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Vortex phases in mesoscopic cylinders with suppressed surface superconductivity

W. V. Pogosov
Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow region, Russia
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Vortex structures in a mesoscopic cylinder placed in external magnetic field are studied under the general de
Gennes boundary condition for the order parameter corresponding to the suppression of surface superconduc-
tivity. The Ginzburg-Landau equations are solved based on trial functions for the order parameter for vortex-
free, single-vortex, multivortex, and giant vortex phases. The equilibrium vortex diagrams in the plane of
external field and cylinder radius and magnetization curves are calculated at different values of the de Gennes
‘‘extrapolation length’’ characterizing the boundary condition for the order parameter. The comparison of the
obtained variational results with some available exact solutions shows the good accuracy of our approach.

DOI: 10.1103/PhysRevB.65.224511 PACS number~s!: 74.60.Ec
io
pl

si
tin
e

ha

a
g-

su
ig

tu
-
on
-

-
ide
th
th
y
p
ds
rt
he

r
e
n

ol

etic
co-

n at
at
an
nd
e

p is
r
t

-
la-

nd

eter

sur-
er
pic

s a
and
For
ace
rs
ia-
efs.
al-

e
pic

ap-
ef.
ally
lin-

os-
the
I. INTRODUCTION

Recent achievements in electronic device miniaturizat
allow one to study the mesoscopic superconducting sam
with sizes of the order of the coherence lengthj(T). Such
structures attract considerable current interest as a pos
basis for low-temperature electronics. The superconduc
state was studied experimentally for different-shap
samples: discs, loops, double loops, dots etc.1–4 It was shown
that the sample shape and sizes affect significantly the p
diagrams of the mesoscopic superconductors.

The vortex phases in mesoscopic superconductors
commonly studied within the framework of the Ginzbur
Landau theory.5–17 As is well known from microscopic
theory, the Ginzburg-Landau approach gives accurate re
provided that the order parameter undergoes only a sl
spatial variation on the length scale ofj(0). This means that
the Ginzburg-Landau theory can be used in the tempera
range not far fromTc . However, it is known from the expe
rience that it is also able to give reasonable results bey
this limit. The Ginzburg-Landau solutions for axially sym
metric mesoscopic samples~cylinders, discs! can be subdi-
vided into two different types.6–11 In the first case the modu
lus of the local order parameter is axially symmetric ins
the sample. The superconducting vortex-free state,
single-vortex state, and the giant-vortex state belong to
type of solutions. In the second case the axial symmetr
broken and a vortex cluster is formed inside the sam
~multivortex phase!. This state usually appears at lower fiel
and larger sample sizes as compared to the giant-vo
phase.7,8,10,11Note that multivortex state corresponds to t
Abrikosov flux-line lattice for the bulk superconductors.

The phase diagram of mesoscopic superconducto
strongly influenced by the boundary condition for the ord
parameter. In general case it is given by the de Gen
boundary condition18,19

n~2 i¹2A!c5
i

b
c, ~1!

wheren is the unit vector normal to the sample surface,b is
the de Gennes ‘‘extrapolation length,’’A is the vector poten-
tial, andc is the order parameter. Here and below the f
0163-1829/2002/65~22!/224511~7!/$20.00 65 2245
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lowing dimensionless variables are used: distances, magn
field, and the order parameter are measured in units of
herence lengthj(T), bulk upper critical fieldHc2, and
A2a/b, respectively, witha, b being the Ginzburg-Landau
coefficients. The ‘‘extrapolation length’’b has a physical
meaning of a length scale of the order parameter variatio
the sample surface. Microscopic considerations show thb
depends on the properties of interface, it is maximum for
ideal surface with the mirror reflection of quasiparticles a
minimum for the rough surface with the diffusiv
reflection.18–21 For the superconductor-dielectric~or
vacuum! interface we haveb→` in the former case andb
;j(0) in the latter case. The value ofb depends also on the
surface orientation provided that a superconducting ga
anisotropic. It follows from Eq.~1! that the order paramete
is suppressed in the vicinity of the sample surface ab
;j(0). For thesuperconductor–normal-metal interfaceb is
always small,b;j(0), because of diffusion of normal elec
trons from the metal to the superconductor. The ‘‘extrapo
tion length’’ b in this case is a function of temperature a
various characteristics of metal and interface.19–23There are
also possibilities for the enhancement of the order param
at the interface that can be described by negativeb values. It
can be realized by choosing the suitable material as a
rounding medium,24,25 i.e., a superconductor having a high
transition temperature then the material of the mesosco
sample. Another possibility is to use a semiconductor a
surrounding medium, such that there is a overlap of the b
gap of the semiconductor with the superconducting gap.
the case of isotropic superconductor-vacuum ideal interf
(b→`), the magnetic properties of mesoscopic cylinde
and discs, their equilibrium and nonequilibrium phase d
grams were studied in numerous papers, see, e.g., R
5–15, using different approaches. The vortex structures
lowing for the enhancedsurface superconductivity wer
studied in Refs. 24,25. In Ref. 24 the case of mesosco
discs was considered within the lowest Landau level
proximation, which first was proposed in Refs. 7,10. In R
25 the Ginzburg-Landau equations were solved numeric
and self-consistently for superconducting state in long cy
ders.

In this paper we focus on magnetic properties of mes
copic cylinders under the general boundary condition for
©2002 The American Physical Society11-1
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W. V. POGOSOV PHYSICAL REVIEW B 65 224511
order parameter corresponding to the opposite case ofsup-
pressedsurface superconductivity. For this purpose, we p
pose a variational approach and solve the Ginzburg-Lan
equations without straightforward integration using tr
functions for the order parameter. These trial functions
volve a set of variational parameters yielding, as we sh
more accurate quantitative description of the spatial distri
tion of the order parameter than frequently used lowest L
dau level approximation. The approach is applicable to
vortex phases~the vortex-free, the single-vortex, the mult
vortex, and the giant vortex states! and any values of de
Gennes ‘‘extrapolation length.’’ The comparison of vari
tional calculations with some available exact results dem
strates good accuracy of our approximation. The model
ables us to calculate the equilibriumHe-R diagram of the
cylinder, whereHe is the external field andR is the cylinder
radius. The magnetization curves of the cylinder are ca
lated.

II. MODEL

Let us consider a cylindrical type-II superconduct
placed in the uniform external magnetic fieldHe parallel to
the cylinder axis. The sample is assumed to be much lon
than London penetration depthl(T). Therefore, both the or
der parameter and the magnetic field are constant along
inder axis. We use the cylindrical coordinate system w
coordinatesr, w, z and unit vectorser , ew , ez .

The system of Ginzburg-Landau equations is given by26

ucu2c2c1~ i¹1A!2c50, ~2!

rot H5
1

k2 FAucu21
i

2
~c* ¹c2c* ¹c!G , ~3!

whereH and c are the dimensionless local magnetic fie
and the order parameter (H5rot A, H5Hez); k
5l(T)/j(T) is the Ginzburg-Landau parameter. Equatio
~2! and ~3! must be supplemented by the boundary con
tions for the order parameter~1! and the magnetic field

H~R!5He . ~4!

Next, we expand all variables in powers ofk:

c5 (
n50

`

c2n

1

k2n
, A5 (

n50

`

A2n

1

k2n
, H5 (

n50

`

H2n

1

k2n
.

~5!

We substitute expansions~5! to Ginzburg-Landau equa
tions ~2!,~3! and to boundary conditions~1!,~4! and equate
powers ofk. It is easy to show that the vector potential a
the magnetic field at leading order are given by

A05ef

Her

2
, H05He . ~6!

The order parameter at leading orderc0 is determined by the
first Ginzburg-Landau equation~2! and the boundary condi
tion ~1! at H5H0. This condition is now given by
22451
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]r
1

c0

b
50. ~7!

In the next order one has from Eq.~3!

H252E
0

r

drewF uc0u2A01
i

2
~c0* ¹c02c0* ¹c0!G . ~8!

Thus, at leading order the magnetic field is uniform insi
the sample and the magnetization equals zero. Physic
this implies that the additional field generated by the Mei
ner current and by the vortices is of the order of 1/k2 in
comparison with the external uniform field. Below, we sh
calculate the energy of the sample at leading order, whe
the magnetization will be found at the next order using E
~8!. It was shown in Ref. 27 that this approximation is acc
rate not only for high-k materials but also for moderate-k
superconductors~e.g.,k'4) with sizes comparable toj(T).

We presentc0 as a Fourier series

c0~r ,w!5 (
L j 50

`

f L j
~r !exp~2 iL jw!. ~9!

For the axial symmetric distribution of the modulus of th
order parameter inside the sample the only one term in
~9! is nonzero. The vortex-free, single-vortex, and giant v
tex phases with angular quantum momentumL correspond to
the harmonics withL j50, 1, andL, respectively. The modu
lus of the order parameter in the multivortex phase is
axially symmetric. Note that in this case the symmetry of t
vortex configuration imposes a restriction on functionsf L j

:
some of these functions equal zero. It was shown in R
7,10 that taking into account only two main terms in righ
hand side of Eq.~9! is enough for an accurate calculation
the energy of the mesoscopic superconductor in multivor
state. The vortex cluster withL vortices on a ring and no
vortex at the axis~ringlike configuration! can be described a
a mixture of two components withL150 and L2
5L @(0:L) state#. The vortex cluster with one vortex at th
cylinder axis and (L21) vortices on a ring corresponds t
L151 andL25L @(1:L) state#. The contribution from other
harmonics is small and can be neglected, when we cons
few-fluxoid cylinders that can accommodate just fe
vortices.7,10

Using Eqs.~2! and ~9! it can be easily shown that eac
function f L j

(r ) has the following asymptotic atr→0:

f L j
~r !;r L j . ~10!

In addition, each functionf L j
(r ) meets boundary condition

~7!. These conditions forf L j
(r ) are valid both for the giant

vortex and the multivortex phases. It is a rather complica
task to find f L j

(r ) from the first Ginzburg-Landau equatio
~2! due to its nonlinearity. Instead of the straightforward i
tegration of this equation, it is possible to use trial functio
for the coordinate dependencef L j

(r ). Notice that different
variational procedures allowing one to solve approximat
the Ginzburg-Landau equations were used in numerous
pers for mesoscopic,7,10,15 bulk,28–31 and different-shaped32
1-2
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VORTEX PHASES IN MESOSCOPIC CYLINDERS WITH . . . PHYSICAL REVIEW B65 224511
superconductors. One can easily show that if Eq.~9! is a
solution of the first Ginzburg-Landau equation, each funct
f L j

(r ) can be represented as the following series expan

in powers ofr /R without loss of generality:

f L j
~r !5expS 2qL j

r 2

R2D (
u50

`

pu
L j S r

RD L j 12u

, ~11!

wherepu
L j are constants. The value ofqL j

can be found from
boundary condition~7!:

qL j
5

R

2b
1

1

2

(
u50

`

pu
L j~L j12u!

(
u50

`

pu
L j

. ~12!

Our approach is to consider the coefficientspu
L j as variational

parameters and to minimize the free energy with respec
pu

L j . The exponential prefactor in Eq.~11! takes into accoun
the suppression of the order parameter at the contact w
surrounding material. The first term in the expansion
scribes the behavior of the order parameter in the central
of the sample. Other terms specify the order parameter in
sample as a whole. As will be shown below, taking in
account only the first three terms in Eq.~11! is enough for
the accurate calculation of the order parameter distribut
and we will use this approximation in all calculations
magnetization andHe-R diagrams. Note that trial function
~11! was used in Ref. 32 for the study of surface superc
ductivity in samples of different complex shapes placed
vacuum (b→`).

The Ginzburg-Landau functional for the Gibbs free e
ergy G of the cylinder can be written as a sum of two co
tributionsGb andGs . The former is the bulk energy of th
sample and the latter is the surface energy. These cont
tions are given by20,23,26

Gb5E F2ucu21
1

2
ucu41u~2 i¹2A!cu21k2H2

22k2HHeGdV, ~13!

Gs5
1

bE ucu2dS. ~14!

The integration in Eqs.~13! and ~14! is performed over the
sample bulk and surface, respectively. Note that the gen
boundary condition for the order parameter~1! can be ob-
tained phenomenologically by minimization of the free e
ergy functionalG5Gb1Gs with respect to the order param
eterc and the vector potentialA.20,23,33

Substituting expansion~9! to Eqs.~13! and ~14! and tak-
ing into account Eq.~6! we obtain the expression for th
energy of the multivortex state~per unit length of the cylin-
der!:
22451
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Gb52pE
0

R

rdr F1

2
~ f L1

4 1 f L2

4 14 f L1

2 f L2

2 !2 f L1

2 2 f L1

2

1S d fL1

dr
D 2

1S d fL2

dr
D 2

2k2He
21 f L1

2 S Her

2
2

L1

r D 2

1 f L2

2 S Her

2
2

L2

r D 2G , ~15!

Gs5
2pR

b
@ f L1

2 ~R!1 f L2

2 ~R!#. ~16!

The energy of any state having axially symmetric modulus
the order parameter with angular momentumL reduces to
Eqs.~15! and~16!. In this case we must putL15L, f L2

50.
Using Eqs.~11! and ~12! we find the energyG from Eqs.
~15! and ~16! by a straightforward integration as an explic
function of variational parametersp0

L1, p1
L1, p2

L1 and p0
L2,

p1
L2, p2

L2. The resulting expression, however, is rather cu
bersome and we do not present it here. Finally, values of
variational parameters at eachR are found numerically by
the minimization of the free energy. This procedure yie
the local order parameter and the energy of the cylinder.

Knowing the local order parameter we can calculate
magnetization. It is given by:

24pM5^H&2He , ~17!

where^H& is the averaged magnetic field over the superc
ductor volume. Taking into account Eq.~8! and expansion
~9! we obtain

24pM5
2

k2R2E0

R

rdr E
0

r

dxF f L1

2 ~x!S Hex

2
2

L1

x D1 f L2

2 ~x!

3S Hex

2
2

L2

x D G . ~18!

Functions f L1
and f L2

are found by the method describe
above. Hence, one can calculate the magnetization using
~18!. In the following section we apply the developed a
proach for the analysis of the behavior of the cylinder in t
external field.

III. RESULTS AND DISCUSSION

Comparing the energies of different states one can ca
late the equilibriumHe-R diagram of the cylinder. The re
sults of our calculations are shown in Fig. 1 for differentb
values:b51 ~a!, b52.5 ~b!, b55 ~c!, and b→` ~d!. The
latter case corresponds to the isotropic superconduc
vacuum ideal interface, and was studied in Re
5,6,10,11,13–15. Curve 1 shows the transition from the n
mal to the superconducting state~the surface critical field
Hc3). The oscillatory behavior of the functionHc3(R) is
caused by the fact that the transition occurs from the nor
to the giant vortex states with different angular quantum m
mentsL depending on the cylinder radius. In addition, t
1-3
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FIG. 1. EquilibriumHe-R diagram of the cylinder in the external magnetic field atb51 ~a!, b52.5 ~b!, b55 ~c!, b→` ~d!. Solid lines
show the boundaries between the states with different vorticity. Dashed lines correspond to the boundaries between the multivort
giant vortex phases. Curves 1 and 2 show the surface and the first critical fields, respectively. The dot line denotes the bulk upp
field.
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function Hc3(R) depends appreciably on the value ofb: the
value ofHc3(R) decreases with decrease ofb. At R→` the
dependenceHc3(R) tends to the surface critical field for th
half-space sample, which was calculated in Ref. 22 as a fu
tion of b. Note that Hc3 (`)51.695 for b→` and
Hc3(`)51 for b→0.18,22

Below Hc3 the transitions between different giant vorte
states take place. Solid lines show the phase boundarie
tween the states with different vorticities that are the sum
angular quantum moments of all vortices and giant vortic
In the giant vortex state the order parameter is strongly s
pressed in the inner part of the cylinder, and this state ca
referred to as a surface superconductivity. For illustrati
the spatial distribution of the order parameter in the gi
vortex phase withL52 is plotted in Fig. 2 atb51, R
53.9, He50.9 ~a! and b→`, R54.56, He50.5 ~b! ~solid
lines!. In the former case the order parameter is also s
pressed at the sample surface because of the smallb value
~e.g., superconductor–normal-metal interface!. To check the
accuracy of our approach we took into account next sev
terms in expansion~11!, thus increasing the number of varia
tional parameters. As we found, this practically did n
22451
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change the calculated order parameter for almost all point
He-R diagram shown in Fig. 1. This result implies that o
variational calculations are close to the exact solutions of
Ginzburg-Landau equations since expansion~11! is written
without any loss of generality. Therefore, one can fi
Ginzburg-Landau solution with any desired accuracy~for the
states with axially symmetric modulus of the order para
eter! allowing for enough number of variational paramete
pu

L j . For multivortex states the accuracy is limited by the fa
that we take into account only two main harmonics in t
Fourier expansion~9!. In Fig. 2 we also plotted the spatia
variation of the order parameter calculated within the low
Landau level approximation~dashed lines!. In this approxi-
mation the order parameter is proportional to the eigenfu
tion of the kinetic energy operator corresponding to the lo
est eigenvalue. We found that this approach remains v
accurate not far fromHc2 andHc3 @see Fig. 2~a!#. At lower
fields the results of the lowest Landau level approximat
are not so accurate@Fig. 2~b!#.

As follows from Fig. 1, the superconducting state do
not nucleate at very small cylinder radii, smaller than so
critical radius, and the sample is in the normal state at
1-4
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VORTEX PHASES IN MESOSCOPIC CYLINDERS WITH . . . PHYSICAL REVIEW B65 224511
applied field. The critical radius tends to zero atb→`. There
is also the interval ofR for eachb, when the vortex phase
does not nucleate, and the transition occurs from the nor
to the superconducting vortex-free state. Every vortex ph
with vorticity L.1 can exist in the form of the giant vorte
or the multivortex configuration. The dashed lines on Fig
show the boundaries between these states. Below these
for given L.1 the multivortex state has the lowest energ
and above these curves the giant vortex state becomes
energetically favorable. In equilibrium state the multivort
phase can exist if the applied field is smaller than 1 (Hc2 in
dimensional units! and if the radius of the cylinder is larg
enough. For eachb there exists an interval of small cylinde
radii, when the multivortex phase is energetically unfav
able as compared to the states with axial symmetric distr
tion of the modulus of the order parameter. Curve 2 in Fig
shows the lower critical field that corresponds to the equi
rium boundary between the vortex-free and the single-vo
states.

With increasing the external field the cylinder can follo
rather complex set of phase transitions. It can come from

FIG. 2. The spatial distribution of the dimensionless modulus
the order parameter inside the mesoscopic cylinder in giant vo
state with angular quantum momentumL52 at b51, R53.9, He

50.9 ~a! andb→`, R54.56, He50.5 ~b!. Solid lines correspond
to our variational result, dashed lines to the results of the low
Landau level approximation. The distance from the cylinder axr
is measured in units of the coherence lengthj(T).
22451
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giant vortex to the multivortex states and then back to
giant vortex phase. For example, atR54.4, b51 the follow-
ing set of transitions occurs: 0→1→(0:2)→2→(0:3)→3
→(0:4)→4. At R54.1, b5` the set of transitions is 0
→1→2 → (0:3)→3→(0:4)→4→5→6→7→8→9 →10
→11.

The transitions between the phases with different vort
ties are always discontinuous, they occur when the ener
of different states become equal. The transitions between
states with the same vorticity may be continuous as wel
discontinuous. Continuous phase transitions occur betw
the multivortex and the giant vortex states. In this case, w
increasing of the applied field the intervortex distances
crease, and vortices merge into the giant vortex located a
cylinder axis. The similar results were obtained in Re
7–11 for the caseb5` and in Ref. 24 atb,0 ~enhanced
surface superconductivity!. In our calculations we also took
into account a possibility of existence of the multivorte
clusters with central vortex. It turned out that such config
rations can be more favorable energetically than giant vo
states in some regions ofHe-R diagram shown in Fig. 1.
However, in all these cases the ringlike clusters have
lower energy. For cylinders thicker than shown in Fig. 1 w
found that at anyb.0 the ground state can be represen
by configurations with the central vortex. The transitions b
tween multivortex states of the same vorticity with and wit
out central vortex are discontinuous.

With increasing of the cylinder radius the number of vo
tices, which it is able to accomodate, increases, and fin
vortex array transforms to the classical triangular Abrikos
flux-line lattice far from the surface. The first step on th
way is the appearance of the clusters with central vort
However, we do not analyze here the transition from
mesoscopic to the macroscopic behavior and restrict o
selves on few-fluxoid cylinders, which can accomodate o
few vortices before the thansition to the normal state a
whose magnetic properties can be described in terms of m
ture of only two harmonics in Eq.~9!.

Now we find the magnetization of the cylinder using E
~18!. The results of our calculations atk55 are presented in
Fig. 3~a! for b51, R54.625 and in Fig. 4~a! for b→`, R
54.05. In these cases the cylinders accommodates the
vortices with maximum angular quantum moments equa
5 and 11, respectively, before the transition to the norm
state. Jumps in the magnetization correspond to the tra
tions between the states with different vorticity. It is intere
ing that in the state with suppressed surface supercondu
ity @Fig. 3~a!# the discontinuity of the field dependence of th
magnetization is less pronounced, especially at high fields
the first case@Fig. 4~a!# at He'0.61 (0.61Hc2 in dimen-
sional units! the transition occurs from the multivortex sta
with 2 vortices to the giant vortex state with angular qua
tum momentum 2@2→(0:2)#. In the second case@Fig. 4~b!#
the transition 3→(0:3) occurs atHe'0.74 and the transi-
tion 4→(0:4) occurs atHe'0.87. All these transitions are
followed by weak jumps in the slope of the magnetizatio
The behavior of the magnetization near the transitions
shown in Figs. 3~b! and 4~b!. Solid lines denote the equilib
rium magnetization, dashed lines denote the metastable m

f
x

st
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W. V. POGOSOV PHYSICAL REVIEW B 65 224511
netization corresponding to the giant vortex phase. The s
lar behavior of the magnetization in the vicinity of th
multivortex-giant vortex transitions was reported in Ref.
for the caseb→`.

Next we discuss the accuracy of our variational pro
dure. First, we compare the variational results with kno
exact solutions for the surface critical field. The phases w
axial symmetric distribution of the modulus of the order p
rameter are always energetically more favorable with resp
to the multivortex state at applied field higher than the b
upper critical field~see phase diagrams on Fig. 1!. In the
vicinity of the surface critical field the first Ginzburg-Landa
equation~1! can be linearized. A resulting equation has t
following analytical solution:5

f L~R!5r L expS 2
Her

2

4 DFS He21

2He
,L11,

Her
2

2 D , ~19!

whereF is Kummer function. Function~19! must meet the
boundary condition~7!. This yields the transcendental equ

FIG. 3. The equilibrium magnetization of the cylinder with r
dius R54.625 versus applied field atb51, k55. Jumps in the
magnetization in~a! Correspond to the transitions between t
states with different vorticity.~b! Shows the behavior of the mag
netization in the vicinity of the continuous phase transition atHe

'0.61Hc2 from the multivortex state with two vortices to the gia
vortex phase with vorticityL52. Solid lines correspond to th
equilibrium magnetization, dashed line shows the magnetizatio
the metastable giant vortex phase.
22451
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tion for the surface critical field allowing one to findHc3(R)
exactly. The comparison of the variationally calculatedHc3
with this exact dependence shows good agreement with
accuracy better than 1% for all values ofb and R under
study. The lower critical field of the cylinderHc1 versusR
was calculated numerically in Ref. 12 atb→`. The com-
parison of this result with our dependenceHc1(R) reveals
the same accuracy. Thus, our results appear to be a g
approximation to the exact Ginzburg-Landau solutions
the mesoscopic cylinders.

In summary, we analyzed the superconducting state
long mesoscopic cylinder with suppressed surface super
ductivity. An asymptotic expansion was used to simplify t
Ginzburg-Landau equations at high and moderate value
k, and the simplified equations were solved by a variatio
method. The equilibriumHe-R diagram of the cylinder were
obtained, whereHe is the external field andR is the cylinder
radius, at different values of ‘‘extrapolation length.’’ W
showed that magnetic properties of the cylinder depend
preciably on the value of ‘‘extrapolation length’’ and studie
the evolution ofHe-R diagram with changing of ‘‘extrapola
tion length.’’

of

FIG. 4. The equilibrium field dependence of the magnetizat
of the cylinder with radius 4.05 atb→`, k55. In ~b! the magne-
tization is plotted versus applied field near the transitions from
multivortex states to the giant vortex phases. Solid lines corresp
to the equilibrium magnetization, dashed line shows the magne
tion of the metastable giant vortex phase.
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