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Electrons in a ferromagnetic metal with a domain wall
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We present a theoretical description of conduction electrons interacting with a domain wall in ferromagnetic
metals. The description takes into account the interaction between electrons. Within the semiclassical approxi-
mation we calculate the spin and charge distributions, particularly their modification by the domain wall. In the
same approximation we calculate the local transport characteristics, including relaxation times as well as
charge and spin conductivities. It is shown that these parameters are significantly modified near the wall and
this modification depends on the electron-electron interaction. The spatial nonuniformity of the transport
characteristics may give rise to new phenomena.
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I. INTRODUCTION

It is generally believed that domain walls modify signi
cantly all the transport properties of ferromagnetic meta
Early theoretical treatments of this phenomenon1,2 were
stimulated by magnetotransport measurements on sin
crystal Fe wiskers. Recent progress in controlling the m
netic state of nanostructures enabled observation of a d
correlation between domain structure and transp
properties.3 For example, it is possible to extract the cont
bution to resistivity due to a single domain wall. In additio
the discovery of giant magnetoresistance~GMR! in magnetic
multilayers, which is connected to the reorientation of t
magnetic moments of neighboring magnetic layers from
tiparallel to parallel alignments, renewed interest in dom
wall resistivity. To some extent, the domain wall plays
similar role as the nonmagnetic layer separating two fe
magnetic films in a sandwich structure or in a multilayer, a
therefore can be expected to lead to magnetoresistanc
fects similar to GMR. Indeed, there is growing experimen
evidence of a large magnetoresistance due to a domain
in ferromagnetic nanostructures.3–7 This, in turn, led to
growing interest in theoretical understanding of the behav
of electrons coupled to a ferromagnetic domain wall.8–14

Moreover, progress in nanotechnology made it also poss
to study electric current flowing through a narrow conta
between two ferromagnetic metals~point contact!, where a
constrained domain wall is created in the antiparallel c
figuration. Such a domain wall15 has a significant influence
on the transport characteristics of the point contact.16

It has been shown experimentally17 that the presence of
domain wall can either increase or decrease the elect
resistance of a system. This intriguing observation stimula
theoretical works aimed at understanding the role of a
main wall in transport properties. Levy and Zhang10 devel-
oped a semiclassical model based on the mixing of s
majority and spin-minority transport channels by the dom
wall. This mixing results in an increase of the electric res
0163-1829/2002/65~22!/224419~9!/$20.00 65 2244
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tance due to the presence of a wall. On the other hand, Ta
and Fukuyama8 found a negative contribution, which is du
to destruction of the weak localization corrections to cond
tivity by the domain wall. Another model which may lead
either a positive or negative contribution of a wall to res
tivity was developed by van Gorkomet al.13 The key point
of this model is the fact that the wall can lead to a redis
bution of the charge carriers between spin-majority and sp
minority channels. The domain wall contribution to resisti
ity depends then on the ratio of spin-majority and sp
minority relaxation times.

In this paper, we consider electrons in a ferromagne
metal which interact with a domain wall. The descriptio
includes interaction between electrons, and therefore we
a self-consistent analysis to describe charge and spin d
butions, as well as their modification by the domain wa
Using the Green’s function technique, we calculate the e
tron relaxation times in a quasiclassical approximation. Ap
from this, we also calculate the local charge and spin c
ductivities. These transport parameters are shown to be
nificantly modified near the domain wall, which may giv
rise to new effects.

The paper is organized as follows. In Sec. II we descr
the model as well as the transformation used to replace
system with inhomogeneous magnetization by a system m
netized homogeneously. In Sec. III we present the tra
formed Hamiltonian, generalized by including self-consiste
fields related to electrostatic and magnetic interactions
semiclassical solution of the resulting Schro¨dinger equation
for electrons is also presented there. Scattering from the
in the Born approximation is calculated in Sec. IV. In Sec.
we calculate, within the quasiclassical approximation, b
the spin and charge distributions in the vicinity of the doma
wall, as well as the corresponding contributions generated
the wall. Local relaxation times are calculated in Sec. V
whereas the local charge and spin conductivities are ca
lated respectively in Secs. VII and VIII. Final conclusion
are provided in Sec. IX.
©2002 The American Physical Society19-1



un
-
t

-
als

a

-
e

ry
-

n

n

a
in

ll.

ain
ma-
f
odel

d

be
me

ear
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II. MODEL

Consider a general case of a ferromagnet with a non
form magnetizationM (r ). The one-particle Hamiltonian de
scribing conduction electrons locally exchange coupled
the magnetizationM (r ) takes the form

H052
1

2m
ca

† ]2

]r2
ca2Jca

†sab•M ~r !cb , ~1!

whereJ is the exchange parameter,ca andca
† are the spinor

field operators of electrons,s5(sx ,sy ,sz) are the Pauli
matrices, and we use the units with\51.

The model Hamiltonian~1! will be used to describe elec
trons interacting with a domain wall in ferromagnetic met
or semiconductors. The domain wall will be modeled by
magnetization profileM (r ). For the sake of simplicity we
shall assume thatuM (r )u5 const. We can then write
JM (r )5Mn(r ), wheren(r ) is a unit vector field to be speci
fied later, andM is measured in the energy units and includ
the parameterJ.

The first step of our analysis is to perform a local unita
transformation8 c→T(r )c, which removes the nonhomoge
neity of M (r ); that is, T(r ) transforms the second term i
Eq. ~1! as

c†s•n~r !c→c†szc. ~2!

The transformation matrixT(r ) must then obey the conditio

T†~r !s•n~r !T~r !5sz . ~3!

Explicit form of T(r ) is given by18

T~r !5
1

A2
S A11nz~r !1 i

ny~r !sx2nx~r !sy

A11nz~r !
D . ~4!

Applying the transformation~4! to the kinetic part of the
Hamiltonian~1! one obtains

c†
]2

]r2
c→c†S ]

]r
1A~r ! D 2

c, ~5!

where the non-Abelian gauge fieldA(r ) is given by

A~r !5T†~r !
]

]r
T~r !. ~6!

According to Eq.~4!, the gauge fieldA(r ) is a matrix in the
spin space.

Let us consider now a more specific case of a domain w
in a bulk system. Assume that the wall is translationally
variant in thex-y plane:M (r )→M (z) andn(r )→n(z). For
a simple domain wall withM (z) in the plane normal to the
wall, one can parametrize the vectorn(z) as

n~z!5„sinw~z!, 0, cosw~z!…, ~7!

where the phasew(z) determines the type of a domain wa
The transformation~4! is then reduced to
22441
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T~z!5
1

A2
S A11cosw~z!2 isy

sinw~z!

A11cosw~z!
D , ~8!

and the gauge field assumes a simple form

A~z!5S 0,0,2
i

2
syw8~z! D , ~9!

wherew8(z)[]w(z)/]z.
Taking into account Eqs.~5! and ~9!, one can write the

transformed Hamiltonian in the form

H052
1

2m

]2

]r2
2Msz1

mb2~z!

2

1 isy

b8~z!

2
1 isyb~z!

]

]z
, ~10!

where

b~z!5
w8~z!

2m
. ~11!

When kFL@1, wherekF is the Fermi wave vector andL
stands for the wall width, the perturbation due to the dom
wall is weak and one may use the semiclassical approxi
tion. In particular, the parameterb(z) close to the center o
the wall can be then treated as a constant. Such a m
domain wall with a constant parameterb was analyzed in
Ref. 12. Our following considerations will be restricte
mainly to the semiclassical limitkFL@1. In that case, the
last three terms on the right side of Eq.~10!, which are due to
the domain wall, will be treated as a small perturbation.

The description given above is quite general and may
used for various models of the domain wall. If we assu
the domain wall in the form of a kink~Fig. 1!, then

w~z!52
p

2
tanh~z/L !, ~12!

and the parameterb(z) is given by

FIG. 1. Schematic picture of the magnetization orientations n
the domain wall.
9-2
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ELECTRONS IN A FERROMAGNETIC METAL WITH A . . . PHYSICAL REVIEW B65 224419
b~z!52
p

4mL cosh2~z/L !
. ~13!

III. SEMICLASSICAL APPROXIMATION

In bulk magnetic metals like Fe, Ni, or Co, the widthL of
a magnetic domain wall is usually much larger then the e
tron Fermi wavelengthlF . In such a case application of
semiclassical approximation is well justified.1 The dominant
perturbation from the domain wall is then described by
term with b(]/]z) in Eq. ~10!, since it is of order ofbkF .
The term proportional tob2 is smaller, while the term in-
cluding b8(z) is of the order ofb/L and therefore can be
neglected.

For the sake of self-consistency, we will include now t
Coulomb interaction of electrons, which allows a correct d
scription of charge accumulated at the wall. The point is t
the wall can give rise to some excess charge locally brea
electrical neutrality, as will be described in more detail lat
This effect was not taken into account in a previo
analysis.8 On the other hand, the renormalization of t
chemical potential forbidding the formation of exce
charge12 may be an overestimation of the Coulomb rep
sion.

The Coulomb interaction will be taken into account v
the coupling term

Hint5
1

2E d3rd3r 8@c†~r ,t !c~r ,t !2n0#V~r2r 8!

3@c†~r 8,t !c~r 8,t !2n0#, ~14!

whereV(r2r 8)5e2/ur2r 8u is the bare Coulomb interactio
and n0 is the mean electron density in the bulk. Using
auxiliary scalar fieldf(z) we can incorporate the interactio
by adding to the Hamiltonian the following term:

Hint
(MF)52E d3r f~z!c†c, ~15!

where the fieldf(z) is determined by the saddle-point equ
tion

d2f~z!

dz2
54pe2~^c†c&2n0!, ~16!

with ^•••& denoting the ground-state average. This ma
the solution self-consistent, and the fieldf(z) is the mean-
field electrostatic potential in the presence of the wall. T
use of the differential saddle-point equation forf(z), Eq.
~16!, makes the problem more complicated due to the n
locality, but allows us to describe correctly the screen
effects associated with a spatial distribution of charges in
vicinity of the domain wall.

To include the spin-dependent interaction, we introdu
the contact interaction term in the form

Hint
s 52

gs
2

2 E d3r ~c†szc2s0!2, ~17!
22441
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where gs is the corresponding coupling constant. Micr
scopically, the Hamiltonian~17! and the phenomenologica
parametergs originate from the spin-dependent correlatio
terms, which in turn arrise from electron-electron intera
tions ~similar to those giving rise to ferromagnetism of ba
electrons!. Choosings0 as the spin density far from the wa
guarantees that this interaction vanishes when there is
domain wall. This means that the effects due to magnet
tion of the conduction electrons in a system without a d
main wall are included by the parameterM in the one-
particle Hamiltonian. The effect of a domain wall is then
modify the internal magnetization, resulting from a redist
bution of the spin density. The effects due to the interact
~17! can be taken into account by adding to the Hamilton
the new term

Hint
s(MF)5E d3r mz~z!c†szc, ~18!

where the internal magnetization fieldmz(z) is determined
by the saddle-point-like equation and is of the form

mz~z!52gs
2~^c†szc&2s0!. ~19!

Thus, the Schro¨dinger equation for electrons of energy«
in the fieldsf(z) andmz(z) reads

S 2
1

2m

]2

]r2
1

mb2~z!

2
2@M2mz~z!#sz

1 isyb~z!
]

]z
2f~z!2« D c50, ~20!

where the fieldsf(z) andmz(z) have to be determined self
consistently via Eqs.~16! and ~19!. Equation~20! has the
following semiclassical solutions (i 51,2):

c i~r,z!5
exp~6 iq•r!

@« i
2~z!1b2~z!ki

2~z!#1/2ki
1/2~z!

S 7 ibki~z!

« i~z!
D

3expF6 i E
0

z

ki~z!dzG , ~21!

wherer5(x,y), q is the momentum in the plane of the wa
the wave vector components normal to the wall~along the
axis z) are given by

k1,2
2 ~z!5k2~z!1m2b2~z!62m@Mr

2~z!1b2~z!k2~z!#1/2,
~22!

« i~z!5
ki

2~z!

2m
1

mb2~z!

2
2Mr~z!2

k2~z!

2m
, ~23!

andk(z) andMr(z) are defined as

k2~z!52m@«1f~z!#2q2, ~24!

Mr~z!5M2mz~z!. ~25!

For clarity of notation we omitted the subscriptz of
kz;1,2(z) @k1,2(z)[kz;1,2(z)#.
9-3



a
ec

th
ec

ro
on
th

re

u

er

ha

tio
io

he
y
n

In

-
nly

o-

ne
cin-
in

ne
lf-

es,

on
n

ons
een

re
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There is no reflection from the wall in the semiclassic
approximation. It should be noted, however, that for el
trons moving nearly parallel to the wall~with a very smallz
component of the momentum!, there is a reflection from the
wall since for such electrons classical motion through
barrier is impossible. We do not consider here this eff
since its contribution is very small.

IV. SCATTERING FROM THE WALL „BORN
APPROXIMATION …

For the case of not too thin domain walls, the term p
portional tob(z)]/]z can be treated as a small perturbati
and scattering from the wall can be evaluated within
Born approximation. The matrix elements of the (kz↑)
→(kz8↓) spin-flip scattering in the plane-wave basis a
given by

Vkzkz8
5E

2`

`

e2 ikz8zS 2b~z!
d

dzDeikzzdz. ~26!

Using Eq.~13!, we obtain

Vkzkz8
5

ipkz

4mLE2`

` exp@2 i ~kz82kz!z#dz

cosh2~z/L !
. ~27!

After calculating the integral19 we arrive at

Vkzkz8
5

ip2kz~kz82kz!L

4m
cschFp~kz82kz!L

2 G . ~28!

Correspondingly, the probability of backscattering (kz85
2kz) is

Wback[2puVkz ,2kz
u25

p5kz
4L2

2m2
csch2~pkzL !. ~29!

For kzL@1, from the last equation we find

Wback5
2p5kz

4L2

m2
e22pkzL. ~30!

Thus, the probability of the backscattering with simultaneo
spin flip vanishes exponentially in the limit ofkFL@1.1

Spin-conserving backscattering is determined by the t
proportional tob2 in the Hamiltonian~20!. In the first ap-
proximation this term can be neglected as it is smaller t
the term proportional tob(z)]/]z.

The question arises as to whether the Born approxima
gives correct results in the problem under considerat
There are two general conditions for its applicability:20

uU~z!u!
1

mL2
or uU~z!u!

k

mL
, ~31!

whereU(z) is the scattering potential. In the first case t
Born approximation is good for arbitrary electron energ
whereas in the second one it is good only for fast electro
Therefore, if we choose the limitkFL@1, then uU(z)u
;bkz;(kz /mL), and none of the conditions is satisfied.
22441
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the opposite case of a small domain-wall widthkFL!1, we
haveuU(z)u;1/mL2 and the Born approximation is not jus
tified again. Thus, the Born approximation can be used o
for rough estimations. In the case under consideration,kFL
@1, it shows that the usual scattering from the wall is exp
nentially weak.

V. DISTRIBUTION OF SPIN AND CHARGE DENSITIES
„SEMICLASSICAL APPROACH …

In the framework of the semiclassical approximation, o
can calculate the local charge and spin densities in the vi
ity of the wall, as well as the distribution of charge and sp
currents. As follows from Sec. III, this can also be do
taking into account the Coulomb interaction se
consistently.

The equation for the Green function with the termb(z)
weakly dependent onz,

S «1
1

2m

]2

]r2
2

mb2~z!

2
1f~z!1Mr~z!sz

2 isyb~z!
]

]z
1m D G«~r ,r 8!5d~r2r 8!, ~32!

has a quasiclassical solution (kzL@1)

G«~k!5
«2«k2Mr~z!sz2kzb~z!sy1m r

~«2«k↑1m r1 id sgn«!~«2«k↓1m r1 id sgn«!
,

~33!

where the following notation has been used:

«k5
q21kz

2

2m
, ~34!

«k↑,↓5«k7@Mr
2~z!1kz

2b2~z!#1/2, ~35!

m r5m2
mb2~z!

2
1f~z!, ~36!

andm is the chemical potential. Equation~35! describes the
energy spectrum in the spin-up and spin-down branch
where for the sake of notational simplicity we droped thez
dependence of«k↑,↓ and m r . In what follows we also drop
the z dependence ofMr andb.

Note that the square root in Eq.~35! contains contribu-
tions due to spin mixing caused by the perturbati
syb(]/]z). Hence, what we call spin-up and spin-dow
branches of the spectrum@labeled as↑ and↓ in Eq. ~35!# are
in fact the eigenvalues corresponding to the wave functi
with mixed up and down states. Correspondingly, the Gr
function ~33! has poles at both Fermi surfaces withk5kF↑
andk5kF↓ in diagonal and nondiagonal components, whe
kF↑,↓ are given by

kF↑,↓
2 52mm r12m2b262m~2mm rb

21m2b41Mr
2!1/2.

~37!
9-4



n
pi
a

an

is

l i

r o

-
ity,

b-

s

e,

ELECTRONS IN A FERROMAGNETIC METAL WITH A . . . PHYSICAL REVIEW B65 224419
Using the Green function~33!, one can calculate the spi
density distribution in the presence of the wall. The real s
density distribution, i.e., transformed back to the original b
sis, is given by the formula

s~z!52 i TrE d«

2p

d3k

~2p!3
T†~z!sT~z!G«~k!. ~38!

To obtain this expression one should use the inverse tr
formation, i.e.,G→TGT†. Using Eq. ~3!, one can rewrite
Eq. ~38! as

n~z!•s~z!52 i TrE d«

2p

d3k

~2p!3
szG«~k!. ~39!

Since the projection ofs on the plane perpendicular ton
vanishes, we can write the spin density as

s~z!52 in~z!TrE d«

2p

d3k

~2p!3
szG«~k!. ~40!

Substituting the Green function~33! into Eq. ~40!, we find

s~z!5n~z!S E
«k↑,mr

2E
«k↓,mr

D d3k

~2p!3
~11kz

2b2/Mr
2!21/2.

~41!

After evaluating these integrals, we find the spin density d
tribution

s~z!5
Mrn~z!

4p2b
F2

kF↑
2b

~Mr
21kF↑

2 b2!1/2

1
kF↓
2b

~Mr
21kF↓

2 b2!1/21S 2mm r1
Mr

2

2b2D
3S arcsinh

kF↑b
Mr

2arcsinh
kF↓b
Mr

D12mb~kF↑1kF↓!G .

~42!

The accumulation of the spin density at the domain wal

Ds~z!5s~z!2s0 , ~43!

wheres0 is the spin density in the limit ofb50. For smallb,
i.e., for very smooth magnetic wall and up to second orde
b, this reads

Ds~z!52
n~z!b2

4p2 Fm2~kF↑2kF↓!

1
mm

3Mr
2 ~kF↑

3 2kF↓
3 !2

kF↑
5 2kF↓

5

10Mr
2 G . ~44!

The sign of the factor in the square brackets of Eq.~44! is
always positive.

The charge density distribution can be calculated in
similar way,
22441
n
-
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s

f

a

r~z!52 i TrE d«

2p

d3k

~2p!3
G«~k!. ~45!

After calculating the integral~45! we find

r~z!5
1

4p2 F2mm r~kF↑1kF↓!2
kF↑

3 1kF↓
3

3

1mkF↑~Mr
21kF↑

2 b2!1/22mkF↓~Mr
21kF↓

2 b2!1/2

1
mMr

2

b
arcsinh

kF↑b
Mr

2
mMr

2

b
arcsinh

kF↓b
Mr

G . ~46!

Now we can use this expression in Eq.~16! to determine
electrostatic potential̂c†c&[r(z).

We can linearize Eq.~16! in f(z) assuming that the do
main wall does not change significantly the electron dens
i.e., form@uf(z)u. Hence, after expandingr(z) in f(z) and
Fourier transforming overz, we can write Eq.~16! as

~qz
21k0

2!f~qz!524pe2Dr̃~qz!, ~47!

wherek05(4pe2n0)1/2 is the inverse screening length,n0

5]r/]m is the thermodynamic density of states, andDr̃(qz)
is the Fourier transform of

Dr̃~z![@r~z!2n0#f(z)50 . ~48!

Using Eqs.~25!, ~35!, ~36!, and ~37!, we find that forb

→0 the accumulation of charge,Dr̃(z)5r2r(f50), is

Dr̃~z!52
m2b2

4p2
~kF↑1kF↓!1

mb2

12p2M
~kF↑

3 2kF↓
3 !.

~49!

This value ofDr̃(z) is the accumulated charge in the a
sence of Coulomb repulsion.

Due to Eq.~16!, the real distribution of chargeDr(z) is
related toDr̃(z) by the relation which in Fourier space ha
the form

Dr~qz!5
qz

2

qz
21k0

2
Dr̃~qz!. ~50!

Then, if the characteristic lengh of the domain wall is larg
k0L@1, we obtain

Dr~z!52
1

k0
2

d2Dr̃~z!

dz2
~51!

and, finally, using Eq.~46!, we find the distribution of
charge:

Dr~z!52
m

2p2k0
2 Fb~z!

d2b~z!

dz2
1S db~z!

dz D 2G
3F2m~kF↑1kF↓!1

1

3M
~kF↑

3 2kF↓
3 !G . ~52!
9-5



s
e

es

on-
ll,

t an

nt

har-
by

of
ies
mi-
rix

in-

ec

es

ai

all
pin
n-
es.
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We performed numerical calculations of the chargeDr̃(z)
and excess spin densityDsl(z)[Ds(z)•n(z) using the set of
equations~42!, ~46!, ~48!, ~25!, ~36!, ~37!, and ~19!. The
results are presented in Figs. 2 and 3 for different value
the spin coupling constantgs . In the calculations we take th
Fermi energies«F↑53 eV and«F↓52.5 eV in the bulk,
andm54m0, wherem0 is the free electron mass. The figur
demonstrate how the spin coupling constantgs affects both
the spin accumulation~Fig. 3! and charge accumulation~Fig.

FIG. 2. Distribution of the excess charge for noninteracting el

trons,Dr̃(z), near the domain wall, calculated for different valu
of the spin coupling constantgs . The coupling constantgs is given
in units of erg1/2 cm3/2.

FIG. 3. Distribution of the excess spin density near the dom
wall for different values of the spin coupling constantgs .
22441
of

2!. This effect is a result of self-consistency, because by c
trolling the spin density one modifies the magnetic wa
which in turn influences the electron density.

In view of Eq.~48!, the functionDr̃(z), presented in Fig.
2, is not the excess charge accumulated at the wall bu
auxiliary function corresponding to the conditionf(z)50.
The real distribution of accumulated charge, Eq.~51!, is pre-
sented in Fig. 4 for different values of the coupling consta
gs . This figure demonstrates that the integral ofDr(z) over
z is zero due to the conservation of electric charge. The c
acteristic length of the charge distribution is determined
the characteristic thickness of the domain wall.

VI. IMPURITY SELF-ENERGY

In this section we shall take into account the scattering
electrons from impurities. The simplest choice are impurit
with a short-range scattering potential, which scatter si
larly both spin-up and spin-down electrons. Let the mat
element of the scattering potential of a defect beV0. The
self-energy operator in the Born approximation is

S~«!5V0
2E d3k

~2p!3
G«~k!. ~53!

After integrating the Green function given by Eq.~33!, we
get

S~«!52
i sgn«

2
diag~1/t↑ , 1/t↓!, ~54!

where the momentum relaxation times for spin-up and sp
down electrons are

-

n

FIG. 4. Distribution of the charge density near the domain w
for interacting electrons, calculated for different values of the s
coupling constantgs . Due to the screening effects and charge co
servation, the integrated charge accumulated at the wall vanish
9-6



th
w

s

g

n

n-

lec-
is
ally
of
is

has

etic
-

ELECTRONS IN A FERROMAGNETIC METAL WITH A . . . PHYSICAL REVIEW B65 224419
1

t↑~z!
5

mV0
2

2p S kF↑1kF↓1
Mr

b
arcsinh

kF↑b
Mr

2
Mr

b
arcsinh

kF↓b
Mr

D , ~55!

1

t↓~z!
5

mV0
2

2p S kF↑1kF↓2
Mr

b
arcsinh

kF↑b
Mr

1
Mr

b
arcsinh

kF↓b
Mr

D . ~56!

The difference in scattering times is due to a difference in
density of states at the Fermi level for spin-up and spin-do
electrons. The formulas~55! and ~56! take into account
variation of scattering times near the domain wall. The
correlations have been neglected in previous works.

VII. LOCAL CONDUCTIVITY

The general formula for local conductivity~without local-
ization corrections!, when an electrical field is applied alon
the axisz, has the following form:

szz5
e2

2pm2
TrE d3k

~2p!3
~kz2mbsy!Gk

R~kz2mbsy!Gk
A ,

~57!

where the gauge potentialA(z), defined by Eq.~9!, is taken
into account, and the retarded~R! and advanced~A! Green
functions are both evaluated at the Fermi level,

Gk
R,A[G«50

R,A ~k!5
2«k2Mrsz2kzbsy1m r

~2«k↑1m r6 i /2t↑!~2«k↓1m r6 i /2t↓!
.

~58!

Owing to the terms containingb in the Green functions
and to thez dependence of«k↑,↓ , m r , and Mr , the local
conductivityszz is a smoothly varying function ofz. Given
theszz(z), the resistivity of a sample with a domain wall ca
be found by~adding resistivities!

R;E dz

szz~z!
. ~59!
22441
e
n

e

Using Eqs.~35! and ~36!, we find the local conductivity in
the form

szz5
e2

2p2m
Ft↑S kF↑

3

3
1m2b2kF↑2m2Mrb arctan

kF↑b
Mr

D
1t↓S kF↓

3

3
1m2b2kF↓2m2Mrb arctan

kF↓b
Mr

D G . ~60!

One should note that the dependence onb enters here not
only explicitly, but also through the parameterst↑ , t↓ , kF↑ ,
andkF↓ .

The description of the domain wall in terms of local co
ductivity is justified whenL@ l , wherel is the electron mean
free path. For such a smooth domain wall, there is no e
tron scattering from the wall but the local conductivity
changed. The system with a domain wall is macroscopic
inhomogeneous, and thus the electric field in the vicinity
the domain wall is inhomogeneous when a bias voltage
applied.

VIII. SPIN CURRENTS AND LOCAL SPIN
CONDUCTIVITY

The spin-current density in the untransformed basis
the form derived in the Appendix:

j ↑,↓52
i

2m
TrE d«

2p

d3k

~2p!3
@k2 iA6T†szT~k2 iA!#G«~k!.

~61!

Suppose the spin current is induced by an electromagn
field with vector potentialAem acting on both up- and down
spin components. Then, using Eqs.~9!, ~11!, and ~61!, we
obtain for the up- and down-spin conductivity

szz
↑,↓5

e

4pm2
TrE d3k

~2p!3
@kz2mbsy

6~nzsz2nxsx!~kz2mbsy!#Gk
R~kz2mbsy!Gk

A .

~62!

The result of calculation can be presented in the form
szz
↑,↓5

1

2e
szz1

e

4p2m
H t↓F ~mb27Mrnz!S mkF↓2

mMr

b
arctan

kF↓b
Mr

D
1~2mb27Mrnz!S kF↓

2b2
AMr

21kF↓
2 b22

Mr
2

2b2
arcsinh

kF↓b
Mr

D G1t↑F ~mb27Mrnz!S mkF↑2
mMr

b
arctan

kF↑b
Mr

D
2~2mb27Mrnz!S kF↑

2b2
AMr

21kF↑
2 b22

Mr
2

2b2
arcsinh

kF↑b
Mr

D G J . ~63!
9-7
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In the limit of b→0 we obtain

szz
↑,↓5

1

2e
szz6cosw~z!

e

2m S kF↑t↑
6p2

2
kF↓t↓
6p2 D . ~64!

The spin conductivity~63! and ~64! describes a response i
the form of up- and down-spin currents to the electric fie
associated with the vector potentialAem.

IX. SUMMARY AND CONCLUSIONS

We have described behavior of conduction electrons in
acting with a magnetic domain wall in ferromagnetic meta
In the description we used a realistic model which includ
the Coulomb interaction and screening effects. Within
semiclassical approximation we calculated self-consiste
the equilibrium charge and spin distribution in the presen
of a domain wall. We showed that this distribution is signi
cantly modified by the wall. We have also calculated t
local transport characteristics, like relaxation times a
charge and spin conductivities.

Our approach applies to the linear response regime,
therefore such nonequilibrium phenomena like spin accum
lation at the wall due to flowing current are not taken in
account. In a recent paper Ebelset al.21 observed large mag
netoresistance due to a domain wall and attributed it to
spin accumulation. On the other hand, Simanek22 showed
that spin accumulation is partially suppressed by spin tra
ing and cannot explain such a large magnetoresistance.

The approach used in Ref. 22 is based on the kin
equation for the Wigner function and takes into account n
linear effects, particularly those due to spin accumulati
Such effects were not included in our description, since
analyzed the linear response regime only, which is de
mined by equilibrium characteristics. However, we took in
account the interaction between electrons and showed
this interaction can singificanly modify the influence of th
magnetic wall on transport properties. The local transp
characteristics were described by few parameters chara
izing the domain wall. Variation of the local conductivities
the wall may lead to several new effects. For instance,
may expect the Peltier effect at the domain wall. To o
knowledge, such an effect has not been studied yet. S
other interesting phenomena may be related to the s
dependent coupling, described by the parametergs .
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APPENDIX: SPIN CURRENT DENSITY

To find the expression for the spin current, we add to
Hamiltonian of Eq.~1! an auxiliary vector potentialAem(t)
acting only on the spin-up states. It produces in the kine
part of the Hamiltonian the following term~in the untrans-
formed basis!:

Hkin52
1

2m
c†~r ,t !S ]

]r
2

ie

c

11sz

2
Aem~ t ! D

3S ]

]r
2

ie

c

11sz

2
Aem~ t ! Dc~r ,t !. ~A1!

After expanding overAem(t), we find the linear inAem(t)
term in the Lagrangian density

DL52Hkin

52
ieAem~ t !

2mc
c†~r ,t !~11sz!

]

]r
c~r ,t !. ~A2!

The transformation~4! changes it to

DL52
ieAem~ t !

2mc
c†~r ,t !F ]

]r
1A~r !

1T†~r !szT~r !S ]

]r
1A~r ! D Gc~r ,t !. ~A3!

The corresponding operator of the spin-current density
be found by variation

j ↑5
c

e

dL

dAem~ t !
, ~A4!

which gives us finally

j ↑52
i

2m
c†~r ,t !F ]

]r
1A~r !

1T†~r !szT~r !S ]

]r
1A~r ! D Gc~r ,t !. ~A5!
.
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