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Interaction of vortices in superconductors with « close to 1.2
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Using a perturbative approach to the infinitely degenerate Bogomolnyi vortex state for a superconductor
with k=1/\/2,T—T,, we calculate the interaction of vortices in a superconductor withose to 1{2. We
find, numerically and analytically, that depending on the material the interaction potential between the vortices
varies with decreasing from purely repulsiveas in a type-ll superconducjoto purely attractive(as in a
type-I superconductdin two different ways: either vortices form a bound state and the distance between them
changes gradually from infinity to zero or this transition occurs in a discontinuous way as a result of a
competition between minima at infinity and zero. We study the discontinuous transition between the vortex and
Meissner states caused by the honmonotonous vortex interaction and calculate the corresponding magnetiza-
tion jump.
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[. INTRODUCTION mixed-state domains of bound vortices. The presence of a
local minimum inUj,(1) at k~1//2 can be explainedas
It is widely known that superconducting vortices repelwe do herg by taking into account low-temperature correc-
each other in superconductors of type Il and attract eackons to the GL theory that modify the almost flat profile of
other in superconductors of type I. The physical origin of thisthe interactiorf. Another possibility is to take into account
phenomenon is the competition between the magnetic repuihe coupling of the order parameter gradient with the crys-
sion of the vorticegdominating in type-Il superconductors ajjine strain, u;;3,% 9, W*, or to consider the fluctuations
and the gain in condensation energy of overlapping vorteXnq anisotropies in the vortex lattice, which produce an at-
cores producing an attractive mte_ractloidomlnatlng iN 4active interaction of the van der Waals tyhe.
type-| §upe_rcon_ducto)sW|th|n the Ginzburg-LandauGL) Several calculations based on an extended GL funcfional
approximation it can easily be Seen that_ the Iong-ran_g@vere done to clarify this issue. JackBbsalculated low-
asymptotic behavior of the vortex interaction changes it§emperature corrections to the long-range vortex interaction
sign atc=1/y/2. The vortex interaction 1s (1) and found that vortices attract each other already in
type-Il superconductors. Based on his results Hibeet-
™ formed numerical calculations for a periodic Abrikosov lat-
Uin( 1) =27¢*(1)Ko(1) — Ed(K)ZKO( V2rl), (@ tice of vortices and demonstrated thepnonmonotonous behav-
ior of the vortex interaction in a vortex lattice. These
whereK,(l) is the modified Bessel function of zero order, calculations are consistent with numerical variational calcu-
andc(x) andd(«) are slowly varying functions of that are  lations by Brandf based on Gorkov equations and solved
equal atk=1/\/2. The detailed profile ofJ;(I) at anyl  for vortex lattice configurations at all possible valuesiofT,
when « goes through 42 was, however, calculated only in @ndx. Although these results reproduce a nontrivial behavior
the 1970s by Jacobs and Rebbsing a special symmetry of Of Uin(1) at k~1/y/2, it is difficult to survey and interpret
the zinvariant GL equations a=1/\2 discovered by them ina systematic way because of the cumbersome math-
Bogomolnyi3 According to Bogomolnyi, Jacobs, and Rebbi ematics and large number of terms in the extended GL func-
(BJR) the GL energy aik=1/\2 is degenerate with respect tional- _ _
to any configuration of vortices. The sign changelgf(l) A new method of calculating the properties of supercon-
at k=1/\/2 is anexactresult of the GL theory: ak>1/2  ductors neaw~1/\2 has been developed recer?ﬂyp this
the interaction is purely repulsive, at=1/\2 vortices do aPProach the degenerate vortex state-atl/\2 and with the

not interact, and ak<1/,/2 the interaction is purely attrac- _externa_l fieloH equal to ‘h’? thermodynamic critical fiekd, .
tive ' is considered as the starting point of a secular perturbation

Experiment¢:> however, reveal a more complex situa- theory. A degeneracy-lifting perturbation functional in the

tion. The interaction potentidl;(1) close tox=1/\2 was small parameters
sometimes found to be attractive at large distances and re-

pulsive at short ones. This nonmonotonous profil&Jgf(l)

manifests itself as a discontinuous transition between vortex 2 t=——1 )
and Meissner states and by the existence of intermediate 2 Te
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is constructed. This approach avoids bulky calculations and
allows us to describe the superconductor Wigh|t|<1 in a [p(r)|= ll_([ [r—rJe?(, (6)
form that is easy to interpret.

We will use this perturbation approach to calculate theysing this ansatz, the BJR equations are reduced to a non-
interaction U;(l) between two separate vortices and be-linear Poisson-like equation fap and the s functions are
tween vortices in a lattice for a superconductor with  removed. In a weak formulation for the finite-dimensional
~1/\/2 when the Ginzburg-Landau theory is extended to lowspace] ¢(r)=3;¢;p;(r)], the problem is written as
temperatures. We consider the isotropic superconductors.

The case when the crystal anisotropy that manifests itself in 1
the second- and fourth-order gradient terms of the Ginzburg- 3 2 ?j LZVpi -Vpidr
Landau functional is important requires special consider-

ation. We study the discontinuous transition between the vor- 1
tex and Meissner states caused by the nonmonotonous vortex =- EJ’mPiWPXdH L) exy X pje;
interaction and calculate the corresponding magnetization '
jump.
<11 Ir—ri2—1|pdr, (7)
K

Il. PERTURBATION APPROACH

. , wherep;(r) are Lagrange elements on a quadratic Yridle
 We start bVIOU“'”'”Q the main elements of our perturba-jinearize the exponential function and iterate the resulting
tive approactt! According to Bogomolnyi and Jacobs and jineay part. The dynamic refinement is based on the normal

.2 - . - . . . _
Rebbiy" in a zinvariant situation, withH=H., the order g1y indicator® for the local error and on the error evalua-

parameter amplitudb//(r,rl, cen)] of vortices located at  jon of the nonlinear exponential part.
r=ry,...rnin a superconductor withy=0, t—0 is de- As boundary conditions we use either Neuméspecify-
scribed by the BJR equation ing d,|y|) or periodic boundary conditions. In the Neuman
1 case the normal derivative of is taken to bed, ¢
§V2In|¢|2=|¢|2—1+2 278(r—r,). 3) =—2Zd.In(r—ry). In the periodic case a special con-
I

straint is added to the system of linear equationsgos R,
o . : to compensate for the nonperiodicity BfIn([r—r|). This
The magnetic field inside the sample is uniquely related toalgorithm is implemented inc++ using the dealll

[4(r)] via library*?*#for the finite-elements calculations.
b(r)=1—[y(r)|?. 4)
Here, dimensionless variables=¥/¥, b= \2xB/H, are

used(with ¥, the uniform order parameter when the exter- Ve now use the above method to calculate the interaction

nal field H=0). Distances are measured in units of the co-€N€rgyUin(l) between two vortices located g ,= +1/2 by
herence lengtlg. subtracting the self-energy of separated vortices #om

Since aty=0,t—0 the vortices do not interact, the vortex the two-vortex energy; (1),
energy close to this point can be calculated to first order in _ _
and t by substituting the unperturbed solution U =e11(l) —2e1=e11(1) —&11(). ®
|4(r,r1, ... r)| of Eq. (3) into the functional As follows from Eq.(5) the energyU,() can be written as
F= (ho— hox)| 2+ (y—cat)| ¥l — cat] #[® 5) a superposition of two structure functiong(l), k=46,
- 0~ 2 Ly )

as obtained in Ref. 11 and defined for the class of Bogomol- Ui =(y—cat)uy(l) —cetug(l), 9

nyi solutions. Hel'ef=87TK2f/H(2:+K2-(]: is the GL free  \yhich do not depend on the material parametgrs,, and
energy andh,= \/EKchch are the dimensionless free en- .

ergy and the upper critical field. The functior(&) accounts
for all the terms of the extended GL functional that are as-

Ill. TWO VORTEX INTERACTION

sembled into the termiy|* and ||® with experimentally Uk(|)=f {[1=1(rro,r)[]=[1=[g(r,r)l
measurable material coefficiertg andcg. The parametet,
is always positive, whereas can be both positive and nega- —[1—]u(r,rp)[¥}dS. (10
tive.

To calculate the energy of vortices located at Here¢(r.ri) andy(r,ry,rp) are the one- and two-vortex
=r,, ....r, one should solve first the BJR equati@ and  Solutions of Eq(3). Note that" u,(1)=0.

then substitute this solution into the perturbation functional It follows from Eq. (9) that the profile ofUj(1) depends
(5). The analytical aspects of this task have been discussed flly on the sign ots and on the control parameter
detalil in Ref. 11; here we solve the BJR equati@hnumeri-

cally by a finite-elements method on an adaptive grid by d= Y Cat (1)
using the ansatz lcet| -
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FIG. 1. Structure functionsi,(l) and ug(l) for two vortices
separated by a distan¢eAppropriate superposition af,(l) and b)
ug(l) gives the vortex interaction enerdy;(1). The distancé is
measured in units of the coherence length

In Fig. 1 we show the result of our numerical calculations g
of uyu(l) andug(l). 5
With the numerical method outlined in Sec. Il we can
calculate the minimum oU;,, for 1.4<d<2.7. Ford<1.4
and ford>2.7 the minimum cannot be reliably found be-
cause of the flat profile dfl; (1) at small and large values of
[. To determine the behavior &f;,(1) atl<1 and at >1 we FIG. 2. The reduced two-vortex interaction enetdjy;(1)/|cet|
have used the analytic estimates of Ref. 11 that are summat different parametersl=(y—c,t)/|cgt| (@) for c,>0,c6<0
rized below. (crosses indicate the minimand (b) for c,>0,cs>0.
(i) The order parameter of the widely separated weakly
overlapping vorticesl¢1) can be approximated as A two-quantum vortex becomes energetically more favorable

5 ) when y is smaller than the critical value
[ (N)?=gi(r+1/2) +g3(r—1/2) -1, (12)

=(Cy4+ =1.89.
where g4(r) is the axially symmetric one-quantum vortex Ye=(CatdcCe)t,  d=189 (18

solution of the BJR equation. The |0ng-range interaction |S|'h|s value a|WayS lies in betweeﬂ:l and YVeo- The critical

written as[up to the slow preexponential factol)] parameterd,; remains unchanged in the case of interacting
_a multiquantum vortices whereas the numerical coefficients
Uin(1) =Ly—(ca+3ce)tJu(he ", (13 g, in Eq.(17) andd, in Eq. (18) become larger.

Combining these numerical and analytical results we con-
clude that depending on the parametegsandc, two sce-
naria are possible for the evolution &f;(I) as function

Ye1=(CatdcaiCelt,  de1=3. (14  ofd. _ o
(I) The casec,>0,c4<0 is shown in Fig. 22). Whend
Equation(13) has been obtained before in Ref. 6 and gener-~d_,=3 the interaction is purely repulsive. Belogy; we

and becomes attractive whenis smaller than the critical
value

alizes Eq.(1) to lower temperatures. . _ _find an attraction at large distances while the short-range
(ii) The order parameter of two close-lying vortices with jnteraction remains repulsive. The vortices form a bound
almost coinciding coresl 1) can be approximated as state with an equilibrium distandg(d) corresponding to the

minimum of U;(1). Finally, below the second critical value
d.»,=1.26, the short-range interaction becomes attractive too
and the vortices combine into a two-quantum vortex.

. . . The distancd(d) of two bound vortices, shown in Fig.
where g,(r) is the axially symmetric two-quantum vortex 3, diverges as—In(dy—d) for d—dy and vanishes as

solu'tion of ?he BJR equation. At smdlthe short-range vor- d—d, for d—d,. Special care has to be taken to observe
tex interaction is expanded as these vortex bound states. One can try, e.g., to obtain pinned

vortex molecules after expelling other vortices from the
Uin(D) =[0.92(y—cat) ~ L1Xgt]I*+O(1%). (16 sample by turning off the egterngl field.

It is attractive when the second-order term is negative, i.e., (Il) The casecg>0,c,>0 is shown in Fig. &). The or-

1
| ib(r)[=ga(r) + ggz(r)(IV)zlngz(r), (19

when y is smaller than the critical value der of the critical parameterd,, andd;; is now reversed,
d¢1<dg,. The vortex interaction now changes its sign at
Ye2=(Ca+deCe)t, dep=1.26. a7 negatived. Whend>d.,= —1.26 the interaction is purely

repulsive. Belowd., the interaction becomes short-range at-
We finally compare the energy of a two-quantum vortextractive while retaining its long-range repulsive character.
to the energy of two widely separated one-quantum vorticesBelow d.;=—3 the interaction is purely attractive. The
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d, FIG. 4. Structure functions,(l) andvg(l) for the square (90°),

triangular (60°), and rhombic (45°) lattices with lattice consiant
FIG. 3. Distance between two bound vortices as a function ofSuperposition ob,(1) andvg(l) gives the lattice interaction func-
the material parameter (whenc,>0,cs<0). The equilibrium vor-  tion (z/2)U,(1). The distance is measured in units of the coherence
tex distance in the regular triangular vortex lattice at discontinuousength ¢.
transition atH =HY; is shown for comparison.

o ) ) ) ] At closer distance between vortices the eneffgy is
equilibrium vortex configuration in the intervallc;<d  renormalized both because of the next-nearest-neighbor vor-
<dq, is thus determined by the competition between twotey interaction and because of the nonlinear corrections. The
local minima ofUiy(1) at1=0 and atl =<. The formation fjst contribution can be accounted for by a redefinition of
pf a two-quantum vortex becomes more favorable than ;quint(|) as Ui (1)+U;(y31) for a triangular andU(1)
isolated and widely separated vortices below the crltlcaI+U,

= n(y/21) for a square lattice.
valued~ - 1.89. The parameterk; anddg then serve as However, the nonlinear corrections can only be calculated
supercooling and superheating limits af

g . by a vortex-lattice solution of the BJR equati(8). In fact
The cases considered above exhaust all possible scenafjgq can extend Eq19) to the case of arbitrary provided

for the evolution ofUjy(1) near the Bogomolnyi point. Case ot the contribution £/2)U (1) is substituted with the in-
(I) seems to be more realistic given the typical values of theteraction energy #/2)U (1) calculated from the numerical

material constan’t%:_c4~0._1—0.5 andte~—0.2-0. solution of the BJR equation for a periodic vortex lattice.
We con_clude th's section by remarklng_that_ the VOrteX-gimijar to the case of two vortices, the energy can be ex-
antivortex interaction cannot be calculated in this forma"smpressed as

since the vortex-antivortex pair does not belong to the de-
generate set of the Bogomolnyi statescat1/\/2. Moreover,
unlike the case of parallel vortices, both the magnetic and the

condensation energy contribute equally to the attractive 5 Uil =(y=cat)ua(l) —Cetvs(l) (21)
vortex-antivortex interaction and thus there is no critical
point atx=1/y/2. via the lattice-dependent structure functiangl),

IV. VORTEX LATTICES

The energy of an ensemble of vortices is a nonlinear func- vih)= J [1_|¢I(r)|k]d5_ J [1_|‘/’w(r)|k]d3ﬁ-
tion of the vortex positions. It can be reduced to the pairwise (22
vortex interaction(8) only in the case of large vortex sepa-
ration. Then, in the nearest-neighbor approximation, the enfhe vortex lattice order parametef(r)| is obtained from a
ergy of the regular lattice of one-quantum vortices with lat-numerical solution of Eq(3), applying the method discussed
tice constanti>1, calculated with respect to the uniform in Sec. Il to a unit cell5; with periodic boundary conditions.
Meissner state, can be written as The one-vortex solutiof..(r)| is calculated on an infinite

unit cell S,.. In Fig. 4 we show as an example the structure

b bz functionsuv,(I) for the triangular, square, and rhombic lat-

= g+ — —U, tices.
fa= g7 21% 57 3 UindD). (19 The vortex interactionZ/2)U (1) depends on the control
wheres is the one-vortex energg,is the coordination num- Parameted. Here we limit our discussion to the most real-
ber, andb/27 is the vortex density. The average magnetiza-'StIC casec4>0,_c6<0. We find a nonmonotonous behavior
T S ' . at d<d.;=3 with long-range attraction, short-range repul-
tion b of the lattice is related to the unit cell ar&of the  gjon, and a minimum at intermediate distances as shown in
vortex lattice: Fig. 5 (thus we deal with the usual type-Il superconductor
case wherd>3 and the type-1 superconductor wher 1).
b=2x/S,. (200  We have considered all the simple lattices of the form shown
in Fig. 6 and, in a nonsystematic way, some other lattices
For equilateral triangulatwith z=6) and squargwith z = (multiquantum and four-cluster latticesAmong these, the

=4) lattices it isEj= 27/1? andHA=477/I2\/§. lowest energy has always been found for a triangular lattice.
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FIG. 5. The reduced vortex interaction energy  FIG. 7. Energyf of the different vortex lattices as a function of
[2Uia1)1/(2[cet]) in square (90°), triangular (60°), and rhombic }'in an external fielchy. The minimum off (b) corresponds to the

(45°) lattices ad=2.5. most stable vortex state at a giveg. The Meissner state corre-

_ sponds tob=0. The lattice constaritis inversely proportional to
The most important consequence of the NoNMoNotoNOU§2 The material parametetis the same as in Fig. 5.

vortex interaction is the existence of a special class of super-

conductors that are intermediate between type 1 and type It&ce is the most stable one. We can show this numerically for
(we call them type I/ll. They are characterized by a discon- all values ofd and h excebt for the interval 22d<3 h
tinuity of the transition between the Meissner and vortex h*  where due tc;) the larae distance betwe;an vort’icgs the
states. A survey of properties of these superconductors has_¢1’ f lculati % b insufficient to d de-
been given in our previous publicatiohwhere we have accuracy of our caiculation has been insuflicient fo draw de
demonstrated their existence in the intervedd<<3. We dis- finitive (_:onclusmns. o .

cuss now the details of the Meissner-vortex transition in _In Fig. 8 we show the magnetization jumprdm

type-I/ll superconductors based on the the expres@dn  =0(hzy) at thehg; transition as a function af. Flux expul-

calculated above. sion varies from almost complete as in type-l superconduct-
The stability of the vortex lattice in an external magnetic0rs atd=1 to vanishingly small atl=3 as in type-II super-

field ho can be investigated by minimizing conductors. Surprisingly, we find that the jurjn is almost

linearly dependent od between these two values. We also
show the equilibrium lattice constant of the triangular lattice
- - b [z - I,=(v3A2) Y2 in Fig. 3 in order to compare it with the
f(b)zf,at(b)—fszﬂ §U|at(l(b))—2 7(ho—h¢) distance between vortices bound in a pair.d&t 1 the dis-
23) tance between vortices in a lattice is minimal and equal to
| y=(47//3)"?~2.69. The vortex distance in the lattice is
. ) — . _ larger than for the vortex pair, because the presence of other
(fs is the Meissner free energpver b and different lattice

- = - ; vortices suppresses superconductivity and thus diminishes
types. As can be seen in Fig. 7 the transition from Meissnefhe pressure of the superconducting phase against the vorti-

state withb=0 to the vortex state with finité in type-I/II ces. Atd—d.; =3 the vortex distance diverges and the lat-
superconductors occurs discontinuously at a critical fifld  tice energy can be approximated as a superposition of pair-
that is smaller than the field.,= e,/27 where the penetra- wise interaction energies.

tion an individual vortex becomes energetically advanta- The discontinuity at then}; transition can be observed
geous. The critical fielth.; which serves as the lower critical experimentally as a spinodal vortex clustering in the
field of the continuous vortex—Meissner-state transition inintermediate-mixed state in thin superconducting plafEse

type-ll superconductors can be interpreted as the field of suyproperties of such clusters are determined by the delicate
perheating for type-1/ll superconductors.

Another important conclusion is that, among the different

1 *
types of lattices studied here, the triangular one-quantum lat- 08 ho=h. ¢ ,>0, ¢,<0
E .
g
E 06
/L 0.4
. type 1 type l/11 type 11
p 0.2
YRV EYE 0

P . . . . . . 1 2

d 3

FIG. 8. Jump of magnetizationﬂﬂAm=H(h§1) at the transition
FIG. 6. Possible vortex lattice structures considered here, 1/®etween vortex and Meissner state as function of the control param-

<a/b=s1l,7/12<a</2. eterd (casec,>0,cs<0).
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