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Vortex pinning by large normal particles in high-Tc superconductors
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We present a model of flux pinning on large nonsuperconducting particles. It is assumed that the pins trap
different numbers of vortices determined by the Poisson’s distribution function. This approach brings an
additional factor into the expression for pinning force density that exponentially decays with field. The critical
current density thus becomes at low fields nearly pure exponential function of magnetic field, in agreement
with numerous experiments on high-Tc superconductors.
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It has been experimentally proved that relatively lar
~micron-size! RE2BaCuO5 ~RE-211, secondary phase! par-
ticles contribute to flux pinning in ( RE)Ba2Cu3O72d ~RE
5rare earth, RE-123! superconductors and enhance sup
conducting currents, especially at low magnetic fields1,2

Vortex lattice interaction with large~volume! pins has been
treated in Ref. 3 where the authors used direct summatio
elementary pinning forces and foundJc(B)}b21/2(12b)
with b5B/Bc2. For core pinning by large normal pins De
Hughes4 deducedJc(B)}b21(12b)2. Murakami et al.5,6

suggested the concept ofsurface pinningassuming volume
pinning defects of a cubic shape. Their model predic
Jc(B)}b21/2.

All the above models indicated a strong pinning at lo
magnetic fields, in a qualitative agreement with experime
A quantitative comparison is not easy. Let us name at le
one obvious reason; at low fields the ‘‘true’’ critical curre
density is not simply proportional to the irreversible ma
netic moment7,8 M (B) and decays with field faster tha
M (B).8 Moreover, as reported by Jirsaet al.,9 even theJc(B)
deduced fromM (B) using the extended Bean model7 decays
at low fields ~central peak region! much faster than with
B21/2 or B21. It was shown that the exponentially decayin
function found by Kobayashiet al.10 for (LaSr)2CuO4 single
crystals describes well also the central peak shape in m
RE-123 compounds.

In all the above-mentioned theories magnetic flux w
supposed to be homogeneously trapped by normal inclus
over the whole sample. Under this assumption, a direct s
mation of the elementary pinning forces consisted in mu
plying the elementary pinning force by the defect concen
tion. Here we assume that due to magnetic history
irregular distribution of pins and vortices in real samples,
same inclusions can keep under same external condit
different numbers of vortices.

In this work we treat the interaction of an elastic vort
lattice with defects that are large compared to vortex c
sizej. Taking into account stochastic character of the vor
trapping by large inclusions, we calculate and discuss
associated pinning force.

We will suppose a lattice of elastic vortices that can ad
to the structure of large normal defects of the mean radiuR,
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randomly distributed over the sample. The vortices cross
a normal defect lose part of their condensation energy, p
portional to the trapped volumepj2z1,

Wp5
m0Hc

2

2
pj2z1 , ~1!

wherej is the core radius andz1 is the length of the vortex
trapped by a normal particle inz direction;Hc is the thermo-
dynamic critical field, andm0Hc

2/2 is the condensation en
ergy density. Asj!R, more than one vortex can be trappe
by one defect. For the trapped vortex pinning energy can
written as

Wpi5m0Hc
2pj2AR22r i

2, ~2!

where r i is the distance of the vortex line from the sphe
center. The largest pinning energy gain is naturally for
vortex crossing the sphere in its center. However, this is p
sible only at relatively low fields when the vortex lattic
constant is larger thanR. In the opposite case, more vortice
are trapped by the same defect and due to their repul
they are more or less regularly distributed over the sph
cross section~top view!. The total pinning energy of the
vortices trapped by one normal sphere is

Wp~x1!5m0Hc
2pj2(

i 51

m

AR22~x11xi !
22yi

2, ~3!

herexi andyi are the vortex line coordinates in the coord
nate system having the origin$x1,0% in the geometrical cen-
ter of the bundle, andm is the total number of vortices inter
secting the sphere. The total energy of the vortex bundl
less byWp(x1). On the other hand, the vortices are subject
the Lorentz force that causes an increase in the elastic en
of the bundle.

We assume that near the sphere the vortex lines til
adopt to the pinning landscape, as illustrated in Fig. 1. T
tilt occurs in the distortion volumeVd and is accompanied by
the increase in the elastic energy

Wel5
c44exz

2

2
Vd , ~4!
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whereexz5sing and g is the tilt angle. The distortion vol-
ume isVd5Sl cosg, whereS is the top cross section of th
undistorted bundle~in the distancel /2 from the defect center!
and l is the length of the tilted vortex bundle as indicated
Fig. 1. We denote the elastic displacement of the cen
vortex asx2 and assumex2 / l !1, so thatexz'x2 / l . The
elastic energy can be now expressed as

Wel5
2c44Sx2

2

l
. ~5!

The energy associated with the Lorentz force is

WL52BJSlS x11
x2

2 D . ~6!

Both energies~5! and ~6! increase the total energy of th
pinned vortex bundle.

The equilibrium position of the vortex bundle~coordi-
natesx1 andx2) is obtained by minimizing the total energ

W5Wp~x1!1Wel~x2!1WL~x1 ,x2! ~7!

with respect tox1 andx2,

(
i 51

m
~h11h i !

A12~h11h i !
22§ i

2
5

BJSl

m0Hc
2pj2

, ~8!

h25
BJl2

8c44R
, ~9!

whereh5x/R andz5y/R.
In the single-vortex pinning regimem51, h15z150.

The critical current density can be calculated from Eq.~8!
taking into account that the maximum pinning force
reached atx15xc56uR2xi u.

FIG. 1. Vortex displacements inside and out a large spher
defect.
22450
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The left side of Eq.~8! represents the pinning force actin
on all vortices trapped by the sphere, normalized
m0pHc

2j2. The total pinning force is the sum of force
caused by individual spheres and depends on the statis
distribution of vortices captured by these spheres. Thus, f
sample withN0 normal spheres one can rewrite Eq.~8! as

JcB5F~B!5m0Hc
2pj2 (

m50

mmax

w~m!n~m!, ~10!

w~m!5(
i 51

m
~hc1h i !

A12~hc1h i !
22§ i

2
, ~11!

wheren(m) is the concentration of spheres keepingm vor-
tices, andmmax is the maximum possible number of vortice
captured by a sphere of the given radius. Herein we supp
the maximum possible shift of the bundle centerx15xc
5uR2Rb2ju, whereRb is the bundle radius. As was ex
plained above, this shift corresponds to the maximum va
of the pinning force.

For a given value of magnetic field one can calculate
probability Pm for m vortices to be captured by one spher
We can consider the vortices to independently occupy
fects if the vortex-pin interaction is significantly larger tha
that of the vortex-vortex interaction. In low and modera
fields the probabilities should thus obey the Poisson’s dis
bution

Pm5
am

m!
e2a, ~12!

wherea is the parameter of the distribution. ForBuuc axis
and perpendicular to the slab surface this parameter ia
5Sdr5SdB/F0, whereSd is the defect cross section pe
pendicular to vortex line,r52/(a0

231/2) is the local vortex
lattice density, anda0 is the vortex lattice constant. For
spherical shape,Sd5pR2. With these options, the probabi
ity to find m vortices trapped by the sphere of radiusR at the
internal fieldB is

Pm~B!5
1

m! S pR2B

F0
D m

expS 2
pR2B

F0
D . ~13!

For a real sample in critical state, both the local magne
field and current density depend on coordinates. Further,
will operate with these quantities averaged over the sam
volume. Figure 2~a! shows the field dependence of probab
ity ~13! for m51, 4, and 8 and two different values ofR.
With increasingm the probability maximum decreases an
shifts to higher fields. In Fig. 2~b! the probability to trap 50
vortices is plotted as a function of the defect size for tw
values of magnetic induction, 0.5 and 2 T. In low fields, t
larger spheres are evidently more effective than smaller o

By definition, the probability~12! can be rewritten as
Pm5n(m)/n0, wheren05N0 /V is the total concentration o

al
8-2
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the sample defects. It allows us to write the volume den
of the total pinning force in the form

F~B!5Fcn0 (
m50

mmax

w~m!Pm~B!, ~14!

where w(m) is determined by Eq.~11!, w(0)50, and Fc

5m0Hc
2pj2. From Eqs.~13! and ~14! we obtain a genera

expression for the pinning force density,

F~B!5Fcn0

pR2B

F0
expS 2

pR2B

F0
D

3 (
m51

mmax

w~m!
1

m! S pR2B

F0
D m21

. ~15!

Equation ~15! represents the total pinning force dens
for a random distribution of normal particles of radiusR.
Evidently,F0 /pR2 is a field scaling factor here and we d
note it B1. For a general shape of the particle, one can
B15F0 /Sd . Equation~15! then simplifies to

F~B!5Fcn0b exp~2b!S w~1!1
w~2!

2!
b1

w~3!

3!
b21••• D ,

~16!

whereb5B/B1. We see that the total pinning force~15! or
~16! is a power series inb the coefficients of which are
determined by Eq.~11!.

In Ref. 11 the authors successfully fitted the experimen
Jc(B) dependences by the expression

FIG. 2. ~a! Field dependence of the probability to catchm vor-
tices in a normal sphere of the radiusR50.2 and 0.4mm for m
51, m54, andm58; ~b! Probability to catchm550 vortices at
B52 T andB50.5 T as a function of the sphere radius.
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Jc~B!5Jc1 exp~2gB!1Jc2~B/Bp!exp@$12~B/Bp !n%/n#,

~17!

where Jc1 ,Jc2 were magnitudes of the central and seco
peak, respectively,n andg were coefficients, andBp was the
second peak position. It is obvious that for low fields expr
sions~16! and ~17! become equivalent.

In the limiting caseb→0 we obtain

Jc~0!5m0Hc
2p2j3/2n0

R5/2

F0A2
, ~18!

where w(1)'@R/(2j)#1/2, cf. Eq. ~11!. Substituting for
Hc @5F0 /(A8pjm0l)#, we get

Jc~0!5
F0n0R5/2

8m0l2A2j
5

3F0Vf

32pm0l2A2Rj
, ~19!

whereVf5n0(4/3)pR3 is the pinning phase volume fraction
The present model thus gives a finite value of critical curr
density forB→0 @unlike the previous models whereJc(B)
diverged#. We can see thatJc(0) is proportional toVf /AR,
instead of Vf /R.3–5 This is a direct consequence of th
spherical shape of the pins. For different defect geomet
the dependence will differ.

Settingl5150 nm,j51.2 nm, the mean particle radiu
R50.3 mm, and n05(0.44–3.5)1018 m23 ~corresponding
to Vf50.05–0.4), we get from Eq.~19! Jc(0) in the range of
109–1010 A/m2, in accord with the low-temperature value
observed in melt-textured RE-123 samples12 @Eq. ~19! ap-
plies for zero temperature#. We should bear in mind tha
Eq. ~19! is not exactly remanent critical current density
bÞ0 at the zeroapplied field. The above comparison i
therefore only approximate.

It would be useful to estimate maximum number of vo
tices trapped by one particle at a given internal field. As
criterion one can take the limit when the local mean fie
around the defect becomes less than the field inside
trapped vortex bundle. The mean field inside the bundle om
trapped vortices isBd5mF0 /Sd . In the framework of Bean
model the local internal field in the remanent state var
linearly between zero and the full penetration field,Bp .
Thus, the maximum number of pinned vortices is defined
Bd<B or m<BSd /F0. For Bp51 T and defect size, e.g.
R50.4 mm the inequality provides maximum values ofm at
a remanant state to vary betweenmmax50 ~for B50) and
240 ~for Bp). In general, the relation between local intern
field and applied field is affected by the sample magne
history, sample and experiment geometries, surface barr
pinning parameters, and other circumstances. Therefore
estimation ofmmax as a function of the applied field is no
simple.

To simplify Eq. ~16!, we introduce the pinning force
w(^m&) of a sphere that pins the average number of vortic
^m&. For the Poisson’s distribution̂m&5a5pR2B/F0,
which allows one to change the argument of thew function
so that
8-3
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w~B!5w~^m&!5(
i 51

^m&
~hc1h i !

A12~hc1h i !
22§ i

2
. ~20!

Expression~20! can be associated with the sum in th
brackets of Eq.~16!. In this case, the prefactorn0b exp
(2b) in Eq. ~16! should be replaced by functionn(B), rep-
resenting the mean concentration of spheres containing^m&
vortices. Thus the total pinning force density will be propo
tional to n(B)w(B),

F~B!5m0Hc
2pj2n~B!w~B! ~21!

with n(B)}n0bk exp(2b), wherek>1 is a numerical param
eter.

We found that for spherical defectsw(B) can be
very well approximated byw(B)5c1RA4 3@B/(2F0)#1/2

(c152.017 36). It is worth noting that forn(B)5const, as
supposed in previous theories, Eq.~21! gives5 Jc(B)}1/AB.
ag
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-

In general, then(B) function reflects the magnetic an
thermal history of the sample. Several different types
n(B) functions were suggested for pinning by columnar d
fects in Refs. 13–15. For another defect geometry one sho
use a properly modifiedw(m) function.

In summary, it was shown that the varying number
vortices trapped at low fields by normal particles brings in
the expression for total pinning force density a new fact
exponentially decaying with field. TheF(B) dependence can
be expressed as a product of this exponential term an
power series inB. For low fields the present model justifie
the previously found empirical exponentially decayingJc(B)
dependence.9,11 The critical current density forB→0 is in
very good accord with low-temperature experiments on m
textured RE-123 materials doped by secondary phase
ticles.
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