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Quantum spin glass with long-range random interactions

Amit Dutta*
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 17 October 2001; revised manuscript received 27 February 2002; published 10 June 2002!

A model of the quantum~transverse! Ising spin glass with a long-range random interaction is proposed and
studied here. In this model the random interaction between two spins at a distancer i j apart falls algebraically
as 1/r i j

(d1s)/2 . Here, apart from the strength of the quantum fluctuations, the interaction ranges is also tunable.
We have studied the ground-state properties of the model, extending the ‘‘Droplet model’’ of the short-range
quantum spin glass. The model is also studied using a modified form of the effective Landau action describing
the transition of the short-range quantum spin glass. The important features which are due to the long-range
interaction are clearly mentioned. Field theoretical renormalization group calculations fail to locate any stable
weak-coupling fixed point in the non-mean-field region. The simplest conjecture is that beyond the mean-field
region, the critical behavior is governed by the infinite randomness fixed point. We extend the phenomeno-
logical scaling relation for the short-range quantum spin glass~based on the assumption of the existence of a
dangerously irrelevant operator! to the present long-range interacting case. Most of the possible interesting
aspects associated with the quantum transition in the present model are elaborately discussed.

DOI: 10.1103/PhysRevB.65.224427 PACS number~s!: 75.10.Jm, 75.10.Nr, 64.60.Ak
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I. INTRODUCTION

Random quantum transitions in the quantum Ising1,2 and
rotor models1 have attracted a great deal of attention in
cent years. Following experimental studies of the insulati
dipolar Ising system LiHoxY12xF4, which is ideally modeled
in terms of a quantum Ising spin glass,3,4 an enormous
amount of effort has been directed to understand the z
temperature and finite-temperature transitions in quan
spin glasses~for recent reviews see Refs. 1,5, and 6!.

Huse and Miller7 investigated the transverse Ising spi
glass model with an infinite-range interactions~Sherrington-
Kirkpatrick model in a transverse field! and determined ex
actly the transition from the spin-glass-ordered phase to
paramagnetic phase. Ye, Sachdev, and Read8 studied the cor-
responding rotor problem in the limit of infinite-range inte
actions and infinite spin dimensionality~spherical limit!, and
derived results similar to the results in Ref. 6. In a sub
quent work, they proposed a Landau theory of quantum s
glasses of rotors and Ising spins9 with a short-range interac
tion. The zero-temperature transition and the associated c
cal exponents of the short-range quantum Ising mo
~Edwards-Anderson model in a transverse field! in two and
three dimensions are extensively studied using quan
Monte Carlo techniques.10,11 A phenomenological drople
theory describing the transitions in short-range quant
Ising systems has also been proposed.12 The novel features
associated with the low-dimensional random quantum tr
sitions are the ‘‘activated quantum dynamical scaling’’ at t
quantum critical point and the existence of a Griffith
McCoy singular region~with continuously varying expo-
nents!, where the response function diverges even away fr
the quantum critical point.13 This scenario is proved
analytically13 and numerically14 in the one-dimensional case
Numerical studies on two-dimensional random bond syste
corroborate the above conjecture.15 Further numerical studie
on the two-dimensional16 and the three-dimensional17 short-
range quantum Ising spin glasses clearly indicate the oc
0163-1829/2002/65~22!/224427~9!/$20.00 65 2244
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rence of the Griffith-McCoy singularities in the disordere
phase, although they seem to support a conventional dyn
cal scaling with a finite value of the dynamical exponent
the quantum critical point. The effect of spatial correlatio
on quenched disorder in random quantum Ising systems
the quantum critical point has also been studied18 and it was
found that the relevant correlations enhance the critical
off-critical singularities. The random quantum Ising model
d52 has also been studied,19,20 generalizing the~cluster!
renormalization group~RG! method applied to the one
dimensional system.13 It has been found that at strong ra
domness the RG flow for the quantum critical point is t
wards an infinite-randomness fixed point as in o
dimension. If quenched randomness grows beyond the l
as the system is coarse grained, the associated fixed p
would have infinitely strong randomness and thus be ca
the infinite-randomness fixed point.19

In this communication, we propose a long-range quant
Ising spin glass described by the Hamiltonian

HI52(
i j

Ji j

r i j
(d1s)/2

Ŝi
zŜj

z2G(
i

Ŝi
x , ~1!

whered is the spatial dimension, theŜ’s are the noncommut-
ing Pauli matrices, ands is the tunable range of interaction
The random bondsJi j are chosen from a Gaussian distrib
tion with vanishing mean and varianceJ given as

P~Ji j !5
1

~2pJ2!1/2
expS 2

Ji j
2

2J2D . ~2!

Here G denotes the noncommuting transverse field that
troduces the quantum fluctuations in the model, and there
tuning G appropriately, one can drive the system from t
ordered to disordered phase even atT50. Even when the
spatial dimensionality of the model is unity, the long-ran
nature of the random interaction causes frustration and
the model happens to be an ideal representative of a quan
©2002 The American Physical Society27-1
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Ising spin glass in one dimension. The corresponding sh
range system ind51 does not have frustration and can th
be mapped onto the random quantum Ising chain.13 How-
ever, one should note here that in the infinite-randomn
limit 20 frustration is irrelevant and the same~infinite-
randomness! fixed point should govern both the ferroma
netic and spin-glass quantum critical points. Very recen
the pure quantum Ising system with long-range interacti
has also been studied. A Kosterlitz-Thouless transition
and a region of diverging susceptibility in theG-T plane for
the d5s51 case has also been located.21

The classical long-range Ising spin-glass model@G50 in
~1!# was introduced long ago by Kotliar, Anderson, a
Stein.22 The one-dimensional classical Ising spin glass exh
its a nontrivial transition at finite temperature fors,1,
whereas fors.1 thermal fluctuations destroy any type
spin-glass ordering. Ford51, the parameter values51 is
especially important. It is the largest value ofs for which the
system can sustain long-range spin-glass order at a fi
temperature. In this case, the topological defects interact
a logarithmic interaction and thus the chain undergoe
Kosterlitz-Thouless transition to the paramagnetic phas23

For arbitrary dimensions, one can evaluate the critical ex
nents using the perturbativee expansion around the uppe
critical dimension and range given by the relationdu
53su .22 For a one-dimensional chain, fors,0.33, the
transition is of mean-field type. This particular classic
spin-glass model was also studied in relation to metallic s
glasses24 and a phase diagram in the (d-s) plane was
proposed.

The plan of the paper is as follows. In Sec. II we intr
duce the model and discuss its ground-state properties
the nature of the quantum transition using the drop
picture25,26 extended to the short-range quantum Ising s
glass.12 The mathematical framework and the results we d
cuss are somewhat similar to those in the short-range cas~at
least atT50) except for necessary modifications due to
long-range nature of the interaction. This study is, howev
useful for a complete understanding of the phase diagram
the model. In Sec. III, we use a modified version of t
effective Landau functional used in the short-range case9 and
explore the quantum transition using a perturbative ren
malization group technique. In Sec. IV, the scaling relatio
associated with the quantum transition and the fin
temperature transition are discussed. Although our stud
mostly restricted to Ising case (m51), it can be easily gen
eralized to the higher spin components (m.1, i.e., quantum
rotors!. We also include an extensive discussion of the d
ferent possible critical behaviors of the model in the concl
ing section.

II. MODEL AND THE DROPLET THEORY

In this section, we shall concentrate on the quantum s
glass Hamiltonian~1! and explore its ordered state atT50
and the corresponding quantum phase transition atG5Gc .
Note that the classical spin-glass Hamiltonian (G50) is or-
dered atT50 for any value ofs and d ~see below!. Thus,
the quantum system described by Eq.~1! has a second-orde
22442
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phase transition from the ordered phase to the paramag
phase driven by quantum fluctuations for all values ofd and
s. One can visualize the quantum phase transition in
present model~when the transverse field termG is nonran-
dom! as the equivalent of the thermal transition in thed
11)-dimensional classical Ising system with long-range r
dom interaction ind spatial dimensions and short-range fe
romagnetic interaction in the (d11)th ~imaginary time or
Trotter! dimension. Along the Trotter direction the random
ness is correlated~or striped!.

The classical droplet model25,26 describing the ordered
phase of a classical finite-dimensional spin glass relies on
existence of an effective coupling constantK(L) at a length
scaleL, which satisfies scaling laws in the ordered phase
near criticality. The scaling theory is based on a renormali
tion group picture where the zero-temperature fixed poin
stable. The droplet theory assumes an ‘‘ergodicity breakin
of a trivial kind ~i.e., assumes the existence of two grou
states related by an overall flip!, and the picture that emerge
out of this is markedly different from the mean-fie
~Sherrington-Kirkpatrick! spin glass or the conventional fe
romagnetic ordered phase. A droplet is defined as a cluste
upturned spins on a particular ground-state configuration

In the classical droplet picture, at low temperature,
excitation free energies of the droplet at length scaleL scale
typically as26

eL;Ly, ~3!

where y is the zero-temperature thermal exponent12 ~also
called the stiffness exponent since it is related to the stiffn
of the ordered phase25! of the classical spin glass. The pos
tive ~negative! value of the exponenty denotes a finite-
~zero-! temperature transition from the paramagnetic to sp
glass phase andy50 at the lower critical dimension. The
other zero-temperature exponentds is the fractal dimension
of the domain walls.26 The scaling ansatz for the probabilit
distributionP(eL)deL of the droplet of free energieseL at a
large scaleL is given as

PL~eL!deL5
deL

Y~T!Ly
PS eL

Y~T!LyD , L→`, ~4!

where Y(T) is the generalized stiffness modulus that va
ishes forT>Tc , andP here denotes the scaling function.

Let us first recall the known features26 of a d-dimensional
classical Ising spin glass with a long-range algebraic inter
tion as in Eq. ~1!, falling as Ji j

2 ;(1/r i j
d1s). The droplet

theory for the short-range case is extended to long range~at
least atT50) using a restricted definition of droplets~i.e.,
the weak long-range interaction among the droplets at len
scaleL is ignored.26! For all s in the rangesc,s,0, the
corresponding stiffness exponenty is given by ys5(d
2s)/2.26,24The value ofsc ~defined such that fors,sc the
long-range effect is relevant! is given by condition ys
5ys(at s5sc) which leads tosc5d22ys , where ys is
the correspondingy exponent in the short-range case. F
s.sc , there is a crossover to the short-range ze
temperature fixed point. This suggests that for a givend, if
7-2
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QUANTUM SPIN GLASS WITH LONG-RANGE RANDOM . . . PHYSICAL REVIEW B65 224427
s.d, the exponentys is negative and so the system does n
have a finite-temperature spin-glass transition and the lo
critical range~the value ofs for which ys50) is s l5d, i.e.,
s l51 for the one-dimensional system, as already discus

As in the short-range case,12 to study the long-range quan
tum glass, we assume that the lowest-lying excitations ab
the ground state of the equivalent (d11)-dimensional clas-
sical system at a particular imaginary time are the class
d-dimensional droplet excitations. As mentioned already,
shall ignore the weak long-range interaction between
droplets@which is responsible for a topological transition
the classical case ofd5s51 ~Ref. 22!# but we have to
include the ferromagnetic interaction between the droplet
the (d11)th ~Trotter! direction. If one coarse-grains the sy
tem along the imaginary time, choosing a value ofDt ~lat-
tice spacing in the Trotter direction!, such that droplets with
energyeD;(Dt)21 are dilute, imaginary-time dynamics o
a given droplet is described in terms of a classical o
dimensional Ising model Hamiltonian

HD5 (
k51

Lt F1

2
DteDSD~kDt!2KSD~kDt!SD„~k11!Dt…G ,

~5!

whereSD(t)561 represent the state with droplet excitati
present and the ground state at the imaginary timet, respec-
tively. Here k denotes the imaginary-time direction havin
width Lt andK stands for the surface free energy having
form ;k0Ld ~since the interaction in the Trotter direction
ferromagnetic and short ranged!.

At this point, we should emphasize some critical aspe
of droplet theory applied to the short-range and as well
long-range quantum spin glass. The droplet excitations c
sidered here are purely classical and the exponenty is the
stiffness exponent of ad-dimensional classical Ising spi
glass. The quantum effect comes into play due to the a
tional Trotter direction along which the droplets interact w
a short-range ferromagnetic interactionK. One thus arrives a
an equivalent one-dimensional Ising Hamiltonian given
Eq. ~5!. Moreover, once we neglect the long-range inter
tion between the droplets, the mathematical framework
identical to that of the short-range case12 at least atT50.
The only difference lies in the fact that in the long-range c
one has to use the stiffness exponent of the long-range
sical Ising spin glass given asys5(d2s)/2.

The imaginary-time autocorrelation function of the dro
lets of sizeL is evaluated by averaging the connected cor
lation function of the equivalent Ising spins in Eq.~5! ~sepa-
rated by t along the Trotter direction, withLt→` and
Trotter interactionK;k0Ld) over droplet energieseL , using
the distribution given in Eq.~4!. The imaginary-time auto-
correlation functionC(t) is obtained by summing over a
length scalesL by the saddle-point method.12 One finds

C~t!5^SD~0!SD~t!&c;
k0

ys /d

Y

DtqEA

t@ ln~t/Dt#11ys /d
. ~6!

In Eq. ~6!, the subscriptc denotes the cumulants and th
22442
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overbar denotes averaging over the droplet energieseL for a
given lengthL, and the Edwards-Anderson order parame
qEA5qEA(T50,G). The uniform linear static susceptibility
is then given as

x5E dtC~t!. ~7!

In the present long-range interacting case, usingys5(d
2s)/2, we find that for a particular dimensiond, the static
linear susceptibility is infinite ford,s and finite ford.s.
The more general imaginary-time correlation function, o
tained through an analogous calculation considering the c
tribution from droplets of size of the order of or larger thanr,
is given as

C2~r ,t!;

qEA
2 expS 2k0r d2

2r

Dt
e2k0r dD

DtYrys
. ~8!

The above correlation function falls faster than a simple
ponential, a feature of the quantum spin glass which is
seen in the classical case. This is because in the quan
case, the fraction of active droplets is proportional to tunn
ing rate@or the inverse of the correlation length in the Trott
direction t in the equivalent Ising chain~5!# which is pro-
portional to exp(2k0L

d).12

At finite temperature the Trotter directionLt is finite.
Thus, the finite-temperature transition in the short-ran
spin-glass model12 is explored using ad-dimensional quan-
tum droplet model where we have a two-level system~rep-
resented by an Ising spinSz) with a tunneling term (Sx)
necessary to describe the quantum effect. In the present l
range case, however, one should not use the same calcul
using the sameys to describe the droplet excitations at fini
temperature. The droplet picture of the classical long-ra
spin glass at finite temperature is rather questionable both
s.sc ~where the interplay between the dangerously irr
evant temperature and irrelevant long-range interaction co
be important! and s,sc ~where the possibility of having
collective droplet excitations cannot be ruled out!.26 Thus,
the long-range interaction between the droplets, neglecte
the above study, plays an important role. However, if o
wishes to use the similar calculation as in Ref. 12 for t
long-range case at finite temperature, the results would
quite similar to the short-range case. Of course, the res
for d,s (d.s) correspond to the results of the short-ran
systems below~above! their lower critical dimension.

Some crucial remarks are absolutely necessary here
deriving the above correlation functions,12 only the contribu-
tion from large-scale droplets has been taken into consi
ation. Actually, in the ordered phase there would always
processes involving small-scale droplets. These more mi
scopic correlations must dominate over the large-drop
7-3
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contributions to modify the Ornstein-Zernicke form given
Eq. ~8!. Cluster renormalization studies19 suggest that in the
ordered phase the short-range quantum random sy
renormalizes asymptotically to an infinite cluster of acti
spins ~with vanishing transverse field!. In the present long-
range case as well, it would be justified to expect the form
tion of such infinite clustersin the ordered phase. The infin
cluster will form only at zero energy below the lower critic
dimension of the classical long-range Ising spin gla
whereas above the lower critical dimension such a clu
will form at a finite nonzero-energy scale~see Fig. 1 in Sec
V!.
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III. EFFECTIVE ACTION AND RENORMALIZATION
GROUP CALCULATIONS

In this section, we shall extend the renormalization gro
calculations introduced in Ref. 9 to the present case of lo
range interactions.27 We shall focus on the Ising case (m
51), though it should be simple to extend to the rotor ca
(m>2). The effective zero-temperature Fourier-transform
Landau functional~in q,v representation! in the presence of
a long-range interaction of the form~1! is modified to~see
Refs. 1 and 9 for a rigorous derivation of the action in t
short-range case!
A5
1

ktE dv(
a

~r 1v2!Qaa~q50,v,2v!1
p

t E ddqdv1dv2qs(
a,b

Qab~q,v1 ,v2!Qab~2q,2v1 ,2v2!

1
p̃

t E ddqdv1dv2q2(
a,b

Qab~q,v1 ,v2!Qab~2q,2v1 ,2v2!2
k

3tE ddq1ddq2ddq3dv1dv2dv3 (
a,b,c

Qab~q1 ,v1 ,

2v2!Qbc~q2 ,v2 ,2v3!Qca~q3 ,v3 ,2v1!dd~q11q21q3!1
u

2tE ddqdv1•••dv4d~v11•••

1v4!(
a

Qaa~q,v1 ,v2!Qaa~2q,v3 ,v4!2
1

t2E ddqE dv1dv2(
a,b

Qaa~q,v1 ,2v1!Qbb~x,v2 ,2v2!. ~9!
s

oth

of

e

spin

e
the

r to

ll

rt-
ms

.
e

In the above action~9!, a,b are the replica indices runnin
from 1 to n ~with n→0 to be taken at the end of the calc
lation!. Here,Qab is the spin-glass order parameter field a
Qaa is the ‘‘thermal’’ operator whose coefficientr drives the
quantum transition. In the actionA, as in the short-range
case,9 t denotes the ‘‘dangerously irrelevant’’ operator simil
to that present in the action of a quantum random fi
system.28,29A dangerously irrelevant operator is an operat
irrelevant at a critical point, that should be retained to get
correct scaling behavior of some field~in the present case
free energy!. Usually, the field mentioned diverges as som
power of the dangerously irrelevant operator as the la
scales down to zero under renormalization. The simplest
ample is of such irrelevance is the irrelevance of the qua
term in the Landauf4 theory above the upper critical dimen
sion ~i.e., d.4).30

The presence of the linear term makes the action~9! dif-
ferent from the corresponding classical spin glass. The la
is described in terms of a cubic theory with the mass te
coupled to the term quadratic in field operators.31

Here the quadratic term is removed by an appropr
choice of the fieldQ, which generates the linear term in th
action and ensures that the random-averaged value of
field Q vanishes at the quantum critical point.9 The coeffi-
cient r in action~9! denotes the departure from the quantu
critical point andk denotes the cubic coupling. The param
eter u arises due to the quartic coupling of spins within
single replica and the term with coefficient 1/t2 represents
the randomness inr or randomness in the transverse field.
d
,
e

r
x-
ic

er

e

he

t

finite temperature, the continuous Matsubara frequenciev
are replaced by the corresponding discrete frequenciesvn

52pn/b.
Note that due to the long-range interaction, we have b

p̃q2 and pqs term present in the action. In the presence
such an interaction, the connectivity termKi j

21 in Appendix
A of Ref. 9 carries an additional multiplicative factor of th
form 1/u i 2 j ud1s, which when Fourier tranformed to theq
representation yields aqs term in addition to theq2 term.
Note that the algebraic form of the interaction in Eq.~1! is
chosen appropriately such that the action~9! carries a simple
qs term. Fors>2, the long-range termqs is irrelevant in
which case the action represents a short-range quantum
glass. As in the long-range pure classical system,27 at two-
loop order, the coefficientp̃ associated with the short-rang
term complicates the scenario and one cannot retrieve
short-range results by simply settings52 in the long-range
case. More precisely speaking there is actually a crossove
short-range critical behavior fors.22hSR wherehSR is the
Fisher exponent for the short-range quantum system.24 Note
that the Fisher exponenth determines the the algebraic fa
of the ~equal time! correlation function at the~quantum!
critical point and the subscript ‘‘SR’’ here stands for sho
range critical behavior. In short-ranged disordered syste
hSR may be negative9 so that the value ofs for which this
crossover takes place may in principle be greater than 2

The saddle-point~mean-field! ansatz is the same as th
corresponding short-range case and given as
7-4
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Qab~q,v1 ,v2!5~2p!ddabdd~q!d~v11v2!D~v1!,
~10!

whereD(v) is the Fourier transform ofD(t12t2), the ef-
fective single-site self-interaction in the infinite-rang
model.7 In the saddle-point approximation, therefore, there
no effect of the nonlocalqs term present in the action an
therefore one retrieves identical results of Ref. 9.

The long-range interaction manifests itself in the tr
level. As in the short-range case, we expandQ about its
saddle-point value

Qab~q,v1 ,v2!5dab~2p!ddd~q!d~v11v2!D~v1!

1Q̃ab~q,v1,v2!. ~11!

Expanding the actionA up to orderQ̃2, we find the propa-
gator ofQ̃ab to be

G~q,v1 ,v2!5
t

pqs1 p̃q21Av1
21 r̃ 1Av2

21 r̃
. ~12!

The region we are interested in here iss,22hSR(hSR50
at the tree level!, where the coefficientp̃ associated withq2

~the short-range interaction! is always irrelevant. One ca
thus setp̃50 in the propagator when dealing with the critic
properties. It is simple to extract the mean-field expone
from the propagator~12!. At the quantum critical point (r
50), the characteristic Matsubara frequencyuvu;ks, so that
the dynamical exponentz associated with the quantum crit
cal point is given byz5s. Once again, away from the criti
cal point (rÞ0), there is a length scalej21/2s and one finds
the correlation length exponentn51/2s. Clearly, we retrieve
the short-range mean-field exponents9 (z52 andn51/4) as
s→2. At this point, we use the disconnected spin-glass c
relation function9

Gd~x2y,t12t2 ,t32t4!

5 lim
n→0

(
aÞb

^Qaa~x,t1 ,t2!Qbb~y,t3 ,t4!&

2D~t12t2!D~t32t4!, ~13!

where^•••& denotes averaging over then-replicated action
~9!. The disconnected correlator shows a stronger diverge
than the spin-glass correlator~12! at the quantum critica
point. One can define the Fisher exponentsh andh̄ through
the scaling form ofG andGd at the quantum critical point,

G~q,0,0!;q221h, Gd~q,0,0!;q241h̄. ~14!

We shall now study the actionA in the spirit of a renormal-
ization group calculation where one integrates out hig
momenta and frequencies. The rescaling transformations
invoke here are

q85bq, v85bzv. ~15!
22442
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As in the short-range case, we shall associate an indepen
scaling to the dangerously irrelevant operatort ~which scales
to the fixed pointt50) as

t85tb2u, ~16!

where u.0. Since the long-range termqs is relevant, we
shall here define the spin-rescaling factorz in such a way
that the coefficientp of this term is not rescaled. The anom
lous dimension exponenth is related toz as in the short-
range case,

z25bd12z122h1u. ~17!

At the tree level, the leading correction to the coefficientp is
given byb2(d12z1u1s)3z2 which yields

h522s. ~18!

The interesting feature related to the long-range case27 comes
about because there are no corrections to the coefficientp of
the nonlocal term from perturbative elimination of the high
wave-vector modes@i.e., no new qsQ(q,v)Q(2q,2v)
term is generated in the renormalization process#. This keeps
h fixed to h522s to all orders ofe as long as the long-
range interaction is stable. Similarly one finds the expon
h̄ defined in Eq.~14! to be h̄542s52h.

As in the short-range case, the exponentsz andu will be
determined from the rescaling of thek and the 1/t2 term in
the actionA. Therefore the rescaling of the parameters at
tree level is

r 85rb2z, k85kb(61u2d23h)/2, u85ub22z2h.
~19!

The action is invariant under this rescaling of paramet
provided we choose

h522s, z5s, u5s. ~20!

The couplingk scales as

k;b(4s2d), ~21!

so that the coupling is irrelevant ford.4s and relevant
otherwise. Thus, we find that the upper critical dimensiondu
in the present case isdu54s ~which goes todu58 as s
→2). This relation equivalently yields the upper critic
range su5(d/4) for a given dimension~such that fors
.su , the coupling termk is relevant!. For the one-
dimensional case,su50.25 in contrast to the correspondin
classical case22 wheresu50.33. This decrease of the valu
of su is clearly due to the existence of the dangerously irr
evant operatort. The interactionu is irrelevant for all dimen-
sions abovedu .

One should note here that the exponentu is determined
demanding the invariance of the 1/t2 of the action which
scales asb22h2u. As we have discussed already, the exp
nenth does not renormalize so that one finds that the ex
nentu should always remain fixed to its mean-field valueu
5s. However, the dynamical exponentz is associated with
the correlation length in the Trotter direction with effectiv
7-5
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short-range interactions and thus will be renormalized a
the corresponding short-range case.9

In spirit similar to Ref. 9, one can always study the qua
tum critical behavior of the present system using ane expan-
sion around the upper critical dimensiondu . The flow equa-
tions for the cubic couplingk and the quantum mechanic
interactionu are

dk

dl
5

4s2d

2
k19k32

u

A11r
, ~22!

du

dl
522uk22

u2

A11r
. ~23!

We analyze the above equations fore54s2d50, e.0, and
e,0 in the same spirit as in the short-range case. The res
are quite similar. Setting the always relevant operatorr 50,
we find three fixed points fork andu using the above flow
equations. Above the upper critical dimensiondu , the Gauss-
ian fixed point withu* 5k* 50 is attractive foru.0. This
fixed point corresponds to the mean-field values of the ex
nents discussed already. The cubic couplingk and the pa-
rametert are both irrelevant here and there is a logarithm
correction to the exponents for alld abovedu54s, due to
the marginality of of the interactionu as in the short-range
case.9 At the upper critical dimensiondu ~or rangesu), there
will be an additional logarithmic correction due to the ma
ginality of the couplingk.

Below the upper critical dimension, as seen in the sh
range case,9 the only fixed point with real couplingk is the
Gaussian fixed point and it is unstable. There is alway
flow to the strong coupling. Thus, above the upper criti
dimension or range~e.g., for s.su50.25 for d51), it is
not possible to draw any conclusive inference from
e-expansion analysis.

It is straightforward to generalize the preceding disc
sion to then-component rotor system where one has an
ditional term9

v
2tE ddqdv1•••dv4d~v11•••1v4!Qmn

aa~q,v1 ,v2!

3Qmn
aa~2q,v3 ,v4!,

wherem,n label them components of the rotor. Howeve
one arrives at similar RG equations withU5v1mu.

As discussed above, the RG calculations in the sh
range case fail to locate a stable nontrivial fixed point for
d,8.9 The simplest conjecture is that for anyd,8, the criti-
cal fixed point, at least for strong randomness, is the infin
randomness fixed point~IRFP! where frustration is
irrelevant.13,19,20The quantum critical point is a novel perco
lation point where the annihilation and aggregation of cl
ters compete at all energy scales. For a cluster at energy
V,V is related to the diameterL of the cluster through the
relation

lnS V0

V D;Lc,
22442
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where c is a new exponent andV0 is the basic energy
scale.19 The magnetic moment of the cluster scales asLfc.
The exponentsc,f and the correlation length exponentn are
involved in this phenomenological scaling theory.19

In the present long-range case as well, RG calculati
cannot find a stable nontrivial fixed point for any value ofs
andd beyond the mean-field region. One can similarly arg
that even in the present case, the critical fixed point bey
the mean-field region happens to be the infinite-randomn
fixed point as discussed above. However, due to the exis
long-range interaction, the situation seems to be further c
plicated here. For small values ofs, when the long-range
interaction is dominant, we expect the critical fixed point
be effectively of long-range nature with the associated ex
nentsc,f, and n depending ons. On the other hand, for
larger value ofs, when the interaction between the dista
spins is very feeble~nearly absent!, the critical fixed point
should be the short-range IRFP with short-range exponen20

This crossover is observed in the one-dimensional rand
quantum Ising chain with algebraic disorder correlation.18 In
the short-range case, if we consider a typical ‘‘rare’’ ferr
magnetic cluster~with correlated randomness in the Trott
direction! of linear sizeL, the relaxation time~correlation
length in the Trotter direction! is typically given as lnjt
;Ld. In the present case, with algebraic interaction of
form 1/r i j

(d1s)/2 between spins, a similar consideration yiel
ln jt;L(3d2s12)/2. Comparison with the short-range case n
ively indicates a possibility of crossover to the short-ran
IRFP ass→(d12). We must mention here that this is just
heuristic estimation~obtained comparing the value ofjt) of
the crossover value ofs.

IV. SCALING RELATIONS

In this section, we shall discuss the scaling relations t
are expected to hold near the quantum transition point in
present model. These scaling properties are quite genera
do not depend on the replica picture. We assume here a
ventional quantum dynamical scaling and a finite value
the dynamical exponentz at the quantum critical point. This
should be a valid description for quantum rotors (m>2) but
appears to be inappropriate for the Ising case with hig
values ofs due to the possible activated quantum dynami
scaling.13 Following Ref. 9, we shall proceed with the a
sumption of the presence of a single dangerously irrelev
variablet. The key points where the long-range nature of t
interaction causes a marked difference are discussed. Cle
these scaling relations should be valid in the regions,2
2hSR where the long-range interaction always domina
over the corresponding short-range one.

Using the scaling properties of the disconnected propa
tor, we propose the exponenth̄ ~at the quantum critical
point! as9

Gd~x,t,t!;x2(d12z241h̄), ~24!

for a fixed t/xz. Note that we have 2z term in the above
since an operator bilocal in time is involved. The prese
problem is unique as we have discussed already, in the s
7-6
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that the exponenth̄ has the fixed valueh̄5422s as long as
the long-range interaction is relevant. The spin-glass c
relator, as defined earlier, will be given byt times the scaling
dimension ofGd and thus scales as

G~x,0,0!;x2(d12z241h̄1u). ~25!

Once again, using the definition of the exponenth @see Eq.
~14!#, we have

G~x,0,0!;x2(d12z221h). ~26!

The exponenth is similarly fixed to the valueh522s so
that the above two equations lead us to the relation

u521h2h̄5s. ~27!

Interestingly, as we have discussed already, the exponeu
describing the dangerous irrelevance of the quantum fluc
tions does not vary from its mean-field value for alls,2
2hSR. In short, as in the short-range case,9 the usual scaling
relations are satisfied but in the hyperscaling relationd is
replaced byd12z2u, with 2z coming from the bilocal~in
t) field andu due to the dangerous irrelevance oft. The free
energy density, on the other hand, is local in time. Consid
ing a correlation volumejd1z and with the assumption tha
the singular part of the free energy scales asju @wherej is
the spatial correlation length scaling as (r 2r c)

2n#, one finds
the scaling form of the free-energy density given
j2(d1z2u);(r 2r c)

n(d1z2u) near the quantum critical poin
r 5r c andT50.

At finite temperature, the length scalej scales with tem-
perature asj;T2(1/z), and hence the free-energy dens
scales asj2(d1z2u);T(d1z2u)/z, so that the specific hea
scales asT(d2u)/z. At the upper critical dimension (du
54s) with z5u5s, one retrieves expectedT3 behavior of
the infinite-range system.8

At this point one can introduce the local variablec(x,t)
which couples to the mass termr that drives the zero-
temperature transition and introduce the corresponding
relation function exponentshc and h̄c as in the short-range
case.9 Identical considerations yield the scaling form of t
nonlinear susceptibilityxnl with the associated length sca
j,

xnl;jz122h;jz1s, ~28!

where we have usedh522s. The divergence of the non
linear susceptibility xnl as T→0 is given by xnl
;T2(z1s)/z. Studies of the experimental samp
LiHoxY12xF4 ~Ref. 3 and 4! seem to indicate that this diver
gence decreases with decreasing temperature and there
well be no divergence ofxnl at the quantum critical point
None of the previous analytical studies of the short-ran
quantum spin-glass systems reproduces this experimenta
servation. It has been suggested6 that an appropriate choic
of long-range interaction present in the experimental sys
may be important here. The present work, however, at le
in the framework of the scaling theory we propose, seem
indicate a divergence ofxnl asT→0. Of course, the Griffiths
22442
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singularities present in the quantum systems atT50 might
well have influenced the experimental results.6

V. CONCLUSIONS

To conclude, we report studies of a quantum spin-gl
model with long-range random interactions. We have u
the existing droplet theory12 and the Landau theory9 for the
short-range quantum spin glass~with the necessary extensio
for the long-ranged interacting case! to understand qualita
tively the phases of the model.

We have already discussed in the Introduction that
quantum transition in the random quantum Ising system
associated with a ‘‘Griffiths-McCoy’’ singular region and a
‘‘activated quantum dynamical scaling’’13 at the quantum
critical point. In the mean-field region and for quantum r
tors with spin componentsm>2,7–9 the dynamical scaling a
the quantum critical point is expected to be convention
Our study shows that for any given dimension mean-fi
theory results are valid for a range of the parameters
<su(5d/4). Thus, even in the one-dimensional quantu
Ising model with long-range random interactions, the d
namical scaling at the quantum critical point should be c
ventional fors,0.25.

Let us now address the question of quantum Griffith
McCoy ~GM! effects associated with the quantum transiti
in the present quantum spin-glass model. In the ze
temperature disordered phase of the short-range system19,20

under renormalization the system renormalizes to a col
tion of asymptotically uncopuled clusters with a broad d
tribution of effective fields. In the quantum-disordered pha
a clusters much larger than the correlation length are ex
nentially ‘‘rare.’’ These rare regions typically have an e
ponetially large correlation lengthjt in the Trotter direction
~relaxation time!. These exponentially rare regions with a
exponentially largejt result in a the divergence of the re
sponse and a continuously varying dynamical exponen
the disordered phase. In the present long-range case,
expects similar GM effects to occur in the quantum
disordered phase for anyd ands where the exponentc, as
discussed earlier, may depend on the range of interactions.

At this point it would be useful to recall the droplet theo
for the classical long-range Ising spin glass. As discus
already, fors.sc5d22ys , there is a crossover from th
long-range zero-temperature~droplet! fixed point to the cor-
responding short-range zero-temperature fixed point. T
one finds that for thed51 case, the long-range interaction
are relevant in determining the ground-state properties fo
s,3 ~using ys521 for one-dimensional random chain.25!
For s>3, the zero-temperature transition in the classi
model is effectively of short-range nature. In a similar spi
one can estimate the values ofsc using the numerically ob-
tained values ofys for higher-dimensional classical system

Using these above information, we indicate the orde
phase of the present quantum spin glass in Fig. 1. RegioA
of Fig. 1 corresponds to the zero-temperature droplet fi
point ~of the classical long-range Ising spin-glass! of long-
range nature whereas regionB refers to the short-range drop
let fixed point. As discussed above the boundary betw
7-7
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AMIT DUTTA PHYSICAL REVIEW B 65 224427
these two regions is given bys5d22ys . In regionC the
quantum system undergoes both the zero-temperature q
tum transition and finite-temperature classical transit
while in regionsA and B there is a quantum transition bu
there is no long-range order at any finite temperature.
already discussed, the droplet theory for the long-range c
sical spin glass is really questionable for finite temperatu
The boundary between regionsA andC is d5s ~as obtained
from the droplet theory! whereas the boundary between r
gionsB andC is given byd5dl

classicalwheredl
classical is the

lower critical dimension of the classical short-range Isi
spin glass. In the language of cluster renornalization gr
arguments, proposed in the short-range case,19 in the ordered
phase an asymptotic infinite cluster only forms at ze
energy in regionsA andB whereas in regionC, an infinite
cluster is formed at a finite energy scaleV` ~which is of the
order of the classical transition temperature!. The point of
special interest happens to bed5s51 where we have a
zero-temperaure transition and the classical transition at
finite temperature is a topological transition.22

Let us now concentrate on theT50 quantum transition of
the present long-range quantum spin glass and discuss
associated critical fixed points. Depending on the nature
the quantum critical behavior, we typically denote three
gions I–III in Fig. 2. In region I, the mean-field theory wit
relevant long-range interactions~exponents depending on th
value of s) holds true~see Sec. III!. The quantum critical
fixed point is the long-range Gaussian fixed point. In reg
II, the mean-field theory for the short-range interacting qu
tum spin glass9 is valid and here the critical fixed point is th
short-range Gaussian fixed point. As already explained
crossover from the long-range Gaussian fixed point~region

FIG. 1. Schematic diagram showing the ordered phases of
quantum Ising spin glass@in the (d-s) plane# with long-range ran-
dom interactions. We have used here the exact valueys521 and
the numerically obtained valueys;20.3 for one-dimensional and
two-dimensional short-range classical spin glasses. It is also
sumed that the lower critical dimension (dl

classical) for a short-range
classical spin glass lies in betweend52 and 3. The different re-
gions of this phase diagram—the boundaries and the special p
(d5s51)—are explained in the text.
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I! to the short-range one~region II! occurs ats52. In region
III, the system has a nontrivial~not mean-field! quantum
transition. Thee-expansion calculations fail to locate an
nontrivial fixed point here. This is true even for quantu
spin glasses with purely short-range interactions.9 As dis-
cussed in Sec. III, in this region the critical fixed poi
should be the infinite-randomness fixed point. The bound
between region I and region III is given by the conditio
du54s which yieldsd58 for s52. We expect a crossove
in region III from the IRFP with long-range exponents to t
short-range one for sufficiently large values ofs. The
e-expansion calculations, however, indicate a crossover f
long-range quantum critical behavior to the short-range
at s522hSR where, as mentioned already,hSR is the Fisher
exponent for the short-range quantum system. This cross
is indicated with a dotted line in Fig. 2. As mentioned abov
the e expansion, on the other hand, fails to grasp the occ
rence of the IRFP. It would be interesting to probe such
crossover behavior using numerical techniques.

We should specifically mention once again the differe
types of fixed points that are involved in the above disc
sion: ~i! the quantum-disordered phase, where the sys
renormalizes to uncoupled clusters, and~ii ! the ordered
phase fixed point~see Fig. 1! of the quantum system wher
the system asymptotically renormalizes to an infinite clus
Moreover, in describing the ordered phase, we refer to
zero-temperature droplet fixed points of the classical lo

he

s-

int

FIG. 2. Schematic diagram of the quantum critical behavior
the quantum Ising spin glass@in the (d-s) plane# with long-range
random interactions. We have used numerically obtained value
the exponenthSR. In the present notation,hSR521 for d52 ~Ref.
11! andhSR520.2 for d53 ~Refs. 9 and 10!. The three regions of
this phase diagram and the boundaries are explained in the te
7-8
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QUANTUM SPIN GLASS WITH LONG-RANGE RANDOM . . . PHYSICAL REVIEW B65 224427
range Ising spin glass~regionsA and B of the Fig. 1!. In
describing the quantum critical behavior, we come acr
two quantum critical fixed points:~a! Gaussian~long-range
Gaussian for region I and short-range Gaussian for regio
of Fig. 2! and~b! the infinite-randomness fixed point~region
III of Fig. 2!.

We have generalized thee-expansion calculations used i
the Ref. 9 to the present long-range problem. This met
fails to find any stable weak-coupling fixed point ford.du
for a givens ands.su for a givend ~i.e., in regions III and
IV of Fig. 1!. This is not surprising keeping in mind tha
even in the short-range case no stable weak-coupling fi
point is located ford.8, but rather a flow to strong couplin
is found. The simplest scenario here is that for both the sh
range and the long-range case beyond the mean-field re
the critical fixed point should be the infinite-randomne
fixed point.13,19However,e-expansion calculations provide
nice mean-field description even in the present long-ra
interacting cases. We find that the upper critical range
dimension are related through the expressiondu54su , so
that the upper critical range ford51 is su50.25, in contrast
to the classical case wheresu50.33 for d51.22 This is
ch

v

o
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re
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clearly due to the existence of a dangerously irrelevant
erator t in the quantum problem. Interestingly, due to th
long-range nature of interaction, we have a wide region
physically relevant parameter space~i.e., su53/4 for d
53) where mean-field theory is valid and the mean-fie
results hold good. We present as well a phenomenolog
scaling description based on the assumption of the existe
of a dangerously irrelevant operatort,9 which should be the
valid near the quantum critical point. The scaling relatio
are derived under the assumption of a conventional dyna
cal scaling at the quantum critical point. As discussed
ready, this may not be a valid assumption for the Ising s
tem with a general value ofs.

ACKNOWLEDGMENTS

The author would like to gratefully acknowledge a helpf
discussion with Subir Sachdev. He also acknowledges P
Fulde, R. Oppermann, Diptiman Sen, and Parongama Sen
encouraging and interesting discussions and M. Ameduri
B. K. Chakrabarti for critically reading the manuscript.
ev.

ev.

d,
*Electronic address: adutta@mpipks-dresden. mpg. de
1S. Sachdev,Quantum Phase Transitions~Cambridge University

Press, Cambridge, England, 1999!.
2B. K. Chakrabarti, A. Dutta, and P. Sen,Quantum Ising Phases

and Transitions in Transverse Ising Models~Springer-Verlag,
Heidelberg, 1996!.

3W. Wu, B. Ellman, T.F. Rosenbaum, G. Aeppli, and D.H. Rei
Phys. Rev. Lett.67, 2076~1991!.

4W. Wu, D. Bitko, T.F. Rosenbaum, and G. Aeppli, Phys. Re
Lett. 71, 1919~1993!.

5R. N. Bhatt, inSpin Glasses and Random Fields, edited by A. P.
Young, Series on Directions in Condensed Matter Physics V
12 ~World Scientific, Singapore, 1997!.

6H. Rieger and A. P. Young, inComplex Behaviour of Glass
Systems, edited by J. M. Rubi and C. Perez-Vicente, Lectu
Notes in Physics Vol. 492~Springer-Verlag, Berlin, 1997!, p.
254.

7D.A. Huse and J. Miller, Phys. Rev. Lett.70, 3147~1993!.
8J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett.70, 4011~1993!.
9N. Read, S. Sachdev, and J. Ye, Phys. Rev. B52, 384 ~1995!.

10M. Guo, R.N. Bhatt, and D. Huse, Phys. Rev. Lett.72, 4137
~1994!.

11H. Rieger and A.P. Young, Phys. Rev. Lett.72, 4141~1994!.
12M.J. Thill and D. Huse, Physica A214, 321 ~1995!.
13D.S. Fisher, Phys. Rev. Lett.69, 534 ~1992!; Phys. Rev. B51,

6411 ~1995!.
.

l.

14A.P. Young and H. Rieger, Phys. Rev. B53, 8486~1996!.
15C. Pich, A.P. Young, H. Rieger, and N. Kawashima, Phys. R

Lett. 81, 5916~1999!.
16H. Rieger and A.P. Young, Phys. Rev. B54, 3328~1996!.
17M. Guo, R.N. Bhatt, and D.A. Huse, Phys. Rev. B54, 3336

~1996!.
18H. Rieger and F. Igloi, Phys. Rev. Lett.83, 3741~1999!.
19D.S. Fisher, Physica A263, 222 ~1999!.
20O. Motrunich, S-C Mau, D.A. Huse, and D.S. Fisher, Phys. R

B 61, 1160~2000!.
21A. Dutta and J.K. Bhattacharjee, Phys. Rev. B64, 184106~2001!.
22G. Kotliar, P.W. Anderson, and D.L. Stein, Phys. Rev. B27, 602

~1983!.
23J.M. Kosterlitz, Phys. Rev. Lett.37, 1577~1976!.
24A.J. Bray, M.A. Moore, and A.P. Young, Phys. Rev. Lett.56,

2641 ~1986!.
25A.J. Bray and M.A. Moore, J. Phys. C17, L463 ~1984!.
26D.S. Fisher and D.A. Huse, Phys. Rev. B38, 386 ~1988!.
27M.E. Fisher, S.K. Ma, and B.G. Nickel, Phys. Rev. Lett.29, 917

~1972!.
28T. Senthil, Phys. Rev. B57, 8375~1998!.
29A. Dutta and J.K. Bhattacharjee, Phys. Rev. B58, 6378~1998!.
30P. M. Chaikin and T. C. Lubensky,Principles of Condensed Mat-

ter Physics~Cambridge University Press, Cambridge, Englan
1998!.

31K. H. Fischer and J. A. Hertz,Spin Glasses~Cambridge Univer-
sity Press, Cambridge, England,~1991!.
7-9


