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Hot spots in superconducting tantalum

A. Hahn, S. Hofmann, K. Hu¨mpfner, and M. Schatz
Institut für Werkstoffe der Elektrotechnik, Ruhr-Universita¨t D44780 Bochum, Germany

~Received 26 June 2001; revised manuscript received 8 January 2002; published 28 May 2002!

We discuss experimental results on nonequilibrium superconductivity in Ag-Ta point contacts. From a
hysteretic dc characteristics we conclude a normal bubble suddenly to form in the superconductor below the
contact at a critical bias, its radiusR(U) monotonically increasing with bias voltageU. The observed radii are
unexpectedly large compared with what is expected from existing models. The investigation is intended to
describe this behavior in physical terms and theoretically to calculate the functionR(U) for varying values of
contact resistance. We calculate mean values over the bubble volume of the electron and phonon distribution
functions using simplified Boltzmann equations which describe the effects of electron injection into the bubble,
electron-phonon scattering, and electron and phonon escape from the bubble to the surrounding supercon-
ductor. Downscattering of high-energy injected quasiparticles into subgap states 0,E,D leads to strong
occupation of subgap states because escape is prevented for these energies by Andreev reflection from the N-S
interface. This explains the large bubble size. In contrast with this, occupation of statesE.D is typically two
orders of magnitude smaller. The functionR(U) is determined by a self-consistency condition postulating that
the calculated nonequilibrium distribution functionf (E) satisfies the BCS gap equation in the limit of vanish-
ing gap parameter. Agreement of the calculated and the experimentally determinedR(U) functions is satisfac-
tory.

DOI: 10.1103/PhysRevB.65.224503 PACS number~s!: 74.80.Fp, 74.40.1k
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I. INTRODUCTION

Geometrical resonances of electronic quasiparticle wa
on normal-metal–superconductor~N/S! and S/N/S sandwich
structures have found much interest for nearly 40 years1–3

Perhaps, Tomasch oscillations2 represent the best-known ex
ample for the corresponding phenomena. More recently,
more complex geometrical structures have found attent
e.g., one-dimensional superlattices composed of periodic
alternating N and S layers.4–6 Moreover, strong-coupling ef
fects were taken into account7 or application was made to
high-temperature superconductors.8 In all of these cases th
geometry was fixed by chemical composition or crystal
graphic structure. In contrast with this, our group h
reported9,10 resonance phenomena on a nonequilibrium str
ture in a chemically and crystallographically homogeneo
material, tantalum. The spatial structure was generated
injecting across an Ag/Ta point contact an electrical curr
strong enough to destroy superconductivity in a certain
gion called the normal bubble in what follows. The extent
this N region is not fixed but is variable in this case, t
bubble growing with increasing current, thus leading to n
aspects of the resonance phenomena observed.

As far as we are aware, similar observations of, say, q
siparticle interference effects on hot spots have not been
served by other authors despite an appreciable amoun
literature on self-heating effects in weak links and simi
structures; see, e.g., the reviews by Gurewich and Min11

and by Gross and Koelle.12

The interference phenomena under question man
themselves by a fine structure on a high-current branch of
current-voltage characteristics which is separated from
low-current branch by a hysteretic transition. Measur
along that branch the voltage dependence of the differen
conductanceG(U)5dI/dU one observes a series of anha
monic oscillations9,10 with amplitudes strongly decreasin
0163-1829/2002/65~22!/224503~12!/$20.00 65 2245
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with voltageU. In particular, the series of minima inG(U) is
rather pronounced with up to four periods observable. E
amples may be found in previous papers quoted above
some more will be given in Sec. II.

We interpret these structures as interference phenom
of quasiparticle waves on the geometry of the bubble,
characteristic quasiparticle energyE involved being the gap
energy D. We assume, as the most natural assumption
half-sphere shape of the bubble centered around the injec
orifice13 ~see Fig. 2 below!. Let R5R(U) denote the radius
of the bubble~increasing with voltageU); then, independen
of the particular mechanism by which the current-volta
characteristics is influenced by the interference phenome
the observed periodicity must correspond to the radii

R5Rn5n•j8, ~1!

with

j85p2j0/2 and j05\vF /~pD!592.5 nm ~2!

the coherence length of tantalum.n51,2, . . . is theinterfer-
ence order.

Equation~1! is the condition of constructive interferenc
of (E5D) quasiparticles Andreev reflected14 at the N/S
phase boundary and normally reflected at the surface.

The importance of the radii given by~1! was emphasized
by Gunsenheimer and one of the authors15 who investigated
the quasiparticle spectrum of a normal~full- !sphere imbed-
ded in the~infinitely extended! superconductor. Their result
may be re-interpreted in terms of the half-sphere mode
Fig. 2 which ~specular normal reflection at the surface a
sumed! yields the same results.16 Their particular interest
was in the subgap (E,D) states which are expected high
occupied by nonequilibrium scattering processes. Not un
pectedly, they find characteristic peculiarities just for the
dii given by Eq.~1!. Without being able to give a satisfactor
©2002 The American Physical Society03-1
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theory of the current-voltage characteristics they argue
these peculiarities must be reflected in the characteristic
the set of voltages for whichR(U) equals the characteristi
values given by Eq.~1!. Some quantitative idea of their re
sults on the subgap spectrum is supplied by Fig. 1 wh
displays, as a function of

R/j85r, ~3!

the quantityZ(r) defined as the total number of subg
states divided by (2p/3)R332N0D. Here N0 is the ~one
spin! density of states per unit volume. Hence 2N0D is the
number of subgap states per unit volume in the bulk lim
R→`. Z(r) is given by

Z~r!5
3

2

n~r!11

r
2

1

4

n~r!@n~r!11# @2n~r!11#

r3
,

~4!

with n(r)5trunc(r) the largest integer smaller thanr.
Equation~4! may easily be derived from Eq.~3! of Ref. 15.

Inspection of Fig. 1 illustrates what was stated above: T
subgap spectrum is characterized by peculiarities repeatin
integer values ofr5R/j8. In particular,Z(r) shows a dis-
continuous first derivative just at integer values ofr.

We emphasize here that despite some attempts9,10 a satis-
factory theory of the current-voltage characteristics does
exist. The problem is addressed in Ref. 15. Neverthel
attributing the structures inG(U) to integer values ofR/j8
and thus measuringR(U) is safely founded due to the sim
plicity and generality of Eq.~1!. We have measured th
bubble size as a function of voltage bias using Eq.~1!. Some
of these results9,10 and additional unpublished ones will b
presented as experimentally determinedR(U) relations in
Sec. II. However, there is no physical discussion ofR(U) up
to now. Such a discussion is the main aim of the pres
investigation which intends theoretically to explain the o
servedR(U) behavior, say the rule of growing of the bubbl

At first sight, the results onR(U) were unexpected. In
particular, they contrasted with the predictions of Tinkha
Octavio, and Skocpol17 and Tinkham18 proposed for strong

FIG. 1. For a normal sphere in an infinitely extended superc
ductor or a normal half-sphere according to Fig. 2: normaliz
number of subgap states vs radius. Radius in units of the chara
istic length defined in Eq.~2!.
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three-dimensional cooling in terms of the ‘‘intersecting co
model.’’ This model should have been relevant for our si
ation allowing us to calculate the temperatureT(r ) in its
dependence on distancer from the contact. Combining Eqs
~16! and~12! of Ref. 17 we obtain under reasonable assum
tions concerning our contacts19

T2~r !2TB
25

6

p4

e2

k2
U2

a2

r 2 S 12
4a2

p2r 2D ~5!

and

RN5
p

16

r0l

a2
. ~6!

Here TB is the bath temperature,e and k are the electronic
charge and Boltzmann constant, respectively,a is the radius
of the injection orifice,RN is the contact resistance in th
normal state, and

r0l 5
3

2e2vFN0

59310216 V m2 ~7!

is the (l -independent! product of resistivity and mean fre
path. The numerical value given on the right-hand side of
~7! results from the data which will be given in Sec. IV A

For TB51.4 K we obtain from the above equations for
typical contact withRN50.29 V at a voltageU59.1 mV
an orifice radiusa524.7 nm and a temperature equal to t
critical temperature Tc54.5 K at a distance r (Tc)
5152 nm. This value should set the scale for the bub
size.

Figure 2 illustrates the situation with the orifice diame
2a and the expected bubble radiusr (Tc) represented true to
scale. In fact, however, we observe for the above-given v
ues ofRN andU the second resonance minimum. The bub
radius thus isR52j85913 nm or 6 times larger than ex
pected, indicating that the model of Tinkhamet al. is inap-
plicable.

In the present investigation we shall give a quantitat
explanation of the giant bubble sizes observed. The ide
that escape of subgap quasiparticles from the bubble is
vented by Andreev reflection from the N/S phase bound
As a consequence, excitation of subgap states is high eno

-
d
er-

FIG. 2. Ag/Ta point contact produced by short circuiting a hi
resistance tunneling junction. Typical length scales forRN

50.29V, U59.1 mV: orifice diameter 2a, bubble sizer (Tc) ex-
pected according to Ref. 17, and observed bubble sizeR52j8,
represented true to scale.
3-2



e
ar
w

ni
i

e

. 5
ct
-

ith
d

ea-
0 in
than
nt

tact
ce
e-
nd

ture

s
-
te
rs
f the

w-
d
l
-

c

nd
ta-
are
c. V

to
the

HOT SPOTS IN SUPERCONDUCTING TANTALUM PHYSICAL REVIEW B65 224503
to destroy superconductivity in a large volume. A corr
sponding model is developed in Sec. III and its results
compared with the experiments in Sec. V after a revie
given in Sec. IV, of independent electronic and phono
data for tantalum entering the theory. A final discussion
given in Sec. VI. First of all, however the experimental r
sults are given in Sec. II.

II. EXPERIMENTAL RESULTS

Some experimental results were previously given.9,10 Ad-
ditional material is contained in unpublished work20 from
which the raw data were taken which finally lead to Figs
and 6 below. Concerning sample preparation and chara
ization we refer to previous papers9,10 and here only summa
rize as follows.

All experimental results refer to N/S point contacts w
the superconductor S being high-purity tantalum prepare

FIG. 3. Differential conductance versus voltage for a lo
resistance contact (RN50.29 V). Experimental curves labele
‘‘low-’’ and ‘‘high-current’’ state. Nearly horizontal line: norma
state. ‘‘BTK’’: Standard theory according to Ref. 22. ‘‘BTK param
eter’’ Z50.536.

FIG. 4. Differential conductance of three low-resistance conta
normalized to the normal-state conductance.RN /V50.292 for
sample~a!, 0.291 for ~b!, and 0.383 for~c!, respectively. Minima
indicated by arrows. Ordinate scale attributed to curve~a!. Curves
~b! and ~c! shifted vertically by20.03 and20.06, respectively.
22450
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a molten droplet under ultra high-vacuum conditions.
Residual resistivity ratios of the Ta electrode were m

sured by an eddy current method. They exceeded 500
each case, indicating an elastic mean free path larger
50 mm and thus large compared with all physically releva
lengths including the maximum observed radiusR53j8 of
the nonequilibrium bubble.

The N electrode was evaporated silver. The point con
resulted from electrically short circuiting a high-resistan
Ta/Ta2O5 /Ag tunneling junction. The resistance of the r
sulting metallic point contact was typically between 0.2 a
1.5 V.

All measurements were performed at a bath tempera
TB51.4 K.

A typical trace of the differential conductanceG
5dI/dU vs voltageU characteristics is shown by two curve
in Fig. 3 labeled ‘‘low-’’ and ‘‘high-current’’ states, respec
tively. With bias increasing from zero, the low-current sta
persists up to pointA where a discontinuous transition occu
to the high-current state indicated by a drastic decrease o

ts

FIG. 5. For samples~a! (*) and ~b! ~o!: Positions on voltage
scale of minima and maxima in Fig. 4 are attributed to integer a
half-integer values ofr5R/j8. Dashed line represents the expec
tion according to Ref. 17. Solid, dotted, and dash-dotted curves
results of the model to be presented and will be discussed in Se

FIG. 6. Voltage of first~o! and second (*) minimum inG(U) vs
contact resistanceRN . Dashed curves: expectation according
Ref. 17. Solid, dotted, and dash-dotted curves are results of
model to be presented and will be discussed in Sec. V
3-3
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excess current.21 After exceeding pointA and then again de
creasing bias the lower curve is traced down to pointB, the
system remaining in the high-current state. Within each st
low or high current, respectively, the characteristics is p
fectly reversible. In particular, in the high-current state
points of the lowermost curve in Fig. 3 down to pointB are
perfectly reproduced with increasing as well as decreas
bias. At pointB the system jumps back to the low-curre
state.

In the low-current state the characteristics approxima
follow the standard @Blonder-Tinkham-Klapwijk ~BTK!#
theory22 with some deviations which at least for higher bi
~approaching pointA from below! must be due to heating
effects. The corresponding theoretical curve is represente
‘‘BTK’’ in the diagram. It was calculated with the experi
mental values of temperatureT and normal-state resistanc
RN and with the gap parameter~here and in all the following!
D50.72 meV.23 The BTK parameterZ was adjusted to ob
tain the experimental zero-bias conductance. Samples
cating nonideal behavior by deviating, in the low-curre
state, too much24 from the BTK prediction were exclude
from further consideration.

Our main interest is in the high-current state. In Fig. 4
high-current branch of the differential conductance is rep
sented not only for the junction of Fig. 3@sample~a!# but for
two more low-resistance junctions. The ordinateGnorm
5GS(U)/GN(U) is normalized to the differential conduc
tanceGN(U) in the normal state. The diagram may serve
indicate the degree of reproducibility from sample to samp
Resistance values are given in the figure caption.

We have indicated pronounced minima in Fig. 4 by
rows and we associate these minima consecutively wit
bubble radius~in units of j8) r5R/j851,2,3, . . . . Let the
voltage values corresponding to these minima
U1 ,U2 ,U3 , . . . . Then the experimental result of Fig.
yields the rule of growingr(U) of the bubble radius with
voltage for samples of given resistance, at least on so
discrete points. If we attribute the maxima between
minima to half-integer values ofr, the number of points is
somewhat enhanced for whichr(U) is experimentally deter-
mined. The corresponding diagramu vs r resulting for
samples~a! and~b! is represented in Fig. 5. Here and in th
following

u5eU/D ~8!

is the voltage normalized to the gap voltage.
Normal-state resistances for samples~a! and~b! are equal,

namely,RN50.29 V. Hence, Fig. 5 represents the expe
mentally determined rule of growing of the nonequilibriu
bubble below a 0.29V contact@with differences between
~a! and ~b! indicating the degree of reproducibility#. Note
that this resistance value is the smallest one realized by
preparation procedure. The dashed line in Fig. 5 is obtai
from Eqs.~5!–~7! and represents the radii for which the loc
temperature should have fallen off toTc according to Refs.
17 and 18. Note again that these radii are too small b
factor of about 6.
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Figure 5 represents one of two results which have to
explained in the following sections. The second result to
explained is the dependence on contact resistance to be
sented in the following.

For junctions with resistanceRN larger than those repre
sented in Fig. 4 the minima are shifted to higher volta
This is reasonable since one might expect the heating po
U2/RN to remain approximately constant for a given bubb
radius to be obtained. At the same time, there are only
minima observable inG(U) corresponding tor51 and r
52. This is due to the deviations inG(U) from the normal-
state conductance quickly decreasing with increasingeU/D.
Thus finer details are not resolved in the characteristics
higher bias.

In Fig. 6 we have plotted for all our samples the positi
on voltage scale of the first and second minima versus c
tact resistanceRN . The dashed lines again are obtained fro
Eqs. ~5!–~7!. According to this latter estimate the~large!
radii r51 and r52 are expected~for the applied voltage
range! for resistance values much smaller than observed,
for much higher heating powerU2/RN . Thus, while Fig. 5
represents the growing law of the bubble for the small
contact resistance, Fig. 6 contains all available experime
information concerning the dependence of bubble grow
on contact resistance. The main aim of the present invest
tion is to understand Figs. 5 and 6.

III. MODELING THE BUBBLE GROWTH

A. Conception of the model

In the following we propose a model for the electron a
phonon nonequilibrium distributions which are established
the bubble on account of multiple inelastic scattering p
cesses of the injected electrons. The scattering is due to
electron-phonon interaction and the scattering probabili
are characterized by the Eliashberg functiona2F(v).

With the bias voltage given and a particular bubble s
arbitrarily assumed we may, by simplified Boltzmann equ
tions, calculate stationary distributions for electron and p
non excitations,f (rW,kW ) and n(rW,qW ), respectively. As usual
the distribution functions are assumed to depend on w
vectorskW andqW only via the quasiparticle energiese andv.
Moreover, the spatial (rW) dependence within the bubble
replaced by mean values over the bubble. Hence we w
with energy-dependent mean occupation probabilitiesf (e)
andn(v) in the bubble. The distributions outside the bubb
do not explicitly enter the model.

For given bias voltage and different bubble sizes ar
trarily assumed, quasiparticle excitationf (e) will be low for
large and will be high for small bubble size. If we tentative
describe the quasiparticle excitation by an effective tempe
ture, this temperature would be low, say small compa
with the critical temperatureTc , for large bubble size and
would be large compared withTc for small bubble size. Nei-
ther of both cases would be stable. Instead, too larg
bubble must be expected to shrink and too small a bub
must be expected to grow. Obviously, there must be an
termediate bubble size which is stable for the given inject
3-4
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HOT SPOTS IN SUPERCONDUCTING TANTALUM PHYSICAL REVIEW B65 224503
bias. This bubble size in its dependence on voltage repres
the growing lawr(u) we are looking for.

If the quasiparticle distribution would be thermal,r(u)
would be determined by postulating the effective tempe
ture to equalTc . Since it will turn out to be not, this postu
late must be replaced by another suited condition. In fact,
shall postulate the~nonthermal! stationary quasiparticle dis
tribution function f (e) to satisfy the BCS gap equation fo
vanishing order parameter. The corresponding s
consistency equation will be given in Sec. III D below.

The quasiparticle spectra within the bubble are assum
to be given by the normal-state bulk densities of sta
namely,N0, the one-spin density of states at the Fermi lev
and the energy-dependent phonon density of states,F(v). At
first sight, the use of bulk properties to describe the spect
of excited states might seem questionable in particular
the electronic system. Remember that the finite size of
bubble leads to the quantization phenomena displayed in
1. However, from Fig. 1 we may realize that the quantizat
phenomena do not lead to an order of magnitude devia
from the bulk value for values ofr between 1 and 3. Instead
the mean density of states in the subgap regime is mod
only by 20% –60%. Thus, while in principle the propos
model is suited to determiner(u) for r@1 it may be ex-
pected to be not too bad in the experimentally obser
range ofr values from 1 to 3.

B. Explicit formulation of the stationarity conditions

In the following e and v are defined as dimensionles
quantities: namely, the corresponding electron and pho
energies divided by the gap energy. The densities of sta
however, retain their usual normalization. HenceN0Dde and
F(v)Ddv are the increments of the numbers of electro
and phononic states per unit volume.

We denote withf (e) and 12 f (e) the mean electron an
hole occupation numbers with excitation energiese.0 and
2e.0, respectively.n(v) was defined as the mean occup
tion number for phonon states with energyv. Both, f (e) and
n(v) must be stationary under the condition of givenr and
u. Thus we must have for a particular energy

S d f~e!

dt D
in j

1S d f~e!

dt D
esc

1S d f~e!

dt D
scatt

50 ~9!

and

S dn~v!

dt D
esc

1S dn~v!

dt D
scatt

50. ~10!

Here ‘‘inj’’ means ‘‘on account of quasiparticle injectio
from the contact’’ and ‘‘esc’’ means ‘‘on account of quasipa
ticle escape from the bubble.’’ The last terms on the left-ha
sides of the Boltzmann equations~9! and ~10! describe the
effect of electron-phonon scattering and will be further d
cussed below.

Let us assume throughout the following that the norm
side of the contact is biased negatively. Then electron
quasiparticles are injected into the bubble. Above the g
i.e., for e.1, the occupation is very small compared wi
22450
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unity while f (e) is very close to unity fore,21 , even in
the high-current state. We may anticipate this from our la
results on the nonequilibrium distribution function. Hen
quasiparticle injection may be neglected fore,21.

For 1,e,u we may obtain the injection term in Eq.~9!
from

2N0S d f~e!

dt D
in j

2p

3
j83 r3Dde5

Dde/e

RN

1

e
~11!

as

S d f~e!

dt D
in j

5
~3/4p!

RNe2j83 r3N0

for 1,e,eU/D.

~12!

To justify Eq. ~11! note that the left-hand side is the in
crement of the number of electrons in the bubble per u
time and per energy incrementDde. With RN the contact
resistance, the right-hand side is the corresponding injec
current contribution in units of electrons per unit time.

For ueu,1, quasiparticle injection may be neglected f
the following reason: Any injected electronlike quasipartic
will, with high probability, elastically be Andreev reflected a
a hole back through the injection orifice thus leading to
net yield of quasiparticle density in the bubble. Of cour
there is a finite electron and hole density within the bub
on account of this injection and elastic backscattering p
cess. However, its contribution to the mean occupation pr
ability f (ueu,1) is of order of magnitudea2/R2!1 and thus
is negligible compared with the subgap excitation result
from inelastic downscattering of high-energy quasipartic
into subgap states. Hence Eq.~12! may be completed by

S d f~e!

dt D
in j

50 for e.u and e,1. ~13!

For the escape term in Eq.~9! we make the simplest possibl
assumption: namely,

S d f~e!

dt D
esc

55
2 f ~e!

vF

rj8
for e.1,

0 for ueu,1,

@12 f ~e!#
vF

rj8
for e,21.

~14!

For ueu,1 this describes the effect of Andreev reflectio
preventing quasiparticles to leave the bubble. Forueu.1, Eq.
~14! corresponds to a mean traveling timeR/vF of an elec-
tron or hole moving a typical distanceR5rj8 with Fermi
velocity to leave the bubble.

For ueu.1 the third term in Eq.~9! may be written as

S d f~e!

dt D
scatt

5S d f~e!

dt D
e1

1S d f~e!

dt D
e2

1S d f~e!

dt D
a1

1S d f~e!

dt D
a2

, with ~15!
3-5
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S d f~e!

dt D
e1

5
2pD

\
@12 f ~e!#E

0

`

f ~e1v!a2F~v!@n~v!11#dv5A1~e!, ~16!

S d f~e!

dt D
e2

52
2pD

\
f ~e!E

0

`

@12 f ~e2v!#a2F~v!@n~v!11#dv5A2~e!, ~17!

S d f~e!

dt D
a1

5
2pD

\
@12 f ~e!#E

0

`

f ~e2v!a2F~v!n~v!dv5A3~e!, ~18!

S d f~e!

dt D
a2

52
2pD

\
f ~e!E

0

`

@12 f ~e1v!#a2F~v!n~v!dv5A4~e!. ~19!
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The symbolsAi(e) are introduced as abbreviations for th
right-hand sides of the above equations for later use.
subscriptse12 and a12 stand for phonon emission~e! or
absorption~a! processes increasing (1) or decreasing (2)
the occupation numberf (e), respectively. Equations~15!–
~19! are standard results of time-dependent perturba
theory and may, e.g., be obtained from Eq.~4.35! of Ref. 25.

As they stand, Eqs.~15!–~19! hold for ueu.1. For ueu
,1 these equations need some modification. We have to
into account Andreev reflection from the N/S bounda
which not only prevents escape but, moreover, guaran
that electron and hole occupation numbers are equal, h
f (e)512 f (2e).

For example, think of a phonon emission process prod
ing a subgap electron 0,e,1. By the following elastic An-
dreev reflection process the electron excitation vanishes f
the bubble and a hole excitation appears with the same e
tation energy, i.e., withehole52e according to our conven
tion at the beginning of this subsection. By the followin
Andreev reflection the hole is reconverted into an elect
and so on. As a result, the phonon emission process u
question has not produced an electron with unity probab
but an electron and a hole, both with probability one-ha
Both f (e) and 12 f (2e) are therefore enhanced by phon
emission processes with final-state electron energye.0, the
corresponding value ofd f(e)/dt5d@12 f (2e)#/dt being
given by the right-hand side of Eq.~16! times one-half.

The corresponding coupling of electron and hole sta
does not only apply for phonon emission processes enh
ing f (e) for 0,e,1 but also for absorption processes a
for both types of processes decreasingf (e). Moreover, also
processes with negative instead of positive subgap value
e as initial or final electronic state lead to contributions
d f(e)/dt. The final result for

S d f~e!

dt D
scatt

5S d@12 f ~2e!#

dt D
scatt

52S d f~2e!

dt D
scatt

~20!

may be written with the aid of the abbreviationsAi(e) intro-
duced above as
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S d f~e!

dt D
scatt

5
1

2 S (
i 51

4

Ai~e!2(
i 51

4

Ai~2e!D for ueu,1,

~21!

holding for either sign ofe and obviously satisfying Eq.~20!.
The stationary phonon occupation is determined by

~10!. Here we set, analogously to Eq.~14!,

S dn~v!

dt D
esc

52n~v!
vph

R
, ~22!

wherevph denotes a typical phonon group velocity. We sh
see later on that phonon escape is rather unimportant on
count of small values ofvph . Hence this ansatz is less crit
cal than the electron escape term~14!.

Electron-phonon scattering leads to

S dn~v!

dt D
scatt

5S dn~v!

dt D
e

1S dn~v!

dt D
a

, ~23!

with the emission~e! and absorption~a! terms given by

S dn~v!

dt D
e

52N0

2pD

\
a2~v!@11n~v!#

3E
2`

1`

@12 f ~e2v!# f ~e!de

5B1~v! ~24!

and

S dn~v!

dt D
a

522N0

2pD

\
a2~v!n~v!

3E
2`

1`

f ~e!@12 f ~e1v!#de

5B2~v!, ~25!

respectively. Equation~24! may be made obvious from Eq
~17! which implies that the number of phonons from th
interval (v,v1dv) produced per unit time and per unit vo
3-6
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ume by phonon emission processes with initial electron
ergy betweene ande1de is given by

2N0Dde
2pD

\
f ~e!@12 f ~e2v!#@n~v!11#a2F~v!dv.

Integrated overe this must be equal to the total number
phonons emitted per unit time and per unit volume in
interval (v,v1dv): namely,

F~v!DdvS dn~v!

dt D
e

.

The corresponding equation is just Eq.~24!. Equation~25! is
made obvious in a similar manner.

C. Algorithm, compilation of formulas

We have now at our disposal all equations which
needed to determine the stationary distributionsf (e) and
n(v) for given injection bias and given bubble radiusR
5rj8. We summarize these equations in a form suited fo
numeric algorithm.

Inserting Eqs.~12!, ~13!, ~14!, ~15! @or, alternatively, Eq.
~21!#, and finally Eqs.~16!, ~17!, ~18!, and~19! into Eq. ~9!
and, moreover, inserting Eqs.~22!–~25! into Eq. ~10!, we
obtain two equations which may be written as

F11 f ~e!G150 ~26!
22450
-

e

e

a

and

F21n~v!G250, ~27!

with

F15Jin j1Jesc,el
(F) 1J11, ~28!

G15Jesc,el
(G) 2J111J12, ~29!

F25N0

4pD

\
a2~v!E

2`

1`

@12 f ~e2v!# f ~e!de, ~30!

G25Jesc,ph1J2 . ~31!

Here the following abbreviations are used:

Jin j5H F4p

3
RNe2j83r3N0G21

for 1,e,u,

0 otherwise

~32!

Jesc,el
(F) 5

vF

rj8
3H 0 for e.21,

1 for e,21,
~33!

Jesc,el
(G) 52

vF

rj8
3H 1 for ueu.1,

0 for ueu,1,
~34!
J115
2pD

\
35

E
0

`

a2F(v)$ f (e1v)[n(v)11]1 f (e2v)n(v)%dv for ueu>1,

E
0

`

a2F(v)H 1

2
@ f ~e1v!2 f ~2e1v!#@n~v!11#

1
1

2
[ f (e2v)2 f (2e2v)]n(v)J dv for ueu,1,

~35!

J1252
2pD

\
35

E
0

`

a2F~v!$@12 f ~e2v!#@n~v!11#1@12 f ~e1v!#n~v!%dv for ueu>1,

E
0

`

a2F~v!H 1

2
@ f ~2e2v!2 f ~e2v!#@n~v!11#

1
1

2
@ f ~2e1v!2 f ~e1v!#n~v!J dv for ueu,1,

~36!
er-

the
lum
Jesc,ph52
vph

rj8
, ~37!

J25N0

4pD

\
a2~v!E

2`

1`

@ f ~e1v!2 f ~e2v!# f ~e!de.

~38!
Note that the quantitiesF1 and G1 depend one and,
moreover, are functionals of the distributions to be det
mined: namely,f (e8) and n(v). Similarly, F2 and G2 de-
pend onv and are functionals off (e8). This will be indi-
cated by the notation below. All other quantities entering
above equations are known experimental data for tanta
and will be given in Sec. IV.
3-7
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Equations~26! and ~27! may be written as

f ~e!52
F1@e, f ~e8!,n~v!#

G1@e, f ~e8!,n~v!#
, ~39!

n~v!52
F2@v, f ~e8!#

G2@v, f ~e8!#
, ~40!

and in this form represent the basis for an iterative numer
algorithm to determine the distribution functionsf (e) and
n(v) by the following steps.

~i! Assume a suited initial quasiparticle distributio
f 0(e8).

~ii ! From this calculate an initial phonon distributio
n0(v) using Eq.~40!.

~iii ! Insert these starting functionsf 0(e8) and n0(v) on
the right-hand side of Eq.~39! to obtain a betterf (e), say
f 1(e).

~iv! With f 1(e8) inserted into Eq.~40! obtainn1(v).
~v! Repeat steps~iii ! and ~iv! to obtain f n(e), nn(v) as

results of thenth iteration. Continue untilf n(e) equals
f n21(e) with sufficient precision.

This iteration procedure converged after a few iteratio
yielding f (e) and n(v) for given injection bias voltageU
and given bubble radiusr. Results will be given in Sec. V.

D. Self-consistency equation

The above-sketched numerical program leads to distr
tion functionsf (e) andn(v) for any assumed pair ofu and
r values. However, for givenu only one particular value ofr
will be established corresponding to an electronic excitat
f (e) just necessary to destroy superconductivity. We obt
the corresponding condition forf (e) from the BCS gap
equation26 for vanishing gap parameter: namely,

15N0VE
0

\vD /D122 f ~e!

e
de. ~41!

If f (e) were the Fermi function for temperatureTc , Eq.
~41! would determineTc with the well-known resultkTc
50.568D. For the real nonequilibrium case we shall det
mine, for a givenr, that particularU which just produces a
nonequilibrium distributionf (e) satisfying Eq.~41!. It is ob-
vious that the corresponding numerical program will lead
a unique value ofU since f (e) must, for anye, be expected
monotonically to increase withU and hence the right-han
side of Eq.~41! will monotonically decrease.

Using the BCS result ln(2\vD /D)5(N0V)21, which is a
good approximation for\vD@D, Eq. ~41! may be brought
to the form

E
0

1122 f ~e!

e
de22E

1

\vD /D f ~e!

e
de2 ln 250. ~42!

Using Eq. ~41! as a starting point we have assum
particle-hole symmetryf (e)512 f (2e). While this condi-
tion is granted by our model forueu,1 we shall see later on
that it is violated forueu.1. However, we shall also find
22450
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from the numerical data that the second contribution in E
~42! will be negligibly small and thus the same is true for t
error made by assuming particle-hole symmetry. In fact,
~42! may well be replaced by

L~u!ªE
0

1122 f ~e!

e
de2 ln250, ~43!

which is the final form of the self-consistency condition to
applied in the following. The symbolL(u) is introduced for
later use.

IV. ELECTRON AND PHONON PROPERTIES OF
TANTALUM

A. Constants entering the model

To apply the above-described model we need an indep
dently known set of data for tantalum. The model bei
coarse grained enough we want to avoid any adjusting
parameters and instead to take all necessary data from
literature. Before discussing our knowledge of the Eliashb
function a2F(v) we shortly summarize our choice of th
parametersN0 , D, vF , j8, andvph entering the model. We
assume the following values:

D50.72 meV~Ref. 23!,
2j8/p25j0592.5 nm~Ref. 27!,
N052.0431047J21m23 ~Ref. 28!,
vF53.183105 m/s.
vF was deduced from the well-established experimen

data forD and j0 using the BCS relationj05\vF /(pD).
Hence the data forD, j0, andvF are consistent. Finally, the
phonon group velocity strongly depends on phonon bra
index and frequency. Maximum values are obtained in
long-wavelength limit. From the elastic constants given
Featherston and Neighbors29 one obtains about 2000 m/s fo
transverse and about double this value for longitudi
phonons. These values are small enough to neglect pho
escape completely in our model settingvph50. We shall
demonstrate this later on by a few examples comparing
sults forvph50 or 2000 m/s, respectively.

B. Eliashberg function

In principle, the formulas given in Sec. III C contain bot
the Eliashberg functiona2F(v) and a2(v), the average
squared electron-phonon interaction matrix element. Ho
ever, witha2F(v) being given, the final results for the sta
tionary distributionsf (e) andn(v) are practically indepen-
dent of a2(v). This is true because phonon escape may
neglected, as was stated before. Thata2(v) does not enter
the model results forvph50 is most easily seen by inspec
ing Eqs.~39! and ~40! and the preceding formulas definin
the symbols entering these equations. Forvph50, F2 andG2
are both proportional toa2(v) and hencen(v) is indepen-
dent ofa2(v) according to Eq.~40!. Finally, f (e) as given
by Eq. ~39! does not depend ona2(v) sincen(v) does not.

The Eliashberg function for tantalum was determin
from N/S tunneling data by Shen.23 Very similar results have
later on been reported by other authors.30–32 Shen’s experi-
3-8
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HOT SPOTS IN SUPERCONDUCTING TANTALUM PHYSICAL REVIEW B65 224503
mental result, represented by circles in Fig. 7, is well rep
sented by the solid line in the same diagram. This interpo
ing line will be used for all of the following calculations. I
corresponds to an ad-hoc analytical expression which h
ever, need not be given here since there is no physical
soning behind it and since the interpolation may, with su
cient precision, be obtained from Fig. 8 below. Fig. 7 a
contains thea2F-data obtained from tunneling experimen
by Wolf et al.32 and the data calculated theoretically by A
Lehaibi, Swihart, Butler, and Pinski.28 a2F(v) is needed
only for energies belowv'25 corresponding to the max
mum values ofeU/D appearing in the experiments~see Fig.
6!. As a consequence, only the transverse phonon pea
represented in Fig. 7, the longitudinal phonon peak of
characteristic double peak structure lying at somewhat hig
energies.

The model results are rather insensitive to modificatio
of a2F(v) in the rangev.10. For example, calculation
based on the dashed or dotted instead of the solid curv
Fig. 7 yield maximum deviations in the calculatedr(u) of
less than 0.5% which are negligible. On the other hand,
low energies, say up to several times the gap energy, reli
values fora2F(v) are not available from tunneling. This i
due to the extremely small values ofa2F(v) in this regime
leading to error bars of 100% order of magnitude. A meth
of nevertheless plottinga2F(v) down tov50 is to simply
assume a behavior proportionalv2, i.e.,

a2F~v!5bv2 ~44!

below some low-lying energy. Thus in Ref. 30 a correspo
ing assumption was made for energies below 5 meV, co
sponding tov'7. Shen’s data handling obviously was pe
formed in the same way with the result ofb50.9.33,34

Nevertheless, the tunneling results must, for general
thodical reasons, be considered as principally unknown
energies up to a few times the gap energy. This uncertain
rather unimportant with respect to the superconducting e
librium properties onto which interest was focused in t

FIG. 7. Eliashberg functiona2F(v) as determined by She
~Ref. 23! ~o!, Wolf et al. ~Ref. 32! ~x!, and Al-Lehaibiet al. ~Ref.
28! (*). Solid line: analytical interpolation of Shen’s data. Dash
and dotted lines: variants.
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papers quoted above. However, the results of the pre
investigation strongly depend on the low-energy behavior
a2F(v).

Fortunately, the theoretical data of Ref. 28 allow for
improved extrapolation to the low energy regime. From F
1 of Ref. 28 we obtaina2(v) which ~some small spurious
oscillations neglected! varies roughly linearly from 2.7
310251 J m3 at very low energies to 6310251 J m3 at v
5E/D'20.35 The former value allows to estimat
a2F(v)/v2 for very low energies sinceF(v)/v2 may be
obtained from the elastic constants which were determi
for tantalum by Featherston and Neighbors29. From their data
we obtain ~omitting details of the estimate!
lim

v→0
@F(v)/v2#51.0431047 J21m23. With a252.7

310251 J m3 we finally have

lim
v→0

@a2F~v!/v2#50.2831023. ~45!

Figure 8 showsa2(v)/v2 vs v. The theoretical data o
Ref. 28 are again represented by stars and by the valu
v50 given above. Shen’s data~represented by circles! may
be linearly extrapolated to this value. We claim this extrap
lation to be more reliable than the quadratic extrapolation
the above-given valueb50.9 ~the latter extrapolation is in-
dicated by the dashed horizontal line!.

The remaining difference between the data by Shen
by Al-Lehaibi et al. is due to the fact that the theoretic
calculation does not yield the extra structure at 7 mV~or v
slightly below 10! which is, however, well established by th
tunneling data from different authors. Hence, the solid line
Figs. 7 and 8 will be used to represent the Eliashberg fu
tion in all of the following calculations.

V. MODEL RESULTS

In the following we present typical results. Thee andv
scales were divided into finite intervals of lengthde5dv
and the integrations of Sec. III C were replaced by summ
tions over these intervals with a suited cutoff.de5dv
50.1 was chosen since choosing smaller intervals did p
tically not alter the results. The iteration procedure prac

FIG. 8. a2F(v)/v2 vs v. Data ~o!, (*) and solid line taken
from Fig. 7. Dashed lines: see text.
3-9
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cally converged after three or four iterations with a precis
given by the linewidth of the following graphical present
tion of results. Actually, six iterations were applied in a
cases.

Figure 9 represents, as an example, electronic quasip
cle distributions for the parametersRN50.29 V, r51 ~i.e.,
R5j8), and five different voltage values given in the figu
caption. The figure demonstrates the main features of a
our results: Excitation is high for subgap states and is
orders of magnitude lower for 1,e,u and fore,21 ~note
the different scaling for sub-gap and above-gap energies
spectively!. The reason for this behavior was outlined abo
Quasiparticles excited above the gap quickly escape, lea
to a low mean occupation within the normal half-sphe
while subgap quasiparticles cannot escape because the
Andreev reflected.36

For e.u, there is no injection and excitation is unme
surably small on the right-hand scale of Fig. 9. For one of
five curves~corresponding tou57.28) f (e) is displayed in
this region enlarged by a factor of 200. For the same volt
parameter the hole excitation 12 f (2e) is also displayed for
e.1. For 0,e,1 the hole excitation 12 f (2e) equals
f (e) as displayed in the figure and hence does not need t
displayed separately.

For givenRN and r, the distribution functionsf (e) and
n(v) were calculated for varying voltageu. In each case the
left-hand side of the self-consistency equation~43!, L(u),
was calculated. As outlined before,L(u) monotonically de-
creases withu. We determined by interpolation that value
u for which L(u) vanishes; i.e., the self-consistency equat
is satisfied. This is just the voltage corresponding to
given values ofRN and r and thus constitutes the result
the theoretical model. Figure 9 just represents some typ
results for the parametersRN50.29 V andr51. The value
u57.28 corresponding to the middle one of the five curv
was obtained by interpolation as that value for whichL(u)
practically vanishes. We have, with an error of less th
0.005,

FIG. 9. Distribution functionf (e) for RN50.29 V, r51, and
~from top to bottom! u59.28, 8.28, 7.28, 6.28, and 5.28, respe
tively. Left-hand and right-hand ordinate scales valid fore,1 and
ueu.1, respectively. Foru57.28 ~symbol *) the self-consistency
equation is satisfied. For this u value also the hole excitatio
2 f (2e) is represented. Dashed line: see Ref. 36.
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L~5.28!50.249, L~6.28!50.113, L~7.28!50.004,

L~8.28!520.082, L~9.28!520.151.

Theu values satisfyingL(u)50 were calculated for vary-
ing values of contact resistanceRN and bubble radiusr. In
Figs. 5 and 6 the results are shown and compared with
experimental results. The solid lines represent the results
vph50 which, according to Sec. IV B, depend ona2F(v)
only and not@with a2F(v) given# on a2(v) andF(v) sepa-
rately. The dotted and dash-dotted curves were calcula
with vph52000 m/s, a2F(v) as given and assuminga2

independent ofv and equal to 6310251 J m3 and 2.7
310251 J m3, respectively. Remember these being the
tremal a2 values according to Sec. IV B. As stated befo
the differences between solid, dotted, and dash-dotted cu
are unimportant proving that phonon escape may be
glected.

On the whole, Figs. 5 and 6 show that the model is w
suited to explain the growing of the normal bubble within t
limits of experimental reproducibility and of restricte
knowledge of the Eliashberg function. In particular, progre
in understanding is obvious if we compare the calcula
curves with the predictions of Ref. 17 represented by
dashed curves in Figs. 5 and 6.

VI. DISCUSSION

Figures 5 and 6 constitute the most important result of t
paper by proving that the scale of the experimentally o
served growing of bubble size with injection is very close
what is theoretically expected. To obtain such an understa
ing has been the main purpose of the present investiga
As we have seen, the nonequilibrium structure is gover
by Andreev reflection, preventing escape of subgap quasi
ticles and thus leading to high occupation of subgap sta
even in a large volume. We emphasize that such an eff
while seeming natural for the N/S structure under questi
is not to be expected for a weak link~w! between two super-
conductors, say an S/w/S structure with an electric fi
across ‘‘w.’’ In the latter case any subgap quasiparticle, A
dreev reflected between both S banks, would quickly esc
from the w region by the effect of acceleration in the field
described, e.g., by Klapwijket al.37 or by Kümmel et al.38

Since most of the previous investigations on hot spots~in-
cluding the paper by Skocpol, Beasley, and Tinkham39 open-
ing the field! have been on weak-link structures between
perconducting banks, the phenomenon investigated h
seems not to have been observed before.

There have been some observations, by the Khar
group,40,41 of nonequilibrium under high-current condition
for N/S point contacts, with tantalum as the superconduc
However, there is no direct access to the spatial extend o
nonequilibrium region which in our case is obtained from t
Tomasch-type oscillations. Hence there is no direct comp
son possible between the results of both groups. In view
the importance of measuring the bubble size we want to
phasize that two conditions must be given~and are so with
our samples! in order to observe the oscillations under que

-
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tion: The mean free path must be markedly larger thanj8,
and a very smooth surface is necessary. Such a surfac
sults from our procedure of preparing the tantalum samp
as molten drops in ultrahigh vacuum and not destroying
smoothness by the succeeding preparation steps. Both
conditions are usually not satisfied in point contact inve
gations.

A final comment concerns the remarkable simplicity
the applied model. Why does neither the electric field in
bubble nor the supercurrent in the S region influence
results? Both features are due to the large size of the bub
The electric field essentially is confined to distances from
contact of order of magnitude of the orifice diameter 2a.
Hence nearly all of the bubble volume is practically fie
free — see Fig. 2. Finally, the~three-dimensional! spatial
spread of the current leads, in the S region, to a cur
density smaller thanU/(RN32pR2) which is easily esti-
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mated to be far below the critical current density, again d
to the large values ofR.

Among the remaining problems we mention the cons
tent description of the observed hysteresis. Moreover,
would like to avoid to use bulk properties in describing t
electronic system in the bubble. Instead, a more realistic
scription is desirable of finite-size effects on the quasipart
system. One might hope that such a description remove
obvious remaining systematic deviation between experim
and theory: namely, the different curvature of both in Fig
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