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Nonconstant electronic density of states tunneling inversion for A15 superconductors: Nb3Sn
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We reexamine the tunneling data on A15 superconductors by performing a generalized McMillan-Rowell
tunneling inversion that incorporates a nonconstant electronic density of states obtained from band-structure
calculations. For Nb3Sn, we find that the fit to the experimental data can be slightly improved by taking into
account the sharp structure in the density of states, but it is likely that such an analysis alone is not enough to
explain completely the superconducting tunneling characteristics of this material. Nevertheless, the extracted
Eliashberg function displays a number of features expected to be present for the highest-quality Nb3Sn
samples.
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I. INTRODUCTION

Twenty years ago, the A15 superconductors in theA3B
structure, withA a transition metal andB an sp metal, were
the highest-transition-temperature superconductors kno
The first such superconductor found was V3Si, which was
discovered1 in the 1950s to have aTc of about 17 K. In the
ensuing years, other equilibrium compounds like V3Ga and
Nb3Sn were discovered to haveTc’s in the range of 15–18
K. B-element-poor compounds like Nb3Al, Nb3Ga, Nb3Ge,
and Nb3Si were also found, withTc’s as high as 23 K. The
structural, electronic, magnetic, elastic, vibrational, and
perconducting properties of these materials were wid
studied.2,3

The use of tunneling spectroscopy to probe supercond
ing properties of the A15 materials was hindered by a nu
ber of materials issues. The fabrication of high-quality tun
junctions was difficult because the use of native oxides
the tunneling barrier did not yield reproducible results, a
hence artificial barrier layers had to be grown on top of
A15 superconductors.4,5 As the quality of the tunneling dat
improved, it became clear that these materials do not exh
the simple behavior seen in conventional strong-coup
s-wave superconductors like Pb, Hg, and Nb. In particu
the reduced tunneling density of states displays a ra
overswing6 followed by a sharp return to zero at energi
near and above the maximum phonon energy. A revision
the McMillan-Rowell tunneling analysis7 by Arnold and
Wolf8 allowed these data to be fit to high precision by a
suming the presence of an additional normal-metal la
~characterized by a width and a scattering strength! between
the superconductor and the insulating barrier. However, t
the most recent experimental data5 within this proximity-
effect-modified tunneling theory, one needs to assume
the width of the normal region approaches zero while
scattering strength becomes unusually large.

Alternatively, it has been suggested that the rapid ov
swing in the high-energy regime in the tunneling density
states is related to the presence of sharp structures in
electronic density of states near the Fermi level.6 Band-
0163-1829/2002/65~22!/224510~10!/$20.00 65 2245
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structure calculations9 show that the electronic density o
states in these materials has peaks of width on the orde
100 meV near the Fermi energy. Such sharp structures
quire, at the very least, a reformulation of th
Migdal-Eliashberg10 many-body analysis to include effec
of a nonconstant electronic density of states11–13 within an
energy range on the order of the maximal phonon energie
the material.

Other theories of superconductivity in A15 compounds
beyond simply generalizing the standard Migdal-Eliashb
theory to allow for energy dependence in the density
states. For example, Yu and Anderson14 examine what hap-
pens in an electron-phonon system that is coupled stron
enough to have the single-electron~polaronic! phase become
unstable to bipolaronic~preformed pair! phases. Such sys
tems display quite different behavior, but these theories h
not been developed to the point where direct compariso
materials-specific tunneling conductances can be made.

Since the discovery of the high-Tc cuprates, work on the
A15 compounds has virtually ceased—this despite the m
fundamental questions about these materials that rem
open. In this paper, we investigate whether high-quality t
neling data for the A15 materials can be understood withi
conventional Migdal-Eliashberg framework generalized
include an energy-dependent electronic density of states
perform this analysis and extract an experimentally
Eliashberg functiona2F(V) and Coulomb pseudopotentia
m* for Nb3Sn, which hasTc518 K. Data from high-quality
tunnel junctions grown on this material are available.5

In Sec. II, we derive the formalism needed to numerica
perform the tunneling inversion including a nonconsta
electronic density of states. This derivation and the com
tational algorithm are different from those developed pre
ously in that an exact analytic continuation that prope
treats the Coulomb pseudopotential and allows the calc
tions to be performed relative to the normal state is e
ployed. In Sec. III, we present our numerical results
the tunneling inversion with both constant and nonconst
electronic densities of states. Conclusions are presente
Sec. IV.
©2002 The American Physical Society10-1
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II. FORMALISM

Our analysis begins with the calculation of the band str
ture and electronic density of states~DOS!. Calculations are
carried out using theVASP package,15 a plane-wave-base
density-functional code using ultrasoft pseudopotential16

The electronic wave functions are expanded in plane wa
up to a cutoff of 219 eV, and the electron-electron interact
is treated within the local density approximation~LDA ! with
the Ceperley-Alder exchange-correlation functional.17 The
Brillouin zone is sampled on a Monkhorst-Pack mesh18 of at
least 20320320 points. We find the optimized crystal stru
ture to be tetragonal, with a small distortion of the N
sublattice.19 The peaks in the density of states near the Fe
level are very sensitive to this sublattice distortion.

In conventional Migdal-Eliashberg theory,10 the electronic
density of states is chosen to be a constant~with an infinite
‘‘bandwidth’’ !, and the energy cutoff of the theory is pro
vided by the finite range of the Eliashberg functiona2F(V),
which measures the ability of a phonon of energyV to scat-
ter electrons on the Fermi surface. When performing
many-body theory calculations, one begins on the imagin
axis, where the Coulomb pseudopotential has a sh
cutoff,20 and then performs an exact numerical analy
continuation21 to calculate real-axis properties. This tec
nique allows for a proper treatment of the ‘‘soft’’ cutoff fo
the Coulomb pseudopotential on the real axis. In additi
because the superconducting and normal states appear
and more similar at high energies and because of the fi
frequency cutoff~chosen to be 6Vmax here!, the self-energy
begins to deviate from the exact result in the normal state
the energy increases. One can correct for this by perform
the perturbative expansion relative to the normal state. In
case, one adds the exact normal-state self-energy minu
normal-state self-energy calculated with the energy cu
used in the superconducting theory.22 Such a scheme wa
used when examining effects of vertex corrections23 in Pb.
When an energy-dependent electronic density of state
used, such a computational scheme becomes problemati
cause there is no longer an exact analytic expression for
normal-state self-energy. Furthermore, a choice must
made for the energy cutoff, because, assuming a bandw
on the order of a few eV and a temperature on the orde
0.1 meV, the number of Matsubara frequencies required
an energy cutoff set by the bandwidth would be too large
perform calculations efficiently.

We adopt an alternative scheme here. We start by
calculating the normal-state self-energy atT50. Since the
Matsubara frequencies become a continuum atT50, such a
calculation can be performed simply by replacing the M
subara summations by integrals along the imaginary a
which are computed using conventional quadrature te
niques. Next, we choose the energy cutoff to be the sam
that used in the constant density of states calculatio
namely, 6Vmax. We calculate the self-energy in the norm
state atT ~relative to the normal state atT50! with the finite
energy cutoff and then add theT50 normal-state self-energ
~with no cutoff! to the finite-temperature self-energy. The
we calculate the superconducting self-energy relative to
22451
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normal state atT using the same cutoff. Finally, we add th
full normal-state self-energy atT to get the superconductin
self-energy.

Our many-body formalism on the imaginary axis follow
most closely to Ref. 13. We use a Nambu-Gor’kov form
ism and evaluate the self-consistent perturbation theory~us-
ing dressed phonons! in the Hartree-Fock approximation
~The Hartree term provides just a constant shift to the che
cal potential and is ignored.! Perturbative calculations ar
performed for the normal state and the superconducting s
We begin our analysis in the normal state, where the res
ing self-consistent equations are

xm8 5T(
n

lm2n

3E de
r~e!

r~EF!

mN2e2xn8

vn
2Zn8

21~mN2e2xn8!2
, ~1!

Zm8 511
T

vm
(

n
lm2n

3E de
r~e!

r~EF!

vnZn8

vn
2Zn8

21~mN2e2xn8!2
. ~2!

A prime indicates the normal-state perturbation theory,ivn

5 ipT(2n11) is the fermionic Matsubara frequency,xm8
5x8( ivm)5ReS8( ivm) is the real part of the normal-stat
self-energy, andZm8 5Z8( ivm)512ImS8( ivm)/vm is the
so-called renormalization function determined from t
imaginary part of the normal-state self-energy. The symb
lm2n are the electron-phonon coupling strengths,

lm2n5l~ ivm2 ivn!5E
0

`

dVa2F~V!
2V

V21~vm2vn!2
,

~3!

and l5l0. The functionr(e) is the electronic density o
states as determined by the band-structure calculation,
r(EF) is the density of states at theT50 chemical potential
of the band-structure calculation (EF). The chemical poten-
tial in the normal state ismN . In the limit as T→0, the
number of Matsubara frequencies becomes an infinite c
tinuum, and the summations can be replaced by integrals
find

x08~ iv!5
1

2pE dv8l~ iv2 iv8!E de
r~e!

r~EF!

3
mN02e2x08~ iv8!

v82Z08
2~ iv8!1@mN02e2x08~ iv8!#2

, ~4!
0-2
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Z08~ iv!511
1

2pvE dv8l~ iv2 iv8!E de
r~e!

r~EF!

3
v8Z08~ iv8!

v82Z08
2~ iv8!1@mN02e2x08~ iv8!#2

, ~5!

with the subscript zero denoting that the results are atT50.
Evaluating these integrals with quadrature routines is m
more efficient than calculating the Matsubara sums wit
large energy cutoff at finite temperature.

Our strategy for determining the functionsx08( iv) and
Z08( iv) is to create a nonuniformly spaced grid on the ima
nary axis~we use 336 points!, with an upper cutoff many
times the electronic bandwidth. The grid is constructed in
following fashion. The first grid point is chosen to lie
iv050. Subsequent grid points are chosen by adding
new step size to the old grid pointiv j 115 iv j1 id j , with d j
increasing by a factor of 1.1 with each step from its init
value d050.09 meV @henced j50.093(1.1)j #. We restrict
d j,400 meV—if d j would be larger than 400 meV, we s
it equal to 400 meV. The grid is reflected aboutiv50 to
construct the negative frequency axis. The integrals are
evaluated using a simple Riemann sum over the nonunif
grid. Once the functionsx08 and Z08 are known on the grid
points, we linearly interpolate to evaluate them at any po
on the imaginary axis.

We employ theT50 normal-state solutions as an a
proximate solution for high frequency. This is included
first calculating the normal-state perturbation theory at fin
temperature, using the same Matsubara frequency cuto
used in the superconducting statevc56Vmax, and then add-
ing the difference between theT50 normal-state solution
and the finite-T solution to the superconducting solution,
shown below. We solve the following self-consistent equ
tions for the normal-state self-energy at temperatureT:

xm8 5T (
uvnu,vc

lm2nE de
r~e!

r~EF!F mN2e2xn8

vn
2Zn8

21~mN2e2xn8!2

2
mN02e2x08~ ivn!

vn
2Z08

2~ ivn!1@mN02e2x08~ ivn!#2G1x08~ ivm!,

~6!

Zm8 511
T

vm
(

uvnu,vc

lm2nE de
r~e!

r~EF!

3F vnZn8

vn
2Zn8

21~mN2e2xn8!2

2
vnZ08~ ivn!

vn
2Z08

2~ ivn!1~mN02e2x08!2
~ ivn!G

1@Z08~ ivm!21#. ~7!

These equations would be exact if the summations over M
subara frequencies for theT50 quantities were replaced b
22451
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integrals. Since the normal-state self-energy does not dep
too strongly onT for low temperature, this approximation i
accurate for lowT. Note that the chemical potentialmN typi-
cally changes by about 1 meV~at T51.2 K) from the zero-
temperature valuemN0 ~in the nonconstant density of state
case!.

The final set of equations we need is for the supercond
ing phase. The self-consistent equations are calculated ‘‘r
tive to the normal state’’ atT:

xm5T (
uvnu<vc

lm2nE de
r~e!

r~EF!

3F mS2e2xn

vn
2Zn

21~mS2e2xn!21Dn
2Zn

2

2
mN2e2xn8

vn
2Zn8

21@mN2e2xn8#2G1xm8 , ~8!

Zm511
T

vm
(

uvnu<vc

lm2nE de
r~e!

r~EF!

3F vnZn

vn
2Zn

21~mS2e2xn!21Dn
2Zn

2

2
vnZn8

vn
2Zn8

21@mN2e2xn8#2G1@Zn821#, ~9!

and

DmZm5T (
uvnu<vc

~lm2n2m* !E de
r~e!

r~EF!

3
DnZn

vn
2Zn

21~mS2e2xn!21Dn
2Zn

2
. ~10!

Here Dm5D( ivm)5S12( ivm)/Zm is the superconducting
gap determined from the off-diagonal self-energy,m* is the
Coulomb pseudopotential, andmS is the chemical potentia
in the superconducting state. Note that we add and sub
the normal-state results at finite temperature in order to
sure that the Matsubara frequency summations converge
idly (vc56Vmax is the cutoff frequency; the high-frequenc
tails are already included in the normal-state self-energ!.
This procedure allows for a rapid computation of the man
body Green’s functions when there is an energy-depend
electronic density of states. We only calculate the Gree
functions at the Matsubara frequencies here.

The chemical potentials in the normal and supercondu
ing states are determined by the requirement that the elec
density be equal to the equilibrium density of electrons
the given band. Our first step is to find theT50 Fermi level
for the band-structure density of states, which satisfies
0-3
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re52E
2`

EF
der~e!, ~11!

with the factor of 2 coming from spin. In the normal state
T50, we use the T→0 limit of the identity re
52T(nG( ivn) and Eq.~11! to produce the self-consisten
equation formN0:

2E
mN0

EF
der~e!5

1

pE der~e!

3E dvF 1

ivZ08~ iv!1mN02e1x08~ iv!

2
1

iv1mN02eG . ~12!

The normal-state chemical potential at finiteT ~we useT
51.2 K for the tunneling inversion! is found by comparison
with the normal state at T50: 052T(n@G( ivn)
2G( ivn)uT50# ~note theT50 sum is an approximation to
the continuum integral!. Finally, for the superconducting
state, we use the comparison of the normal-state filling w
the superconducting-state filling to findmS :

05
T

pE der~e!

3 (
uvmu,vc

F mS2e2xm

vm
2 Zm

2 1~mS2e2xm!21Dm
2 Zm

2

2
mN2e1xm8

vm
2 Zm8

21~mN2e1xm8 !2G . ~13!

The next step is to calculate the self-energy on the
axis using an exact analytic continuation technique.21 We
begin with the normal state atT50. The self-energy satisfie
22451
t

h
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S08~v1 ih!

5
1

2pr~EF!
E

2`

`

dv8l~v2 iv8!

3E de
r~e!

iv8Z08~ iv8!1mN02e2x08~ iv8!

1
1

r~EF!
E

0

v

dVa2F~V!E de

3
r~e!

~v2V!Z08~v2V!1mN02e2x08~v2V!1 ih
,

~14!

whereh→01. This is a self-consistent equation, because
second integral contains the self-energy on the real axis f
the definitions

Z08~v!512
S08~v1 ih!2S08* ~2v1 ih!

2v
~15!

and

x08~v!5
S08~v1 ih!1S08* ~2v1 ih!

2
, ~16!

where the * denotes complex conjugation. The terml(v
2 iv8) is found from the spectral formula and the give
Eliashberg functiona2F(V):

l~v2 iv8!52E
2`

`

dV
a2F~V!

v2 iv82V
. ~17!

Now we calculate the finite-T normal-state results relativ
to theT50 calculation:
S8~v1 ih!5
T

r~EF! (
uvnu,vc

l~v2 ivn!E deF r~e!

ivnZn81mN2e2xn8
2

r~e!

ivnZ08~ ivn!1mN02e2x08~ ivn!
G

1
1

2r~EF!
E

2`

`

dVa2F~V!F tanhS v2V

2T D1cothS V

2TD G E der~e!

3F 1

~v2V!Z8~v2V!1mN2e2x8~v2V!1 ih
2

1

~v2V!Z08~v2V!1mN02e2x08~v2V!1 ih
G

1S08~v1 ih!, ~18!

where theZ andx functions on the real axis are determined from equations analogous to Eqs.~15! and ~16!.
For the superconducting state, calculations are performed relative to the normal state atT:
0-4
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S11~v1 ih!5T (
uvnu,vc

l~v2 ivn!E der~e!F ivnZn1mS2xn

vn
2Zn

21~mS2e2xn!21Dn
2Zn

2
2

ivnZn81mN2xn8

vn
2Zn8

21~mN2e2xn8!2G
1

1

2r~EF!
E

2`

`

dVa2F~V!F tanhS v2V

2T D1cothS v2V

2T D G E der~e!

3F ~v2V!Z~v2V!1mS2e2x~v2V!

~v2V!2Z2~v2V!1@mS2e2x~v2V!#21D~v2V!2Z~v2V!2

2
~v2V!Z8~v2V!1mN2e2x8~v2V!

~v2V!2Z82~v2V!1@mN2e2x8~v2V!#2
G1S8~v1 ih!, ~19!

for the diagonal self-energy and

S12~v1 ih!5T (
uvnu,vc

@l~v2 ivn!2m* #E der~e!
DnZn

vn
2Zn

21~mS2e2xn!21Dn
2Zn

2

1
1

2r~EF!
E

2`

`

dVa2F~V!

3F tanhS v2V

2T D1cothS v2V

2T D G E der~e!3D~v2V!Z~v2V!/$~v2V!2Z2

3~v2V!1@mS2e2x~v2V!#21D~v2V!2Z~v2V!2%, ~20!
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The tunneling conductance satisfies

@dI/dV#S

@dI/dV#N
~v!5ReF v

Av22D2~v!
G . ~21!

The reduced density of states~RDOS! is the ratio of the
tunneling conductance to the BCS tunneling conductance
nus one, which becomes

RDOS~v!5ReF Av22D0
2

Av22D2~v!
G21, ~22!

whereD0 is the superconducting gap, defined as the solu
to the equation ReD(v)5v ~at v5D0).

To solve all of these self-consistent equations and to
vert the tunneling conductance to get the Eliashberg fu
tion, we begin with the LDA band-structure electronic de
sity of states as input. We take the band to consist of
states that contain nine electrons below the Fermi level
four electrons above, corresponding to approximat
60.8 eV aboutEF . Hence the electron filling satisfiesre
59. Our first step~i! is to determine the band-structu
Fermi levelEF at T50 by solving Eq.~11!. Then we take
two initial guesses formN . ~ii ! For eachmN , we self-
consistently solve for Eqs.~1! and ~2! at T50. Once those
functions are known,~iii ! we use a one-dimensional roo
finder to solve Eq.~12! to determinemN . The next step is to
determine the superconducting chemical potentialmS and the
22451
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Coulomb pseudopotentialm* . We first choose a guess fo
m* . With m* fixed, we choose two initial guesses formS and
~iv! self-consistently solve Eqs.~8!, ~9!, and~10!. Once those
functions are determined,~v! we use a one-dimensional roo
finder to solve Eq.~13! and findmS . ~vi! Now the real-axis
equations for both the normal state atT50, Eqs.~15! and
~16!, and the normal and superconducting states atT, Eqs.
~18!, ~19!, and ~20!, are solved self-consistently. Once th
gap functionD(v) is known, we can find the superconduc
ing gap D0. ~vii ! Steps~iv!, ~v!, and ~vi! are repeated for
different values ofm* until we find the particular value
whereD053.15 meV, which is the superconducting gap f
Nb3Sn at low temperature. If we knew the correct Eliashb
function, then steps~i!–~vii ! would be all that we need to
calculate the RDOS from Eq.~22!. But we need to find the
best fit a2F(V) that is consistent with the experiment
RDOS. To do this, we simply employ the McMillan-Rowe
procedure for the tunneling inversion. We start with a gu
for a2F. ~viii ! Next we calculate the functional derivative o
how changes in the Eliashberg function affect the RDO
The functional derivative is found by adding a small-weig
Gaussian toa2F(V) centered at a given frequencyV0, re-
peating steps~ii–vii ! to determine the RDOS and calculatin
the functional derivative by taking the difference of the ne
RDOS with the RDOS for the original Eliashberg functio
This step~viii ! is repeated for each frequency in the discre
a2F to determine the functional derivative matrix. The ne
step~ix! is to choose the weights for adjustinga2F to fit the
experimental RDOS better. Since the functional derivat
0-5
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matrix may be rank deficient, we use a singular-value
composition to determine the updated weights. Once the
dateda2F(V) is found, ~x! we apply an exploratory-data
analysis robust smoother followed by a Hanning smooth

Steps ~viii !–~x! are repeated until the updateda2F(V)
ceases to produce a RDOS that is closer to experiment
force the Eliashberg function to be positive everywhere a
to be quadratic forV,2.5 meV. The step size for the dis
crete frequencies at whicha2F is evaluated is 0.45 meV. Th
algorithm is depicted pictorially in Fig. 1.

There is a numerical problem with this algorithm. In ge
eral, the weights for the shift ina2F are strongly oscillatory,
which forces the Eliashberg function to have large-amplitu
narrow-width peaks. Since we do not expect the Eliashb
function to have such sharp peaks, they need to be smoo
away in the next update. Because the functional derivat
are not calculated with this smoothing procedure~and there
is no obvious way to incorporate the smoothing into the

FIG. 1. Block diagrams of the algorithm employed in the mo
fied McMillan-Rowell tunneling inversion with a nonconstant ele
tronic density of states. In panel~a!, we show the main algorithm
used to determine the RDOS. Steps~i!–~vii ! are described in detai
in the text. Panel~b! shows the McMillan-Rowell strategy for up
dating the Eliashberg function in the tunneling inversion, with d
tails described in the text.
22451
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rivatives!, we are limited as to how closely we can reprodu
the experimental RDOS, even though we have the full fr
dom to adjusta2F.

III. RESULTS

We first consider a test case, where the experimental
neling data for lead is used to perform both a conventio
and a nonconstant DOS tunneling inversion. In both ca
we use the same code to perform the analysis as summa
in Fig. 1. In the constant DOS case, we use the DOS for l
(2.531024 states per spin per meV per unit cell! and choose
a band that contains two total electrons~including spin! and
re51. In the nonconstant DOS case, we use the electro
DOS for Nb3Sn ~see inset to Fig. 5!. This is of course an
artificial problem that is presented for illustrative purpose

The results for the best fit Eliashberg functions are giv
in Fig. 2. The solid line results from a tunneling inversio
done with a constant DOS and is consistent with ear
analyses of the lead tunneling data (l51.56, maximal error
of 0.002, and a root-mean-square error of 0.0004!. The
tunneling-inversion result based on the energy-depend
Nb3Sn DOS is plotted as a dotted line and corresponds
l51.42, with a maximal error of 0.004 and a root-mea
square error of 0.0015. The fit with a nonconstant DOS
about 4 times worse than with the constant DOS. Note
ther that the main effect of the sharp peak in the DOS is
reduce the overall scale ofa2F for nearly all frequencies
except the highest, where it is strongly enhanced. Qua
tively, the twoa2F curves are very similar in shape.

The quality of the tunneling data for lead is so good th
one can actually see that the tunneling inversion works be
with a constant DOS than with a nonconstant DOS. Wha
interesting is that one can get reasonable results using
wrong nonconstant DOS due to the freedom allowed
choosing the functiona2F.

We next turn to the results for the tunneling inversion

-

FIG. 2. Eliashberg functions for a tunneling inversion in le
with ~solid line! constant density of states and~dotted lines! the
nonconstant density of states of Nb3Sn. The general shapes of th
two curves are similar. The values ofl are 1.56 and 1.42 for the
constant and nonconstant densities of states cases, respective
0-6
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Nb3Sn. The extracted Eliashberg functions are shown in F
3. The thick curve shows the nonconstant DOS results, w
the thin curve is for the constant DOS case. The propertie
these electron-phonon spectral functions are summarize
Table I. In contrast to the results for lead, where the Elia
berg function is reduced in the nonconstant DOS analysi
is enhanced for Nb3Sn. The main difference, aside from a
overall scale factor, is a large enhancement forV
.20 meV, particularly in the highest energies, where
constant DOSa2F is strongly suppressed. Note that th
maximal allowed phonon frequency is the DFT-calculated
meV in both cases; the fitting procedure sharply suppre
the a2F at high energy for the constant DOS calculatio
The general shapes of these curves are similar to those f
previously5 but the overall scale is larger. The enhancem
occurs because we are unable to reproduce the full o
swing. In order to compensate for this,l is increased and the
quality of the low-energy fit is reduced. Note that we fit a
experimental points, including those in the overswing reg
(v.35 meV)—nevertheless, we are unable to get ‘‘goo
results for the extracteda2F in the sense that the best fita2F
is unable to accurately reproduce the tunneling data over
entire experimentally measured range~due to the inability to
produce the full overswing!.

There are, nevertheless, a number of promising feature
this calculation. If we compare Fig. 3 to the data for low-Tc
~disordered! Nb3Sn junctions, we find the broad low-energ
peak and shoulder~present from 4 to 8 meV! lies a few meV
lower in the high-Tc material than the low-Tc one5 ~where it

FIG. 3. Eliashberg functions for a tunneling inversion in Nb3Sn
for nonconstant density of states~thick line! and constant density o
states~thin line!. In the nonconstant density of states analysis,
spectral weight is enhanced at high energies.

TABLE I. Calculated properties of the Eliashberg function e
tracted from the tunneling inversion.

Inversion l m* v ln A Tc Error Error
DOS @meV# @meV# @K# max. rms

Nonconstant 2.738 0.286 7.072 13.652 19 0.033 0.00
Constant 2.501 0.210 6.415 11.130 23 0.034 0.00
22451
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lies at 10 meV!. This is the expected phonon softening th
leads to the highTc of the A15 compounds that is eviden
also in second-derivative data24 on Nb3Sn, where the low-Tc
material has a large peak at 10 meV which disperses to
peaks~one at 6 and one at 8 meV! in the high-Tc material.
Another strong indication of enhanced electron-phonon c
pling is the pronounced softening of the 10 meV should
observed in the phonon density of states of Nb3Sn on cooling
down from room temperature to 4.2 K as described by S
weisset al.25 Hence the extracteda2F displays the expected
phonon-mode softening, with the expected energy sca
Another test is to compare the extracteda2F to the phonon
DOS,F(V), measured with neutron scattering.25 In actuality,
neutron scattering weights the phonons by the neutron s
tering cross section for each nucleus forming the general
DOS G(V). Nb has a cross section approximately twice
big as Sn, but as the atomic masses of Nb and Sn are sim
we expect both atoms to be in motion for most phon
modes. Hence these modes can be excited by interaction
neutrons with either Nb or Sn nuclei. This averaging effe
implies that the phonon density of statesF(V) and the gen-
eralized density of statesG(V) should agree closely25,26 for
Nb3Sn. If we take the ratio of the tunneling data to the ne
tron data, we find a large peak ina2(V) for energies below
10 meV. This agrees with theoretical calculations,26 which
predict a largea2(V) for the low-energy phonon modes~be-
low 10 meV!.

Next we consider the reduced density of states for b
cases in Fig. 4. The thick dashed curve is the experime
data,5 the thin dashed line is the horizontal axis, the thi
solid line is the nonconstant DOS case, and the thin solid
is the constant DOS results. There are three important po

e

8
5

FIG. 4. Reduced density of states@from Eq. ~22!# for noncon-
stant~thick! and constant~thin! density of states. The thick dashe
line is the experimental data~scanned and digitized! and the thin
dashed line is the horizontal axis. Note the poor quality of the fi
the lowest energies and the sharper overswing at high energie
the nonconstant density of states case. The poor fit arises from
fact thatl must be increased in order to produce the overswing,
this reduces the agreement at low frequencies. The results sh
represent the best compromise for fitting the entire experime
spectrum.
0-7
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to note about these curves:~i! the fits are poor at the lowes
energies,~ii ! the nonconstant density of states produce
more rapid ‘‘overswing’’ and return-to-zero at about 40 me
and ~iii ! the amplitude of the overswing is enhanced in t
region from 40 to 60 meV. As neither of the fits is partic
larly good, we cannot conclude from this work that the
clusion of nonconstant density of states effects alone is
ficient to explain the A15 tunneling data. But we do see t
the incorporation of a nonconstant density of states defini
provides improvements. It is not clear what else is need
Part of the problem may be with the numerical instabilit
of the tunneling-inversion algorithm. Alternatively, the
may be an intrinsic thin proximity layer that always needs
be taken into account regardless of the quality of the ju
tion. Other factors that may be important include anharm
nicity, anisotropy, and impurity scattering. It appears unlike
that disorder is the explanation, since disorder tends to
duce the magnitude of the RDOS, not increase it, as
needed. The proximity-effect explanation is also hard to s
port, because the constant DOS analysis found the proxim
layer to be vanishingly thin. If that conclusion holds true f
the nonconstant DOS analysis as well, then this would no
a viable explanation either. The effects of anharmonicity
low temperature should be explainable within a quasih
monic approximation, unless there is a preformed-pair ph
Hence, we believe the most likely cause of the discrepanc
from anisotropic effects. It is conceivable that tunneling b
riers grow differently on different indexed surfaces. T
strong dependence of the tunneling conductance on ba
thickness thus could lead to a directional selectivity of
tunneling current and thereby anisotropy effects would in
ence the tunneling current even in the case of polycrystal
films. Incorporation of such anisotropic effects is beyond
scope of this work.

We conclude with a discussion of the properties of

FIG. 5. Density of states for Nb3Sn. The solid curve is the
band-structure density of states as calculated with dens
functional theory. The dashed curve is the quasiparticle densit
states calculated with the fita2F. The chemical potential lies atv
50. Inset shows the full band-structure density of states, with
dashed box indicating the region blown up in the main figure. T
units of the vertical axis for both the main plot and the inset
states per spin per meV per unit cell.
22451
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solutions to the many-body problem. The electronic dens
of states is shown in Fig. 5. The solid curve is the ban
structure density of states as calculated within dens
functional theory. The dashed curve is the quasiparticle d
sity of states in the normal state atT50 calculated with the
fit a2F. It depicts the behavior expected. The density
states is unchanged at the chemical potential (v50) because
the self-energy is momentum independent, the peak is
rowed by a factor of about 3~due to ‘‘11l ’’ narrowing!, and
the overall density of states is smoothed out due to lifeti
effects. In the inset, we show the full band-structure den
of states used in the calculations. The dashed box indic
the region shown in the main figure.

In Fig. 6, we plot the real and imaginary parts ofx for ~a!
the normal state and~b! the superconducting state. This fun
tion vanishes for the case of a constant density of states.
chemical potentials are mN515.70 meV and mS
515.97 meV in the normal and superconducting states.
value of the real part ofx is of this order of magnitude. The
normal and superconducting self-energies differ only at
lowest energies.

y-
of

e
e
e

FIG. 6. Self-energy functionx(v) plotted in the~a! normal and
~b! superconducting states. These functions are nearly identical
cept for small differences at the lowest energies.
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The renormalization functionZ(v) is plotted in Fig. 7 for
~a! the normal phase and~b! the superconducting phase. Th
solid lines are for the nonconstant density of states case
the dashed lines are for the constant density of states c
Note how in the nonconstant density of states case, the
fective strength of the electron phonon coupling, measu
by ZN(0)21, is closer to 2.1 than the value ofl, which is
2.7. It is the former value that is the true measure of
electron-phonon coupling strength with a nonconstant d
sity of states. Note that the main differences between
nonconstant and constant densities of states calculation
that the overall scale is larger for the latter. These functi
vary from the normal to the superconducting state only
low energies as expected. Note further that the real partZ
can dip below 1 for the nonconstant density of states cas~it
never does for a constant density of states!.

Finally, the superconducting gap functionD(v) is shown
in Fig. 8. The results for the nonconstant density of sta
~solid line! and the constant density of states~dashed line!

FIG. 7. The renormalization function for~a! the normal state
and ~b! the superconducting state. The solid curves are for a n
constant density of states and the dashed curves are for a con
density of states. Note that ReZ can dip below 1 for the nonconstan
density of states case.
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are nearly identical at both low and high energies. In
range from 30 meV to 130 meV, the curves deviate fro
each other: in the nonconstant density of states case, the
~real part! and dip ~imaginary part! form faster than in the
constant density of states case. This is what produces
sharper overswing in the RDOS for the nonconstant den
of states calculation.

IV. CONCLUSIONS

We have performed a modified McMillan-Rowell tunne
ing inversion including the effects of the nonconstant el
tronic density of states near the Fermi level for Nb3Sn. The
Eliashberg function that is found by this inversion has
larger value ofl than generally accepted for this materia
but the effective value ofl derived from the renormalization
function is more reasonable. Our extracteda2F(V) also has
a number of expected features including large peaks at a
6 and 8 meV representing the soft phonon modes an
sharply peakeda2(V) below 10 meV which agrees with th
theoretical predictions. Even taking into account the ene
dependence of the density of states, we are unable to pro
excellent fits of the tunneling data, though we can be
reproduce the overswing observed at high frequencies.
believe the problem is partially numerical, as the tunnel
inversion tries to force sharp spikes intoa2F, but the fit is
still too poor at the lowest energies and in the oversw
region to say that properly including the energy depende
of the density of states is enough to completely underst
the tunneling data. It may be that the tunneling is modifi
by anisotropic effects, by a narrow proximity-coupled lay
or by other effects such as anharmonicity.

n-
tant

FIG. 8. Superconducting gap function for~solid! nonconstant
density of states and~dashed! constant density of states. The tw
curves are nearly identical at low and high energies, but differ fr
about 30 meV to 130 meV. The sharp overswing in the experime
RDOS data is better reproduced by the more rapid formation of
high-energy peak~dip! in the real~imaginary! part of the noncon-
stant density of states gap function.
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