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We discuss experimental results on nonequilibrium superconductivity in Ag-Ta point contacts. From a
hysteretic dc characteristics we conclude a normal bubble suddenly to form in the superconductor below the
contact at a critical bias, its radit®U) monotonically increasing with bias voltage The observed radii are
unexpectedly large compared with what is expected from existing models. The investigation is intended to
describe this behavior in physical terms and theoretically to calculate the fufitioh for varying values of
contact resistance. We calculate mean values over the bubble volume of the electron and phonon distribution
functions using simplified Boltzmann equations which describe the effects of electron injection into the bubble,
electron-phonon scattering, and electron and phonon escape from the bubble to the surrounding supercon-
ductor. Downscattering of high-energy injected quasiparticles into subgap states<Q leads to strong
occupation of subgap states because escape is prevented for these energies by Andreev reflection from the N-S
interface. This explains the large bubble size. In contrast with this, occupation of Btat®ds typically two
orders of magnitude smaller. The functiB(U) is determined by a self-consistency condition postulating that
the calculated nonequilibrium distribution functié(E) satisfies the BCS gap equation in the limit of vanish-
ing gap parameter. Agreement of the calculated and the experimentally deteRgldgdunctions is satisfac-
tory.
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[. INTRODUCTION with voltageU. In particular, the series of minima {&(U) is
rather pronounced with up to four periods observable. Ex-
Geometrical resonances of electronic quasiparticle waveamples may be found in previous papers quoted above and
on normal-metal—superconductd/S) and S/N/S sandwich some more will be given in Sec. Il.
structures have found much interest for nearly 40 y&ats. We interpret these structures as interference phenomena
Perhaps, Tomasch oscillatiémepresent the best-known ex- Of quasiparticle waves on the geometry of the bubble, the
ample for the corresponding phenomena. More recently, alsgharacteristic quasiparticle energyinvolved being the gap
more complex geometrical structures have found attentiorenergy A. We assume, as the most natural assumption, a
e.g., one-dimensional superlattices composed of penodmallbalf sphere shape of the bubble centered around the injection
alternating N and S layefs® Moreover, strong-coupling ef- orifice'® (see Fig. 2 below Let R=R(U) denote the radius
fects were taken into accodnor application was made to ©f the bubble(increasing with voltagd)); then, independent
high-temperature superconductdrm all of these cases the of the particular mechanism by which the current-voltage
geometry was fixed by chemical composition or crystallo-characteristics is influenced by the interference phenomenon,
graphic structure. In contrast with this, our group hasthe observed periodicity must correspond to the radii
reported'*°resonance phenomena on a nonequilibrium struc-
ture in a chemically and crystallographically homogeneous R=R,=n-¢&’, @
material, tantalum. The spatial structure was generated by,
injecting across an Ag/Ta point contact an electrical current
strong enough to destroy sup_erconductivity in a certain re- g=m2¢2 and &=five/(mA)=92.5 nm  (2)
gion called the normal bubble in what follows. The extent of
this N region is not fixed but is variable in this case, thethe coherence length of tantalum=1,2, . . . is thenterfer-
bubble growing with increasing current, thus leading to newence order.
aspects of the resonance phenomena observed. Equation(1) is the condition of constructive interference
As far as we are aware, similar observations of, say, quaef (E=A) quasiparticles Andreev reflectédat the N/S
siparticle interference effects on hot spots have not been olphase boundary and normally reflected at the surface.
served by other authors despite an appreciable amount of The importance of the radii given ki) was emphasized
literature on self-heating effects in weak links and similarby Gunsenheimer and one of the autfidrsho investigated
structures; see, e.g., the reviews by Gurewich and Mints the quasiparticle spectrum of a norni&ill-)sphere imbed-
and by Gross and Koelfé. ded in the(infinitely extended superconductor. Their results
The interference phenomena under question manifeshay be re-interpreted in terms of the half-sphere model of
themselves by a fine structure on a high-current branch of thEig. 2 which (specular normal reflection at the surface as-
current-voltage characteristics which is separated from aumed yields the same resultS. Their particular interest
low-current branch by a hysteretic transition. Measuringwas in the subgapE<A) states which are expected highly
along that branch the voltage dependence of the differentiadccupied by nonequilibrium scattering processes. Not unex-
conductancés(U)=dl/dU one observes a series of anhar- pectedly, they find characteristic peculiarities just for the ra-
monic oscillation&'® with amplitudes strongly decreasing dii given by Eq.(1). Without being able to give a satisfactory
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J T'G' L. Fora nolrrr;]allfsphr(]ere in an 'n(j!n'telty eétengfed SlJpe1_(:0r('1|’[hree—dimensional cooling in terms of the “intersecting cone
uctor or a normal hall-spneré accoraing 1o F1g. <. NOMallzey, e » This model should have been relevant for our situ-
number of subgap states vs radius. Radius in units of the character-. . L
- . . ation allowing us to calculate the temperatdrér) in its
istic length defined in Eq(2). . .
dependence on distancdrom the contact. Combining Egs.
4116) and(12) of Ref. 17 we obtain under reasonable assump-

theory of the current-voltage characteristics they argue th .
Hpns concerning our contadts

these peculiarities must be reflected in the characteristics
the set of voltages for whicR(U) equals the characteristic

values given by Eq(1). Some quantitative idea of their re- Tz(r)—T2=£ e_zuza_2< 1— o ) (5)
sults on the subgap spectrum is supplied by Fig. 1 which B K2 2 w2r?
displays, as a function of
and
R/¢ =p, 3)
the quantityZ(p) defined as the total number of subgap RNIEP_OI_ (6)

states divided by (2/3)R®X2NyA. Here N, is the (one

spin) density of states per unit volume. HencBlA is the ) )
number of subgap states per unit volume in the bulk limit"€re Te is the bath temperature,andk are the electronic
R—. Z(p) is given by charge and Boltzmann constant, respectivalis the radius

of the injection orifice,Ry is the contact resistance in the
3n(p)+1 1n(p)[n(p)+1][2n(p)+1] normal state, and

Z(p)=>5 :
2 p 4 p3

3
4 pol = ﬂ =9x10 16 O m? (7)
e
with n(p)=trunc(p) the largest integer smaller tham. vro

Equation(4) may easily be derived from E3) of Ref. 15. is the (-independentproduct of resistivity and mean free
Inspection of Fig. 1 illustrates what was stated above: Theath. The numerical value given on the right-hand side of Eq.
subgap spectrum is characterized by peculiarities repeating &%) results from the data which will be given in Sec. IV A.
integer values op=R/¢’. In particular,Z(p) shows a dis- For Tg=1.4 K we obtain from the above equations for a
continuous first derivative just at integer valuespof typical contact withRy=0.29 () at a voltageU=9.1 mV
We emphasize here that despite some attetpsssatis-  an orifice radiusa=24.7 nm and a temperature equal to the
factory theory of the current-voltage characteristics does natritical temperature T,=4.5 K at a distancer(T,)
exist. The problem is addressed in Ref. 15. Neverthelesss 152 nm. This value should set the scale for the bubble
attributing the structures i (U) to integer values oR/¢’ size.
and thus measurinB(U) is safely founded due to the sim- Figure 2 illustrates the situation with the orifice diameter
plicity and generality of Eq.(1). We have measured the 2a and the expected bubble radiugr.) represented true to
bubble size as a function of voltage bias using @¢. Some scale. In fact, however, we observe for the above-given val-
of these resulfs’® and additional unpublished ones will be ues ofRy andU the second resonance minimum. The bubble
presented as experimentally determin@@U) relations in  radius thus iSR=2¢'=913 nm or 6 times larger than ex-
Sec. Il. However, there is no physical discussiofiR0)) up  pected, indicating that the model of Tinkhahal. is inap-
to now. Such a discussion is the main aim of the presenplicable.
investigation which intends theoretically to explain the ob- In the present investigation we shall give a quantitative
servedR(U) behavior, say the rule of growing of the bubble. explanation of the giant bubble sizes observed. The idea is
At first sight, the results ofiR(U) were unexpected. In that escape of subgap quasiparticles from the bubble is pre-
particular, they contrasted with the predictions of Tinkham,vented by Andreev reflection from the N/S phase boundary.
Octavio, and Skocpdf and Tinkham® proposed for strong As a consequence, excitation of subgap states is high enough
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FIG. 5. For samplega) (*) and (b) (0): Positions on voltage

FIG. 3. Differential conductance versus voltage for a low- scale of minima and maxima in Fig. 4 are attributed to integer and
resistance contactRy=0.29 Q). Experimental curves labeled half-integer values op=R/¢’. Dashed line represents the expecta-
“low-" and “high-current” state. Nearly horizontal line: normal tion according to Ref. 17. Solid, dotted, and dash-dotted curves are
state. “BTK”: Standard theory according to Ref. 22. “BTK param- results of the model to be presented and will be discussed in Sec. V
eter” Z=0.536.

a molten droplet under ultra high-vacuum conditions.

to destroy superconductivity in a large volume. A corre- Residual resistivity ratios of the Ta electrode were mea-
sponding model is developed in Sec. Ill and its results arsured by an eddy current method. They exceeded 5000 in
compared with the experiments in Sec. V after a reviewegach case, indicating an elastic mean free path larger than
given in Sec. IV, of independent electronic and phononic50 wm and thus large compared with all physically relevant
data for tantalum entering the theory. A final discussion idengths including the maximum observed radRis 3¢’ of
given in Sec. VI. First of all, however the experimental re-the nonequilibrium bubble.
sults are given in Sec. II. The N electrode was evaporated silver. The point contact
resulted from electrically short circuiting a high-resistance
Ta/Ta05/Ag tunneling junction. The resistance of the re-
sulting metallic point contact was typically between 0.2 and

Some experimental results were previously givéhAd- 1.5 Q.
ditional material is contained in unpublished w&tkrom All measurements were performed at a bath temperature
which the raw data were taken which finally lead to Figs. 5Tg=1.4 K.
and 6 below. Concerning sample preparation and character- A typical trace of the differential conductanc&
ization we refer to previous papérs and here only summa- =dlI/dU vs voltageU characteristics is shown by two curves
rize as follows. in Fig. 3 labeled “low-" and “high-current” states, respec-

All experimental results refer to N/S point contacts with tively. With bias increasing from zero, the low-current state
the superconductor S being high-purity tantalum prepared gsersists up to poinh where a discontinuous transition occurs

to the high-current state indicated by a drastic decrease of the

II. EXPERIMENTAL RESULTS
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FIG. 4. Differential conductance of three low-resistance contacts v
normalized to the normal-state conductan&g,/(1=0.292 for FIG. 6. Voltage of firs{o) and second (*) minimum iG(U) vs
sample(a), 0.291 for(b), and 0.383 for(c), respectively. Minima  contact resistanc&®y. Dashed curves: expectation according to
indicated by arrows. Ordinate scale attributed to cuje Curves Ref. 17. Solid, dotted, and dash-dotted curves are results of the
(b) and(c) shifted vertically by—0.03 and—0.06, respectively. model to be presented and will be discussed in Sec. V
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excess currerftt After exceeding poinf and then again de- Figure 5 represents one of two results which have to be
creasing bias the lower curve is traced down to p8nthe  explained in the following sections. The second result to be
system remaining in the high-current state. Within each stateexplained is the dependence on contact resistance to be pre-
low or high current, respectively, the characteristics is persented in the following.

fectly reversible. In particular, in the high-current state all For junctions with resistancBy larger than those repre-
points of the lowermost curve in Fig. 3 down to polBiare  sented in Fig. 4 the minima are shifted to higher voltage.
perfectly reproduced with increasing as well as decreasin@his is reasonable since one might expect the heating power
bias. At pointB the system jumps back to the low-current U%/Ry to remain approximately constant for a given bubble

state. radius to be obtained. At the same time, there are only two
In the low-current state the characteristics approximatelyminima observable ifG(U) corresponding tgp=1 andp
follow the standard[Blonder-Tinkham-Klapwijk (BTK)] =2. This is due to the deviations {B(U) from the normal-

theory’? with some deviations which at least for higher biasstate conductance quickly decreasing with increasiigA .
(approaching poinA from below must be due to heating Thus finer details are not resolved in the characteristics for
effects. The corresponding theoretical curve is represented &ggher bias.
“BTK” in the diagram. It was calculated with the experi- In Fig. 6 we have plotted for all our samples the position
mental values of temperatuieand normal-state resistance on voltage scale of the first and second minima versus con-
Ry and with the gap parametérere and in all the followiny  tact resistanc®, . The dashed lines again are obtained from
A=0.72 meV? The BTK parameteZ was adjusted to ob- Egs. (5)—(7). According to this latter estimate thiarge
tain the experimental zero-bias conductance. Samples indradii p=1 andp=2 are expectedfor the applied voltage
cating nonideal behavior by deviating, in the low-currentrange for resistance values much smaller than observed, i.e.,
state, too much from the BTK prediction were excluded for much higher heating powdd?/Ry,. Thus, while Fig. 5
from further consideration. represents the growing law of the bubble for the smallest
Our main interest is in the high-current state. In Fig. 4 thecontact resistance, Fig. 6 contains all available experimental
high-current branch of the differential conductance is repreinformation concerning the dependence of bubble growing
sented not only for the junction of Fig.[8ample(@)] but for  on contact resistance. The main aim of the present investiga-
two more low-resistance junctions. The ordina®,,, tion is to understand Figs. 5 and 6.
=Gg(U)/Gy(U) is normalized to the differential conduc-
tanceGy(U) in the normal state. The diagram may serve to
indicate the degree of reproducibility from sample to sample. lll. MODELING THE BUBBLE GROWTH
Resistance values are given in the figure caption. A. Conception of the model
We have indicated pronounced minima in Fig. 4 by ar-

rows and we associate these minima consecutively with a In the f°"°W'F‘9 We propose a modell for the e'ec”.o"‘ an_d
bubble radius(in units of ') p=R/&'=1,2,3 Let the Phonon nonequilibrium distributions which are established in

the bubble on account of multiple inelastic scattering pro-

voltage values corresponding to these minima be L oo
U,,U,.Us, ... . Then the experimental result of Fig. 4 cesses of the injected electrons. The scattering is due to the

yields the rule of growingo(U) of the bubble radius with electron-phonon interaction and the scattering probabilities

voltage for samples of given resistance, at least on som@® c.haracter]zed by the E_Ilashberg functup?rF(w). .
discrete points. If we attribute the maxima between the W'th.the bias voltage given an_d a_p_art|cular bubble size
minima to half-integer values gf, the number of points is f%rb'"a”'y assumed_we may, by S'T“p"f'eo' Boltzmann equa-
somewhat enhanced for whidqu’) is experimentally deter- tions, calculate stationary distributions for electron and pho-
mined. The corresponding diagram vs p resulting for ~Non excitationsf(r,k) andn(r,q), respectively. As usual,
samplesa) and (b) is represented in Fig. 5. Here and in the the distribution functions are assumed to depend on wave
following vectorsk andq only via the quasiparticle energiesand w.
Moreover, the spatiaIFo dependence within the bubble is
replaced by mean values over the bubble. Hence we work

u=elya ®) with energy-dependent mean occupation probabilifies)
andn(w) in the bubble. The distributions outside the bubble
is the voltage normalized to the gap voltage. do not explicitly enter the model.
Normal-state resistances for samplasand(b) are equal, For given bias voltage and different bubble sizes arbi-

namely, Ry=0.29 Q. Hence, Fig. 5 represents the experi- trarily assumed, quasiparticle excitatibfe) will be low for
mentally determined rule of growing of the nonequilibrium large and will be high for small bubble size. If we tentatively
bubble below a 0.29) contact[with differences between describe the quasiparticle excitation by an effective tempera-
(@ and (b) indicating the degree of reproducibilityNote  ture, this temperature would be low, say small compared
that this resistance value is the smallest one realized by owrith the critical temperaturd ., for large bubble size and
preparation procedure. The dashed line in Fig. 5 is obtainedould be large compared with. for small bubble size. Nei-
from Eqgs.(5)—(7) and represents the radii for which the local ther of both cases would be stable. Instead, too large a
temperature should have fallen off 1Q according to Refs. bubble must be expected to shrink and too small a bubble
17 and 18. Note again that these radii are too small by anust be expected to grow. Obviously, there must be an in-
factor of about 6. termediate bubble size which is stable for the given injection
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bias. This bubble size in its dependence on voltage representsity while f(¢€) is very close to unity foe<—1 , even in

the growing lawp(u) we are looking for. the high-current state. We may anticipate this from our later
If the quasiparticle distribution would be thermal(u) results on the nonequilibrium distribution function. Hence

would be determined by postulating the effective temperaguasiparticle injection may be neglected tor — 1.

ture to equall.. Since it will turn out to be not, this postu- For 1<e<u we may obtain the injection term in E¢P)

late must be replaced by another suited condition. In fact, wéom

shall postulate thénonthermal stationary quasiparticle dis- df(e) 20 Adele 1
tribution functionf(e) to satisfy the BCS gap equation for 2N°<T) ?§’3p3Ade= R o (11
vanishing order parameter. The corresponding self- inj N
consistency equation will be given in Sec. Il D below. s

The quasiparticle spectra within the bubble are assume%
to be given by the normal-state bulk densities of states: (df(f)) _ (3/4m) for 1<e<eU/A
namely,N,, the one-spin density of states at the Fermi level, dt inj Rne?¢"3 psN, '
and the energy-dependent phonon density of sthigs). At (12)

first sight, the use of bulk properties to describe the spectrum

of excited states might seem questionable in particular for To justify Eq. (11) note that the left-hand side is the in-
the electronic system. Remember that the finite size of thérement of the number of electrons in the bubble per unit
bubble leads to the quantization phenomena displayed in Figime and per energy incremedide. With Ry the contact

1. However, from Fig. 1 we may realize that the quantizationresistance, the right-hand side is the corresponding injection
phenomena do not lead to an order of magnitude deviatiogurrent contribution in units of electrons per unit time.

from the bulk value for values gf between 1 and 3. Instead, ~ For |e|<1, quasiparticle injection may be neglected for
the mean density of states in the subgap regime is modifiethe following reason: Any injected electronlike quasiparticle
only by 20%-60%. Thus, while in principle the proposedWill, with high probability, elastically be Andreev reflected as
model is suited to determing(u) for p>1 it may be ex- @ hole back through the injection orifice thus leading to no
pected to be not too bad in the experimentally observediet yield of quasiparticle density in the bubble. Of course

range ofp values from 1 to 3. there is a finite electron and hole density within the bubble
on account of this injection and elastic backscattering pro-
B. Explicit formulation of the stationarity conditions cess. However, its contribution to the mean occupation prob-

) i . ] ability f(|e|<1) is of order of magnituda?/R*><1 and thus
In the following € and w are defined as dimensionless js negligible compared with the subgap excitation resulting
quantities: namely, the corresponding electron and phonofom inelastic downscattering of high-energy quasiparticles

energies divided by the gap energy. The densities of statefg supgap states. Hence H@2) may be completed by
however, retain their usual normalization. HemM¢g\de and

F(w)Adw are the increments of the numbers of electronic df(e)

and phononic states per unit volume. ( dt
We denote withf(e) and 1—-f(€) the mean electron and

hole occupation numbers with excitation energiesO and  For the escape term in E(@) we make the simplest possible

—e>0, respectivelyn(w) was defined as the mean occupa- assumption: namely,

tion number for phonon states with energyBoth, f(€) and

=0 for e>u and e<l1. (13
inj

n(w) must be stationary under the condition of givemnd ( vE
u. Thus we must have for a particular energy —f(e)? for e>1,
P
df(e) di(e) df(e) (—df(e)) = 0 for |e|<1, 14
(dt) +< dt +( dt) 9 - =g
inj s scatt VE
and [1—f(6)]—/ for e<—1.
\ pé

(d”(w)) (dn(‘*’) a0 For le|<1 this describes the effect of Andreev reflection
sc preventing quasiparticles to leave the bubble. [Eor 1, Eq.

dt e " dt )scatt O
. L L (14) corresponds to a mean traveling tirRév - of an elec-
Here “inj” means “on account of quasiparticle injection tron or hole moving a typical distande@=p&’ with Fermi
frolm the con]Eact" arr:dt‘)‘ezg’l' meahnsl“on account OqufafSiﬂar'a/elocity to leave the bubble.
ticle escape from the bubble.” The last terms on the left-han ; ; ;
sides of the Boltzmann equatiof®) and (10) describe the For|e|>1 the third term in Eq(9) may be written as
effect of electron-phonon scattering and will be further dis- df(e) df(e) df(e) df(e)
cussed below. T ) =( T ) +( T ) +( T )

Let us assume throughout the following that the normal scatt et e at
side of the contact is biased negatively. Then electronlike df(e)
guasiparticles are injected into the bubble. Above the gap, (
i.e., for e>1, the occupation is very small compared with

T )a, with (15
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df(e))  2mA ” 2
( dt ) :T[l—we)]f f(e+w)a?F()[N(w)+1]do=Ay(e), (16)
. 0
df(e) 27A - 2
( dt ) :_Tf(G)J [1-f(e~w)]a"F(o)[n(w)+1]do=A(e), (a7
0
df(e)|  27A o 5 _
a0 a+_7[1—f(e)]f0 f(e—w)a®F(w)n(w)dw=As(e), (18)
df(e)|  2mA * 2 _
T a_—Tf(e)fo [1-f(e+w)]e’F(w)n(w)dw=A4(e). (19

right-hand sides of the above equations for later use. Th
b

The symbolsA,(e) are introduced as abbreviations for theE{df(E)

4 4
1
) =§(E Ai(e)— 2, Ai(—e)) for |el<1,
subscriptse™ ~ anda®~ stand for phonon emissiofe) or scatt =1 =1
absorption(a) processes increasingt( or decreasing {) (21

the occupation numbef(e), respectively. Equationél5)— _ holding for either sign ot and obviously satisfying Eq20).
(19) are standard results of time-dependent perturbation Tpe stationary phonon occupation is determined by Eq.

theory and may, e.g., be obtained from E435 of Ref. 25.  (10) Here we set, analogously to EG.4),
As they stand, Eqs(15)—(19) hold for |e|>1. For |¢|

<1 these equations need some modification. We have to take dn(w) Uph
into account Andreev reflection from the N/S boundary ( T ) =—n(e) &, (22
which not only prevents escape but, moreover, guarantees esc

that electron and hole occupation numbers are equal, hen%‘nerevph denotes a typical phonon group velocity. We shall

fle)=1—f(—e). ) o see later on that phonon escape is rather unimportant on ac-
For example, think of a phonon emission process produc:

, . , count of small values of ,,. Hence this ansatz is less criti-
ing a subgap electron<¥e<1. By the following elastic An- 5 than the electron escape tefi).

dreev reflection process the electron excitation vanishes from Electron-phonon scattering leads to

the bubble and a hole excitation appears with the same exci-

tation energy, i.e., withe,, .= — € according to our conven- dn(w) dn(w) dn(w)
tion at the beginning of this subsection. By the following ( at ) =( at ) at ) ) (23
Andreev reflection the hole is reconverted into an electron scatt a

and S0 on. As a result, the phonon emission process u_n.dWith the emissior(e) and absorptioria) terms given by
qguestion has not produced an electron with unity probability

but an electron and a hole, both with probability one-half. (dn(w)) 20
=<Np

Both f(€) and 1-f(—€) are therefore enhanced by phonon - aX(w)[1+n(w)]

emission processes with final-state electron energ®, the dt h

corresponding value ofif(e)/dt=d[1—f(—¢€)]/dt being o

given by the right-hand side of E¢L6) times one-half. xf [1-f(e—w)]f(e)de
The corresponding coupling of electron and hole states o

does not only apply for phonon emission processes enhanc- =B,(0) (24)

ing f(e) for 0<e<1 but also for absorption processes and !

for both types of processes decreasfiig). Moreover, also  and

processes with negative instead of positive subgap values of

€ as initial or final electronic state lead to contributions to dn(w) 2mA
df(e)/dt. The final result for | = Noz—a%(w)n(w)
+ o0
(df(e)) _(d[l—f(—e)]) B (df(—e)) xf f(e)[1—f(e+w)]de
scatt dt scatt dt scatt
(20) =Bs(w), (25)

respectively. Equatioi24) may be made obvious from Eq.
may be written with the aid of the abbreviatioAg €) intro-  (17) which implies that the number of phonons from the
duced above as interval (w,w+dw) produced per unit time and per unit vol-
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ume by phonon emission processes with initial electron enand
ergy betweere ande+de is given by

Fot+n(w)G,=0, (27)
27A .
2NoAde 7 f(e)[1—f(e—w)][N(w)+1]e’F(w)dw. with
Integrated ovele this must be equal to the total number of F1=Jinj+ Ik ert J11, (28)
phonons emitted per unit time and per unit volume in the ©

interval (o, +dw): namely, G1=Jesger~ Juat Juz, (29

dn(w) AmA +o0
F((u)Adw( T ) . F,=Ng Z az(w)J [1-f(e—w)]f(e)de, (30

e — o0

The corresponding equation is just EB4). Equation(25) is
made obvious in a similar manner.

GZZ‘]escph+‘]2- (31)

Here the following abbreviations are used:

C. Algorithm, compilation of formulas

-1

We have now gt our dispo_sal all gqu'atio'ns which are 4—7TRNe2§’3p3NO for 1<e<u,
needed to determine the stationary distributidiig) and Jinj= 3 (32
n(w) for given injection bias and given bubble radigs 0 otherwise
=pé&'. We summarize these equations in a form suited for a
numeric algorithm. 0 for e>—1
Inserting Eqs(12), (13), (14), (15) [or, alternatively, Eq. 36 :v_FX{ € ’ (33)
(21)], and finally Eqs(16), (17), (18), and(19) into Eq. (9) eseel per |1 for e<—1,
and, moreover, inserting Eq§22)—(25) into Eq. (10), we
obtain two equations which may be written as Ve 1 for |e>1,
Je%qelz T X{ (34)

Fi+f()G;=0 (26) p¢' 10 for |el<1,

|
( (o
J @’F(w){f(e+ w)[n(w)+1]+f(e—w)n(w)ldew for |e|=1,
0
27A z o, 1
JllzTX f aF(w) E[f(e-l—w)—f(—e+w)][n(a))+l] (35
0
1
+§[f(e—w)—f(—e—w)]n(a)) do for |e|<1,
\
r e o]
f ?’F(o){[1-f(e—w)][N(w)+1]+[1—f(e+ w)In(w)}dw for |e=1,
0
27A z o, 1
le:_TX . a‘F(w) E[f(—e—w)—f(e—w)][n(w)-l—l] (36)
1
+§[f(—6+w)—f(6+w)]n(w) do for |e|<1,
\
|
Joscph=— 2 (37

esgph™ pe' Note that the quantitie§,; and G; depend one and,

47A
\]2: NoT

moreover, are functionals of the distributions to be deter-
mined: namelyf(e’) andn(w). Similarly, F, and G, de-
o pend onw and are functionals of(e'). This will be indi-
az(w)f [f(e+w)—f(e—w)]f(e)de. cated by the notation below. All other quantities entering the
—o above equations are known experimental data for tantalum
(38) and will be given in Sec. IV.
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Equations(26) and (27) may be written as from the numerical data that the second contribution in Eq.
(42) will be negligibly small and thus the same is true for the
f(e)m — File f(e') n(w)] 39 error made by assuming particle-hole symmetry. In fact, Eq.
(€)= Gilef(e)n(w)] B9 4 may well be replaced by
11-2f
Folw,f(€)] L(u):=f Jole—|n2=o, (43)
n(w)=—————"—, (40) o e
Golw,f(e')]

a\{vhich is the final form of the self-consistency condition to be
applied in the following. The symbdl(u) is introduced for
later use.

and in this form represent the basis for an iterative numeric
algorithm to determine the distribution functiofig¢e) and
n(w) by the following steps.
(i) Assume a suited initial quasiparticle distribution
fo(e). IV. ELECTRON AND PHONON PROPERTIES OF
(i) From this calculate an initial phonon distribution TANTALUM
no(w) using Eq.(40).

. . A. Constants entering the model
(iii) Insert these starting functiorfg(e’) and ng(w) on

the right-hand side of Eq39) to obtain a bettef(¢), say To apply the above-described model we need an indepen-
fi(e). dently known set of data for tantalum. The model being
(iv) With f,(e') inserted into Eq(40) obtainn,(w). coarse grained enough we want to avoid any adjusting of

(v) Repeat stepsii) and (iv) to obtainf,(e€), n,(w) as Parameters and instead to take all necessary data from the
results of thewth iteration. Continue unlj[ilf (E)V equals literature. Before discussing our knowledge of the Eliashberg
N 14 . 2 . .
f,_1(€) with sufficient precision. function a“F(w) we shc/)rtly summarize our choice of the
This iteration procedure converged after a few iterationg@/ameterfo, A, v, &', anduvpy entering the model. We
yielding f(e) andn(w) for given injection bias voltagty ~ @ssume the following values:

and given bubble radius. Results will be given in Sec. V. AZO-ZZ meV(Ref. 23,
2¢' w2 =£,=92.5 nm(Ref. 27,

No=2.04x 1073 'm~3 (Ref. 28,
ve=3.18X10° m/s.

The above-sketched numerical program leads to distribu- . was deduced from the well-established experimental
tion functionsf(€) andn(w) for any assumed pair afand  data forA and &, using the BCS relatioo=#uvg/(mA).
p values. However, for given only one particular value ¢f  Hence the data foh, &, andv are consistent. Finally, the
will be established Corresponding to an electronic eXCitatiOfbhonon group Ve|ocity Strong|y depends on phonon branch
f(e€) just necessary to destroy superconductivity. We obtaifindex and frequency. Maximum values are obtained in the
the corresponding condition fof(e) from the BCS gap |ong-wavelength limit. From the elastic constants given by

D. Self-consistency equation

equatiori® for vanishing gap parameter: namely, Featherston and Neighb8tone obtains about 2000 m/s for
hop /] —2f transverse and about double this value for longitudinal
1:N0Vf ° ide. (41) phonons. These valyes are small eno.ugh to neglect phonon
0 € escape completely in our model setting,=0. We shall

) ) demonstrate this later on by a few examples comparing re-
If f(e) were the Fermi function for temperatufe, Eq.  syits fory,,=0 or 2000 m/s, respectively.
(41) would determineT, with the well-known resultk T, .

=0.568\. For the real nonequilibrium case we shall deter-
mine, for a givenp, that particulatd which just produces a
nonequilibrium distributiorf (€) satisfying Eq.(41). It is ob- In principle, the formulas given in Sec. 11l C contain both,
vious that the corresponding numerical program will lead tothe Eliashberg functiom?F(w) and a’(w), the average
a unique value obJ sincef(e) must, for anye, be expected squared electron-phonon interaction matrix element. How-
monotonically to increase with) and hence the right-hand ever, with@®F(w) being given, the final results for the sta-
side of Eq.(41) will monotonically decrease. tionary distributionsf(e) andn(w) are practically indepen-
Using the BCS result Inwp/A)=(NgV) L, which is a  dent of a®(w). This is true because phonon escape may be
good approximation folwp> A, Eq. (41) may be brought neglected, as was stated before. Théfw) does not enter

B. Eliashberg function

to the form the model results fov ,,=0 is most easily seen by inspect-
ing Egs.(39) and (40) and the preceding formulas defining

f11—2f(6) 4 Zf"””D I5f(e) de—In2—0. (42 thesymbolsentering these equations.#gi=0, F, andG,

0 €e), ¢ derine=h 42 are both proportional te?(w) and hencen(w) is indepen-

dent of o?(w) according to Eq(40). Finally, f(e) as given

Using Eg. (41) as a starting point we have assumedby Eq.(39) does not depend on?(w) sincen(w) does not.
particle-hole symmetryf(e)=1—f(—€). While this condi- The Eliashberg function for tantalum was determined

tion is granted by our model fde| <1 we shall see later on from N/S tunneling data by ShéfVery similar results have

that it is violated for|e|>1. However, we shall also find later on been reported by other authtfs*2 Shen’s experi-
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otF(w) - 102 a?F(w)/w?
0.8 -
0.6 - )
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w w

FIG. 7. Eliashberg functionv®F(w) as determined by Shen FIG. 8. ¢’F(w)/w? vs w. Data(0), (*) and solid line taken
(Ref. 23 (0), Wolf et al. (Ref. 32 (x), and Al-Lehaibiet al. (Ref. from Fig. 7. Dashed lines: see text.
28) (*). Solid line: analytical interpolation of Shen’s data. Dashed
and dotted lines: variants. papers quoted above. However, the results of the present

investigation strongly depend on the low-energy behavior of

mental result, represented by circles in Fig. 7, is well reprea’F (o).
sented by the solid line in the same diagram. This interpolat- Fortunately, the theoretical data of Ref. 28 allow for an
ing line will be used for all of the following calculations. It improved extrapolation to the low energy regime. From Fig.
corresponds to an ad-hoc analytical expression which howd of Ref. 28 we obtainy®(w) which (some small spurious
ever, need not be given here since there is no physical re@scillations neglected varies roughly linearly from 2.7
soning behind it and since the interpolation may, with suffi-x10~>* Jn? at very low energies to §10 " Jn? at w
cient precision, be obtained from Fig. 8 below. Fig. 7 also=E/A~20%* The former value allows to estimate
contains thew?F-data obtained from tunneling experiments @°F(w)/w? for very low energies sinc€&(w)/»? may be
by Wolf et al®? and the data calculated theoretically by Al- obtained from the elastic constants which were determined
Lehaibi, Swihart, Butler, and Pins&. o’F(w) is needed for tantalum by Featherston and Neightr&rom their data
only for energies belows~25 corresponding to the maxi- we obtain (omitting details of the estimate
mum values ok U/A appearing in the experimentsee Fig. lim _ [F(0)/®?]=1.04<10*" J7'm=%.  With a®=2.7
6). As a consequence, only the transverse phonon peak is10-51 j n we finally have
represented in Fig. 7, the longitudinal phonon peak of the
characteristic double peak structure lying at somewhat higher lim [ @?F (w)/ 0?]=0.28x 10" 3. (45)
energies. ©—0

The model results are rather insensitive to modifications
of a®F(w) in the rangew>10. For example, calculations Figure 8 showsxr?(w)/w? vs w. The theoretical data of
based on the dashed or dotted instead of the solid curve iRef. 28 are again represented by stars and by the value at
Fig. 7 yield maximum deviations in the calculatp@u) of  w=0 given above. Shen’s dateepresented by circlgsnay
less than 0.5% which are negligible. On the other hand, fobe linearly extrapolated to this value. We claim this extrapo-
low energies, say up to several times the gap energy, reliablation to be more reliable than the quadratic extrapolation to
values fora®F(w) are not available from tunneling. This is the above-given valub=0.9 (the latter extrapolation is in-
due to the extremely small values @fF (w) in this regime  dicated by the dashed horizontal line
leading to error bars of 100% order of magnitude. A method The remaining difference between the data by Shen and
of nevertheless plotting?F (w) down tow=0 is to simply by Al-Lehaibi et al. is due to the fact that the theoretical
assume a behavior proportionaf, i.e., calculation does not yield the extra structure at 7 (0¥ w
slightly below 10 which is, however, well established by the
tunneling data from different authors. Hence, the solid line in
Figs. 7 and 8 will be used to represent the Eliashberg func-
tion in all of the following calculations.
below some low-lying energy. Thus in Ref. 30 a correspond-

@’F(w)=bw? (44)

ing assumption was made for energies below 5 meV, corre- V. MODEL RESULTS
sponding tow=~7. Shen’s data handling obviously was per-
formed in the same way with the result &f=0.9333 In the following we present typical results. Theand o

Nevertheless, the tunneling results must, for general mescales were divided into finite intervals of lengfle= dw
thodical reasons, be considered as principally unknown foand the integrations of Sec. Ill C were replaced by summa-
energies up to a few times the gap energy. This uncertainty isons over these intervals with a suited cutofie=dw
rather unimportant with respect to the superconducting equi= 0.1 was chosen since choosing smaller intervals did prac-
librium properties onto which interest was focused in thetically not alter the results. The iteration procedure practi-
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L(5.28=0.249, L(6.28=0.113, L(7.28=0.004,

L(8.28=—-0.082, L(9.28=—0.151.

Theu values satisfying.(u) =0 were calculated for vary-
ing values of contact resistan&y, and bubble radiug. In
Figs. 5 and 6 the results are shown and compared with the
experimental results. The solid lines represent the results for
vpn="0 which, according to Sec. IV B, depend orfF (w)
only and nofwith oF (w) given] on ¢?(w) andF(w) sepa-
rately. The dotted and dash-dotted curves were calculated
With vp,=2000 m/s, a?F(w) as given and assuming?
independent ofw and equal to &10 °* Jnt and 2.7
X105 J P, respectively. Remember these being the ex-
tremal o values according to Sec. IV B. As stated before,
tively. Left-hand and right-hand ordinate scales valid éer1 and the differences between solid, dotted, and dash-dotted curves

le|>1, respectively. Fou=7.28 (symbol *) the self-consistency &€ Unimportant proving that phonon escape may be ne-

equation is satisfied. For this u value also the hole excitation 19lected. _ )
—f(—e) is represented. Dashed line: see Ref. 36. On the whole, Figs. 5 and 6 show that the model is well

suited to explain the growing of the normal bubble within the

) i , .. limits of experimental reproducibility and of restricted
cally converged after three or four iterations with a Precisionoledge of the Eliashberg function. In particular, progress
given by the linewidth of the following graphical presenta- i, ynderstanding is obvious if we compare the calculated
tion of results. Actually, six iterations were applied in all - ;nes with the predictions of Ref. 17 represented by the

cases. . . dashed curves in Figs. 5 and 6.
Figure 9 represents, as an example, electronic quasiparti-

cle distributions for the parametelRg,=0.29 Q, p=1 (i.e.,
R=¢'), and five different voltage values given in the figure

caption. The figure demonstrates the main features of all of Figyres 5 and 6 constitute the most important result of this
our results: EX(_:itation is high for subgap states and is Waper by proving that the scale of the experimentally ob-
orders of magnitude lower forde<u and fore<—1 (note  served growing of bubble size with injection is very close to
the different scaling for sub-gap and above-gap energies, rgghat is theoretically expected. To obtain such an understand-
spectively. The reason for this behavior was outlined above:ing has been the main purpose of the present investigation.
Quasiparticles excited above the gap quickly escape, leadings we have seen, the nonequilibrium structure is governed
to a low mean occupation within the normal half-sphere ny Andreev reflection, preventing escape of subgap quasipar-
while subgap quaesiparticles cannot escape because they §f@es and thus leading to high occupation of subgap states
Andreev reflected® o o even in a large volume. We emphasize that such an effect,

For e>u, there is no injection and excitation is unmea- while seeming natural for the N/S structure under question,
Surably small on the right'hand scale of F|g 9. For one of tth not to be expected for a weak ||mW) between two super-
five curves(corresponding tai=7.28) f(e) is displayed in  conductors, say an S/w/S structure with an electric field
this region enlarged by a factor of 200. For the same VOltaggcrOSS “w.” In the latter case any Subgap quasipartide, An-
parameter the hole excitation-1f (— €) is also displayed for  dreev reflected between both S banks, would quickly escape
e>1. For 0<e<1 the hole excitation *f(—¢€) equals from the w region by the effect of acceleration in the field as
f(€) as displayed in the figure and hence does not need to hgescribed, e.g., by Klapwijlet al®” or by Kimmel et al®
displayed separately. Since most of the previous investigations on hot sgists

For givenRy and p, the distribution functiond(€) and  cluding the paper by Skocpol, Beasley, and TinkFaopen-
n(w) were calculated for varying voltage In each case the ing the field have been on weak-link structures between su-
left-hand side of the self-consistency equati@®), L(u),  perconducting banks, the phenomenon investigated here
was calculated. As outlined beforie(u) monotonically de- seems not to have been observed before.
creases withu. We determined by interpolation that value of ~ There have been some observations, by the Kharkov
u for which L(u) vanishes; i.e., the self-consistency equationgroup;®*! of nonequilibrium under high-current conditions
is satisfied. This is just the voltage corresponding to thefor N/S point contacts, with tantalum as the superconductor.
given values ofRy andp and thus constitutes the result of However, there is no direct access to the spatial extend of the
the theoretical model. Figure 9 just represents some typicalonequilibrium region which in our case is obtained from the
results for the parameteRy=0.29 () andp=1. The value Tomasch-type oscillations. Hence there is no direct compari-
u=7.28 corresponding to the middle one of the five curvesson possible between the results of both groups. In view of
was obtained by interpolation as that value for whigtu) the importance of measuring the bubble size we want to em-
practically vanishes. We have, with an error of less tharphasize that two conditions must be givemnd are so with
0.005, our samplesin order to observe the oscillations under ques-

FIG. 9. Distribution functionf(e) for Ry=0.29 Q, p=1, and
(from top to bottom u=9.28, 8.28, 7.28, 6.28, and 5.28, respec-

VI. DISCUSSION
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tion: The mean free path must be markedly larger thgn mated to be far below the critical current density, again due

and a very smooth surface is necessary. Such a surface me-the large values dR.

sults from our procedure of preparing the tantalum samples Among the remaining problems we mention the consis-

as molten drops in ultrahigh vacuum and not destroying thisent description of the observed hysteresis. Moreover, one

smoothness by the succeeding preparation steps. Both theguld like to avoid to use bulk properties in describing the

conditions are usually not satisfied in point contact investi-glectronic system in the bubble. Instead, a more realistic de-

gations. scription is desirable of finite-size effects on the quasiparticle
A final comment concerns the remarkable simplicity of system. One might hope that such a description removes an

the applied model. Why does neither the electric field in theghvious remaining systematic deviation between experiment

bubble nor the supercurrent in the S region influence theind theory: namely, the different curvature of both in Fig 5.
results? Both features are due to the large size of the bubble:

The electric field essentially is confined to distances from the

contact of order of magnitude of the orifice diametex. 2
Hence nearly all of the bubble volume is practically field
free — see Fig. 2. Finally, théthree-dimensionalspatial
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