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Quantum spin glass with long-range random interactions
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A model of the quantunitransversglsing spin glass with a long-range random interaction is proposed and
studied here. In this model the random interaction between two spins at a distaapart falls algebraically
as 1t{" "% Here, apart from the strength of the quantum fluctuations, the interaction saisgaiso tunable.
We have studied the ground-state properties of the model, extending the “Droplet model” of the short-range
guantum spin glass. The model is also studied using a modified form of the effective Landau action describing
the transition of the short-range quantum spin glass. The important features which are due to the long-range
interaction are clearly mentioned. Field theoretical renormalization group calculations fail to locate any stable
weak-coupling fixed point in the non-mean-field region. The simplest conjecture is that beyond the mean-field
region, the critical behavior is governed by the infinite randomness fixed point. We extend the phenomeno-
logical scaling relation for the short-range quantum spin gleased on the assumption of the existence of a
dangerously irrelevant operajaio the present long-range interacting case. Most of the possible interesting
aspects associated with the quantum transition in the present model are elaborately discussed.
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[. INTRODUCTION rence of the Griffith-McCoy singularities in the disordered
phase, although they seem to support a conventional dynami-
Random quantum transitions in the quantum |§'r’ngnd cal scaling with a finite value of the dynamical exponent at
rotor model$ have attracted a great deal of attention in re-the quantum critical point. The effect of spatial correlations
cent years. Following experimental studies of the insulating®n quenched disorder in random quantum Ising systems near
dipolar Ising system LiHgY;_,F,, which is ideally modeled the quantum critical point has also been stutheohd it was
in terms of a quantum Ising spin gla’$,an enormous found that the relevant correlations enhance the critical and
amount of effort has been directed to understand the zerd@ff-critical singularities. The random quantum Ising model in
temperature and finite-temperature transitions in quanturd=2 has also been studiét?® generalizing the(cluste)
spin glassesfor recent reviews see Refs. 1,5, and 6 renormalization group(RG) method applied to the one-
Huse and Millef investigated the transverse Ising spin- dimensional systert. It has been found that at strong ran-
glass model with an infinite-range interactioi@herrington-  domness the RG flow for the quantum critical point is to-
Kirkpatrick model in a transverse fielénd determined ex- Wards an infinite-randomness fixed point as in one
actly the transition from the spin-glass-ordered phase to théimension. If quenched randomness grows beyond the limit
paramagnetic phase. Ye, Sachdev, and Readlied the cor- as the system is coarse grained, the associated fixed point
responding rotor problem in the limit of infinite-range inter- would have infinitely strong randomness and thus be called
actions and infinite spin dimensionalitgpherical limil, and  the infinite-randomness fixed poift.
derived results similar to the results in Ref. 6. In a subse- In this communication, we propose a long-range quantum
quent work, they proposed a Landau theory of quantum spitsing spin glass described by the Hamiltonian
glasses of rotors and Ising spingith a short-range interac- ]
tion. The zero-temperature transition and the associated criti- _ i ezez ax
cal exponents of the short-range quantum Ising model Hi= ; r_(d+o)/28' S in S @
(Edwards-Anderson model in a transverse fiefdtwo and b R
three dimensions are extensively studied using quanturwhered is the spatial dimension, tHgs are the noncommut-
Monte Carlo technique¥:** A phenomenological droplet ing Pauli matrices, and is the tunable range of interaction.
theory describing the transitions in short-range quantunThe random bondg;; are chosen from a Gaussian distribu-
Ising systems has also been propo¥etihe novel features tion with vanishing mean and variandegiven as
associated with the low-dimensional random quantum tran-
sitions are the “activated quantum dynamical scaling” at the 1 i
quantum critical point and the existence of a Griffiths- PUi= "5 — 55| @)
. . . . . (2mJ7)
McCoy singular region(with continuously varying expo-
nentg, where the response function diverges even away frontlere I' denotes the noncommuting transverse field that in-
the quantum critical point This scenario is proved troduces the quantum fluctuations in the model, and therefore
analytically"® and numericall{# in the one-dimensional case. tuning I' appropriately, one can drive the system from the
Numerical studies on two-dimensional random bond systemerdered to disordered phase evenTat0. Even when the
corroborate the above conjectdrezurther numerical studies spatial dimensionality of the model is unity, the long-range
on the two-dimension#i and the three-dimensiortalshort-  nature of the random interaction causes frustration and thus
range quantum Ising spin glasses clearly indicate the occuthe model happens to be an ideal representative of a quantum
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Ising spin glass in one dimension. The corresponding shorphase transition from the ordered phase to the paramagnetic
range system il=1 does not have frustration and can thusphase driven by quantum fluctuations for all valuesl @ind

be mapped onto the random quantum Ising chdiHow-  ¢. One can visualize the quantum phase transition in the
ever, one should note here that in the infinite-randomnesgresent mode{when the transverse field terfh is nonran-
limit?° frustration is irrelevant and the sam@nfinite- dom) as the equivalent of the thermal transition in thk (
randomnessfixed point should govern both the ferromag- + 1)-dimensional classical Ising system with long-range ran-
netic and spin-glass quantum critical points. Very recentlydom interaction ind spatial dimensions and short-range fer-
the pure quantum Ising system with long-range interactionsomagnetic interaction in thed@ 1)th (imaginary time or
has also been studied. A Kosterlitz-Thouless transition lin€lrotter) dimension. Along the Trotter direction the random-
and a region of diverging susceptibility in theT plane for  ness is correlatetbr striped.

thed=o=1 case has also been locaféd. The classical droplet model?® describing the ordered

The classical long-range Ising spin-glass mddé+0 in  phase of a classical finite-dimensional spin glass relies on the
(1)] was introduced long ago by Kaotliar, Anderson, andexistence of an effective coupling consté(L) at a length
Stein?? The one-dimensional classical Ising spin glass exhibscaleL, which satisfies scaling laws in the ordered phase and
its a nontrivial transition at finite temperature fer<1, near criticality. The scaling theory is based on a renormaliza-
whereas foro>1 thermal fluctuations destroy any type of tion group picture where the zero-temperature fixed point is
spin-glass ordering. Fait=1, the parameter value=1 is  stable. The droplet theory assumes an “ergodicity breaking”
especially important. It is the largest valuemfor which the  of a trivial kind (i.e., assumes the existence of two ground
system can sustain long-range spin-glass order at a finitgtates related by an overall flipand the picture that emerges
temperature. In this case, the topological defects interact viaut of this is markedly different from the mean-field
a logarithmic interaction and thus the chain undergoes #&Sherrington-Kirkpatrick spin glass or the conventional fer-
Kosterlitz-Thouless transition to the paramagnetic pRase. romagnetic ordered phase. A droplet is defined as a cluster of
For arbitrary dimensions, one can evaluate the critical expoupturned spins on a particular ground-state configuration.
nents using the perturbative expansion around the upper In the classical droplet picture, at low temperature, the
critical dimension and range given by the relatialy  excitation free energies of the droplet at length stageale
=30,.%% For a one-dimensional chain, far<0.33, the typically ag®
transition is of mean-field type. This particular classical
spin-glass model was also studied in relation to metallic spin e~L, (©)
glasse¥ and a phase diagram in thal-¢) plane was
proposed.

The plan of the paper is as follows. In Sec. Il we intro-
duce the model and discuss its ground-state properties a
the nature of the quantum transition using the dropletE o . :
picturé>2% extended to the short-range quantum Ising spin zeroy temperalure transition from the paramagnetic to spin-
glasst? The mathematical framework and the results we dis_glass phase angl=0 at the Iower' critical d|men_3|0n. The
cuss are somewhat similar to those in the short-range(ease other zero-temperature exponeftis the fractal dimension

least atT =0) except for necessary modifications due to theof the domain wall€® The scaling ansatz for the probability

long-range nature of the interaction. This study is, howeverd'smbumnP(GL)dEL of the droplet of free energies at a

useful for a complete understanding of the phase diagram &arge scald. is given as

wherey is the zero-temperature thermal exponr@rialso
called the stiffness exponent since it is related to the stiffness
r% the ordered pha® of the classical spin glass. The posi-
Ive (negative value of the exponeny denotes a finite-

the model. In Sec. lll, we use a modified version of the
effective Landau functional used in the short-range tasd _ de €L

HY H H PL(EL)dEL_ ’ L—}OO, (4)
explore the quantum transition using a perturbative renor- Y(T)LY | Y(T)LY

malization group technique. In Sec. IV, the scaling relations
associated with the quantum transition and the finitewhereY(T) is the generalized stiffness modulus that van-
temperature transition are discussed. Although our study isshes forT=T., andP here denotes the scaling function.
mostly restricted to Ising casen=1), it can be easily gen- Let us first recall the known featuréof a d-dimensional
eralized to the higher spin components>* 1, i.e., quantum classical Ising spin glass with a long-range algebraic interac-
rotors. We also include an extensive discussion of the dif-tion as in Eq.(1), falling as Jﬁ~(1/ridj+"). The droplet
ferent possible critical behaviors of the model in the concludtheory for the short-range case is extended to long raage
ing section. least atT=0) using a restricted definition of dropletse.,
the weak long-range interaction among the droplets at length
scaleL is ignored®®) For all o in the ranges,<o<O0, the
corresponding stiffness exponemt is given by y,.=(d

In this section, we shall concentrate on the quantum spin— ¢)/2.25?*The value ofs, (defined such that for< o, the
glass Hamiltoniar(1) and explore its ordered state B0  long-range effect is relevantis given by conditiony
and the corresponding quantum phase transitioh-al’... =y (at o=0.) which leads toc.,=d—2ys, whereys is
Note that the classical spin-glass Hamiltonidh=0) is or-  the correspondingy exponent in the short-range case. For
dered atT=0 for any value ofo andd (see below. Thus, o>o., there is a crossover to the short-range zero-
the quantum system described by Et. has a second-order temperature fixed point. This suggests that for a giseif

Il. MODEL AND THE DROPLET THEORY
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o>d, the exponeny,, is negative and so the system does notoverbar denotes averaging over the droplet energidsr a
have a finite-temperature spin-glass transition and the lowegiven lengthL, and the Edwards-Anderson order parameter
critical range(the value ofo for whichy,=0) isoy=d, i.e.,  gga=0ega(T=0,). The uniform linear static susceptibility
o,=1 for the one-dimensional system, as already discussegs then given as

As in the short-range caséto study the long-range quan-
tum glass, we assume that the lowest-lying excitations above
the ground state of the equivalerd+ 1)-dimensional clas- _
sical system at a particular imaginary time are the classical XZJ d7C(). (7)
d-dimensional droplet excitations. As mentioned already, we
shall ignore the weak long-range interaction between the
droplets[which is responsible for a topological transition in |n the present long-range interacting case, usjpg (d
the classical case af=o=1 (Ref. 23] but we have to  _ ;y/2 we find that for a particular dimensiah the static
include the ferromagnetic interaction between the droplets ifinear susceptibility is infinite fod< o and finite ford>o.
the (d+1)th (Trotten direction. If one coarse-grains the sys- the more general imaginary-time correlation function, ob-
tem along the imaginary time, choosing a valueaf (Iat-  yaineq through an analogous calculation considering the con-
tice spacing in the Trotter directignsuch that droplets with tribution from droplets of size of the order of or larger thran
energyep~ (A7)~ ! are dilute, imaginary-time dynamics of is given as
a given droplet is described in terms of a classical one-
dimensional Ising model Hamiltonian

2r
L. 2 d — kgrd
1 exp —kgof"——e "0
HD:E EATGDSD(kAT)—KSD(kAT)SD((k+1)AT) , ] Jea F{ Ko AT ®
K=1 ,T)~ :
(5) ArY Yo

whereSp(7) = £ 1 represent the state with droplet excitation ) ) )
present and the ground state at the imaginary tigmrespec-  1he above correlation function falls faster than a simple ex-
tively. Here k denotes the imaginary-time direction having Ponential, a feature of the quantum spin glass which is not
width L, andK stands for the surface free energy having theS€en in the classical case. This is because in the quantum
form ~koL¢ (since the interaction in the Trotter direction is CaSe, the fraction of active droplets is proportional to tunnel-
ferromagnetic and short ranged ing rate[or the inverse of the correlation length in the Trotter
At this point, we should emphasize some critical aspectélirection = in the eqtélvlazlent Ising chaifb)] which is pro-
of droplet theory applied to the short-range and as well th?0rtional to expg rl"). S
long-range quantum spin glass. The droplet excitations con- At finite temperature the Trotter directiob;, is finite.
sidered here are purely classical and the expogedatthe Th_us, the flnlte-tgmperature transition in th.e short-range
stiffness exponent of a-dimensional classical Ising spin SPin-glass modét is explored using al-dimensional quan-
glass. The quantum effect comes into play due to the addtUm droplet model where we have a two-level systeep-
tional Trotter direction along which the droplets interact with "esented by an Ising spif®) with a tunneling term &)
a short-range ferromagnetic interactiénOne thus arrives at Necessary to describe the quantum effect. In the present long-
an equivalent one-dimensional Ising Hamiltonian given byrange case, however, one should not use the same calculation
Eq. (5). Moreover, once we neglect the long-range interacUsing the samg,; to describ(_a the droplet excita_tions at finite
tion between the droplets, the mathematical framework idemperature. The droplet picture of the classical long-range
identical to that of the short-range ci&at least afT=0.  SPin glass at finite temperature is rather questionable both for
The only difference lies in the fact that in the long-range case” > 0. (where the interplay between the dangerously irrel-
one has to use the stiffness exponent of the long-range cla§vant temperature and irrelevant long-range interaction could
sical Ising spin glass given 3s=(d—o)/2. be |mportanl and o< o _(where the possibility of having
The imaginary-time autocorrelation function of the drop- collective droplet excitations cannot be ruled )dit Thus,
lets of sizel is evaluated by averaging the connected correthe long-range interaction between the droplets, neglected in
lation function of the equivalent Ising spins in B§) (sepa- the above study, plays an important role. However, if one
rated by 7 along the Trotter direction, with.,—c and  Wishes to use the si_m_ilar calculation as in Ref. 12 for the
Trotter interactiork ~ x,LY) over droplet energies, , using Ion_g—ra_ng_e case at finite temperature, the results would be
the distribution given in Eq(4). The imaginary-time auto- 9uite similar to the short-range case. Of course, the results
correlation functionC(r) is obtained by summing over all for d<o (d>o) correspond to the results of the short-range

length scales. by the saddle-point methdd.One finds systems belowabove their lower critical dimension.
Some crucial remarks are absolutely necessary here. In
Yo ld A deriving the above correlation functiotfspnly the contribu-
0 TOeA ' - i ider-
C(7)=(Sp(0)Sp(7))o~ 6) tion from large-scale droplets has been taken into consider

ation. Actually, in the ordered phase there would always be
processes involving small-scale droplets. These more micro-
In Eq. (6), the subscriptc denotes the cumulants and the scopic correlations must dominate over the large-droplet

Y AIn(r/ A7l
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contributions to modify the Ornstein-Zernicke form given in  [ll. EFFECTIVE ACTION AND RENORMALIZATION
Eq. (8). Cluster renormalization studi€ssuggest that in the GROUP CALCULATIONS

ordered phase the short-range quantum random system
renormalizes asymptotically to an infinite cluster of active ; . )
spins (with vanishing transverse fieldin the present long- calcula_tlons mFrod%Jced in Ref. 9 to the presen_t case of long-
range case as well, it would be justified to expect the formalange |nterac.t|0n§. We shall focus on the Ising casen(
tion of such infinite clustersin the ordered phase. The infinite= 1), though it should be simple to extend to the rotor case
cluster will form only at zero energy below the lower critical (m=2). The effective zero-temperature Fourier-transformed
dimension of the classical long-range Ising spin glasg-andau functionalin g, representationin the presence of
whereas above the lower critical dimension such a clusted long-range interaction of the forid) is modified to(see

will form at a finite nonzero-energy scalsee Fig. 1 in Sec. Refs. 1 and 9 for a rigorous derivation of the action in the
V). short-range cage

In this section, we shall extend the renormalization group

1
A=— f do (r+0?)Q*(q=0,~ )+ ¢ f d’qdw;dwaq” D, Q(d,w1,02)Q™(~ 0, — w1, ~ wy)
a a,b
2 [ 49900100078 Q01,020 (~ 0.~ 01— 02)~ 51 | 1°0,0°,0°d0,d0rd0;, QMG 01,
a,b a,b,c
u
— ) Q°(0z, wz, — ®3)Q°N(d3, w3, — 1) 8y T Qo+ Ga) + if dqdw;- - dwsd(wy+ - - -

1
+w4)§a: Qaa(q,wl70)2)Qaa(_qaw37w4)_t_zf dde dwldwzaz,) Qaa(q,wl,—wl)be(X,wz,—wz). 9

In the above actiorf9), a,b are the replica indices running finite temperature, the continuous Matsubara frequensies
from 1 ton (with n—0 to be taken at the end of the calcu- are replaced by the corresponding discrete frequensjes
lation). Here,Q?" is the spin-glass order parameter field and=2xn/p.

Q%% is the “thermal” operator whose coefficientdrives the Note that due to the long-range interaction, we have both

guantum transition. In the actiop_ﬁ, as in the short-ra_ng_e Pg? and pq’ term present in the action. In the presence of
case’ t denotes the “dangerously irrelevant” operator similar

to that present in the action of a quantum random ﬁeldSUCh an mterac_tlon, the cc_)r_mecnvny Femjl. in Appendix
systen?®?° A dangerously irrelevant operator is an operator,A of Ref. 9 carries an additional multiplicative factor of the
irrelevant at a critical point, that should be retained to get th orm 1/i _J_l '_Wh'Ch Uwhen I_:ouner_ _tranformedzto the
correct scaling behavior of some fieith the present case [ePresentation yields g” term in addition to they” term.
free energy. Usually, the field mentioned diverges as somelNOte that the algebraic form of the interaction in Ed) is
power of the dangerously irrelevant operator as the lattefh0osen appropriately such that the acti@pcarries a simple
scales down to zero under renormalization. The simplest exd” term. Fora=2, the long-range term? is irrelevant in
ample is of such irrelevance is the irrelevance of the quartigvhich case the action represents a short-range quantum spin
term in the Landaws* theory above the upper critical dimen- glass. As in the long-range pure classical systéat, two-
sion (i.e., d>4) 30 loop order, the coefficiernp associated with the short-range
The presence of the linear term makes the act®rdif- term complicates the scenario and one cannot retrieve the
ferent from the corresponding classical spin glass. The latteshort-range results by simply settieg=2 in the long-range
is described in terms of a cubic theory with the mass terncase. More precisely speaking there is actually a crossover to
coupled to the term quadratic in field operatrs. short-range critical behavior far>2— ngg wherenggis the
Here the quadratic term is removed by an appropriatéFisher exponent for the short-range quantum systeNote
choice of the fieldQ, which generates the linear term in the that the Fisher exponeni determines the the algebraic fall
action and ensures that the random-averaged value of thaf the (equal time correlation function at thegquantum
field Q vanishes at the quantum critical pothThe coeffi-  critical point and the subscript “SR” here stands for short-
cientr in action(9) denotes the departure from the quantumrange critical behavior. In short-ranged disordered systems
critical point andx denotes the cubic coupling. The param- 5<g may be negativeso that the value oé for which this
eteru arises due to the quartic coupling of spins within acrossover takes place may in principle be greater than 2.
single replica and the term with coefficientt?tepresents The saddle-poinfmean-field ansatz is the same as the
the randomness inor randomness in the transverse field. At corresponding short-range case and given as
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Q%(g, w1, w,) = (2m)952°5%(0) 8( w1+ w,)D(wy), As in the short-range case, we shall associate an independent
(10) scaling to the dangerously irrelevant operdtomhich scales

to the fixed point=0) as
whereD (w) is the Fourier transform ob (7, — 75), the ef-
fective single-site self-interaction in the infinite-range t'=tb ", (16)
model’ In the saddle-point approximation, therefore, there is ) .
no effect of the nonlocat” term present in the action and where §>0. 5_'”‘39 the |C_)ng-rang_e tergy” is relevant, we
therefore one retrieves identical results of Ref. 9. shall here define the spin-rescaling factomn such a way
The long-range interaction manifests itself in the treethat the coefficienp of this term is not rescaled. The anoma-

level. As in the short-range case, we expa@dabout its lous dimension exponeny is related to{ as in the short-

saddle-point value range case,
2 _|d+2z+2—75+6
Q*0(, w1,w) = 8*°(27)95%(0) 8( w1 + @;)D (w3) &=b T 17
~ b At the tree level, the leading correction to the coefficied
+Q%(q, 01, 0,). (1D given byb~(@+22+6+0) 12 which yields

Expanding the actiotd up to orderQ?, we find the propa- n=2—o0. (18

~ab
gator of Q™" to be The interesting feature related to the long-range €asenes

about because there are no corrections to the coeffipieht
Qrwg, @)= t (12) the nonlocal term from perturbative elimination of the higher
yWwi,W2)— . H g,
oL B2+ / 2,74 w247 wave-vector modgs{l.e., no newq _Q(q,w)Q(—_q,—w)
Pa T Pg @1rr @zt term is generated in the renormalization pro¢eEhis keeps
The region we are interested in heresis:2— ng(nsg=0 7 fixed t0 »=2—o to all orders ofe as long as the long-
at the tree leve] where the coefficieri) associated with? range interaction is stable. Similarly one finds the exponent

(the short-range interactipris always irrelevant. One can 7 defined in Eq(14) to be p=4—o=27.

thus sepp=0 in the propagator when dealing with the critical As in the short-range case, the expon d g will be

properties. It is simple to extract the mean-field exponent%jeterminGd from the rescaling of theand the 1i” term in
from the propagatof12). At the quantum critical pointr( he actionA. Therefore the rescaling of the parameters at the

G(

=0), the characteristic Matsubara frequehe}~k’, so that tree level is
the dynamical exponertassociated with the quantum criti- r'=rb22 x'=xb6+t0-d=3n2 L 1_ 2z
cal point is given byz= ¢. Once again, away from the criti- (19)

cal point (#0), there is a length scale ¥?” and one finds

the correlation length exponent= 1/2¢-. Clearly, we retrieve  The action is invariant under this rescaling of parameters
the short-range mean-field exponénts=2 andv=1/4) as Provided we choose

o—2. At this point, we use the disconnected spin-glass cor-

relation functiof n=2-0, =0, 0=o0. (20

The couplingx scales as
GUX—y, 71— 72,73~ T4)

k~b4o=d) (21)
— i aa bb
_rltnoa;b (Q%(X,71,72)Q°(Y, 73,74)) so that the coupling is irrelevant fat>4c0 and relevant
otherwise. Thus, we find that the upper critical dimensign
—D(71— 1)D(73— 74), (13)  in the present case @d,=40 (which goes tod,=8 aso

—2). This relation equivalently yields the upper critical
where(- - -) denotes averaging over timereplicated action yange o,=(d/4) for a given dimensior(such that foro
(9). The disconnected correlator shows a stronger divergence o,, the coupling termk is relevant. For the one-
than the spin-glass correlat¢t?) at the quantum critical dimensional caser,=0.25 in contrast to the corresponding
point. One can define the Fisher exponentand 5 through  classical casé whereo,=0.33. This decrease of the value
the scaling form ofG andG¢ at the quantum critical point, of o is clearly due to the existence of the dangerously irrel-
B evant operatot. The interactioru is irrelevant for all dimen-
G(q,0,00~q2*7, G9%q,0,00~q 4" (14)  sions aboved,, .
One should note here that the exponéns determined
We shall now study the actiod in the spirit of a renormal- demanding the invariance of thet4/of the action which
ization group calculation where one integrates out highescales ad? 7~ ?. As we have discussed already, the expo-
momenta and frequencies. The rescaling transformations weent » does not renormalize so that one finds that the expo-
invoke here are nent # should always remain fixed to its mean-field valie
= ¢. However, the dynamical exponenis associated with
g'=bg, o' =b*w. (15  the correlation length in the Trotter direction with effective
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short-range interactions and thus will be renormalized as invhere s is a new exponent anfl, is the basic energy
the corresponding short-range cdse. scale'® The magnetic moment of the cluster scaled 4¥.

In spirit similar to Ref. 9, one can always study the quan-The exponents, ¢ and the correlation length exponenare
tum critical behavior of the present system usingsaxpan-  involved in this phenomenological scaling thedty.

sion around the upper critical dimensidp. The flow equa- In the present long-range case as well, RG calculations
tions for the cubic couplinge and the quantum mechanical cannot find a stable nontrivial fixed point for any valuecof
interactionu are andd beyond the mean-field region. One can similarly argue
that even in the present case, the critical fixed point beyond
dxk 4o—d 3 u the mean-field region happens to be the infinite-randomness
T A Jitr (22 fixed point as discussed above. However, due to the existing
long-range interaction, the situation seems to be further com-
2 plicated here. For small values of, when the long-range
du u ; PN . e . .
o ouk?— _ (23) mteractm_n is dominant, we expect th_e critical flxe_d point to
dl v1+r be effectively of long-range nature with the associated expo-

nents ¢, ¢, and v depending ons. On the other hand, for

larger value ofo, when the interaction between the distant

€<0 n the.sﬁme sp|r|_t as in the short-range case. The rElsu@pins is very feeblénearly absent the critical fixed point
are qwte S|m|lgr. Settlpg the always re]evant operated, g4 id pe the short-range IRFP with short-range exporfénts.
we find three fixed points fok andu using the above flow s cros50ver is observed in the one-dimensional random
equations. Above the upper critical dimenstn the Gauss- ¢ antum Ising chain with algebraic disorder correlafidm

N . e i i
ian fixed point withu* = «* =0 is attractive fou>0. This 4 short-range case, if we consider a typical “rare” ferro-

fixed point corresponds to the mean-field values of the exposagnetic clustetwith correlated randomness in the Trotter
nents discussed already. The cubic couplingnd the pa-

tort both irrel th dth , | thmi direction of linear sizel, the relaxation time(correlation
rametert are both irrelevant here and here 1S a 10gantNMiCengih in the Trotter directionis typically given as Irg,

chorrecnor_] tor the fexfpohnents for all abov_eduh=4(;, due o _;d |y the present case, with algebraic interaction of the

t egarglna Ity of of the interaction as in the short-range ¢, 1/ri(~d+”)’2 between spins, a similar consideration yields

case’ At the upper critical dimensiod,, (or rangeo ), there In ¢ ~L&-7+2)/2_Comparison with the short-range case na-
B .

W.'" ?‘f ar; S\dd't'one}! logarithmic correction due to the mar- ively indicates a possibility of crossover to the short-range
ginality of the couplingsx. IRFP aso— (d+2). We must mention here that this is just a

ranBZI?:V;;gfhgpc?rir ‘;_r'té%al g!meni'ho?égsczeelr?nm erthzhortheuristic estimatiorfobtained comparing the value éf) of
g , y fixed point wi upling: | the crossover value aof.

Gaussian fixed point and it is unstable. There is always a
flow to the strong coupling. Thus, above the upper critical

We analyze the above equations &+ 40—d=0, e>0, and

dimension or rangée.g., foro>o,=0.25 ford=1), it is IV. SCALING RELATIONS
not possible to draw any conclusive inference from an |, this section, we shall discuss the scaling relations that
e-expansion analysis. are expected to hold near the quantum transition point in the

It is straightforward to generalize the preceding discuspresent model. These scaling properties are quite general and
sion to then-component rotor system where one has an adyq not depend on the replica picture. We assume here a con-
ditional tern? ventional quantum dynamical scaling and a finite value of

v the dynamical exponemtat the quantum critical point. This
_f digdw;- - - dwsd(wi+ - - -+ w,)Q33(q, w1, w5) should be a valid description for quantum rotons=2) but
2t r appears to be inappropriate for the Ising case with higher
X Q%3 (—q, w3, wy) valu_es 1ofa due to the possible activated quantum dynamical
my TR scaling®® Following Ref. 9, we shall proceed with the as-
where u, v label them components of the rotor. However, sumption of the presence of a single dangerously irrelevant
one arrives at similar RG equations with=v +mu. variablet. The key points where the long-range nature of the
As discussed above, the RG calculations in the shortinteraction causes a marked difference are discussed. Clearly,
range case fail to locate a stable nontrivial fixed point for allthese scaling relations should be valid in the region?2

d<8.2 The simplest conjecture is that for ady< 8, the crit-  — 7sg Where the long-range interaction always dominates
cal fixed point, at least for strong randomness, is the infiniteover the corresponding short-range one.
randomness fixed point(IRFP) where frustration is Using the scaling properties of the disconnected propaga-

irrelevant'31%29The quantum critical point is a novel perco- tor, we propose the exponent (at the quantum critical
lation point where the annihilation and aggregation of cluspoint) as’

ters compete at all energy scales. For a cluster at energy scale
Q,Q is related to the diametdr of the cluster through the GY(x, 7, 7)~x(@+22-4%7) (24)
relation
for a fixed 7/x*. Note that we have 2term in the above
In % LY since an operator bilocal in time is involved. The present
' problem is unique as we have discussed already, in the sense
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that the exponeny has the fixed valugy=4— 20 as long as ~ Singularities present in the quantum system3 a0 might
the long-range interaction is relevant. The spin-glass corwell have influenced the experimental resfits.

relator, as defined earlier, will be given btimes the scaling

dimension ofGY and thus scales as V. CONCLUSIONS

G(x,0,0)~x~(d+2z=4+n+0) (25) To conclude, we report studies of a quantum spin-glass
model with long-range random interactions. We have used
Once again, using the definition of the exponenfisee Eq.  the existing droplet theoly and the Landau theotyor the
(14)], we have short-range quantum spin glassith the necessary extension
(d422-2+ ) for the long-ranged interacting cas® understand qualita-
G(x,0,0)~X 7. (26 tively the phases of the model.

We have already discussed in the Introduction that the
quantum transition in the random quantum Ising system is
associated with a “Griffiths-McCoy” singular region and an
0=2+ n—p=0c 27) “a_c_tivated_ quantum dynam_ical scglinba’ at the quantum

' critical point. In the mean-field region and for quantum ro-

Interestingly, as we have discussed already, the expahent tors with spin components=2,"®the dynamical scaling at
describing the dangerous irrelevance of the quantum fluctudhe guantum critical point is expected to be conventional.
tions does not vary from its mean-field value for a2 ~ Our study shows that for any given dimension mean-field
— nsr. In short, as in the short-range casbge usual scaling theory results are valid for a range of the parameter
relations are satisfied but in the hyperscaling relatbis <o ,(=d/4). Thus, even in the one-dimensional quantum
replaced byd+2z— ¢, with 2z coming from the bilocalin ~ Ising model with long-range random interactions, the dy-
7) field and@ due to the dangerous irrelevancetoThe free  hamical scaling at the quantum critical point should be con-
energy density, on the other hand, is local in time. Considerventional fora<0.25.

ing a correlation volum&®*? and with the assumption that ~ Let us now address the question of quantum Griffiths-
the singular part of the free energy scalest4$where¢ is ~ McCoy (GM) effects associated with the quantum transition
the spatial correlation length scaling as<r.) ~”], one finds in the present quantum spin-glass model. In the zero-
the scaling form of the free-energy density given astemperature disordered phase of the short-range syStén,

g @220 (r —r )"d+2=0) near the quantum critical point under renormalization the system renormalizes to a collec-
r=r.andT=0. tion of asymptotically uncopuled clusters with a broad dis-

At finite temperature, the length scajescales with tem- tribution of effective fields. In the quantum-disordered phase,
perature asé~T~ X and hence the free-energy density @ clusters much larger than the correlation length are expo-
scales ast™ (4t2-0_T(d+2-0)/z g4 that the specific heat Nentially “rare.” These rare regions typically have an ex-
scales asT(4~ 'z At the upper critical dimensiond(  Ponetially large correlation lengtf. in the Trotter direction
=40) with z= 6=, one retrieves expectekf behavior of (relaxanqn tim¢. These exppnennally rare regions with an
the infinite-range systefh. exponentially largef, result in a the divergence of the re-

At this point one can introduce the local variabéx,7) ~ SPonse and a continuously varying dynamical exponent in
which couples to the mass termthat drives the zero- the disordered phase. In the present long-range case, one
temperature transition and introduce the corresponding cofXPects similar GM effects to occur in the quantum-
relation function exponentg, and »,, as in the short-range g!sorderedd phla_lse for a(rjtyandér whﬁre the e"pc?”enf" as
case’ Identical considerations yield the scaling form of the Iscussed earlier, may depend on the range of interacitons

nonlinear susceptibilityy, with the associated length scale At this pomt it would be usefql to reg:all the dropIet.theory
£ for the classical long-range Ising spin glass. As discussed

already, foro>o.=d—2y,, there is a crossover from the
gzt 2—y _ ¢ito long-range zero-temperatuféropley fixed point to the cor-
Xni~§ &7, (28) . . .

responding short-range zero-temperature fixed point. Thus
where we have useg=2-o. The divergence of the non- one finds that for thel=1 case, the long-range interactions
linear susceptibility y,, as T—O0 is given by xq are relevant in determining the ground-state properties for alll
~T-(@+9)/z studies of the experimental sample o<3 (usingys=—1 for one-dimensional random chém.
LiHo,Y;_F, (Ref. 3 and 4 seem to indicate that this diver- For 0=3, the zero-temperature transition in the classical
gence decreases with decreasing temperature and there nragpdel is effectively of short-range nature. In a similar spirit,
well be no divergence of, at the quantum critical point. one can estimate the values @f using the numerically ob-
None of the previous analytical studies of the short-rangeained values o for higher-dimensional classical systems.
guantum spin-glass systems reproduces this experimental ob- Using these above information, we indicate the ordered
servation. It has been suggetédat an appropriate choice phase of the present quantum spin glass in Fig. 1. Refjion
of long-range interaction present in the experimental systerf Fig. 1 corresponds to the zero-temperature droplet fixed
may be important here. The present work, however, at leagioint (of the classical long-range Ising spin-glass long-
in the framework of the scaling theory we propose, seems toange nature whereas regiBrrefers to the short-range drop-
indicate a divergence of, asT—0. Of course, the Griffiths let fixed point. As discussed above the boundary between

The exponenty is similarly fixed to the valuepy=2—- o so
that the above two equations lead us to the relation
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FIG. 1. Schematic diagram showing the ordered phases of the 2 \
guantum Ising spin glagsn the (d-o) plang with long-range ran-
dom interactions. We have used here the exact valse—1 and 1 .
the numerically obtained valug,~ — 0.3 for one-dimensional and N

two-dimensional short-range classical spin glasses. It is also as | | | |
sumed that the lower critical dimensiod{*>“¥ for a short-range 5
classical spin glass lies in betwedr=2 and 3. The different re-

gions of this phase diagram—the boundaries and the special poin Range o
(d=o=1)—are explained in the text.

FIG. 2. Schematic diagram of the quantum critical behavior of
. L . the quantum Ising spin glagm the (d-o) pland with long-range
these two regions is given by=d—2y;. In regionC the randqom interactiogns.pWeghjve use((j nu)mF()ericadlly obtaingd va?ues of
quantum system undergoes both the zero-temperature quaiz exponentysr. In the present notationysg=— 1 for d=2 (Ref.
tum transition and finite-temperature classical transition;1) and ¢z= — 0.2 ford=3 (Refs. 9 and 1D The three regions of
while in regionsA andB there is a quantum transition but this phase diagram and the boundaries are explained in the text.
there is no long-range order at any finite temperature. As
already discussed, the droplet theory for the long-range clas) to the short-range on@egion ) occurs air=2. In region
sical spin glass is really questionable for finite temperaturelll, the system has a nontrivialnot mean-fielld quantum
The boundary between regioAsandC is d=o (as obtained transition. Thee-expansion calculations fail to locate any
from the droplet theorywhereas the boundary between re- nontrivial fixed point here. This is true even for quantum
gionsB andC is given byd=df"*5“@whered{**“is the  spin glasses with purely short-range interactidmss dis-
lower critical dimension of the classical short-range Isingcussed in Sec. lll, in this region the critical fixed point
spin glass. In the language of cluster renornalization groughould be the infinite-randomness fixed point. The boundary
arguments, proposed in the short-range ¢3aethe ordered between region | and region Il is given by the condition
phase an asymptotic infinite cluster only forms at zero-d,=4o which yieldsd=8 for c=2. We expect a crossover
energy in regionA and B whereas in regiorC, an infinite  in region Il from the IRFP with long-range exponents to the
cluster is formed at a finite energy scéle (which is of the  short-range one for sufficiently large values of The
order of the classical transition temperajur€he point of  e-expansion calculations, however, indicate a crossover from
special interest happens to lobe=o0=1 where we have a long-range quantum critical behavior to the short-range one
zero-temperaure transition and the classical transition at argt o=2— 5sgr Where, as mentioned alreadysy is the Fisher
finite temperature is a topological transititm. exponent for the short-range quantum system. This crossover

Let us now concentrate on tfle=0 quantum transition of is indicated with a dotted line in Fig. 2. As mentioned above,
the present long-range quantum spin glass and discuss tliee € expansion, on the other hand, fails to grasp the occur-
associated critical fixed points. Depending on the nature ofence of the IRFP. It would be interesting to probe such a
the quantum critical behavior, we typically denote three rerossover behavior using numerical techniques.
gions I-Ill in Fig. 2. In region |, the mean-field theory with We should specifically mention once again the different
relevant long-range interactiofexponents depending on the types of fixed points that are involved in the above discus-
value of o) holds true(see Sec. I). The quantum critical sion: (i) the quantum-disordered phase, where the system
fixed point is the long-range Gaussian fixed point. In regiorrenormalizes to uncoupled clusters, afid the ordered
I, the mean-field theory for the short-range interacting quanphase fixed pointsee Fig. 1 of the quantum system where
tum spin glasis valid and here the critical fixed point is the the system asymptotically renormalizes to an infinite cluster.
short-range Gaussian fixed point. As already explained th&loreover, in describing the ordered phase, we refer to the
crossover from the long-range Gaussian fixed p@iagion  zero-temperature droplet fixed points of the classical long-

224427-8



QUANTUM SPIN GLASS WITH LONG-RANGE RANDOM . .. PHYSICAL REVIEW B35 224427

range Ising spin glasgegionsA and B of the Fig. 1. In clearly due to the existence of a dangerously irrelevant op-
describing the quantum critical behavior, we come acros€ratort in the quantum problem. Interestingly, due to the
two quantum critical fixed pointgi@) Gaussianlong-range long-range nature of interaction, we have a wide region of
Gaussian for region | and short-range Gaussian for region Iphysically relevant parameter spacee., o,=3/4 for d
of Fig. 2) and(b) the infinite-randomness fixed poiffegion  =3) where mean-field theory is valid and the mean-field
Il of Fig. 2). results hold good. We present as well a phenomenological
We have generalized theexpansion calculations used in scaling description based on the assumption of the existence
the Ref. 9 to the present long-range problem. This methogf a dangerously irrelevant operatigt which should be the
fails to find any stable weak-coupling fixed point fd*>d,  valid near the quantum critical point. The scaling relations
for a giveno ando> o, for a givend (i.e., inregions llland  are derived under the assumption of a conventional dynami-
IV of Fig. 1). This is not surprising keeping in mind that ca| scaling at the quantum critical point. As discussed al-

even in the short-range case no stable weak-coupling fixegbady, this may not be a valid assumption for the Ising sys-
pointis located fod>8, but rather a flow to strong coupling tem with a general value af.

is found. The simplest scenario here is that for both the short-
range and the long-range case beyond the mean-field region
the critical fixed point should be the infinite-randomness
fixed point*'®However,e-expansion calculations provide a
nice mean-field description even in the present long-range The author would like to gratefully acknowledge a helpful
interacting cases. We find that the upper critical range andiscussion with Subir Sachdev. He also acknowledges Peter
dimension are related through the expresgigrr40,, so  Fulde, R. Oppermann, Diptiman Sen, and Parongama Sen for
that the upper critical range fa=1 is o,=0.25, in contrast encouraging and interesting discussions and M. Ameduri and
to the classical case where,=0.33 for d=122 This is  B. K. Chakrabarti for critically reading the manuscript.
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