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Vortex pinning by large normal particles in high-T . superconductors

V. Zablotski* and M. Jirsa
Institute of Physics ASCR, Na Slovance 2, CZ-182 21 Praha 8, Czech Republic

P. Petrenko
Donetsk National University, Donetsk, 83055, Ukraine
(Received 7 February 2002; published 31 May 2002

We present a model of flux pinning on large nonsuperconducting particles. It is assumed that the pins trap
different numbers of vortices determined by the Poisson’s distribution function. This approach brings an
additional factor into the expression for pinning force density that exponentially decays with field. The critical
current density thus becomes at low fields nearly pure exponential function of magnetic field, in agreement
with numerous experiments on high-superconductors.
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It has been experimentally proved that relatively largerandomly distributed over the sample. The vortices crossing
(micron-sizeé RE,BaCuQ (RE-211, secondary phaspar- a normal defect lose part of their condensation energy, pro-
ticles contribute to flux pinning in ( RE)BEWO,_s (RE  portional to the trapped volume&?z,,
=rare earth, RE-123superconductors and enhance super- )

i i ic fi H
conducting currents, especially at low magnetic fiéléls. W _ Mo
Vortex lattice interaction with largévolume pins has been P

treated in Ref. 3 where the authors used direct summation ofh is th di is the lenath of th .
elementary pinning forces and founty(B)xb ¥(1-b) W ere is the core radius ang, is the length of the vortex

with b=B/B,. For core pinning by large normal pins Dew trapped by a normal particle indirection;H. is the thermo-

Hughe4 deducedJ (B)=cb~ (1 —b)2. Murakami et al5® dynamic critical field, anduoH?2/2 is the condensation en-
. . . _

suggested the concept sfirface pinningassuming volume €9y density. A¥<R, more than one vortex can be trapped

pinning defects of a cubic shape. Their model predicted®y One defect. For the trapped vortex pinning energy can be
Ju(B)b~ 12, written as

All the above models indicated a strong pinning at low _ 2_s2 [p2_,2
magnetic fields, in a qualitative agreement with experiment. Wpi= toHeme VR =1, )

A guantitative comparison is not easy. Let us name at leasvherer; is the distance of the vortex line from the sphere
one obvious reason; at low fields the “true” critical current center. The largest pinning energy gain is naturally for the
density is not simply proportional to the irreversible mag-vortex crossing the sphere in its center. However, this is pos-
netic momert® M(B) and decays with field faster than sible only at relatively low fields when the vortex lattice
M (B).2 Moreover, as reported by Jirgaal.? even thel (B) constant is larger thaR. In the opposite case, more vortices
deduced fronM (B) using the extended Bean motldecays are trapped by the same defect and due to their repulsion
at low fields (central peak regionmuch faster than with they are more or less regularly distributed over the sphere
B~ Y2 or B71. It was shown that the exponentially decaying cross sectiontop view). The total pinning energy of the
function found by Kobayastet al.'® for (LaSr),CuQ, single  vortices trapped by one normal sphere is

crystals describes well also the central peak shape in most "
RE-123 compounds.

In all the pabove—mentioned theories magnetic flux was Wp(X1)=,u0H§77§2i21 VR (xa+x)? =i, (3
supposed to be homogeneously trapped by normal inclusions
over the whole sample. Under this assumption, a direct sunfierex; andy; are the vortex line coordinates in the coordi-
mation of the elementary pinning forces consisted in multi-nate system having the orig{x,,0} in the geometrical cen-
plying the elementary pinning force by the defect concentrater of the bundle, anchis the total number of vortices inter-
tion. Here we assume that due to magnetic history angecting the sphere. The total energy of the vortex bundle is
irregular distribution of pins and vortices in real samples, thd€ss byW,(x;). On the other hand, the vortices are subject to
same inclusions can keep under same external conditiorige Lorentz force that causes an increase in the elastic energy
different numbers of vortices. of the bundle.

In this work we treat the interaction of an elastic vortex ~We assume that near the sphere the vortex lines tilt to
lattice with defects that are large compared to vortex cor@dopt to the pinning landscape, as illustrated in Fig. 1. This
size . Taking into account stochastic character of the vortexilt occurs in the distortion volum¥y and is accompanied by
trapping by large inclusions, we calculate and discuss théhe increase in the elastic energy
associated pinning force. 5

We will suppose a lattice of elastic vortices that can adapt W :C445xzv )
to the structure of large normal defects of the mean ra@jus el 2 d

€2, Y
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z __ bundle axis The left side of Eq(8) represents the pinning force acting

: on all vortices trapped by the sphere, normalized to
womH2£2. The total pinning force is the sum of forces
caused by individual spheres and depends on the statistical
distribution of vortices captured by these spheres. Thus, for a
sample withN, normal spheres one can rewrite E§) as

JCB=F<B>=MOH§w§22T<p<m>n<m>, (10
X
i c+i
plm)=3, T (1)

11— (et m)2 =P

wheren(m) is the concentration of spheres keepimgrsor-
tices, andmy,, is the maximum possible number of vortices
captured by a sphere of the given radius. Herein we suppose
the maximum possible shift of the bundle centgr=x,
=|R—R,—£|, whereR, is the bundle radius. As was ex-
plained above, this shift corresponds to the maximum value
FIG. 1. Vortex displacements inside and out a large sphericabf the pinning force.
defect. For a given value of magnetic field one can calculate the
probability P, for m vortices to be captured by one sphere.
where €,,=siny and v is the tilt angle. The distortion vol- We can consider the vortices to independently occupy de-
ume isVy=Slcosy, whereSis the top cross section of the fects if the vortex-pin interaction is significantly larger than
undistorted bundlén the distancé/2 from the defect centgr that of the vortex-vortex interaction. In low and moderate
andl is the length of the tilted vortex bundle as indicated infields the probabilities should thus obey the Poisson’s distri-
Fig. 1. We denote the elastic displacement of the centrabution
vortex asx, and assume&, /<1, so thate,,~x,/I. The
elastic energy can be now expressed as

w20 ®

am
Pmn= o e 8, (12

_ _ _ wherea is the parameter of the distribution. FBf|c axis
The energy associated with the Lorentz force is and perpendicular to the slab surface this parametex is
=Syp=S4B/d,, whereS; is the defect cross section per-
W, = —BJS<X1+ 22y (6) pendicular to vortex Iinep=2/(ac2)31’2) is the local vortex
2 lattice density, andh, is the vortex lattice constant. For a
. _ 2 . . -
Both energies5) and (6) increase the total energy of the SPherical shapes,=aR". With these options, the probabil-
pinned vortex bundle. ity to find m vortices trapped by the sphere of radRiat the
The equilibrium position of the vortex bundigoordi-  Internal fieldB is
natesx; andx,) is obtained by minimizing the total energy

1 [7R?B\™ 7R?B
W=W,(X1) +We (Xz) + W (X1,X5) (7) Pm(B):H< By ) eXF{‘ B, ) (13

X2

with respect tax; andx,,

m For a real sample in critical state, both the local magnetic
E (mt i) _ BJSI ®) field and current density depend on coordinates. Further, we
=1 \1— (g + m)2_gi2 ,ungTng' will operate with these quantities averaged over the sample
volume. Figure 2a) shows the field dependence of probabil-

BJI? ity (13) for m=1, 4, and 8 and two different values &
72780 R (9)  With increasingm the probability maximum decreases and
a4 shifts to higher fields. In Fig. (®) the probability to trap 50
where n=x/R and {=Yy/R. vortices is plotted as a function of the defect size for two

In the single-vortex pinning regimen=1, 7»;=¢;=0.  values of magnetic induction, 0.5 and 2 T. In low fields, the
The critical current density can be calculated from E). larger spheres are evidently more effective than smaller ones.
taking into account that the maximum pinning force is By definition, the probability(12) can be rewritten as
reached ak;=x.= *|R—X|. Pn=n(m)/ng, whereny=N,/V is the total concentration of
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FIG. 2. (a) Field dependence of the probability to catchvor-
tices in a normal sphere of the radiBs=0.2 and 0.4um for m
=1, m=4, andm=38; (b) Probability to catchm=>50 vortices at
B=2 T andB=0.5 T as a function of the sphere radius.

the sample defects. It allows us to write the volume densit);

of the total pinning force in the form

mmax

F(B)= FcnomEZO @(M)P(B), (14)

where ¢(m) is determined by Eq(11), ¢(0)=0, andF,
= uoH27 &2, From Egs.(13) and (14) we obtain a general
expression for the pinning force density,

TR?B 7R?B
F(B)=F.ng L
0

@,
mﬁax 1 ,n.RZB m—1 15
X 2 e(m) o, (15)
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Jo(B)=Jcy exp(— yB) +Jca(B/Bp)expd {1—(B/By)"}/n],

17)
where J.1,J., Were magnitudes of the central and second
peak, respectively) and y were coefficients, anB, was the
second peak position. It is obvious that for low fields expres-

sions(16) and(17) become equivalent.
In the limiting casebh— 0 we obtain

512
®g\2°

where ¢(1)~[R/(2¢)]*2, cf. Eq. (11). Substituting for
He [=®o/(\8méuroh)], we get

Je(0) = uoHZ w28, (18)

DR 3dyVy
B8uoh2\2¢  32muoh2\2RE’

Jc(0)= (19

whereV;=ny(4/3)7wR? is the pinning phase volume fraction.
The present model thus gives a finite value of critical current
density forB—0 [unlike the previous models whedk(B)
diverged. We can see thal,(0) is proportional toV;/ R,
instead of V{/R37° This is a direct consequence of the
spherical shape of the pins. For different defect geometries
he dependence will differ.

Settingh =150 nm,£=1.2 nm, the mean particle radius
R=0.3 um, andny=(0.44-3.5)18 m~3 (corresponding
to V;=0.05-0.4), we get from E¢19) J.(0) in the range of
10°-10'° A/m?, in accord with the low-temperature values
observed in melt-textured RE-123 sampfelEq. (19) ap-
plies for zero temperatuteWe should bear in mind that
Eg. (19) is not exactly remanent critical current density as
b#0 at the zeroapplied field. The above comparison is
therefore only approximate.

It would be useful to estimate maximum number of vor-
tices trapped by one particle at a given internal field. As a
criterion one can take the limit when the local mean field
around the defect becomes less than the field inside the
trapped vortex bundle. The mean field inside the bundim of
trapped vortices i83=md,/S,. In the framework of Bean
model the local internal field in the remanent state varies
linearly between zero and the full penetration fieil, .

Equation(15) represents the total pinning force density Thys, the maximum number of pinned vortices is defined by

for a random distribution of normal particles of radiRs

By<=B or m=BS&;/®,. ForB,=1 T and defect size, e.g.,

Evidently, ®,/wR? is a field scaling factor here and we de- R= 4 um the inequality provides maximum valuesrofat
note it B;. For a general shape of the particle, one can usg remanant state to vary between,,,=0 (for B=0) and

B,=®,/Sy. Equation(15) then simplifies to

®(2)  @(3)
TR TRUE

(16)

F(B)=F:ngbexp(—b)| ¢(1)+

whereb=B/B;. We see that the total pinning for¢&5) or
(16) is a power series ib the coefficients of which are
determined by Eq(11).

240 (for Bp). In general, the relation between local internal
field and applied field is affected by the sample magnetic
history, sample and experiment geometries, surface barriers,
pinning parameters, and other circumstances. Therefore, the
estimation ofm,,,, as a function of the applied field is not
simple.

To simplify Eq. (16), we introduce the pinning force
¢({my)) of a sphere that pins the average number of vortices,
(m). For the Poisson’s distributiofm)=a=7R?B/®,,

In Ref. 11 the authors successfully fitted the experimentalhich allows one to change the argument of théunction

J.(B) dependences by the expression

so that
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(m) (7e+ 7)) In general, then(B) function reflects the magnetic and
@(B)=o((m)=>, < . (200 thermal history of the sample. Several different types of
=1 \/1—(77c+ 71— n(B) functions were suggested for pinning by columnar de-

] ] . . fects in Refs. 13—-15. For another defect geometry one should
Expression(20) can be associated with the sum in the e a properly modifieg(m) function.

brackets of Eq.(16). In this case, the prefactamyb exp In summary, it was shown that the varying number of
(=b) in Eq. (16) should be replaced by functian(B), rep-  vortices trapped at low fields by normal particles brings into
resenting the mean concentration of spheres contaiffing the expression for total pinning force density a new factor,
vortices. Thus the total pinning force density will be propor-exponentially decaying with field. THe(B) dependence can

tional ton(B) ¢(B), be expressed as a product of this exponential term and a
2 o power series irB. For low fields the present model justifies
F(B)=puoHcmEN(B)o(B) (21 the previously found empirical exponentially decayih¢B)
i1 " ; g
with n(B)=nob exp(~b), wherek=1 is a numerical param- dependencé!! The _cr|t|cal current density fO-BHO is in
eter. very good accord with low-temperature experiments on melt-

We found that for spherical defect®(B) can be textured RE-123 materials doped by secondary phase par-
very well approximated bye(B)=c;RY/3[B/(2d,)]*? ticles.

(c1=2.017 36). It is worth noting that fon(B)=const, as The authors acknowledge the support of Grant No.
supposed in previous theories, E1) gives J.(B)«<1/JB.  A1010919/99 of the Grant Agency of ASCR.

*Electronic address: zablot@fzu.cz 8D. V. Shantseet al, Phys. Rev. Lett82, 2947(1999.
IM. Murakamiet al, Supercond. Sci. Technd, 1015(1996. 9M. Jirsaet al. Phys. Rev. B55, 3276(1997).

2M. Muralidharet al, Jpn. J. Appl. Phys., Part40, 6329(2001).  1°T. Kobayashiet al, Physica C254 213(1995.

3A. M. Campbell, J. E. Evetts, and D. Dew-Hughes, Philos. Mag.!'M. Jirsaet al, Supercond. Sci. Techndl4, 50 (2001).

18, 313(1968. 127, Higuchi, S. I. Yoo, and M. Murakami, Phys. Rev.3®, 1514
4D. Dew-Hughes, Philos. Mag0, 293 (1974). (1999.
5M. Murakamiet al, Supercond. Sci. Technal, S43(1991). 13A. Pomaret al, Phys. Rev. B53, 134525(2001).
5H. Fujimotoet al, Cryogenics32, 954 (1992. 141, Krusin-Elbaumet al, Phys. Rev. B53, 11 744(1996.

’D. X. Chen and R. B. Goldfarb, J. Appl. Phy86, 2489(1989.  !°T. Matsushita, Supercond. Sci. Technb®, 730 (2000.

224508-4



