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Weakly interacting ferromagnetic chains in a field
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Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

~Received 14 November 2001; revised manuscript received 11 February 2002; published 10 June 2002!

The linear renormalization-group transformation is used to study the temperature dependence of the specific
heat and susceptibility of the weakly interacting spin chains in a field~h!. It has been found that for the coupled
Ising chains the shift of the susceptibility maximum under the longitudinal field can be fitted satisfactory to a
power-law with exponent (y) close to 2/3 in a broad range of the field. It is not the case for the Ising spin
chains coupled only by four spin interactions where deviation from a single power law is clear andy changes
from 0.39 for small field to 0.68 for higher field. The transition temperature of the uniaxial Heisenberg
ferromagnet in the field perpendicular to the easy axis is also found. It is shown that only for very small fields
and the anisotropy strong enough this temperature is shifted according toh2 as predicted within mean-field-
approximation.

DOI: 10.1103/PhysRevB.65.224429 PACS number~s!: 75.10.Jm
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I. INTRODUCTION

Quasi-one-dimensional magnets in which the interch
interactions (J8) are much weaker than intrachain intera
tions (J), are usually treated as really one-dimensional s
systems. This is justified at higher temperatures, howeve
low temperatures the weak interchain interaction may be
sponsible for a magnetic ordering and has to be taken
consideration. Among the many quasi-one-dimensional
romagnets studied so far, one finds systems which can
considered as as51/2 anisotropic Heisenberg model—
(C6H11NH3)CuBr3 ~CHAB! ~Ref. 1!; isotropic Heisenberg
model—(p-CDTV! ~Ref. 2! or Ising model KEr(MoO4)2.3

In each of them the magnetic order at sufficiently low te
perature is observed. In CHAB the interchain coupling,
ing of three orders of magnitude lower than the intrach
one, is responsible for the three-dimensional antiferrom
netic ordering belowTc51.5 K.1 p-CDTV orders ferromag-
netically at Tc50.6760.02 K ~Ref. 2! and KEr(MoO4)2
with J8/J.0.02– 0.08 exhibits magnetic phase transition
Tc50.95560.005 K.3 The existence of the phase transitio
in such systems causes the application of an even smal
ternal magnetic field to change drastically the tempera
dependence of the thermodynamic quantities. It is obvi
that such a behavior can be described neither on the bas
the one-dimensional model nor within a mean-field appro
mation ~MFA!. So, it seems interesting to study quasi-on
dimensional systems in the field by using a method that
lows one to take into account their really two-dimension
character and to go beyond the MFA.

Recently, we proposed the method based on the lin
perturabtion renormalization-group transformation4 ~LPRG!,
which can be applied to study a broad class of weakly in
acting spin chains. The LPRG method can be used to c
sider some nonuniversal properties such as location of
critical temperature or temperature dependence of the t
modynamic quantities of the above-mentioned systems
this paper the LPRG will be applied to find the temperat
dependence of the specific heat and susceptibility of
weakly interacting Ising spin chains in a longitudinal exte
nal magnetic field and the critical temperature of the qu
tum uniaxial ferromagnetic chains in a transverse field.
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II. ISING CHAINS IN A FIELD

In this section we apply the LPRG method4 to weakly
interacting Ising spins chains in the external longitudin
field. The Hamiltonian of such a system is defined as

H5K (̂
i j &

Si , jSi , j 111K1 (̂
i j &

Si , jSi 11,j1h̃ (
l

Sl , ~1!

where the labeli refers to rows andj to columns, the factor
21/kBT has already been absorbed in the Hamilton
(K5J/kBT, K15J8/kBT, h̃5magnetic field/kBT) and K1
,K. As usual, we define the renormalization transformat
by

exp@H8~s!#5TrSP~s,S!exp@H~S!#. ~2!

The weight operatorP(s,S) is chosen in the linear form

P~s,S!5
1

2N/2 )
i , j 50

~11s i 11,j 11S2i 11,2j 11! ~3!

and consequently, in each renormalization step, every o
spin from every other row survives. Separating the Ham
tonian ~1! in a partH0 containing intrachain interaction~K!
and a remainderV containing interchain interaction (K1),
with the notation

z05TrSP~s,S!exp@H0~S!# ~4!

and

^A&05
1

z0
TrSAP~s,S!exp@H0~S!#, ~5!

the transformation~2! can be rewritten as

H8~s!5 ln@z0#1 ln@^exp~V!&0#, ~6!

with the following cumulant expansion for^exp(V)&0:

ln@^exp~V!&0#5^V&01
1

2!
~^V2&02^V&0

2!1 . . . . ~7!

To evaluate the cumulants~7! one has to know the aver
ages^Si , . . . ,Sn& in ‘‘odd’’ rows where in the renormaliza-
©2002 The American Physical Society29-1
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J. SZNAJD PHYSICAL REVIEW B 65 224429
tion step every other spin is removed and in ‘‘even’’ row
where all spins are removed. Dividing an odd chain in
three-spin cells with the following weight operator:

P~s,S!5 1
4 ~11s1S1!~11s2S3!, ~8!

and considering only one cell we can find the chain ren
malized interaction

z0
(odd)5a01ag~s11s2!1axs1s2 , ~9!

where

a0[
1

4
TrSeH0(S)5

1

2
@e2Kcosh~2h̃!1e22K#1cosh~ h̃!,

ag[
1

4
TrSS1eH0(S)5

1

2
e2Ksinh~2h̃!,

ax[
1

4
TrSS1S3eH0(S)5

1

2
@e2Kcosh~2h!1e22k#2cosh~ h̃!.

~10!

The ‘‘odd’’ chain spin averages are given by

^S1&5s1 , ^S3&5s2 ,

^S2&5x01x1~s11s2!1xxs1s2 , ~11!

where

x05a3c012a4cg1a5cx ,

x15a4~c01cx!1cg~a31a5!,

xx5a5c012a4cg1a3cx . ~12!

and

a3[
1

4
TrSS2eH0(S)5

1

2
e2Ksinh~2h̃!1sinh~ h̃!,

a4[
1

4
TrSS1S2eH0(S)5

1

2
@e2Kcosh~2h!2e22K#,

a5[
1

4
TrSS1S2S3eH0(S)5

1

2
e2Ksinh~2h̃!2sinh~ h̃!,

~13!

c05~a0
222ag

21a0ax!/~l1l2l3!,

cg52ag /~l1l2!,

cx52~ax
222ag

21a0ax!/~l1l2l3!, ~14!

l1,25a062ag1ax , l35a02ax . ~15!

By means of the coefficientsx0 , x1 , xx one can express a
other averages. For example,

^S1S2&5x11x0s11xxs21x1s1s2 ,

^S1S2S3&5xx1x1~s11s2!1x0s1s2 . ~16!
22442
r-

The averages of the spins from even, removed rows co
be calculated using a chain of an arbitrary length, howe
in our procedure4 already in the lowest nontrivial order of th
cumulant expansion~7! all possible bilinear couplings be
tween several spins from the adjoining renormalized ro
come into play. Thus, in order to carry out effectively th
LPRG transformation we have to confine ourselves to a c
ter of a reasonable size. In the second order in the cumu
expansion we have to take into account three chains and
chose the cluster consisting of five spins from odd and se
spins from even rows~see Fig. 1!.

In order to find the contribution to the interactions b
tween the effective spins (s) one should take into accoun
the averages of all possible products of spins from the c
sidered cluster. For example, this contribution from the
erage^S1S3S4& is

x1s11x0s1s2 , ~17!

and from^S0S1S3S4& is

x1
21x0x1~s11s2!1x0

2s1s2 , ~18!

and so on. For the cluster presented in Fig. 1, to the sec
order in the cumulant expansion, three new interactio
(K2 ,K3 ,K4) are generated:

K2Si , jSi 11,j 111K3Si , jSi 11,jSi 11,j 11

1K4Si , jSi 11,jSi , j 11Si 11,j 11 . ~19!

Now, we can find the recursion relations for six para
eters (K8,K18 ,K28 ,K38 ,K48 ,h̃8), which in our case define the
renormalization group-transformation~6!. As usual in each
step of this transformation a constant~independent of effec-
tive spinss) term G(Ki ,h̃) appears which can be used
calculate the free energy per site according to the formu5

f 5 (
n51

` G~Ki
(n) ,h̃(n)!

3n
. ~20!

Using the recursion relations for the interaction para
eters and the formula~20! one can find numerically the ther
modynamic quantities of the models described by the Ham
tonian ~1! with the additional interactions~19!. We will
calculate the specific heat~C! and the magnetic susceptibilit
(x) for two special cases:~1!. K25K35K450—the Ising
chains coupled by standard bilinear interactionK1 with the

FIG. 1. The cluster used to get renormalized Hamiltonian~6!.
Small dots denote decimated spins.
9-2
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WEAKLY INTERACTING FERROMAGNETIC CHAINS IN . . . PHYSICAL REVIEW B65 224429
finite-temperature phase transition in the field-free case;~2!.
K15K25K350—the Ising chains interacting via four-sp
interactionsK4 with interacting spins located on a 232
plaquette, where no finite-temperature long-range orde
observed in the absence of the external field.

A. Bilinear interactions

The specific heat as a function of the temperaturet
5K215kBT/J) in case~1! for several values of the ratio
K1 /K5J8/J in the field-free case is presented in Fig.
According to the exact result,13,14 the specific heat has a sin
gularity characterizing a critical point for any value of th
ratio K1 /K. It should be emphasized that in contrast to t
numerical method where a critical point is found by usi
some fitting procedure in LPRG, the critical point is foun
from the flow diagram analysis.

As shown in Fig. 3 according to our expectation the a
plication of an even small longitudinal external field destro
the phase transition and the specific heat has a maxim
instead of a singularity. This maximum shifts toward high
temperatures as the field is increased.

In Fig. 4 the temperature dependence of the longitud
magnetic susceptibilityx is presented. The ‘‘universal’’ char
acter of this dependence for the ferromagnetic systems—
existence of the maximum att5tm.tc ~wheretc is the criti-
cal temperature ath[h̃/K50) which decreases and shif

FIG. 2. Temperature dependence of the zero-field specific
for Ising chains withK1 /K50.02, 0.03, 0.04, 0.05, and 0.1 from
left to the right.

FIG. 3. Temperature dependence of the specific heat for I
chains withK150.03 K for h50 ~thin line!, h50.2 ~solid line!,
h50.5 ~dashed line!, andh51 ~dotted line!.
22442
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according toh2/3 with increasing field—has been studied
far, mainly by using the MFA.6–9 Recently, the shift of the
maximum of the field-dependent susceptibility in on
dimensional anisotropic ferromagnetic materials has b
studied by using the linear RG transformation.10 It was
shown that only for the transverse susceptibility the shift
the maximum can be satisfactorily described by the pow
law for a broad range of the field with the exponenty close
to 2/3 for the anisotropy small enough.

In Fig. 5 the log-log plot of the susceptibility maximum
shift for weakly interacting Ising spin chains in longitudin
field is presented. The whole curve can be reasonablly fi
to the formulay50.9410.58, which means

tm2tc;hy, y'0.58. ~21!

However, as it is shown in Fig. 5 the fit is much better f
small fields ify '0.65, and for higher fields ify '0.71. Any-
way, one can conclude that with reasonable approximatio
a rather broad range of the field the longitudinal suscepti
ity maximum of the weakly interacting Ising chains is shifte
according to the 2/3 law.

B. Four-spin interaction

The two-dimensional Ising model made using spin cha
coupled only by four-spin interactionK4 ~19! does not ex-
hibit any finite-temperature phase transition in the field-fr

at

g

FIG. 4. Temperature dependence of the magnetic susceptib
for Ising chains withK150.02 K forh50 ~thin line!, h50.5 ~solid
line!, h50.8 ~dotted line!, andh51 ~dashed line!.

FIG. 5. Log-log plot of the field dependence of the susceptibi
maximum location for Ising chains withK150.05 K. The thin,
solid and dashed lines denote the curvesy50.9410.58x, y51.16
10.65x, andy50.9110.71x, respectively.
9-3
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J. SZNAJD PHYSICAL REVIEW B 65 224429
FIG. 6. Temperature dependence of the specific heat for I
chains coupled by four-spin interactionK450.05 K ~a! and K4

50.2 K ~b! for h50 ~solid line!, h50.05~thin line!, h50.1 ~dotted
line!, h50.5 ~dashed line!, andh51.2 ~dashed-dotted line!.

FIG. 7. Temperature dependence of the susceptibility for Is
chains coupled by four-spin interactionK450.05 K ~a! and K4

50.2 K ~b! for h50.01, 0.05, 0.1, 0.2, and 0.3 from top to th
bottom.
22442
case.4 It means that even in the zero field the specific h
has no a singularity but only a maximum. In Fig. 6 the te
perature dependence of the specific heat for several value
the field is shown. As the field increases the specific h
maximum, at first, grows and moves toward lower tempe
tures, then changes the shift direction and finally decrea

The temperature dependence of the susceptibility of
Ising chains coupled by four-spin interactions withK4
50.05 K is presented in Fig. 7. Except for the field-fre
behavior where in this case the sharp maximum instead
the singularity is observed the shift of the susceptibil
maximum resembles that for the standard Ising model~Fig.
4!. However, it is easy to see from Fig. 8 that in case~2! the
field dependence of the maximum susceptibility shift can
be described by a single power law.tm2t0;hy, wheret0 is
the location of the susceptibility maximum at zero field. F
K450.05 we have foundt0'0.26. Surprisingly, for the
higher fields the fity'0.68 is closer to the 2/3 law than th
fit for small field y'0.39

III. QUANTUM SPIN CHAINS IN A TRANSVERSE FIELD

In this section, we consider weakly interacting quantu
spin chains described by the Hamiltonian

H5 (
a5x,y,z

Ka(̂
i j &

Si , j
a Si , j 11

a 1 (
a5x,y,z

K1
a(̂

i j &
Si , j

a Si 11,j
a

1h̃(
l

Sl
x . ~22!

As in the preceding section the labeli refers to rows andj to
columns and the factor21/kBT has already been absorbed
the Hamiltonian. ForKz.Kx5Ky.0 this Hamiltonian de-
scribes the uniaxial ferromagnet in the external field direc
perpendicular to the easy axis (z). In such a system the
external field does not destroy the phase transition from
romagnetic phase~with magnetization making some ang
with the external field! to the paramagnetic phase~with mag-
netization along the field!.11 In the MFA the temperature o
this transition is given by15,11

tc2tc~h!5bhv, v52, ~23!

g

g

FIG. 8. Log-log plot of the field dependence of the susceptibi
maximum location for Ising chains coupled by four-spin interacti
with K450.05 K. The solid and dashed lines denote the curvey
50.6410.39x andy50.9510.68x, respectively.
9-4
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WEAKLY INTERACTING FERROMAGNETIC CHAINS IN . . . PHYSICAL REVIEW B65 224429
wheretc5(Kc
z)215kBTc /Jz denotes the critical temperatur

in zero field,h5h̃/Kz and b is some constant. Within the
MFA the exponentv neither depends on the system dime
sionality nor on the interactions and anisotropy values. H
to find the field dependence of the critical temperature of
model described by the Hamiltonian~22! we apply the
LPRG method presented for the quantum spins in the pr
ous paper.4 Due to the noncommutativity of several terms
the Hamiltonian~22!, and also because of the three comp
nents of the spin operators, the application of the LP
method to the quantum spin model is much more com
cated. For example, instead of the relations~9! and ~11! for
the chain renormalized interaction and averages of the I
model, now we have

z0
odd5a01ag~s1

x1s2
x!1 (

a5x,y,z
aas1

as2
a ~24!

and

^S1
x&5x1s1

x1x3s2
x1xy~s1

ys2
y2s1

zs2
z!, ~25!

where

x152agcg1a0c01axcx ,

x352agcg1axc01a0cx ,

xy5ag~cy2cz! ~26!

ai are expectation values defined analogous to the definit
~10! andci are coefficients of thez0

odd inverse operator

@z0
odd#215c01cg~s1

x1s2
x!1 (

a5x,y,z
cas1

as2
a ~27!

and, for example,

cg5
ag

az
222ayaz1ay

22ax
222a0ax14ag

22a0
2

. ~28!

To find the renormalized Hamitlonian we apply the clus
presented in Fig. 1. However, in the quantum case to
second order in the cumulant expansion the RG transfor
tion generates 22 new two-, three-, and four-spin inter
tions. So, together with the initial Hamiltonian coupling
(Ka,K1

a ,h̃) one has to consider 29 interaction parame
space. The evaluation of the contribution from all new int
actions is straightforward but rather tedious. So, we con
ourselves to consider the contribution to the effective int
action from two-spin interactions up to the second order
from three- and four-spin interactions to the first order. W
have evaluated numerically the renormalization transform
tion from the original set of 29 coupling parameters to the
of renormalized parameters and have found two stable fi
points describing the behavior of the system atT50 andT
5`, and the critical surface in the 29-dimensional space
the parameters. The critical temperature was found
two cases:~i! Kx5Ky50.5Kz , K1

a50.2Ka ; ~ii ! Kx5Ky
22442
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50.2Kz , K1
a50.3Ka . The zero-field critical temperaturestc

are~i! 1.04 and~ii ! 1.37, respectively~for the standard Ising
model tc'2.269!.13

The shifts of the critical temperatures under external fi
are presented in Fig. 9. In both cases the results are fitte
the formula~23!, with b50.16 and 0.1 for the cases~i! and
~ii !, respectively. As shown in Fig. 9, in both cases the fit
quite good for a field small enough, although in the case~i!
for h.0.3 the deviation from the single power-law~23! is
very clear.

IV. CONCLUSION

The LPRG method has been applied to study the temp
ture dependence of the thermodynamic quantities and
location of the transition temperature in weakly interacti
ferromagnetic chains at an external magnetic field. It sho
be emphasized that even in the field-free Ising spin mo
the renormalization-group transformation has been obtai
by using two approximations. First, connected with the p
turbation with regard to interchain interaction, which is va
if K1,K ~andK1!1) and second, related to the truncatio
of the interaction generated in the LPRG procedure. For
quantum case, because of the noncommutativity of sev
terms of the Hamiltonian, additional approximations are n
essary. Namely, the used procedure takes quantum effect
account within a single linear cell and neglects the effects
noncommutativity of several cells.4,12 We have also ne-
glected higher than second-order contributions to the ef
tive interactions from three- and four-spin interactions. A
these approximations are high-order approximations. On
other hand, the smaller the ratioK1 /K, the lower critical
temperature. So, the proposed approach can be used to e
ate the temperature dependence of the thermodynamic va
in the higher temperature and to find the critical point loc
tion if a transition does not take place in a very low tempe
ture, i.e., if K1 /K is not too small. Of course, the approx
mation could be improved by taking into account the high
orders in the cumulant expansion and by increasing the u
cluster. Unfortunately, for the quantum spins, especially
the presence of the external field, the higher-order calc
tions become labor and time consuming. However, we

FIG. 9. The critical temperature of the uniaxial ferromagnets
the field perpendicular to the easy axis. Squares:Kx5Ky

50.5Kz , K1a50.2Ka ; Points:Kx5Ky50.2Kz , K1a50.3Ka .
9-5
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J. SZNAJD PHYSICAL REVIEW B 65 224429
lieve that the cluster presented in Fig. 1 allows one to
scribe reasonably the basic features of the considered mo
especially at high temperatures and small fields. The b
for this belief is the analysis of the results found by usi
three different clusters 3-5-3~three spins in odd and five
spins in even rows, respectively!, 5-7-5, and 7-9-7 for Ising
chains at zero field. As an example the temperature de
dence of the specific heat based on these three cluste
shown in Fig. 10. It is seen that the results for the two big
clusters are very close to each other. Therefore we wo
expect that further increasing of the cluster does not cha
much qualitatively the results. The quantitative discrepa
in the low-temperature region (t^1.1) for the smallest cluste
arises from neglecting the nearest-neighbor interaction
the odd rows.

The good point of the LPRG is that, contrary to the no
linear renormalization-group transformation, it does not
quire the choice of the weight operator. In fact this choice
not obvious for weakly interacting spin chains especially
the presence of the external field. Next, opposite to the lin
Migdal-Kadanoff transformation the LPRG method does
have to be connected with the bond-moving mechanism
gives rather poor results even for the standard tw
dimensional Ising model.4,12Finally, as opposed to numerica
methods, one has not to use any fitting procedure to estim
the critical temperature that can be found from the analy
whose fixed point is approached by the Hamiltonian as

FIG. 10. Temperature dependence of the specific heat for I
chains with K1 /K50.1 found by using clusters: 3-5-3~dashed
line!, 5-7-5 ~dotted line!, and 7-9-7~solid line!.
B

J.

.
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renormalization transformation goes on. So, using the LP
one can expect to get reasonable results for quite com
cated classical and quantum systems made of weakly in
acting chains at sufficiently high temperature.

In this paper we found the temperature dependence of
specific heat and susceptibility for the two classical spin s
tems in the longitudinal field: the standard Ising model th
exhibits finite-temperature phase transitions in the field-f
case, and the Ising spin chains coupled only by the four-s
interactions. In the latter case there is no phase transitio
any finite temperature even ath50.4 The result of our ap-
proach concerning the existence of the critical point for
arbitrary small bilinear interchain interactionK1 is qualita-
tively correct although, as mentioned above, the location
this point for small ratio (K1 /K) is not so good in compari-
son with the exact results. As one expects the application
an external field destroys the phase transition and both
specific heat and magnetic susceptibility have maxima
stead of singularities. In the case of the susceptibility t
maximum is shifted toward higher temperature according
the 2/3 power law for the broad range of the fields. For
Ising with only four-spin interaction according to the exa
result4 there are no singularities in specific heat and susc
tibility even ath50, althoughx exhibits a very sharp peak
In this case also the magnetic field shifts the susceptib
maximum but this shift cannot be fitted to the single pow
law in the broad range of fields. For small fields the expon
that characterized the shift isy'0.39.

The LPRG has been also applied to quantum unia
Heisenberg model in the field perpendicular to the easy a
It has been shown that, according to the MFA results, suc
field does not destroy the continuous phase transition
shifts the critical point towards a lower temperature. For
small enough field, this shift is described by the power l
with exponentv52. For higher fields and smaller anisotrop
the deviation from the single power law seems to be cle
However, it should be noted that our approximation can
worse for higher fields.
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