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Nonconstant electronic density of states tunneling inversion for A15 superconductors: NBn
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We reexamine the tunneling data on A15 superconductors by performing a generalized McMillan-Rowell
tunneling inversion that incorporates a nonconstant electronic density of states obtained from band-structure
calculations. For N{Sn, we find that the fit to the experimental data can be slightly improved by taking into
account the sharp structure in the density of states, but it is likely that such an analysis alone is not enough to
explain completely the superconducting tunneling characteristics of this material. Nevertheless, the extracted
Eliashberg function displays a number of features expected to be present for the highest-qugity Nb
samples.
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[. INTRODUCTION structure calculatioflsshow that the electronic density of
states in these materials has peaks of width on the order of
Twenty years ago, the A15 superconductors in AA& 100 meV near the Fermi energy. Such sharp structures re-
structure, withA a transition metal an® ansp metal, were quire, at the very least, a reformulation of the
the highest-transition-temperature superconductors knowmigdal-Eliashberd” many-body analysis to include effects
The first such superconductor found wagS¥/ which was  of a nonconstant electronic density of state¥’ within an
discovered in the 1950s to have &, of about 17 K. In the  energy range on the order of the maximal phonon energies of
ensuing years, other equilibrium compounds likgGd and  the material.
Nbs;Sn were discovered to havie’s in the range of 15-18 Other theories of superconductivity in A15 compounds go
K. B-element-poor compounds like ibl, Nb;Ga, NkyGe,  beyond simply generalizing the standard Migdal-Eliashberg
and NkSi were also found, witi.'s as high as 23 K. The theory to allow for energy dependence in the density of
structural, electronic, magnetic, elastic, vibrational, and sustates. For example, Yu and AnderSbaxamine what hap-
perconducting properties of these materials were widelypens in an electron-phonon system that is coupled strongly
studied®* enough to have the single-electr@olaronig phase become
The use of tunneling spectroscopy to probe superconductinstable to bipolaroni¢preformed pair phases. Such sys-
ing properties of the A15 materials was hindered by a numiems display quite different behavior, but these theories have
ber of materials issues. The fabrication of high-quality tunneihot been developed to the point where direct comparison to
junctions was difficult because the use of native oxides fomaterials-specific tunneling conductances can be made.
the tunneling barrier did not yield reproducible results, and Since the discovery of the high: cuprates, work on the
hence artificial barrier layers had to be grown on top of theA1l5 compounds has virtually ceased—this despite the many
A15 superconductors® As the quality of the tunneling data fundamental questions about these materials that remain
improved, it became clear that these materials do not exhibitpen. In this paper, we investigate whether high-quality tun-
the simple behavior seen in conventional strong-couplingieling data for the A15 materials can be understood within a
swave superconductors like Pb, Hg, and Nb. In particularconventional Migdal-Eliashberg framework generalized to
the reduced tunneling density of states displays a rapithclude an energy-dependent electronic density of states. We
overswing followed by a sharp return to zero at energiesperform this analysis and extract an experimentally fit
near and above the maximum phonon energy. A revision oEliashberg functione®F () and Coulomb pseudopotential
the McMillan-Rowell tunneling analysisby Arnold and  u* for NbsSn, which hag =18 K. Data from high-quality
Wolf® allowed these data to be fit to high precision by as-tunnel junctions grown on this material are available.
suming the presence of an additional normal-metal layer In Sec. I, we derive the formalism needed to numerically
(characterized by a width and a scattering strengétween perform the tunneling inversion including a nonconstant
the superconductor and the insulating barrier. However, to fielectronic density of states. This derivation and the compu-
the most recent experimental dataithin this proximity-  tational algorithm are different from those developed previ-
effect-modified tunneling theory, one needs to assume thaiusly in that an exact analytic continuation that properly
the width of the normal region approaches zero while itstreats the Coulomb pseudopotential and allows the calcula-
scattering strength becomes unusually large. tions to be performed relative to the normal state is em-
Alternatively, it has been suggested that the rapid overployed. In Sec. Ill, we present our numerical results for
swing in the high-energy regime in the tunneling density ofthe tunneling inversion with both constant and nonconstant
states is related to the presence of sharp structures in tledectronic densities of states. Conclusions are presented in
electronic density of states near the Fermi lév@land-  Sec. IV.
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[l. FORMALISM normal state afl using the same cutoff. Finally, we add the
full normal-state self-energy dtto get the superconducting
self-energy.

Our many-body formalism on the imaginary axis follows

Our analysis begins with the calculation of the band struc
ture and electronic density of statd30S). Calculations are

carried out using the/asp package,” a plane-wave-based oy closely to Ref. 13. We use a Nambu-Gor’kov formal-
density-functional code using ultrasoft pseudopotentfals. ism and evaluate the self-consistent perturbation théasy
The electronic wave functions are expanded in plane wavegg dressed phonopsn the Hartree-Fock approximation.
up to a cutoff of 219 eV, and the electron-electron interactionThe Hartree term provides just a constant shift to the chemi-
is treated within the local density approximatitDA) with  cal potential and is ignored Perturbative calculations are
the Ceperley-Alder exchange-correlation functiofallhe  performed for the normal state and the superconducting state.
Brillouin zone is sampled on a Monkhorst-Pack mésif at  We begin our analysis in the normal state, where the result-
least 20 20X 20 points. We find the optimized crystal struc- ing self-consistent equations are
ture to be tetragonal, with a small distortion of the Nb
sublattice!® The peaks in the density of states near the Fermi
level are very sensitive to this sublattice distortion. =TS A

In conventional Migdal-Eliashberg theolythe electronic m R
density of states is chosen to be a constaith an infinite

“bandwidth”), and the energy cutoff of the theory is pro- p(e) MUN~ €~ Xn

vided by the finite range of the Eliashberg functieff (Q), x j OIEp(EF) W2Z %4 (puy—€e—xH)?’ @
which measures the ability of a phonon of enefyyo scat- e N "

ter electrons on the Fermi surface. When performing the

many-body theory calculations, one begins on the imaginary T

axis, where the Coulomb pseudopotential has a sharp Z,’n=1+—z Nm—n

cutoff?® and then performs an exact numerical analytic ®@m n

continuatiod! to calculate real-axis properties. This tech- 21

nigue allows for a proper treatment of the “soft” cutoff for % f de ple) “n‘n _ )
the Coulomb pseudopotential on the real axis. In addition, P(ER) w2Z/2+ (un—e—xp)?

because the superconducting and normal states appear more

and more similar at high energies and because of the finite o ) )

frequency cutoffichosen to be 8., here, the self-energy A prime |nd|cat_es the normal—.state perturbation theo&;,{,

begins to deviate from the exact result in the normal state as 7 1(2n+1) is the fermionic Matsubara frequencyy,

the energy increases. One can correct for this by performing X' (iwm) =R’ (iwy,) is the real part of the normal-state

the perturbative expansion relative to the normal state. In thigelf-energy, andZ;,=Z'(iwy) =1-1m’'(iwy)/ @y is the

case, one adds the exact normal-state self-energy minus tge-called renormalization function determined from the

normal-state self-energy calculated with the energy cutofimaginary part of the normal-state self-energy. The symbols

used in the superconducting thedfySuch a scheme was Am-n are the electron-phonon coupling strengths,

used when examining effects of vertex correctfdria Pb.

When an energy-dependent electronic density of states is

used, such a computational scheme becomes problematic be- T [ 2 20

cause there is no longer an exact analytic expression for thefm-n=A(®m fon)= o dQa F(Q)Qz+(w — w2’

normal-state self-energy. Furthermore, a choice must be moon 3)

made for the energy cutoff, because, assuming a bandwidth

on the order of a few eV and a temperature on the order of

0.1 meV, the number of Matsubara frequencies required foRnd A=X\,. The functionp(e) is the electronic density of

an energy cutoff set by the bandwidth would be too large tcstates as determined by the band-structure calculation, and

perform calculations efficiently. p(Eg) is the density of states at tiie=0 chemical potential
We adopt an alternative scheme here. We start by firsef the band-structure calculatioft§). The chemical poten-

calculating the normal-state self-energyTat 0. Since the tial in the normal state isuy. In the limit asT—0, the

Matsubara frequencies become a continuufi-aD, such a nhumber of Matsubara frequencies becomes an infinite con-

calculation can be performed simply by replacing the Mat-tinuum, and the summations can be replaced by integrals. We

subara summations by integrals along the imaginary axidind

which are computed using conventional quadrature tech-

nigues. Next, we choose the energy cutoff to be the same as

that used in the constant density of states calculations: ' )_if deo' \io—i ,)f d p(e)

namely, d).... We calculate the self-energy in the normal Xollo)= 27) ¢ (lo-le Ep(EF)

state afT (relative to the normal state &t=0) with the finite

energy cutoff and then add tfle=0 normal-state self-energy Mo~ €~ Xo(iw')

(with no cutoff) to the finite-temperature self-energy. Then X toor2,: e (4)
we calculate the superconducting self-energy relative to the w “Zy(io")+[puno— €~ xoliw’)]
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. 1 . _ integrals. Since the normal-state self-energy does not depend
Zo(iw)=1+ —J de'\(i w—lw')f de too strongly onT for low temperature, this approximation is
27w p(Eg) . ; .
accurate for lowT. Note that the chemical potentialy typi-
w'Z(io") cally changes by about 1 mefdt T=1.2 K) from the zero-
X , (5  temperature valug (in the nonconstant density of states
022 (i0")+[ o~ e~ xp(io")]? case.

. . _ The final set of equations we need is for the superconduct-
with the subscript zero denoting that the results aré=ab.  ing phase. The self-consistent equations are calculated “rela-
Evaluating these integrals with quadrature routines is muclfye to the normal state” aT:

more efficient than calculating the Matsubara sums with a
large energy cutoff at finite temperature.

Our strategy for determining the functiong(iw) and
Z,(i ) is to create a nonuniformly spaced grid on the imagi-
nary axis(we use 336 poinjs with an upper cutoff many
times the electronic bandwidth. The grid is constructed in the
following fashion. The first grid point is chosen to lie at
iwg=0. Subsequent grid points are chosen by adding the
new step size to the old grid poinb; , 1=iw;+i4;, with J;
increasing by a factor of 1.1 with each step from its initial
value 6,=0.09 meV[henced;=0.09x(1.1)y]. We restrict
6;<400 meV—if §; would be larger than 400 meV, we set
it equal to 400 meV. The grid is reflected abdut=0 to
construct the negative frequency axis. The integrals are then
evaluated using a simple Riemann sum over the nonuniform
grid. Once the functiong( and Z} are known on the grid
points, we linearly interpolate to evaluate them at any point
on the imaginary axis.

We employ theT=0 normal-state solutions as an ap-
proximate solution for high frequency. This is included by
first calculating the normal-state perturbation theory at finite
temperature, using the same Matsubara frequency cutoff as
used in the superconducting statg=6() ¢, and then add-

ing the difference between thE=0 normal-state solution and

and the finiteT solution to the superconducting solution, as
shown below. We solve the following self-consistent equa-
tions for the normal-state self-energy at temperafure

po)|  mn—ex;
=T Nm— fde
Xm lopl< ¢ men P(EF)[w§Zé2+(MN—E—Xé)2

Mno— €~ Xo(i@n)
0hZo(iwn) + [ uno— €= xo(ion)]

2 +X6(Iwm)1

(6)

p(e)
Xm™— le =9 N nJ de——— o(Ep)

Ms™ €~ Xn

X
W2Z2+ (ps— €— xn) 2+ A2Z2

N~ € Xn
2512
wnzrq +[/—LN_€_X{1]2

T p(e)
Zo=1+ — Nm— Jd
m\w%wc men GP(EF)

wnzn
W2Z2+ (ps— €= xn)?+A3Z5

+ Xm> 8

wnZ},
2—12
opZy [ un— €= xpl

S| +1zi-11, @

B . p(e€)
Amzm_TM%% (AMn—n—m )fdep(E;:)

X Anzn
w222+ (ps— €= xn)2+A2Z2

(10

Here Ap=A(ioy)=21(iwym)/Z, is the superconducting
gap determined from the off-diagonal self-energy, is the
Coulomb pseudopotential, ands is the chemical potential

T p(e)
Z =1+ — Nm— f de———
m Wm \wn%wc men p(Ep)

wnzr’1
WAZ2+ (N €= xh)?

@nZo(iwp)

®2Z (1 wg) + (o~ €= X4)?
+[ZY(iwm) —1].

(lwp)

(@)

in the superconducting state. Note that we add and subtract
the normal-state results at finite temperature in order to en-
sure that the Matsubara frequency summations converge rap-
idly (w.=6Q nhax i the cutoff frequency; the high-frequency
tails are already included in the normal-state self-energy
This procedure allows for a rapid computation of the many-
body Green’s functions when there is an energy-dependent
electronic density of states. We only calculate the Green’s
functions at the Matsubara frequencies here.

The chemical potentials in the normal and superconduct-
ing states are determined by the requirement that the electron
density be equal to the equilibrium density of electrons for

These equations would be exact if the summations over Mathe given band. Our first step is to find tiie=0 Fermi level
subara frequencies for thle=0 quantities were replaced by for the band-structure density of states, which satisfies
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Er Si(w+in)
pe=2 f dep(e), a 7°
o 1 .
, . . =———| do'MNo—io')
with the factor of 2 coming from spin. In the normal state at 2mp(Eg) J =
T=0, we use theT—O0 Ilimit of the identity pg
=2T3,G(iw,) and Eqg.(11) to produce the self-consistent x f de p(e)
equation foruyo: iw'Zy(io')+uno— €= xolio")
Er +ifwd9a2F(Q)f de
2 dep(e =—f dep(e) p(EF)Jo
HNO
) o ’ p(e) , _
xfdw. - - (0= Q) Z(@— Q)+ o~ e~ xpl@— Q) +i7
iwZ(iw)+ pno— €+ xoliw) (14)
— ; ) (12  wherep—0". This is a self-consistent equation, because the
lo+ uno— € second integral contains the self-energy on the real axis from

the definitions
The normal-state chemical potential at finite(we useT

=1.2 K for the tunneling inversiogns found by comparison

with the normal state atT=0: 0=2TX,[G(iw,) So(w+in) =2 (—w+in)
—G(iwy,)|1=o] (note theT=0 sum is an approximation to Zy(w)=1— 5w (15
the continuum integral Finally, for the superconducting

state, we use the comparison of the normal-state filling with, 4

the superconducting-state filling to fingds:

T , So(wtin)+2i* (—w+in)
=—f dep Xo(w)= 2 ; (16)
fs— €— X where the * denotes complex conjugation. The texfrw
X ; 55 S m2 5= —iw'") is found from the spectral formula and the given
loml<oc | 0 Zint (s €= xm) "+ ARZy Eliashberg functiorw®F(Q):
MN— €+ Xn
T 252 5 1\2 (13) 2F Q)
OpZm (N~ €+ Xm) Mo—io') f dQ (17

The next step is to calculate the self-energy on the real
axis using an exact analytic continuation technigu&Ve Now we calculate the finitd- normal-state results relative
begin with the normal state @t=0. The self-energy satisfies to theT=0 calculation:

p(e) p(e)

S (w+in)=

)\(w—iwn)fde_ : — " l
lwnZy+ un— €= xp Iwnzo(lwn)+MN0_€_X0(|wn)

P(EF) |of<wg

2P(EF) wan?F(Q) tan)'( 2_T +cotr< )“'dep(e)
X L _ 1

(0—Q)Z (0= Q)+ un—€e—x(0—Q)+in (0—Q)Z)(0—Q)+ puno— €= xo(w—Q)+in
+3(w+in), .

where theZ and y functions on the real axis are determined from equations analogous t¢1Bpsnd (16).
For the superconducting state, calculations are performed relative to the normal State at
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Si(w+ing)=T )\(w_iwn)J’dEp(E) _ Iwnzn+MS_)§n — 2|(,02nzn+MN_an g
op[<og wiZit(ps—€—xn) +HALZS  ofZl T+ (un—€—X})
o[ doarc) tanr(“’_Q +cotr<ﬂ “dﬂo(e)
2p(Ep) ) = 2T 2T
(0—V)Z(0— Q)+t pug—e— x(0—Q)
{(“’—Q)Zzz(w—ﬂ)ﬂ#s—6—x(w—Q)]2+A(w—Q)Zz(w—Q)2

(0= D) Z' (0= D)+ puy—e—x' (0= Q)

+3 ' (w+in), (19

(0=0)°Z (0= Q) +[py—e=x (0= Q)]?
for the diagonal self-energy and
AI"IZI’]
wiZo+ (ps— €= xn)?+AZ;

Sdotin=T 3 Moo=t [ dep(e

1 o
+— dQa’F(Q)

2p(Ef) J -
«| tant] =2 . fd X A(w—0)Z(0— D) {(0— Q)22
tan o7 + cot o7 ep(e€) (w )VZ(w ) )
X(0=Q)+[ps—e—x(0— )P+ A(0—0)°Z(0—-Q)%}, (20)
|
for the off-diagonal self-energy. Coulomb pseudopotentigt*. We first choose a guess for
The tunneling conductance satisfies w* . With u* fixed, we choose two initial guesses fog and

(iv) self-consistently solve Eg€3), (9), and(10). Once those
[dl/dV]g 1) functions are determinedy) we use a one-dimensional root
m(w): R m finder to solve Eq(13) and findug. (vi) Now the real-axis
equations for both the normal state &0, Egs.(15) and
The reduced density of statéRDOS is the ratio of the (16), and the normal and superconducting state¥,&tqgs.
tunneling conductance to the BCS tunneling conductance mic18), (19), and (20), are solved self-consistently. Once the
nus one, which becomes gap functionA (w) is known, we can find the superconduct-
ing gapA,. (vii) Steps(iv), (v), and (vi) are repeated for

. (21

RDOS w)=R w?—Ag 1 22 different values ofu* until we find the particular value
W)= - 1 — . . .
[0?—A2%(w) whereA,=3.15 meV, which is the superconducting gap for

NbzSn at low temperature. If we knew the correct Eliashberg
whereA is the superconducting gap, defined as the solutiofiunction, then stepsi)—(vii) would be all that we need to
to the equation RE(w)=w (at w=A4). calculate the RDOS from E@22). But we need to find the

To solve all of these self-consistent equations and to inbest fit «*F(Q) that is consistent with the experimental
vert the tunneling conductance to get the Eliashberg funcRDOS. To do this, we simply employ the McMillan-Rowell
tion, we begin with the LDA band-structure electronic den-procedure for the tunneling inversion. We start with a guess
sity of states as input. We take the band to consist of théor a®F. (viii) Next we calculate the functional derivative of
states that contain nine electrons below the Fermi level anHow changes in the Eliashberg function affect the RDOS.
four electrons above, corresponding to approximatelyThe functional derivative is found by adding a small-weight
+=0.8 eV aboutEr. Hence the electron filling satisfigs, ~ Gaussian tax?F () centered at a given frequen€y,, re-
=9. Our first step(i) is to determine the band-structure peating stepgi—vii) to determine the RDOS and calculating
Fermi levelEr at T=0 by solving Eqg.(11). Then we take the functional derivative by taking the difference of the new
two initial guesses foruy. (ii) For eachuy, we self- RDOS with the RDOS for the original Eliashberg function.
consistently solve for Eqg1) and (2) at T=0. Once those This step(viii) is repeated for each frequency in the discrete
functions are known(iii) we use a one-dimensional root «°F to determine the functional derivative matrix. The next
finder to solve Eq(12) to determineuy . The next step isto  step(ix) is to choose the weights for adjustiagF to fit the
determine the superconducting chemical potentiahnd the  experimental RDOS better. Since the functional derivative
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a T T T T T T T T T T T
Eq. (9) (a) 1.2 -
(i) Er 1F -
W (vii)
~ 08 [ .
Egs. (1) and (2) 9/
Steps (iv) L | a
. (v) and (vi) Nts 0.6
W | fior zigioy
Lo Zgoy | 0.4 N
Eq. (10} (vi)
x(w) Z(w) Alw) 0.2 -
(iii) N Eqs. (19) (14) 0 (A TR TR TR N N O |
gs.
Egs. (6-8) (16) and (17) 012 3 456 7 8 9101
Q |meV
(iv) XnZn An ’_I'LS (v) [ ]
Ea. (1) FIG. 2. Eliashberg functions for a tunneling inversion in lead
b with (solid line) constant density of states aridotted line$ the
(b) nonconstant density of states of }8#m. The general shapes of the
two curves are similar. The values mfare 1.56 and 1.42 for the
via) | o2F@)+ gl ‘ constant and nonconstant densities of states cases, respectively.
(ii-vii) rivatives, we are limited as to how closely we can reproduce
CF @] ® the experimental RDOS, even though we have the full free-
virb) | A@w) 1 RDOS() new dom to adjustx’F.
compute
functional smooth Il. RESULTS
derivative
We first consider a test case, where the experimental tun-
3 RDOS (w) 2 , neling data for lead is used to perform both a conventional
(vii-c) 2 S0°F(Q) (ix) L .
50 F(@Q) Singular Value Decomposition and a nonconstant DOS tunneling inversion. In both cases

we use the same code to perform the analysis as summarized
FIG. 1. Block diagrams of the algorithm employed in the modi- in Fig. 1. In the constant DOS case, we use the DOS for lead
fied McMillan-Rowell tunneling inversion with a nonconstant elec- (2.5x 10~ * states per spin per meV per unit ¢eihd choose
tronic density of states. In pané), we show the main algorithm a band that contains two total electraiscluding spin and
used to determine the RDOS. Steps-(vii) are described in detail p,=1. In the nonconstant DOS case, we use the electronic
in the text. Pane(b) shows the McMillan-Rowell strategy for up- DOS for NiySn (see inset to Fig. )5 This is of course an
dating the Eliashberg function in the tunneling inversion, with de-artificial problem that is presented for illustrative purposes.
tails described in the text. The results for the best fit Eliashberg functions are given
in Fig. 2. The solid line results from a tunneling inversion
_ o ) done with a constant DOS and is consistent with earlier
matrix may be rank deficient, we use a singular-value deanajyses of the lead tunneling date={1.56, maximal error
composition to determine the updated weights. Once the upsi 0,002, and a root-mean-square error of 0.000Phe
dateda?F(Q) is found, (x) we apply an exploratory-data- nneling-inversion result based on the energy-dependent
analysis robust smoother followed by a Hanning smootheiyp,sn DOS s plotted as a dotted line and corresponds to
Steps (viii)—(x) are repeated until the updatee?F(Q) N=1.42, with a maximal error of 0.004 and a root-mean-
ceases to produce a RDOS that is closer to experiment. Weguare error of 0.0015. The fit with a nonconstant DOS is
force the Eliashberg function to be positive everywhere andbout 4 times worse than with the constant DOS. Note fur-
to be quadratic fof)<<2.5 meV. The step size for the dis- ther that the main effect of the sharp peak in the DOS is to
crete frequencies at whick?F is evaluated is 0.45 meV. The reduce the overall scale af’F for nearly all frequencies

algorithm is depicted pictorially in Fig. 1. except the highest, where it is strongly enhanced. Qualita-
There is a numerical problem with this algorithm. In gen-tively, the two«?F curves are very similar in shape.
eral, the weights for the shift in?F are strongly oscillatory, The quality of the tunneling data for lead is so good that

which forces the Eliashberg function to have large-amplitudeone can actually see that the tunneling inversion works better
narrow-width peaks. Since we do not expect the Eliashbergvith a constant DOS than with a nonconstant DOS. What is
function to have such sharp peaks, they need to be smoothéuteresting is that one can get reasonable results using the
away in the next update. Because the functional derivativeasrong nonconstant DOS due to the freedom allowed in
are not calculated with this smoothing proced(mad there  choosing the function:?F.

iS no obvious way to incorporate the smoothing into the de- We next turn to the results for the tunneling inversion of
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FIG. 3. Eliashberg functions for a tunneling inversion in;Sh FIG. 4. Reduced density of statifsom Eq. (22)] for noncon-
for nonconstant density of statébick line) and constant density of g2 n¢(thick) and constantthin) density of states. The thick dashed
states(thin line). In the nonconstant density of states analysis, thejq is the experimental dat&canned and digitizecand the thin
spectral weight is enhanced at high energies. dashed line is the horizontal axis. Note the poor quality of the fit at

the lowest energies and the sharper overswing at high energies for

NbsSn. The extracted Eliashberg functions are shown in Figthe nonconstant density of states case. The poor fit arises from the
3. The thick curve shows the nonconstant DOS results, whilgact thatx must be increased in order to produce the overswing, but
the thin curve is for the constant DOS case. The properties ahis reduces the agreement at low frequencies. The results shown
these electron-phonon spectral functions are summarized nepresent the best compromise for fitting the entire experimental
Table 1. In contrast to the results for lead, where the Eliashspectrum.
berg function is reduced in the nonconstant DOS analysis, it

is enhanced for N\gSn. The main difference, aside from an jieq 4t 10 meV. This is the expected phonon softening that
overall scale factor, IS a Ia.rge enhancgment B |eads to the hight'; of the A15 compounds that is evident
>20 meV, particularly in the highest energies, where they o4 in second-derivative dafzon Nb;Sn, where the loviF,

2 .
constant DOSa’F is strongly suppressed. Note that the paierig| has a large peak at 10 meV which disperses to two
maximal allowed phonon frequency is the DFT-calculated 3 eaks(one at 6 and one at 8 meVh the highT, material
. e . .
meV in both cases; the fitting procedure sharply suppressegqiner strong indication of enhanced electron-phonon cou-
the «®F at high energy for the constant DOS calculation. |

e ing is the pronounced softening of the 10 meV shoulder
The general shapes of these curves are similar to those fourhcarved in the phonon density of states ofSibon cooling

previously but the overall scale is larger. The enhancemenyyoin from room temperature to 4.2 K as described by Sch-
occurs because we are unable to reproduce the full ove(yqisset al25 Hence the extracted?F displays the expected
swing. In order to compensate for thisjs increased and the phonon-mode softening, with the expected energy scales.
quality of the low-energy fit is reduced. Note that we fit all A\ iher test is to compare the extractetF to the phonon
experimental points, including those in the overswing regio'bOS,F(Q), measured with neutron scatterifign actuality,
(w>35 meV)—nevertheless, we are unable to get "good” e iron scattering weights the phonons by the neutron scat-
results for the extracted”F in the sense that the bestditF gring cross section for each nucleus forming the generalized
is unable to accurately reproduce the tunneling data over thgg G(Q). Nb has a cross section approximately twice as
entire experimentally measured rangee to the inability o g 55 Sn "put as the atomic masses of Nb and Sn are similar,
produce the full overswing . e expect both atoms to be in motion for most phonon
There are, nevertheless, a number of promising features g ,yes Hence these modes can be excited by interactions of

this calculation. If we compare Fig. 3 to the data for I8w- e ytrons with either Nb or Sn nuclei. This averaging effect
(disorderegdl NbsSn junctions, we find the broad low-energy implies that the phonon density of stafe&) and the gen-

peak and shoulddpresent from 4 to 8 meMieseg few meV o alized density of state(Q) should agree closely?®for
lower in the highT, material than the lovik, on€’ (where it NbsSn. If we take the ratio of the tunneling data to the neu-

tron data, we find a large peak irf(€)) for energies below
10 meV. This agrees with theoretical calculatiéhsyhich
predict a larger?(Q) for the low-energy phonon modése-
low 10 meV).

Next we consider the reduced density of states for both
cases in Fig. 4. The thick dashed curve is the experimental
Nonconstant 2.738 0.286 7.072 13.652 19 0.033 0.004glata® the thin dashed line is the horizontal axis, the thick
Constant 2501 0210 6.415 11.130 23 0.034 0.0055s0lid line is the nonconstant DOS case, and the thin solid line
is the constant DOS results. There are three important points

TABLE |. Calculated properties of the Eliashberg function ex-
tracted from the tunneling inversion.

Inversion A n* @ A T. Error Error
DOS [meV] [meV] [K] max. rms
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FIG. 5. Density of states for N®n. The solid curve is the
band-structure density of states as calculated with density- |
functional theory. The dashed curve is the quasiparticle density of 14 | (b)
states calculated with the fit?F. The chemical potential lies ai
=0. Inset shows the full band-structure density of states, with the
dashed box indicating the region blown up in the main figure. The
units of the vertical axis for both the main plot and the inset are
states per spin per meV per unit cell.

to note about these curves) the fits are poor at the lowest
energies,(ii) the nonconstant density of states produces a
more rapid “overswing” and return-to-zero at about 40 meV,
and (iii ) the amplitude of the overswing is enhanced in the
region from 40 to 60 meV. As neither of the fits is particu-
larly good, we cannot conclude from this work that the in- L L L
clusion of nonconstant density of states effects alone is suf- 0 50 100 150
ficient to explain the A15 tunneling data. But we do see that
the incorporation of a nonconstant density of states definitely @ [meV]
provides improvements. It is not clear what else is needed.
Part of the problem may be with the numerical instabilities
of the tunneling-inversion algorithm. Alternatively, there
may be an intrinsic thin proximity layer that always needs to
be taken into account regardless of the quality of the junc-
tion. Other factors that may be important include anharmosolutions to the many-body problem. The electronic density
nicity, anisotropy, and impurity scattering. It appears unlikelyof states is shown in Fig. 5. The solid curve is the band-
that disorder is the explanation, since disorder tends to restructure density of states as calculated within density-
duce the magnitude of the RDOS, not increase it, as i§unctional theory. The dashed curve is the quasiparticle den-
needed. The proximity-effect explanation is also hard to supsity of states in the normal state B0 calculated with the
port, because the constant DOS analysis found the proximitfit «F. It depicts the behavior expected. The density of
layer to be vanishingly thin. If that conclusion holds true for states is unchanged at the chemical potentia+ Q) because
the nonconstant DOS analysis as well, then this would not b#he self-energy is momentum independent, the peak is nar-
a viable explanation either. The effects of anharmonicity atowed by a factor of about @lue to “1+\" narrowing), and
low temperature should be explainable within a quasiharthe overall density of states is smoothed out due to lifetime
monic approximation, unless there is a preformed-pair phaseffects. In the inset, we show the full band-structure density
Hence, we believe the most likely cause of the discrepancy isf states used in the calculations. The dashed box indicates
from anisotropic effects. It is conceivable that tunneling bar-the region shown in the main figure.
riers grow differently on different indexed surfaces. The In Fig. 6, we plot the real and imaginary partsyofor (a)
strong dependence of the tunneling conductance on barri¢he normal state an@) the superconducting state. This func-
thickness thus could lead to a directional selectivity of thetion vanishes for the case of a constant density of states. The
tunneling current and thereby anisotropy effects would influchemical potentials are uy=15.70 meV and ug
ence the tunneling current even in the case of polycrystalline=15.97 meV in the normal and superconducting states. The
films. Incorporation of such anisotropic effects is beyond thevalue of the real part of is of this order of magnitude. The
scope of this work. normal and superconducting self-energies differ only at the
We conclude with a discussion of the properties of thelowest energies.

Xs(w) [meV]

Imyg(w)

6
4
2
0

FIG. 6. Self-energy functio(w) plotted in the(a) normal and
(b) superconducting states. These functions are nearly identical, ex-
cept for small differences at the lowest energies.
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FIG. 8. Superconducting gap function f@solid) nonconstant
density of states andashed constant density of states. The two
curves are nearly identical at low and high energies, but differ from
about 30 meV to 130 meV. The sharp overswing in the experimental
RDOS data is better reproduced by the more rapid formation of the
high-energy peakdip) in the real(imaginary part of the noncon-
stant density of states gap function.

are nearly identical at both low and high energies. In the
————————— range from 30 meV to 130 meV, the curves deviate from
each other: in the nonconstant density of states case, the peak
(real pari and dip(imaginary part form faster than in the

0 L L constant density of states case. This is what produces the
0 50 100 150 sharper overswing in the RDOS for the nonconstant density
of states calculation.
w [meV]

FIG. 7. The renormalization function fg|) the normal state
and (b) the superconducting state. The solid curves are for a non- IV. CONCLUSIONS
constant density of states and the dashed curves are for a constant
density of states. Note that Rean dip below 1 for the nonconstant We have performed a modified McMillan-Rowell tunnel-
density of states case. ing inversion including the effects of the nonconstant elec-
tronic density of states near the Fermi level for;8h. The
Eliashberg function that is found by this inversion has a

The renormalization functiod (w) is plotted in Fig. 7 for : ;
(a) the normal phase arit) the superconducting phase. The It?rger value of\ than generally accepted for this material,

solid lines are for the nonconstant densit OIut the effective value of derived from the renormalization
y of states case A inction is more reasonable. Our extractetF () also has
the dashed lines are for the constant density of states case! C .
Note how in the nonconstant density of states case, the ef: number of expected fegtures including large peaks at about
fective strength of the electron phonon coupling, measure§ and 8 mev representing the soft phonon modes and a
by Zy(0)—1, is closer to 2.1 than the value &f which is ~ Sharply peaked~({2) below 10 meV which agrees with the
2.7 1t is the former value that is the true measure of thdheoretical predictions. Even taking into account the energy
electron-phonon coupling strength with a nonconstant dendependence of the density of states, we are unable to produce
sity of states. Note that the main differences between th&xcellent fits of the tunneling data, though we can better
nonconstant and constant densities of states calculations figproduce the overswing observed at high frequencies. We
that the overall scale is larger for the latter. These function$elieve the problem is partially numerical, as the tunneling
vary from the normal to the superconducting state only ainversion tries to force sharp spikes intF, but the fit is
low energies as expected. Note further that the real paft of still too poor at the lowest energies and in the overswing
can dip below 1 for the nonconstant density of states Gase region to say that properly including the energy dependence
never does for a constant density of states of the density of states is enough to completely understand
Finally, the superconducting gap functidi{w) is shown the tunneling data. It may be that the tunneling is modified
in Fig. 8. The results for the nonconstant density of statedy anisotropic effects, by a narrow proximity-coupled layer,
(solid line) and the constant density of stat@mashed ling  or by other effects such as anharmonicity.
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