong
few-fluxoid samples used in recent experimératee of the  suppression of vortex conductance. A simple estimate can be
order of several coherence lengtlis#Ve/A (Ve is the  suggested in the spirit of Landauer approach if we just sum
Fermi velocity. For simplicity we also neglect the impurity up the contributions of different transverse modes assuming
scattering and, thus, restrict ourselves to the ballistic limitequal transparencies for all modes7):
The idea now is that in the sufficiently thin discs and low o2
temperatures the ballistic transport will be carried by quasi- = _
particles tunneling through the sample. Then every additional G h TE,L: feu(ke=0)1, (19
flux quantum entering the disc to form the vortex molecule

. . ; . where f is the Fermi distribution function. In the limit
or the multiquanta giant vortex will open an additional trans-

N R : - Al(kp&)<T<A we can replace the sum ovgrby the inte-
port channel giving rise thus to a steplike increase in the dlsgral and finally obtain the following estimate for this

conductance. The quantum-mechanical motion of low_intermediate-tem erature region:
energy quasiparticlesand hence the transmission coeffi- P glon:

ciend is determined by the geometry of a vortex molecule as e?

well as by the geometry of a mesoscopic sample. Now we G~ gﬂpix-

quantify this idea and develop a theory of the vortex medi-

ated ballistic transport in FFS’s. Such a suppression of conductance is directly related to

In the homogeneous superconducting disthout vorti-  the fact that the Caroli—-de Gennes—Matricon energy levels
ceg of the thickness larger than the coherence length thare determined only by two quantum numbgrandk,. A
zero bias conductance for each normal-metal-set of levels corresponding to the change in the third quan-
superconductor boundary @t=0 is provided only by two- tum number(which is, in fact, the radial part of momentdim
particle Andreev processésingle-particle tunneling is sup- is shifted to higher energies - A). This effective reduction
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of the system dimensionality results in the fact that conduc- R 1 1
tance is proportional to the core radius and not to its area. f=w, | |+V_| (20
All the above consideration is based on the assumption !
that the only contribution to the vortex conductance comes _ .
from the resonant temperature-activated transport through The equations for the functionk., and¥_ read
the Caroli—-de Gennes—Matricon energy states, which can R
propagate along the flux line. However, even for zero tem- [h=iA(r)]¥.=0, (22)
perature the single particle transport along the vortex line is
possible due to the tunneling of electrons through the sample 52 2 14 2
_ . . . . A )7
of a finite thicknesd.. Provided the energy of an incoming h= —( - _+__kr2)- (22)
electron does not coincide with the Caroli-de Gennes— 2M grz v y?

Matricon levels QP states decay into the sample due to mul-

tiple Andreev reflections from the boundaries of the vortex The behavior of wave functions can be easily understood
core over a certain characteristic distage The channels using the following simple analogy in standard electrody-
which satisfy the conditio.4>L (these channels are open namics. Equatiorf21) describes the propagation of waves in
for single particle tunnelingwill contribute the conductance & waveguide with waveguide faces made of metal with finite
of the mesoscopic system. The lendth is a characteristic conductivity which depends onand, thus, complex dielec-
scale for convertion of normal current of incoming electronstfic constant takes the form

into the superflow. In a macroscopic superconducting system

the core states do not contribute to the electroconductivity i 2K

along the vortex lines since the normal current injected into €d= 1:?5“)'

the sample converts to supercurrent at a length scale which is '

less '.than.the sample site In other words, in this case the wheres(r)=A(r)/A(=). The skin depth in waveguide faces
ot e sowsoonons . gl PP 01 corenc legth.Such analoy
J ] ows one to conclude immediately that the waves with mo-
sample we have to describe the decay of the Andreev stat@sentum close to the waveguide axis decay most slowly
along the vortex line. We are interested in the states at zergong this axis since the dissipation in waveguide faces in
energy which can not propagate along the line because of thiis case is minimal. We can also note that the waves with
finite minigap in the core. Let us start from the BdG equa-momenta direction far from the waveguide axis cannot
tions (4) for a single vortex line, which are written for radial propagate and decay at a length of the order of the wave-
parts of electronlike and holelike wave functions. Note thatguide radius.
we assume here thHg momentum to be complex valued to  Let us now discuss the solution of E&1) in more detail.
describe the electronic states with arbitrary energiek is ~ Within the standard quasiclassical approximatiessuming
obvious that if the energy coincides with a certain discretek,é>1) this solution can be written in the fortwe take the
CdGM level thek, momentum will be real and we must equation for ¥, for definitenesp ‘P+=g1(r)H§})(k,r)
obtain the standard electronic states propagating along thegz(r)Hff)(k,r), where HE}'Z)(krr) are Hankel functions
vortex waveguide. Otherwise the imaginary part of e andg,, are slowly varing envelopes. Far from the normal
momentum will give us the inverse decay length for elec-metal cylinder (>a,A = const) we have the two exact solu-
tronic wave functions. tions HA(r Jk?—2ikg /£). Inside the normal metal cylin-
der (A=0) there are also two exact solutioH§"?(k.r). To
avoid a divergence of the wave function for-0 we must

A. Propagation of quasiparticles along a normal metal match the two independent solutions at the origin and obtain
cylinder in a superconductor in the absence of supercurrents Bessel function for smalf. One can see that for nonzero
(Vs=0) imaginary part of the wave vectafk?— 2ik /£ only one of

We start from the consideration of the cagg=0 and Hankel functionsi.e., Hﬁf)(r\/k?—Zikplg)] can exist at
analyze the possibility to obtain the states localized inxthe large distances since another Hankel function appears to di-
plane(and decaying in the direction) because of the well in verge forr—o. As a result, if we neglect small scattering
the gap potentialA(r). Provided the gap is zero within the (caused by the gap inhomogengityetween the waves de-
domainr<a, this situation corresponds to the states in ascribed by the envelopeas, , (in quasiclassical approxima-
normal metal cylinder of the radiswhich is placed into a tion such scattering is zerave cannot obtain the solution
superconductor. Usual Andreev states with rdal are regular at the origin. The only way to get such a solution
gapped: if we taka@~ ¢ andk,~kg the minimum energy is within the quasiclassical approximation is to put
of the order ofA(«). There are no states with relgl for ¢ Im(\/kzr —2ikg/€)=0 (which allows us to consider both
=0. Hankel functions at large distanged.e., we must take

For the particular case=0 we can write the BdG equa- Re(k,)Im(k;)=kg/¢&, i.e., Imk,) =ke /[ éRe(k,)]. The cor-
tions (4) in the form of two decoupled equations if we take responding decay length along tkedirection in this case
the wave functions in the form appears to be the same as for the case of homogeneous su-
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perconductor without normal-metal cylinder. Such modes are B. Propagation of quasiparticles
not localized in the Xy) plane—they are not waveguidelike along the singly quantized vortex
solutions.

- . The nonzeroVs is responsible for the interaction of the
To get a waveguidelike solution we must go beyond the,p e waveguidelike solution¥, and ¥ _. To take ac-

guasiclassical approximation and take account of the interacc—ount of such interaction we assume this mechanism to

tion of the waves described by the envelopgs. This scat-  jominate only inside the core. As a result, we can treat the
tering is indeed smallat least fork,>1/¢) but it is this  yroplem in several stepgi) we calculate the nonquasiclas-

mechanism which allows us to obtain modes propagating idjc4) reflection from the core boundary disregarding the
the waveguide. Such observation of the important role ot near this boundaryii) we consider the core region

nonquasiclassical corrections for the description of quasiparronowing Refs. 5,15 to take account of the evolution of the

ticles moving rapidly in the direction parallel to the normal- 1o |ative phase between electronlike and holelike parts of the

metal—superconductor interface is in agreement with the, . e function caused by the Doppler shift. The first step

id9,20 i 1 . . .
analysis®* of the bound states in SNS sandwiches. To Obives us the expression for wave function near the core

tain the solution we can consider a simple model with a Stepboundary, which can be used as a boundary condition for the
like gap potentiaA=0 for r<a andA=A, for r>a. For solution inside the core:
e7i772
+aR, aim )

r>a we must consider only one of the Hankel function
which decays with an increase inr: WV, glm
=T, H@(r Jk?—2ike/£). Inside the normal cylinderr( f=H®O(kr) b(e_i,71
efiﬂs ei774
tion and its first derivative at the NS boundary and obtain the + Hf)(krr) a( ol + bR_(e_i,M)
reflection R,) and transmissionT(,) amplitudes. In the
limit k7&/ke>1 (which is easy to get even fog<ke) and At the core boundaryy, = 7,= 775= 7= m/4. The final con-

<a) the general solution can be taken in the forn,
=H@(kr)+R.HP(k,r). One can match the wave func-

kra> u the reflection coefficient is dition on the nonquasiclassical reflection coefficients after all
matching procedures reads

. (25

R, =Roexd — 2ik,a+im(u+1)], (23) R 4R
+ —

sin(e,,/A0) =~ (26)
0

whereRy=k /[ 2(Rek,)?£]<1 is the nonquasiclassical re-

flection coefficient from the NS boundary. Note that the samavheree , is the CdGM spectrum for a singly quantized vor-

procedure can be made fi#f_ : the reflection amplitude in tex. If we consider rather smajk values @w<k.r.) and

this case takes the form neglect the terms proportional R the expressiori26) can
be rewritten as follows:

R_=Reexd 2ik,a—im(u+1)]. (24 Ry +R_=2Ryco§ 2k I —m(u+1)]=¢,/A¢. (27)

) ) o The inverse decay length along thexis is given by the
To obtain the solution regular at the origin we must putexpression

R. =1 (in this case the sum of Hankel functions inside the

cylinder equals to the Bessel functjo\s a result, Re;)

appears to be quantized: Rg(=mn/a+w(u+1)/(2a), Im k,,=
wheren is an integer. The imaginary part kf also appears

to b_el honzero: I;) :0'5"’_‘ A, Wh_ere we ass_ume\_ where theA =R, * parameter should be determined from the
=Ry ">1. The corresponding expression for the imaginary,nquasiclassical reflection problem discussed in Sec. Il A,
part of k, reads Imk,)=Re(,)(InA)[2Rek;)al. The  Rei = zn/r +m(u+1)/(2ry) and theAz, /A, value is
above solution exist only for Inkg) <ke/[£Re(k;)] [or in 455umed to be large. One can see that the appearance of the
other v!(zrds 'mkr)<kF/(ReJ‘lr§)' ie., Rek)/ke  superfluid velocity results in an increase of the decay length
<2(InA)""a/é]. The parametef ~"=R, is the key param-  pecause of the small minigap value. For quasiparticles with
eter which controls the deviations from the quasiclassical,omenta almost parallel to the vortex axis the decay length

model. In quasiclassical approximation we must take~  anpears to be much larger than the coherence length.
and the waveguidelike modes disappear.

If we do not take the steplike model for the gaghich
overstimates theR, valug and consider a more realistic
slowly changing gap profiléat a length scale of the ordéy, The above consideration can be generalized for the case
the reflection coefficient appears to be even smaller and of a multiquanta vortex with a certain winding number
parameter is larger. Nevertheless the corresponding chandgsing the analogous procedure one obtains (E6), where
in the decay length could be not so large because of the, is a set of anomalous branches discussed in Sec. I. The
logarithmic dependence of this length on theparameter. inverse decay length is given by the expression

ek,

m'ﬂ(AE#/AO), (28)

C. Propagation of quasiparticles along the multiquanta vortices
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. Neglecting the weak logarithmic dependencenvis Eq.
arccoshA sin(e, /A0)/2].  (29)  (32) we can evaluate the above integrals and obtain the final
expression for the ballistic conductance

The core radius is known to increase with an increase in e2 &2
the winding numbem (see, e.g., Ref. 24According to Eq. Gy —ﬂkFg)zﬁ. (33
(29) this fact results in the increase of the QP decay length. It h L<(InA)
should also be noted that for multiquanta vortices a finitecomparing this expression with the Sharvin’s conductance of
number of bound states withy=cc appear to exist even at the normal wire of the radiug, one can see that the decay of
e=0 (there is no minigap contrary to the case of singly yyasiparticle states along the vortex line results in a decrease
quantized vortex For each anomalous energy branch thereyt ihe Sharvin’s conductance by the fact[L2(In A)?].
exists such a zero energy bound state characterized by th,, mesoscopic samples with of the order of severak

ek,

M Ken= 2Rek, I ¢

momentumk, ~ u/r . this single particle contribution can be comparable with
the two-particle Andreev contribution<(7 2). For largel
D. Conductance of a singly quantized vortex: values (>kg£%) the power law decay of the conductance
Large area contacts vs L should be replaced by the exponential dependence

~exfd —LInA/(k=&%)]. Thus, in the largd. limit the current

Let us estimate the ballistic conductance of the Vor.texthrough the single particle channels is shunted by the super-
of a certain lengthL.. We assume that the superconductlngCurrent

disk with the vortex is placed between two normal-metal
reservoirs. Provided the transparency of the tunnel barriers ,
(which separate superconductor and these resenisismall E. Conductance of a multiquanta vortex: large area contacts
enough, the contribution of two-particle Andreev pro-  With an increase in magnetic field we change the winding
cesses is suppressed. Let us estimate only the conductanegmber and hence a number of single particle channels. For
contribution associated with the channels open for single patarge area contactsvith area larger than both the core radius
ticle tunneling along the vortex line. Each mode decayingand intervortex distangell these vortex channels contribute
along the vortex provides the conductance contributiorto the conductance and, as a result, we obtain a stepwise
xe?exd —2Im(k,)L]/4. The total contribution from the conductance behavior vs magnetic figdéte also Fig. (b) in
single particle processes can be written as Ref. 6. For vortex structures consisting of separated sin-
gly quantized vortices one can expect that the total conduc-
e? tance is given by the sum of isolated vortex contributions
Gox gTE 2 exp(—2Imk,L), (B0 Gy(m)=mG,. For giant vortices or vortex molecules the
poon dependence o6y vs m becomes more complicated and is
mainly determined by then dependence of the effective core

where k,,, is determined from Eq(28). The value Ré&, radiusr (m):
c(m):

meets the condition Re,>u/r. (otherwise the turning

point u/k, of the Hankel function appears to be outside the 2 r2(m)
core region. The maximum Ré&,, value is determined by sz_f[kFrc(m)]Z ¢ . (34)
the Fermi wave vector (Re,<Kkg). As a result, we can put h L?

Rek,=mn/r., where n,y<n<Nqnax, Mmin~M, and Npax
~k:£. We assume here that the transmission coefficient
through the barrier is the same for all chann@isa more
realistic model this coefficient surely depends on the quan
tum numbers Taking é<L < &%k one can see that the main
contribution to the conductaneg, is provided by the modes
with momenta almost parallel to the vortex axis. As a result,
we can put Ré&,=kg in Eq. (28) and write the conductance For point contacts with an area of the contact much
in the form smaller than the area of the giant vortex cogewe should
take account of the dependence of the transmission coeffi-
cient 7 vs u. As a result, the efficiency of single particle
(31) channels depends on the winding numbeand point con-
tact position.
At small distances from the giant vortex center the wave
Rep|acing the sums ovek and n by the integra|5 one functions have Bessel asymptotics and, thus, vanish inside
obtains the domainr <|u+m/2|/k,. As a result, for point contact

positioned at the giant vortex center the transmission coeffi-
. . e+ .
@ (i . AL In(A /n) cient should also vanish for modes witl+m/2|>k.d,
Gox 7| du dnexp ———|.
h 0 M k,:rc

Note that the zero energy states provide an additional
contribution to conductance of the order of

(e?/h)Tker ((m)2[m/2], where square brackets denote an
integer part.

F. Conductance of multiqguanta vortices: Small area contacts

nLIn(A w/n)

ker2

e2 Nmax
Gox —TE 2 exp(—
(A

where d<<r is the contact radius. Thus, in this case we
should taken,i,~max{ ur./d,r./d] and the expression for the
(32 conductance reads
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e2 Nmax anLin(A ) cores and analyzed the regimes of alternating and steplike
un ;
G %TZ > exp( - —2) (350  behaviors of conductance. The steps on the dependence of
A Nmin Flc conductance vs magnetic field are associated with the first-
order phase transitions between the states with different
winding numbers and, thus, should exhibit strong hysteresis.
Note, that the oscillatory behavior on the STS characteristics
0(lys magnetic fieldat the disk center as well as the suppres-
sion of the gap value at the disk edge by a magnetic field and
hysteresis have been observed in recent experi

where A ,,=Ae,(k)/Ag. For odd winding numbers the
spectrum has a branch crossing Fermi level a0
[&u(Kin)/Ag~ ! (Kepl o) ~ /N, Ay~ Apin].  For even
winding numbers there is no such an energy branch and f
small x we should takes ,(k;,)/Ag~1 and A ,,~A. For

rather small contact radiub<L/(kgr.) the terms in the sum . . . o .
(kerc) ried out on mesoscopic In disks. A similar behavior of the

(35) vanish very fast with an increase mand x: the main duct is ob di led And interf
contribution to the conductance comes from the first tern O 1CUCtaNCe IS OLSErVed In so-called Andreev interierom-

with minimal n and x. The conductance for odd and even géet\r;((as;]e tR(;f.SZZ ;?é;ﬁ\é'ezr:riaiﬂ'gg :Eg ?rg?]ze grlrrenqiggere-
winding numberan takes the form WO sup u - 1S, P u

ments of a superconducting disk with a few fluxoids provide

@2 L In(Ad/r,) a possibity to realize a new type of mesoscopic Andreev

Gogd™ zTex T Tkord ) interferometergor fluxometers Another possibility to real-
Fe ize such Andreev fluxometer is to consider the electron trans-

e? L InA port through superconducting constrictidie$ the minimum
Gever —Texp( — ) diameter of several coherence lengthsa strong magnetic
h Ker cd field which destroy the superconducting order parameter in

the bulk. In such a strong field a superconducting nucleous

with a few trapped vortices can still exist inside the constric-

Geven [ d\/kered tion and result in quantum behavior of conductance vs mag-

G (r_ <1. netic field. A simple example of such a system is a supercon-
odd 1 lc ducting STM tip. Alternatively a constriction can be

The suppression of the conductar®@g,., is caused by the fabricated by the technigé&based on pressing a normal

absence of the anomalous energy branch crossing Fermietal STM tip to a superconducting substrate.

level atu=0 for even winding numbers. Such an odd-even
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