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Interaction of vortices in superconductors with k close to 1ÕA2
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Using a perturbative approach to the infinitely degenerate Bogomolnyi vortex state for a superconductor
with k51/A2,T→Tc , we calculate the interaction of vortices in a superconductor withk close to 1/A2. We
find, numerically and analytically, that depending on the material the interaction potential between the vortices
varies with decreasingk from purely repulsive~as in a type-II superconductor! to purely attractive~as in a
type-I superconductor! in two different ways: either vortices form a bound state and the distance between them
changes gradually from infinity to zero or this transition occurs in a discontinuous way as a result of a
competition between minima at infinity and zero. We study the discontinuous transition between the vortex and
Meissner states caused by the nonmonotonous vortex interaction and calculate the corresponding magnetiza-
tion jump.
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I. INTRODUCTION

It is widely known that superconducting vortices rep
each other in superconductors of type II and attract e
other in superconductors of type I. The physical origin of t
phenomenon is the competition between the magnetic re
sion of the vortices~dominating in type-II superconductors!
and the gain in condensation energy of overlapping vor
cores producing an attractive interaction~dominating in
type-I superconductors!. Within the Ginzburg-Landau~GL!
approximation it can easily be seen that the long-ra
asymptotic behavior of the vortex interaction changes
sign atk51/A2. The vortex interaction is1

U int~ l !52pc2~k!K0~ l !2
p

k2
d~k!2K0~A2k l !, ~1!

whereK0( l ) is the modified Bessel function of zero orde
andc(k) andd(k) are slowly varying functions ofk that are
equal atk51/A2. The detailed profile ofU int( l ) at any l
whenk goes through 1/A2 was, however, calculated only i
the 1970s by Jacobs and Rebbi2 using a special symmetry o
the z-invariant GL equations atk51/A2 discovered by
Bogomolnyi.3 According to Bogomolnyi, Jacobs, and Reb
~BJR! the GL energy atk51/A2 is degenerate with respe
to any configuration of vortices. The sign change ofU int( l )
at k51/A2 is anexactresult of the GL theory: atk.1/A2
the interaction is purely repulsive, atk51/A2 vortices do
not interact, and atk,1/A2 the interaction is purely attrac
tive.

Experiments,4,5 however, reveal a more complex situ
tion. The interaction potentialU int( l ) close tok51/A2 was
sometimes found to be attractive at large distances and
pulsive at short ones. This nonmonotonous profile ofU int( l )
manifests itself as a discontinuous transition between vo
and Meissner states and by the existence of intermed
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mixed-state domains of bound vortices. The presence o
local minimum inU int( l ) at k;1/A2 can be explained~as
we do here! by taking into account low-temperature corre
tions to the GL theory that modify the almost flat profile
the interaction.6 Another possibility is to take into accoun
the coupling of the order parameter gradient with the cr
talline strain,ui j ] iC] jC* , or to consider the fluctuation
and anisotropies in the vortex lattice, which produce an
tractive interaction of the van der Waals type.7

Several calculations based on an extended GL functio8

were done to clarify this issue. Jackobs6 calculated low-
temperature corrections to the long-range vortex interac
~1! and found that vortices attract each other already
type-II superconductors. Based on his results Hubert9 per-
formed numerical calculations for a periodic Abrikosov la
tice of vortices and demonstrated the nonmonotonous be
ior of the vortex interaction in a vortex lattice. Thes
calculations are consistent with numerical variational cal
lations by Brandt10 based on Gorkov equations and solv
for vortex lattice configurations at all possible values ofH, T,
andk. Although these results reproduce a nontrivial behav
of U int( l ) at k;1/A2, it is difficult to survey and interpre
them in a systematic way because of the cumbersome m
ematics and large number of terms in the extended GL fu
tional.

A new method of calculating the properties of superco
ductors neark;1/A2 has been developed recently.11 In this
approach the degenerate vortex state atk51/A2 and with the
external fieldH equal to the thermodynamic critical fieldHc
is considered as the starting point of a secular perturba
theory. A degeneracy-lifting perturbation functional in th
small parameters

g5k22
1

2
, t5

T

Tc
21 ~2!
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is constructed. This approach avoids bulky calculations
allows us to describe the superconductor withugu,utu!1 in a
form that is easy to interpret.

We will use this perturbation approach to calculate
interaction U int( l ) between two separate vortices and b
tween vortices in a lattice for a superconductor withk
;1/A2 when the Ginzburg-Landau theory is extended to l
temperatures. We consider the isotropic superconduc
The case when the crystal anisotropy that manifests itse
the second- and fourth-order gradient terms of the Ginzbu
Landau functional is important requires special consid
ation. We study the discontinuous transition between the
tex and Meissner states caused by the nonmonotonous v
interaction and calculate the corresponding magnetiza
jump.

II. PERTURBATION APPROACH

We start by outlining the main elements of our perturb
tive approach.11 According to Bogomolnyi3 and Jacobs and
Rebbi,2 in a z-invariant situation, withH5Hc , the order
parameter amplitudeuc(r ,r1 , . . . ,rn)u of vortices located at
r5r1 , . . . ,rn in a superconductor withg50, t→0 is de-
scribed by the BJR equation

1

2
¹2 lnucu25ucu2211(

i
2pd~r2r i !. ~3!

The magnetic field inside the sample is uniquely related
uc(r )u via

b~r !512uc~r !u2. ~4!

Here, dimensionless variablesc5C/C0 ,b5A2kB/Hc are
used~with C0 the uniform order parameter when the exte
nal field H50). Distances are measured in units of the c
herence lengthj.

Since atg50,t→0 the vortices do not interact, the vorte
energy close to this point can be calculated to first order ig
and t by substituting the unperturbed solutio
uc(r ,r1 , . . . ,rn)u of Eq. ~3! into the functional

f 5~h02hc2!ucu21~g2c4t !ucu42c6tucu6 ~5!

as obtained in Ref. 11 and defined for the class of Bogom
nyi solutions. Heref 58pk2F/Hc

21k2 (F is the GL free
energy! andhc25A2kHc2 /Hc are the dimensionless free e
ergy and the upper critical field. The functional~5! accounts
for all the terms of the extended GL functional that are
sembled into the termsucu4 and ucu6 with experimentally
measurable material coefficientsc4 andc6. The parameterc4
is always positive, whereasc6 can be both positive and nega
tive.

To calculate the energy of vortices located atr
5r1 , . . . ,rn one should solve first the BJR equation~3! and
then substitute this solution into the perturbation functio
~5!. The analytical aspects of this task have been discusse
detail in Ref. 11; here we solve the BJR equation~3! numeri-
cally by a finite-elements method on an adaptive grid
using the ansatz
22450
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uc~r !u5)
k

ur2r kuew(r )/2. ~6!

Using this ansatz, the BJR equations are reduced to a
linear Poisson-like equation forw and thed functions are
removed. In a weak formulation for the finite-dimension
space@w(r )5( iw i pi(r )#, the problem is written as

2
1

2 (
j

w jE
V

¹pj•¹pidr

52
1

2E]V
pi¹w3dl1E

V
FexpS (

j
pjw j D

3)
k

ur2r ku221Gpidr , ~7!

wherepj (r ) are Lagrange elements on a quadratic grid.12 We
linearize the exponential function and iterate the result
linear part. The dynamic refinement is based on the nor
Kelly indicator13 for the local error and on the error evalu
tion of the nonlinear exponential part.

As boundary conditions we use either Neumann~specify-
ing ]'ucu) or periodic boundary conditions. In the Neuma
case the normal derivative ofw is taken to be ]'w
522 (k]'ln(ur2r ku). In the periodic case a special con
straint is added to the system of linear equations forw iPR,
to compensate for the nonperiodicity of(kln(ur2r ku). This
algorithm is implemented inC11 using the deal-II
library12,14 for the finite-elements calculations.

III. TWO VORTEX INTERACTION

We now use the above method to calculate the interac
energyU int( l ) between two vortices located atr1,256 l/2 by
subtracting the self-energy of separated vortices 2«1 from
the two-vortex energy«1,1( l ),

U int~ l !5«1,1~ l !22 «15«1,1~ l !2«1,1~`!. ~8!

As follows from Eq.~5! the energyU int( l ) can be written as
a superposition of two structure functionsuk( l ), k54,6,

U int~ l !5~g2c4t !u4~ l !2c6tu6~ l !, ~9!

which do not depend on the material parametersg, c4, and
c6,

uk~ l !5E $@12uc~r ,r1 ,r2!uk#2@12uc~r ,r1!uk#

2@12uc~r ,r2!uk#%dS. ~10!

Here c(r ,r1,2) and c(r ,r1 ,r2) are the one- and two-vorte
solutions of Eq.~3!. Note that11 u2( l )50.

It follows from Eq. ~9! that the profile ofU int( l ) depends
only on the sign ofc6 and on the control parameter

d5
g2c4t

uc6tu
. ~11!
4-2
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In Fig. 1 we show the result of our numerical calculatio
of u4( l ) andu6( l ).

With the numerical method outlined in Sec. II we ca
calculate the minimum ofU int for 1.4<d<2.7. Ford,1.4
and for d.2.7 the minimum cannot be reliably found b
cause of the flat profile ofU int( l ) at small and large values o
l. To determine the behavior ofU int( l ) at l !1 and atl @1 we
have used the analytic estimates of Ref. 11 that are sum
rized below.

~i! The order parameter of the widely separated wea
overlapping vortices (l @1) can be approximated as

uc~r !u25g1
2~r1 l/2!1g1

2~r2 l/2!21, ~12!

where g1(r ) is the axially symmetric one-quantum vorte
solution of the BJR equation. The long-range interaction
written as@up to the slow preexponential factoru( l )#

U int~ l !5@g2~c413c6!t#u~ l !e24l , ~13!

and becomes attractive wheng is smaller than the critica
value

gc15~c41dc1c6!t, dc153. ~14!

Equation~13! has been obtained before in Ref. 6 and gen
alizes Eq.~1! to lower temperatures.

~ii ! The order parameter of two close-lying vortices w
almost coinciding cores (l !1) can be approximated as

uc~r !u5g2~r !1
1

8
g2~r !~ l¹!2 ln g2~r !, ~15!

where g2(r ) is the axially symmetric two-quantum vorte
solution of the BJR equation. At smalll the short-range vor-
tex interaction is expanded as

U int~ l !5@0.91~g2c4t !21.13c6t# l 21O~ l 4!. ~16!

It is attractive when the second-order term is negative,
wheng is smaller than the critical value

gc25~c41dc2c6!t, dc251.26. ~17!

We finally compare the energy of a two-quantum vort
to the energy of two widely separated one-quantum vortic

FIG. 1. Structure functionsu4( l ) and u6( l ) for two vortices
separated by a distancel. Appropriate superposition ofu4( l ) and
u6( l ) gives the vortex interaction energyU int( l ). The distancel is
measured in units of the coherence lengthj.
22450
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A two-quantum vortex becomes energetically more favora
wheng is smaller than the critical value

gc5~c41dcc6!t, dc51.89. ~18!

This value always lies in betweengc1 andgc2. The critical
parameterdc1 remains unchanged in the case of interact
multiquantum vortices whereas the numerical coefficie
dc2 in Eq. ~17! anddc in Eq. ~18! become larger.

Combining these numerical and analytical results we c
clude that depending on the parametersc6 and c4 two sce-
naria are possible for the evolution ofU int( l ) as function
of d.

~I! The casec4.0,c6,0 is shown in Fig. 2~a!. Whend
.dc153 the interaction is purely repulsive. Belowdc1 we
find an attraction at large distances while the short-ra
interaction remains repulsive. The vortices form a bou
state with an equilibrium distancel 0(d) corresponding to the
minimum of U int( l ). Finally, below the second critical valu
dc251.26, the short-range interaction becomes attractive
and the vortices combine into a two-quantum vortex.

The distancel 0(d) of two bound vortices, shown in Fig
3, diverges as2 ln(dc12d) for d→dc1 and vanishes as
Ad2dc2 for d→dc2. Special care has to be taken to obser
these vortex bound states. One can try, e.g., to obtain pin
vortex molecules after expelling other vortices from t
sample by turning off the external field.

~II ! The casec6.0,c4.0 is shown in Fig. 2~b!. The or-
der of the critical parametersdc2 and dc1 is now reversed,
dc1,dc2. The vortex interaction now changes its sign
negatived. When d.dc2521.26 the interaction is purely
repulsive. Belowdc2 the interaction becomes short-range
tractive while retaining its long-range repulsive charact
Below dc1523 the interaction is purely attractive. Th

FIG. 2. The reduced two-vortex interaction energyU int( l )/uc6tu
at different parametersd5(g2c4t)/uc6tu ~a! for c4.0,c6,0
~crosses indicate the minima! and ~b! for c4.0,c6.0.
4-3
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equilibrium vortex configuration in the intervaldc1,d
,dc2 is thus determined by the competition between t
local minima ofU int( l ) at l 50 and atl 5`. The formation
of a two-quantum vortex becomes more favorable than
isolated and widely separated vortices below the criti
valuedc521.89. The parametersdc1 anddc2 then serve as
supercooling and superheating limits ofd.

The cases considered above exhaust all possible sce
for the evolution ofU int( l ) near the Bogomolnyi point. Cas
~I! seems to be more realistic given the typical values of
material constants11: c4;0.1–0.5 andc6;20.2–0.

We conclude this section by remarking that the vorte
antivortex interaction cannot be calculated in this formali
since the vortex-antivortex pair does not belong to the
generate set of the Bogomolnyi states atk51/A2. Moreover,
unlike the case of parallel vortices, both the magnetic and
condensation energy contribute equally to the attrac
vortex-antivortex interaction and thus there is no critic
point atk51/A2.

IV. VORTEX LATTICES

The energy of an ensemble of vortices is a nonlinear fu
tion of the vortex positions. It can be reduced to the pairw
vortex interaction~8! only in the case of large vortex sep
ration. Then, in the nearest-neighbor approximation, the
ergy of the regular lattice of one-quantum vortices with l
tice constantl @1, calculated with respect to the uniform
Meissner state, can be written as

f lat5
b̄

2p
«11

b̄

2p

z

2
U int~ l !, ~19!

where«1 is the one-vortex energy,z is the coordination num-
ber, andb̄/2p is the vortex density. The average magnetiz
tion b̄ of the lattice is related to the unit cell areaSl of the
vortex lattice:

b̄52p/Sl . ~20!

For equilateral triangular~with z56) and square~with z

54) lattices it isb̄h52p/ l 2 and b̄D54p/ l 2A3.

FIG. 3. Distance between two bound vortices as a function
the material parameterd ~whenc4.0,c6,0). The equilibrium vor-
tex distance in the regular triangular vortex lattice at discontinu
transition atH5Hc1* is shown for comparison.
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At closer distance between vortices the energyf lat is
renormalized both because of the next-nearest-neighbor
tex interaction and because of the nonlinear corrections.
first contribution can be accounted for by a redefinition
U int( l ) as U int( l )1U int(A3l ) for a triangular andU int( l )
1U int(A2l ) for a square lattice.

However, the nonlinear corrections can only be calcula
by a vortex-lattice solution of the BJR equation~3!. In fact
one can extend Eq.~19! to the case of arbitraryl provided
that the contribution (z/2)U int( l ) is substituted with the in-
teraction energy (z/2)U lat( l ) calculated from the numerica
solution of the BJR equation for a periodic vortex lattic
Similar to the case of two vortices, the energy can be
pressed as

z

2
U lat~ l !5~g2c4t !v4~ l !2c6tv6~ l ! ~21!

via the lattice-dependent structure functionsvk( l ),

vk~ l !5E @12uc l~r !uk#dSl2E @12uc`~r !uk#dS̀ .

~22!

The vortex lattice order parameteruc l(r )u is obtained from a
numerical solution of Eq.~3!, applying the method discusse
in Sec. II to a unit cellSl with periodic boundary conditions
The one-vortex solutionuc`(r )u is calculated on an infinite
unit cell S` . In Fig. 4 we show as an example the structu
functionsvk( l ) for the triangular, square, and rhombic la
tices.

The vortex interaction (z/2)U lat( l ) depends on the contro
parameterd. Here we limit our discussion to the most rea
istic casec4.0,c6,0. We find a nonmonotonous behavio
at d,dc153 with long-range attraction, short-range repu
sion, and a minimum at intermediate distances as show
Fig. 5 ~thus we deal with the usual type-II superconduc
case whend.3 and the type-I superconductor whend,1).
We have considered all the simple lattices of the form sho
in Fig. 6 and, in a nonsystematic way, some other latti
~multiquantum and four-cluster lattices!. Among these, the
lowest energy has always been found for a triangular latt

f

s

FIG. 4. Structure functionsv4( l ) andv6( l ) for the square (90°),
triangular (60°), and rhombic (45°) lattices with lattice constanl.
Superposition ofv4( l ) andv6( l ) gives the lattice interaction func
tion (z/2)U lat( l ). The distance is measured in units of the cohere
lengthj.
4-4
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The most important consequence of the nonmonoton
vortex interaction is the existence of a special class of su
conductors that are intermediate between type I and typ
~we call them type I/II!. They are characterized by a disco
tinuity of the transition between the Meissner and vor
states. A survey of properties of these superconductors
been given in our previous publication,11 where we have
demonstrated their existence in the interval 1,d,3. We dis-
cuss now the details of the Meissner-vortex transition
type-I/II superconductors based on the the expression~21!
calculated above.

The stability of the vortex lattice in an external magne
field h0 can be investigated by minimizing

f ~ b̄!5 f lat~ b̄!2 f s5
b̄

2p F z

2
U lat„l ~ b̄!…22 p~h02hc1!G

~23!

( f s is the Meissner free energy! over b̄ and different lattice
types. As can be seen in Fig. 7 the transition from Meiss
state withb̄50 to the vortex state with finiteb̄ in type-I/II
superconductors occurs discontinuously at a critical fieldhc1*
that is smaller than the fieldhc15«1/2p where the penetra
tion an individual vortex becomes energetically advan
geous. The critical fieldhc1 which serves as the lower critica
field of the continuous vortex–Meissner-state transition
type-II superconductors can be interpreted as the field of
perheating for type-I/II superconductors.

Another important conclusion is that, among the differe
types of lattices studied here, the triangular one-quantum

FIG. 5. The reduced vortex interaction ener
@zUlat( l )#/(2uc6tu) in square (90°), triangular (60°), and rhomb
(45°) lattices atd52.5.

FIG. 6. Possible vortex lattice structures considered here,
,a/b<1,p/12<a<p/2.
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tice is the most stable one. We can show this numerically
all values ofd and h0 except for the interval 2.7,d,3,h0

;hc1* , where due to the large distance between vortices
accuracy of our calculation has been insufficient to draw
finitive conclusions.

In Fig. 8 we show the magnetization jump 4pDm

5b̄(hc1* ) at thehc1* transition as a function ofd. Flux expul-
sion varies from almost complete as in type-I supercondu
ors atd51 to vanishingly small atd53 as in type-II super-
conductors. Surprisingly, we find that the jumpDm is almost
linearly dependent ond between these two values. We als
show the equilibrium lattice constant of the triangular latti
l D5(A3Dz)21/2 in Fig. 3 in order to compare it with the
distance between vortices bound in a pair. Atd51 the dis-
tance between vortices in a lattice is minimal and equa
l D5(4p/A3)1/2'2.69. The vortex distance in the lattice
larger than for the vortex pair, because the presence of o
vortices suppresses superconductivity and thus diminis
the pressure of the superconducting phase against the v
ces. Atd→dc153 the vortex distance diverges and the la
tice energy can be approximated as a superposition of p
wise interaction energies.

The discontinuity at thehc1* transition can be observe
experimentally as a spinodal vortex clustering in t
intermediate-mixed state in thin superconducting plates.4 The
properties of such clusters are determined by the delic

/6

FIG. 7. Energyf of the different vortex lattices as a function o

b̄ in an external fieldh0. The minimum off (b̄) corresponds to the
most stable vortex state at a givenh0. The Meissner state corre

sponds tob̄50. The lattice constantl is inversely proportional to

b̄1/2. The material parameterd is the same as in Fig. 5.

FIG. 8. Jump of magnetization 4pDm5b̄(hc1* ) at the transition
between vortex and Meissner state as function of the control par
eterd ~casec4.0,c6,0).
4-5
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balance between the nonmonotonous vortex interac
U lat( l ) and the vortex repulsion due to the additional inte
action through the stray magnetic field energy in the vacu
outside the superconducting plate. Detailed calculations
this effect based on the explicit form ofU lat( l ) are currently
in a progress.
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