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Vortex phases in mesoscopic cylinders with suppressed surface superconductivity
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Vortex structures in a mesoscopic cylinder placed in external magnetic field are studied under the general de
Gennes boundary condition for the order parameter corresponding to the suppression of surface superconduc-
tivity. The Ginzburg-Landau equations are solved based on trial functions for the order parameter for vortex-
free, single-vortex, multivortex, and giant vortex phases. The equilibrium vortex diagrams in the plane of
external field and cylinder radius and magnetization curves are calculated at different values of the de Gennes
“extrapolation length” characterizing the boundary condition for the order parameter. The comparison of the
obtained variational results with some available exact solutions shows the good accuracy of our approach.
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I. INTRODUCTION lowing dimensionless variables are used: distances, magnetic
field, and the order parameter are measured in units of co-
Recent achievements in electronic device miniaturizatiorherence lengthé(T), bulk upper critical fieldH.,, and
allow one to study the mesoscopic superconducting sample$— al B, respectively, withn, 8 being the Ginzburg-Landau
with sizes of the order of the coherence leng{fT). Such coefficients. The “extrapolation lengthb has a physical
structures attract considerable current interest as a possibieeaning of a length scale of the order parameter variation at
basis for low-temperature electronics. The superconductinghe sample surface. Microscopic considerations showkhat
state was studied experimentally for different-shapediepends on the properties of interface, it is maximum for an
samples: discs, loops, double loops, dots'efdt was shown  ideal surface with the mirror reflection of quasiparticles and
that the sample shape and sizes affect significantly the phageininum for the rough surface with the diffusive
diagrams of the mesoscopic superconductors. reflection!®?! For the superconductor-dielectric(or
The vortex phases in mesoscopic superconductors argacuun) interface we havd—c in the former case and
commonly studied within the framework of the Ginzburg- ~ £(0) in the latter case. The value bfdepends also on the
Landau theory~*" As is well known from microscopic surface orientation provided that a superconducting gap is
theory, the Ginzburg-Landau approach gives accurate resulggisotropic. It follows from Eq(1) that the order parameter
provided that the order parameter undergoes only a slight suppressed in the vicinity of the sample surfacebat
spatial variation on the length scale &({0). This means that ~ £(0). For thesuperconductor—normal-metal interfdzés
the Ginzburg-Landau theory can be used in the temperaturgiways smallb~ £(0), because of diffusion of normal elec-
range not far fronil,. However, it is known from the expe- trons from the metal to the superconductor. The “extrapola-
rience that it is also able to give reasonable results beyongon length” b in this case is a function of temperature and
this limit. The Ginzburg-Landau solutions for axially sym- various characteristics of metal and interfAt& There are
metric mesoscopic samplésylinders, discscan be subdi- also possibilities for the enhancement of the order parameter
vided into two different type8=** In the first case the modu-  at the interface that can be described by negdiivalues. It
lus of the local order parameter is axially symmetric insidecan be realized by choosing the suitable material as a sur-
the sample. The superconducting vortex-free state, theounding mediunf*?i.e., a superconductor having a higher
single-vortex state, and the giant-vortex state belong to thigansition temperature then the material of the mesoscopic
type of solutions. In the second case the axial symmetry igample. Another possibility is to use a semiconductor as a
broken and a vortex cluster is formed inside the sampl&urrounding medium, such that there is a overlap of the band
(multivortex phasg This state usually appears at lower fields gap of the semiconductor with the superconducting gap. For
and larger sample sizes as compared to the giant-vortethe case of isotropic superconductor-vacuum ideal interface
phase®*% Note that multivortex state corresponds to the(b— ), the magnetic properties of mesoscopic cylinders
Abrikosov flux-line lattice for the bulk superconductors. and discs, their equilibrium and nonequilibrium phase dia-
The phase diagram of mesoscopic superconductor igrams were studied in numerous papers, see, e.g., Refs.
strongly influenced by the boundary condition for the order5—15, using different approaches. The vortex structures al-
parameter. In general case it is given by the de Gennegwing for the enhancedsurface superconductivity were
boundary conditiotf* studied in Refs. 24,25. In Ref. 24 the case of mesoscopic
discs was considered within the lowest Landau level ap-
. [ proximation, which first was proposed in Refs. 7,10. In Ref.
N(—iV=A)y= Bw' @ 25 the Ginzburg-Landau equations were solved numerically
and self-consistently for superconducting state in long cylin-
wheren is the unit vector normal to the sample surfasés  ders.
the de Gennes “extrapolation lengthy’is the vector poten- In this paper we focus on magnetic properties of mesos-
tial, and ¢ is the order parameter. Here and below the fol-copic cylinders under the general boundary condition for the
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order parameter corresponding to the opposite casaijof o Yo

pressedsurface superconductivity. For this purpose, we pro- ar + B =0. (7)
pose a variational approach and solve the Ginzburg-Landau

equations without straightforward integration using trial In the next order one has from E@)

functions for the order parameter. These trial functions in-

volve a set of variational parameters yielding, as we show, _ frdre
more accurate quantitative description of the spatial distribu- 2 o 7
tion of the order parameter than frequently used lowest Lan-

dau level approximation. The approach is applicable to all-[l;]hus' at lfad'ng tc;]rder the r?_agtr)etlc f|eld| IS unlforl:r)w;] 'n.s'dﬁ
vortex phasegthe vortex-free, the single-vortex, the multi- € sample an € magnetization equais zero. Fhysicaly,

vortex, and the giant vortex stajeand any values of de this implies that the additional field generated by the Meiss-

; ; 2
Gennes “extrapolation length.” The comparison of varia- ner C“fTe”t ar.]t?] ?ﬁ/ thet vortllces.fls off_thlg cl)grdler Ok Lmh I
tional calculations with some available exact results demonS0MParson with the external unitorm neid. Below, we sha

strates good accuracy of our approximation. The model en(;alculate the energy of the sample at leading order, whereas

ables us to calculate the equilibriubh.-R diagram of the tge IrPagnetiﬁationl ng ?ezf?l:r?dt ?ﬁ'the next .ordte'r uging Eq.
cylinder, whereH,, is the external field an® is the cylinder (8). It was shown in Ref. at this approximation IS accu-

radius. The magnetization curves of the cylinder are calcuf@te not only for highe mate'nals'but also for moderate-
lated. superconductorée.g.,k~4) with sizes comparable t#(T).

We present), as a Fourier series

i
| ol Ao+ E(%V%_ v Vi) |. (8

Il. MODEL

Let us consider a cylindrical type-ll superconductor
placed in the uniform external magnetic fiet, parallel to
the cylinder axis. The sample is assumed to be much long

dolr,¢)= 2 fu(Dexp(—iLe). ©

&ror the axial symmetric distribution of the modulus of the

than London penetration deps{T). Therefore, both the or- order parameter inside the sample the only one term in Eq.

der parameter and the magnetic field are constant along c t9) |shnonzerqt.hThe v?rtex-fref:, smgle-vorltuex, and g|a3ttvor-
inder axis. We use the cylindrical coordinate system with Exrr’] ases wi ar;gu_aé qfan léan moment nlforr_ﬁ?pon do
coordinates, , zand unit vectors, , e, , e,. the harmonics with.; =0, 1, andL, respectively. The modu-

The system of Ginzburg-Landau equations is giveff by lus of the order parameter in the multivortex phase is not
axially symmetric. Note that in this case the symmetry of the

||2p— g+ (IV+A)2=0, (2)  vortex configuration imposes a restriction on functidrgjs

some of these functions equal zero. It was shown in Refs.
1 , 7,10 that taking into account only two main terms in right-
rot H=— | Aly|*+ 5 (y* V=g Vi), (3 hand side of Eq(9) is enough for an accurate calculation of
K the energy of the mesoscopic superconductor in multivortex
whereH and ¢ are the dimensionless local magnetic field State. The vortex cluster with vortices on a ring and no
and the order parameter HErot A, H=He); « Vortexatthe axigringlike configuration can be described as
=\(T)/£&(T) is the Ginzburg-Landau parameter. Equations®@ Mixture of two components withL,=0 and L,
(2) and (3) must be Supp|emented by the boundary condi-—= L [(OL) Statd. The vortex cluster with one vortex at the

tions for the order parametét) and the magnetic field cylinder axis and I( —1) vortices on a ring corresponds to
L,=1 andL,=L [(1:L) statd. The contribution from other
H(R)=H.. (4) harmonics is small and can be neglected, when we consider

few-fluxoid cylinders that can accommodate just few
vortices”1°
1 Using Egs.(2) and (9) it can be easily shown that each

o0 o0 1 o] 1 ! i N i
W= E Yon—gr A= 2 Aon—-, H= 2 Hon—- function ij(r) has the following asymptotic at—0:
n=0 K n=0 K n=0 K
(5) fL (n~rhi. (10)

We substitute expansior(§) to Ginzburg-Landau equa- In addition, each functioriLj(r) meets boundary condition
tions (2),(3) and to boundary conditiongl),(4) and equate (7). These conditions fof _(r) are valid both for the giant

powers ofx. It is easy to show that the vector potential andy,ortex and the multivortex phases. It is a rather complicated

Next, we expand all variables in powers of

the magnetic field at leading order are given by task to findf, (r) from the first Ginzburg-Landau equation
H.r (2) due to its nonlinearity. Instead of the straightforward in-
A0=e¢Te, Ho=H.. (6)  tegration of this equation, it is possible to use trial functions

for the coordinate dependené@j(r). Notice that different

The order parameter at leading ordeyis determined by the variational procedures allowing one to solve approximately
first Ginzburg-Landau equatiof®2) and the boundary condi- the Ginzburg-Landau equations were used in numerous pa-
tion (1) at H=H,. This condition is now given by pers for mesoscopici®® bulk, 23! and different-shapéd
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superconductors. One can easily show that if B).is a
solution of the first Ginzburg-Landau equation, each function GbZZWf rdr
ij(r) can be represented as the following series expansion

in powers ofr/R without loss of generality: (del)Z (de )2 s (Her L1)2
—K +

dr 2 T
ij<r>=exp( JRZ)E Py

(f4 +f4 +4f2 f2 )—fﬁl—ff1

dr

Lj+2u

11
’ ) Her L, 2
f > 7| (15
Whereptj are constants. The value q{j can be found from

boundary conditior(7): 2R _, )

Ge=— [ (R (R)]. (16)
2 I(Lj+2u) The energy of any state having axially symmetric modulus of
q.= E+ } u=0 (12) the order parameter with angular momentiinreduces to

Lo2b 2 Egs.(15) and(16). In this case we must put; =L, f,_=0.

|_.

UZO Py Using Egs.(11) and (12) we find the energyG from Egs.
(15) and(16) by a straightforward integration as an explicit

Our approach is to consider the coefficieptéas variational  function of variational parameteq:’.0 , pl , p2l and pgz
parameters and to minimize the free energy with respect tp , p22, The resulting expression, however, is rather cum-
P, L. The exponential prefactor in E¢L1) takes into account bersome and we do not present it here. Finally, values of the
the suppression of the order parameter at the contact with \ariational parameters at eaéhare found numerically by
surrounding material. The first term in the expansion dethe minimization of the free energy. This procedure yields
scribes the behavior of the order parameter in the central patfie local order parameter and the energy of the cylinder.
of the sample. Other terms specify the order parameter in the Knowing the local order parameter we can calculate the
sample as a whole. As will be shown below, taking intomagnetization. It is given by:
account only the first three terms in Ed.1) is enough for
the accurate calculation of the order parameter distribution, —4mM=(H)—He, 17
and we will use this approximation in all calculations of
magnetization _andHe-R diagrams. Note that trial function ductor volume. Taking into account E¢8) and expansion
(11) was used in Ref. 32 for the study of surface superconzg) we obtain
ductivity in samples of different complex shapes placed in
vacuum p— o).

where(H) is the averaged magnetic field over the supercon-

The Ginzburg-Landau functional for the Gibbs free en- —4,;M= f rdrf dx fE (X)(HEX_ -t +fE (X)
ergy G of the cylinder can be written as a sum of two con- «*R?Jo 0 ! 2 2
tributions G, andGg. The former is the bulk energy of the Hx L
sample and the latter is the surface energy. These contribu- x( i (18)
tions are given b§?:>>2° 2 X

Functionsf,_1 and f,_2 are found by the method described

—|y]?+ 1|z,/;|"'+ |(=i1V—=A)|*+ k*H? above. Hence, one can calculate the magnetization using Eq.
2 (18). In the following section we apply the developed ap-
proach for the analysis of the behavior of the cylinder in the
dv, (13 external field.

or

—2Kk%HH,

Ill. RESULTS AND DISCUSSION

SRS (14 - es of d _
b Comparing the energies of different states one can calcu
late the equilibriumH.-R diagram of the cylinder. The re-
The integration in Eqs(13) and(14) is performed over the sults of our calculations are shown in Fig. 1 for differdnt
sample bulk and surface, respectively. Note that the generablues:b=1 (a), b=2.5 (b), b=5 (c), andb—< (d). The
boundary condition for the order parametéj can be ob- latter case corresponds to the isotropic superconductor-
tained phenomenologically by minimization of the free en-vacuum ideal interface, and was studied in Refs.
ergy functionalG = G+ G with respect to the order param- 5,6,10,11,13—-15. Curve 1 shows the transition from the nor-
eter and the vector potentigh 22333 mal to the superconducting statthe surface critical field
Substituting expansiof®) to Egs.(13) and(14) and tak- H.3). The oscillatory behavior of the functioH 3(R) is
ing into account Eq(6) we obtain the expression for the caused by the fact that the transition occurs from the normal
energy of the multivortex statger unit length of the cylin- to the giant vortex states with different angular quantum mo-
den: mentsL depending on the cylinder radius. In addition, the
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FIG. 1. EquilibriumH,-R diagram of the cylinder in the external magnetic fieldatl (a), b=2.5(b), b=5 (c), b— (d). Solid lines
show the boundaries between the states with different vorticity. Dashed lines correspond to the boundaries between the multivortex and the

giant vortex phases. Curves 1 and 2 show the surface and the first critical fields, respectively. The dot line denotes the bulk upper critical
field.

function H3(R) depends appreciably on the valuelofthe ~ change the calculated order parameter for almost all points of
value ofH(R) decreases with decreaselnfAt R—o the  He-R diagram shown in Fig. 1. This result implies that our
dependence{ CS(R) tends to the surface critical field for the variational calculations are close to the exact solutions of the
half-space sample, which was calculated in Ref. 22 as a fun&inzburg-Landau equations since expansibi) is written
tion of b. Note that H.; (*)=1.695 for b—o and without any loss of generglity. Thergfore, one can find
Hes() =1 for b—0.182 Ginzburg—Lanc_iau solution Wlth any desired accuréoy the
Below H; the transitions between different giant vortex States with axially symmetric modulus of the order param-
states take place. Solid lines show the phase boundaries b€ allowing for enough number of variational parameters
tween the states with different vorticities that are the sums op,, . For multivortex states the accuracy is limited by the fact
angular qguantum moments of all vortices and giant vorticesthat we take into account only two main harmonics in the
In the giant vortex state the order parameter is strongly supFourier expansiornt9). In Fig. 2 we also plotted the spatial
pressed in the inner part of the cylinder, and this state can beariation of the order parameter calculated within the lowest
referred to as a surface superconductivity. For illustrationandau level approximatiofdashed lines In this approxi-
the spatial distribution of the order parameter in the gianimation the order parameter is proportional to the eigenfunc-
vortex phase withL=2 is plotted in Fig. 2 atb=1, R  tion of the kinetic energy operator corresponding to the low-
=3.9, H,=0.9 (@) andb—«, R=4.56, H.,=0.5 (b) (solid est eigenvalue. We found that this approach remains very
lines). In the former case the order parameter is also supaccurate not far fronid., andH.; [see Fig. 2a)]. At lower
pressed at the sample surface because of the émallue  fields the results of the lowest Landau level approximation
(e.g., superconductor—normal-metal interfad® check the are not so accurafé-ig. 2(b)].
accuracy of our approach we took into account next several As follows from Fig. 1, the superconducting state does
terms in expansiofill), thus increasing the number of varia- not nucleate at very small cylinder radii, smaller than some
tional parameters. As we found, this practically did notcritical radius, and the sample is in the normal state at any
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0.45 y T y T : T - giant vortex to the multivortex states and then back to the
giant vortex phase. For example,Rit=4.4, b= 1 the follow-

ing set of transitions occurs:-81—(0:2)—2—(0:3)—3
—(0:4)—4. At R=4.1, b= the set of transitions is 0
—1-2—-(0:3)»3—(0:4)-»4—-5—-6—-7—8—-9—10
—11.

The transitions between the phases with different vortici-
ties are always discontinuous, they occur when the energies
of different states become equal. The transitions between the
states with the same vorticity may be continuous as well as
discontinuous. Continuous phase transitions occur between
the multivortex and the giant vortex states. In this case, with
increasing of the applied field the intervortex distances de-
crease, and vortices merge into the giant vortex located at the
cylinder axis. The similar results were obtained in Refs.
1.00 —_— 7 7-11 for the casd=o and in Ref. 24 ab<0 (enhanced
surface superconductivityln our calculations we also took
into account a possibility of existence of the multivortex
clusters with central vortex. It turned out that such configu-
rations can be more favorable energetically than giant vortex
states in some regions ¢f.-R diagram shown in Fig. 1.
However, in all these cases the ringlike clusters have the
lower energy. For cylinders thicker than shown in Fig. 1 we
found that at anyp>0 the ground state can be represented
by configurations with the central vortex. The transitions be-
tween multivortex states of the same vorticity with and with-

! out central vortex are discontinuous.
0.00 , : , : , : , : , With increasing of the cylinder radius the number of vor-
0 1 2 3 4 tices, which it is able to accomodate, increases, and finally
r vortex array transforms to the classical triangular Abrikosov

FIG. 2. The spatial distribution of the dimensionless modulus of/lUX-line lattice far from the surface. The first step on this

the order parameter inside the mesoscopic cylinder in giant vorte¥/@y 1S the appearance of the clusters with central vortex.
state with angular quantum momenturs2 atb=1, R=3.9, H,  However, we do not analyze here the transition from the

=0.9 (@) andb—, R=4.56, H,= 0.5 (b). Solid lines correspond Mesoscopic to the macroscopic behavior and restrict our-
to our variational result, dashed lines to the results of the lowesselves on few-fluxoid cylinders, which can accomodate only
Landau level approximation. The distance from the cylinder axis few vortices before the thansition to the normal state and

0.30 4

0.15+

0.00

0.751

0.50 1

0.25 1

is measured in units of the coherence length). whose magnetic properties can be described in terms of mix-
ture of only two harmonics in Eq9).
applied field. The critical radius tends to zerdat . There Now we find the magnetization of the cylinder using Eq.

is also the interval oR for eachb, when the vortex phase (18). The results of our calculations at=5 are presented in
does not nucleate, and the transition occurs from the normadig. 3@ for b=1, R=4.625 and in Fig. &) for b—», R
to the superconducting vortex-free state. Every vortex phase4.05. In these cases the cylinders accommodates the giant
with vorticity L>1 can exist in the form of the giant vortex vortices with maximum angular quantum moments equal to
or the multivortex configuration. The dashed lines on Fig. 15 and 11, respectively, before the transition to the normal
show the boundaries between these states. Below these lingsite. Jumps in the magnetization correspond to the transi-
for givenL>1 the multivortex state has the lowest energy,tions between the states with different vorticity. It is interest-
and above these curves the giant vortex state becomes mdrg that in the state with suppressed surface superconductiv-
energetically favorable. In equilibrium state the multivortexity [Fig. 3(@] the discontinuity of the field dependence of the
phase can exist if the applied field is smaller tharHL(in ~ magnetization is less pronounced, especially at high fields. In
dimensional unitsand if the radius of the cylinder is large the first casgFig. 4a)] at H,~0.61 (0.6H, in dimen-
enough. For each there exists an interval of small cylinder sional unit$ the transition occurs from the multivortex state
radii, when the multivortex phase is energetically unfavor-with 2 vortices to the giant vortex state with angular quan-
able as compared to the states with axial symmetric distributum momentum 22— (0:2)]. In the second cad€&ig. 4(b)]
tion of the modulus of the order parameter. Curve 2 in Fig. lthe transition 3-(0:3) occurs atH.,~0.74 and the transi-
shows the lower critical field that corresponds to the equilib-tion 4—(0:4) occurs atH.~0.87. All these transitions are
rium boundary between the vortex-free and the single-vortefollowed by weak jumps in the slope of the magnetization.
states. The behavior of the magnetization near the transitions is
With increasing the external field the cylinder can follow shown in Figs. &) and 4b). Solid lines denote the equilib-
rather complex set of phase transitions. It can come from theum magnetization, dashed lines denote the metastable mag-
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FIG. 3. The equilibrium magnetization of the cylinder with ra- T
dius R=4.625 versus applied field &t=1, x=5. Jumps in the FIG. 4. The equilibrium field dependence of the magnetization
magnetization in(a) Correspond to the transitions between the of the cylinder with radius 4.05 d—, k=5. In (b) the magne-
states with different vorticity(b) Shows the behavior of the mag- tization is plotted versus applied field near the transitions from the
netization in the vicinity of the continuous phase transitiorHat ~ multivortex states to the giant vortex phases. Solid lines correspond
~0.61H,, from the multivortex state with two vortices to the giant to the equilibrium magnetization, dashed line shows the magnetiza-
vortex phase with vorticit. =2. Solid lines correspond to the tion of the metastable giant vortex phase.
equilibrium magnetization, dashed line shows the magnetization of

the metastable giant vortex phase. tion for the surface critical field allowing one to firttl.3(R)

o _ . __exactly. The comparison of the variationally calculatég,
netization corresponding to the giant vortex phase. The simiy;ith this exact dependence shows good agreement with an
lar behavior of the magnetization in the vicinity of the gccyracy better than 1% for all values bfand R under
multivortex-giant vortex transitions was reported in Ref. 34study. The lower critical field of the cylinded, versusR
for the caseh—ce. o was calculated numerically in Ref. 12 ht->». The com-

Next we discuss the accuracy of our variational proceparison of this result with our dependenise;(R) reveals
dure. First, we compare the variational results with knownne same accuracy. Thus, our results appear to be a good
exact solutions for the surface critical field. The phases Withapproximation to the exact Ginzburg-Landau solutions for
axial symmetric distribution of the modulus of the order pa-ihe mesoscopic cylinders.
rameter are always energetically more favorable with respect |3 symmary, we analyzed the superconducting state in
to the multivortex state at applied field higher than the bulkiong mesoscopic cylinder with suppressed surface supercon-
upper critical field(see phase diagrams on Fig. In the  qyctivity. An asymptotic expansion was used to simplify the
vicinity of the surface critical field the first Ginzburg-Landau Ginzburg-Landau equations at high and moderate values of
equation(1) can be linearized. A resulting equation has the,. and the simplified equations were solved by a variational
following analytical solutior. method. The equilibriunt .-R diagram of the cylinder were

5 ) obtained, wheréd, is the external field an& is the cylinder
Her (He— 1 Her

fL(R):r'-exp< -

L1 (19 radius, at different \_/alues of_ “extrapolatiqn length.” We
2H, ' 2 ) showed that magnetic properties of the cylinder depend ap-

preciably on the value of “extrapolation length” and studied
where® is Kummer function. Functioi19) must meet the the evolution ofH.-R diagram with changing of “extrapola-
boundary conditior{7). This yields the transcendental equa- tion length.”
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