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We present a theoretical description of conduction electrons interacting with a domain wall in ferromagnetic
metals. The description takes into account the interaction between electrons. Within the semiclassical approxi-
mation we calculate the spin and charge distributions, particularly their modification by the domain wall. In the
same approximation we calculate the local transport characteristics, including relaxation times as well as
charge and spin conductivities. It is shown that these parameters are significantly modified near the wall and
this modification depends on the electron-electron interaction. The spatial nonuniformity of the transport
characteristics may give rise to new phenomena.
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[. INTRODUCTION tance due to the presence of a wall. On the other hand, Tatara
and Fukuyamffound a negative contribution, which is due
It is generally believed that domain walls modify signifi- to destruction of the weak localization corrections to conduc-
cantly all the transport properties of ferromagnetic metalstivity by the domain wall. Another model which may lead to
Early theoretical treatments of this phenomelforwere  either a positive or negative contribution of a wall to resis-
stimulated by magnetotransport measurements on singléivity was developed by van Gorkoet al’® The key point
crystal Fe wiskers. Recent progress in controlling the magef this model is the fact that the wall can lead to a redistri-
netic state of nanostructures enabled observation of a direbution of the charge carriers between spin-majority and spin-
correlation between domain structure and transportninority channels. The domain wall contribution to resistiv-
properties’ For example, it is possible to extract the contri- ity depends then on the ratio of spin-majority and spin-
bution to resistivity due to a single domain wall. In addition, minority relaxation times.
the discovery of giant magnetoresistait@R) in magnetic In this paper, we consider electrons in a ferromagnetic
multilayers, which is connected to the reorientation of themetal which interact with a domain wall. The description
magnetic moments of neighboring magnetic layers from anincludes interaction between electrons, and therefore we use
tiparallel to parallel alignments, renewed interest in domaira self-consistent analysis to describe charge and spin distri-
wall resistivity. To some extent, the domain wall plays abutions, as well as their modification by the domain wall.
similar role as the nonmagnetic layer separating two ferrotsing the Green’s function technique, we calculate the elec-
magnetic films in a sandwich structure or in a multilayer, andiron relaxation times in a quasiclassical approximation. Apart
therefore can be expected to lead to magnetoresistance dfem this, we also calculate the local charge and spin con-
fects similar to GMR. Indeed, there is growing experimentalductivities. These transport parameters are shown to be sig-
evidence of a large magnetoresistance due to a domain walificantly modified near the domain wall, which may give
in ferromagnetic nanostructurds’ This, in turn, led to rise to new effects.
growing interest in theoretical understanding of the behavior The paper is organized as follows. In Sec. Il we describe
of electrons coupled to a ferromagnetic domain Walf ~ the model as well as the transformation used to replace the
Moreover, progress in nanotechnology made it also possiblsystem with inhomogeneous magnetization by a system mag-
to study electric current flowing through a narrow contactnetized homogeneously. In Sec. lll we present the trans-
between two ferromagnetic metajgoint contact, where a  formed Hamiltonian, generalized by including self-consistent
constrained domain wall is created in the antiparallel confields related to electrostatic and magnetic interactions. A
figuration. Such a domain waflhas a significant influence semiclassical solution of the resulting Satirmger equation
on the transport characteristics of the point contfct. for electrons is also presented there. Scattering from the wall
It has been shown experimentafiythat the presence of a in the Born approximation is calculated in Sec. IV. In Sec. V
domain wall can either increase or decrease the electricale calculate, within the quasiclassical approximation, both
resistance of a system. This intriguing observation stimulatethe spin and charge distributions in the vicinity of the domain
theoretical works aimed at understanding the role of a dowall, as well as the corresponding contributions generated by
main wall in transport properties. Levy and Zhdhdevel-  the wall. Local relaxation times are calculated in Sec. VI,
oped a semiclassical model based on the mixing of spinwhereas the local charge and spin conductivities are calcu-
majority and spin-minority transport channels by the domainlated respectively in Secs. VII and VIII. Final conclusions
wall. This mixing results in an increase of the electric resis-are provided in Sec. IX.
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Il. MODEL X

Consider a general case of a ferromagnet with a nonuni-
form magnetizatiorM (r). The one-particle Hamiltonian de-
scribing conduction electrons locally exchange coupled to
the magnetizatioM (r) takes the form

szzwa—Mlaaﬁ'M(r)wﬁ’ @ // 7T \\ Z

Lo
Ho=— 5 ¥a

whereJ is the exchange parametér, and 1/12 are the spinor
field operators of electronsy=(oy,0y,0,) are the Pauli
matrices, and we use the units wiilF= 1.

The model Hamiltoniarl) will be used to describe elec-
trons interacting with a domain wall in ferromagnetic metals FIG. 1. Schematic pict fth tizati ientati
or semiconductors. The domain wall will be modeled by a -~ Schematic picture of the magnetization orientations near

L . . L. the domain wall.
magnetization profileVi(r). For the sake of simplicity we
shall assume thaiM(r)|= const. We can then write

IM(r)=Mn(r), wheren(r) is a unit vector field to be speci- _ 1 . sing(z)
fied later, ancVl is measured in the energy units and includes (2= 2 V1+cose(z)—ioy Ttcose(2))’ ®

the parameted.
The first step of our analysis is to perform a local unitaryand the gauge field assumes a simple form
transformatiofl y— T(r) s, which removes the nonhomoge-

neity of M(r); that is, T(r) transforms the second term in i )
Eq. (1) as A(2)={0.0~-50y9'(2) |, 9

yron(r)g—y'o. (20 whereg' (2)=d¢(2)ldz.
Taking into account Eqg¥55) and (9), one can write the

The transformation matriX(r) must then obey the condition transformed Hamiltonian in the form

T . =
T (r)o-n(r)T(r)=o,. ) . mEA(2)
Explicit form of T(r) is given by® Ho==5 P Mo+ —
_i .ny(r)ax_nx(r)ay . ,8,(2) . Jd
T(r)= A 1+ny(r)+i N0 ) 4 tioy——+ioyB(2) (10

Applying the transformatiortd) to the kinetic part of the Where
Hamiltonian(1) one obtains
2 ; , B(2)=5—. (1)
¢T—2¢—>¢T(E+A(r)> ¥, (5) _ _

or When kgL>1, wherekg is the Fermi wave vector and
stands for the wall width, the perturbation due to the domain
wall is weak and one may use the semiclassical approxima-
J tion. In particular, the parametg(z) close to the center of
AN =TNr)=T(r). (6) the wall can be then treated as a constant. Such a model

or domain wall with a constant paramet@rwas analyzed in

Ref. 12. Our following considerations will be restricted
spin space. mainly to the semiclassical limikzL>1. In that case, the

Let us consider now a more specific case of a domain wal@St thrée terms on the right side of E0), which are due to

in a bulk system. Assume that the wall is translationally in-the domain V\./al.l’ W'”. be treated as a.small perturbation.
variant in thex-y plane:M(r)— M (z) andn(r)—n(z). For The descrlptlon given above is qwt_e general and may be
a simple domain wall wittM (2) in the plane normal to the used for various models of the domain wall. If we assume

wall, one can parametrize the vectu(z) as the domain wall in the form of a kinkFig. 1), then

where the non-Abelian gauge fiellr) is given by

According to Eq.(4), the gauge field\(r) is a matrix in the

n(Z):(SingD(Z), O, COS(,D(Z)), (7) (,D(Z):_ gtanl’(zlL), (12)
where the phase(z) determines the type of a domain wall.
The transformatiori4) is then reduced to and the parameteB(z) is given by
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where g is the corresponding coupling constant. Micro-

B(z)=—————. (13)  scopically, the Hamiltoniari17) and the phenomenological
4mL costf(z/L) parametery, originate from the spin-dependent correlation
terms, which in turn arrise from electron-electron interac-
IIl. SEMICLASSICAL APPROXIMATION tions (similar to those giving rise to ferromagnetism of band

] . ) ) electron$. Choosings, as the spin density far from the wall

In bulk magnetic metals like Fe, Ni, or Co, the widthof  gyarantees that this interaction vanishes when there is no
a magnetic domain wall is usually much larger then the elecgomain wall. This means that the effects due to magnetiza-
tron Fermi wavelength\. In such a case application of a tjon of the conduction electrons in a system without a do-
semiclassical approximation is well justifié@he dominant main wall are included by the parametdt in the one-
perturbation from the domain wall is then described by theparticle Hamiltonian. The effect of a domain wall is then to
term with B(9/dz) in Eq. (10), since it is of order of8ke.  modify the internal magnetization, resulting from a redistri-
The term proportional tg8” is smaller, while the term in- pytion of the spin density. The effects due to the interaction
cluding B8'(2) is of the order ofg/L and therefore can be (17) can be taken into account by adding to the Hamiltonian

neglected. the new term
For the sake of self-consistency, we will include now the
Coulomb interaction of electrons, which allows a correct de- sMF)_ [ 43 N
scription of charge accumulated at the wall. The point is that Hint _f d°r my(2) o2, (18)

the wall can give rise to some excess charge locally breakin
electrical neutrality, as will be described in more detail later.
This effect was not taken into account in a previous
analysi€ On the other hand, the renormalization of the 20/t

; . e . m,(z)=— —Sg)- 19
chemical potential forbidding the formation of excess A2) 95({¢o24h) = o) (19

chargé? may be an overestimation of the Coulomb repul- Thus, the Schiinger equation for electrons of energy

%/here the internal magnetization fietd,(z) is determined
by the saddle-point-like equation and is of the form

sion. _ _ _ _ ~in the fields¢(z) andmy(z) reads
The Coulomb interaction will be taken into account via
the coupling term 1 # mpi2)
. " om o2 5 —[M—-m,(2)]o,
Him=§f d3rd3r [y (r,t) (r,t) —ng]V(r—r")
. Jd
XLy (r D u(r 0= ng), (14 +"’yﬁ(z)5_¢’(z)_8) ¥=0, (20

whereV(r—r")=e?/|r—r’| is the bare Coulomb interaction where the fieldss(z) andm,(z) have to be determined self-
andng is the mean electron density in the bulk. Using anconsistently via Eqs(16) and (19). Equation(20) has the
auxiliary scalar fieldp(z) we can incorporate the interaction following semiclassical solutiond €1,2):

by adding to the Hamiltonian the following term:

Hp2) exp(*iqg- p) (1iﬁki(2))
) p,z =
HMP) = — f d°r p(2) ¢y, (15 ' [£2(2)+ BA(2)kA(2) 1Y z) \  &i(2)
where the fields(z) is determined by the saddle-point equa- xex;{ *i fzki(z)dz , (21
tion 0
42 wherep=(X,y), q is the momentum in the plane of the wall,
$(2) — 4me((y ) —ny) (16) the wave vector components normal to the walbng the
dz ’ axis z) are given by
with (---) denoting the ground-state average. This makes k2 (z)=«?(z) + m?B2(z) = 2m[M?(2) + BX(2) k*(2)]*?,
the solution self-consistent, and the fieldz) is the mean- (22
field electrostatic potential in the presence of the wall. The
use of the differential saddle-point equation f6(z), Eq. k(z) mpBX(z) k%(2)
(16), makes the problem more complicated due to the non- e(=75—t——M@-—5 - 23

locality, but allows us to describe correctly the screening
effects associated with a spatial distribution of charges in th@nd x(z) andM,(z) are defined as
vicinity of the domain wall. 5 )
To include the spin-dependent interaction, we introduce «k“(z)=2mle+ ¢(2)] -0, (24)
the contact interaction term in the form

M (2)=M—my2). (25
2
gsJ For clarity of notation we omitted the subscriat of
HS =— = d3(¢lo,u—s0)?, 1 y
m=" 7 | Srles) W) kD) [KadD) =K1 D)1,
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There is no reflection from the wall in the semiclassicalthe opposite case of a small domain-wall widiH. <1, we
approximation. It should be noted, however, that for electhave|U(z)|~1/mL? and the Born approximation is not jus-
trons moving nearly parallel to the wdllvith a very smallz tified again. Thus, the Born approximation can be used only
component of the momentunthere is a reflection from the for rough estimations. In the case under consideratigh,
wall since for such electrons classical motion through the>1, it shows that the usual scattering from the wall is expo-
barrier is impossible. We do not consider here this effechentially weak.
since its contribution is very small.

V. DISTRIBUTION OF SPIN AND CHARGE DENSITIES
IV. SCATTERING FROM THE WALL (BORN (SEMICLASSICAL APPROACH )

APPROXIMATION ) _ _ o
In the framework of the semiclassical approximation, one

For the case of not too thin domain walls, the term pro-can calculate the local charge and spin densities in the vicin-
portional to3(z) d/dz can be treated as a small perturbationjty of the wall, as well as the distribution of charge and spin
and scattering from the wall can be evaluated within thecyrrents. As follows from Sec. Ill, this can also be done
Born approximation. The matrix elements of th&,[)  taking into account the Coulomb interaction self-
—(k;1) spin-flip scattering in the plane-wave basis areconsistently.
given by The equation for the Green function with the teg(z)
weakly dependent on

V, o= ® iK'z _ i ikzzg 26
kK= | e 7| —B(2)g, | et dz (26)

+¢(2)+M((2)0,

et o——-—

1 # mp%2)
2m (9r2 2

Using Eq.(13), we obtain

\Y =i7Tszw exfL ik, —k;)z]d2 (27) —io ﬁ(z)i+,u Gy(r,r")=68(r—r"), (32
“eoamb)o. cos(zL) Y oz st '
After calculating the integrdl we arrive at has a quasiclassical solutiok,{>1)
i 2k, (ks —k,)L w(k,—k,)L e _
o= z4rzn 2" e ( 22 z 29) G (k)= e—gy .Mr(Z)O'Z kzﬁ(Z)a'y-i-,L{,r |
(e—etu tidsgne)(e—ey +u,+id sgne)
Correspondingly, the probability of backscattering, € (33
—kp) is where the following notation has been used:
2 ° ;l ? R q2+ K2
= = z
Whaci= 27| Vi, -k | - 7cse (mkL). (29 ok=gr (34)
For k,L>1, from the last equation we find
’ e = ek [MF(2) +K2B%(2)]"2 (35
2moKAL?
Whack=———e~ 274k, (30 mB(2)
m m=p——— T é(2), (36)

Thus, the probability of the backscattering with simultaneous

spin flip vanishes exponentially in the limit dé:L>1' andu is the chemical potential. Equati¢85) describes the
Spin-conserving backscattering is determined by the termenergy spectrum in the spin-up and spin-down branches,
proportional toB? in the Hamiltonian(20). In the first ap-  where for the sake of notational simplicity we droped the
proximation this term can be neglected as it is smaller thaglependence of; | and u, . In what follows we also drop
the term proportional t@B(z)d/9z. the z dependence dfl, and 3.

The question arises as to whether the Born approximation Note that the square root in E(B5) contains contribu-
gives correct results in the problem under considerationtions due to spin mixing caused by the perturbation
There are two general conditions for its applicabifity: oyB(dl9z). Hence, what we call spin-up and spin-down

branches of the spectrupfabeled as and| in Eq. (35)] are
k in fact the eigenvalues corresponding to the wave functions
5 or |U(z)|< mL’ (31 with mixed up and down states. Correspondingly, the Green
function (33) has poles at both Fermi surfaces wik kg,
where U(z) is the scattering potential. In the first case theandk=Kkg, in diagonal and nondiagonal components, where
Born approximation is good for arbitrary electron energy,kg; | are given by
whereas in the second one it is good only for fast electrons.
Therefore, if we choose the limikeL>1, then |U(Z)| k&, | =2mu,+2m?B2=2m(2mu, B2+ m? B4+ M?) 2,
~ Bk,~(k,/mL), and none of the conditions is satisfied. In (37

U(2)|<
U(z)| -y
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Using the Green functiofB83), one can calculate the spin
density distribution in the presence of the wall. The real spin p(z2)=—i Trf o G (k). (45)
density distribution, i.e., transformed back to the original ba-

sis, is given by the formula After calculating the |ntegre(l45) we find

= 'des OI3I(TT T(2)G,(k 38 ke, + k¢
S(2)=—iTr 2 (2m)? (2)0T(2)G,(k). (38 p(Z)_ zmﬂr(kFT"'kFL) %
To obtain this expression one should use the inverse trans- 2)1/2_ 2 12
formation, i.e.,G—TGT'. Using Eq.(3), one can rewrite +mke (M +kg F15°) mkFi(M +kFl'B )
Eq.(38) as mM? k mM? k
+ ——arcsinh L Larcsink L . (46
ds  d3k B M, B M,
n(2)-s(z)=~i Trf 27 (24)3 7G4 (K). (39 Now we can use this expression in H46) to determine
_ o _ electrostatic potentialy/y)=p(z).
Since the projection o on the plane perpendicular t© We can linearize Eq(16) in ¢(z) assuming that the do-
vanishes, we can write the spin density as main wall does not change significantly the electron density,
i.e., foru>|#(z)|. Hence, after expanding(z) in ¢(z) and
§2)= —m(z)TrJ de UZG (K). (40) Fourier transforming over, we can write Eq(16) as
2 2 27
+ K =—47e‘A , 4
Substituting the Green functlo(|33) into Eq. (40), we find (G + o) #(3k) p(d2) 4
where ko= (47e’vy)*? is the inverse screening length,

d’k = dpldu is the thermodynamic density of states, a]g
_ _ 2 52 2 plop ynamic density of states, ane(q,)
s(z)—n(z)(LkT<Mr Lqur)(zw) (L+kzB2IMP) ™ is the Fourier transform of
b Ap(2)=[p(2)—no] (48)
z)=[p(z)—n e
After evaluating these integrals, we find the spin density dis- P P 07¢(A=0
tribution Using Egs.(25), (35), (36), and (37), we find that forg
—0 the accumulation of charg&,p(z)=p—p($=0), is
S(Z):Mrn(Z) (M 2412 g2)L2 - ,
artp |28 M N LA L ]
M2 472 127*M
2B(M 2+ KR B2+ 2mﬂr+—) 49
25 This value ofAp(z) is the accumulated charge in the ab-
ke 3 ke, B sence of Coulomb repulsion.
X arcsinh%—arcsinh% +2mpB(Ke +ke)) |- Due to Eq.(16), the real distribution of charg&p(z) is
' r related toAp(z) by the relation which in Fourier space has
(42 the form
The accumulation of the spin density at the domain wall is q§ ~
Ap(d,)=———Ap(qy). (50
AS(2)=9(2) — s, (43) qz+ Ko

wheres, is the spin density in the limit g8=0. For smallg, ~ Then, if the characteristic lengh of the domain wall is large,
i.e., for very smooth magnetic wall and up to second order of<oL>1, we obtain

B, this reads ~
Aple)=— - T2 (5)
n(z)8%| P 2 dZ
As(z)=— 472 m“(Kg1 —Kg)
and, finally, using Eq.(46), we find the distribution of
me k5 kgl charge:
+ (kg — Fl)_—z : (44)
My 10M Ap(2) A( )d23(2)+(dﬁ(2))2
2)=— z

The sign of the factor in the square brackets of Ed) is P 2m2K3 d7 dz

always positive.
The charge density distribution can be calculated in a
similar way,

—m(ke;+ke )+ 357 (k kﬁl)}. (52)
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o . . FIG. 4. Distribution of the charge density near the domain wall
FIG'}' Distribution of the excess charge for noninteracting elec'for interacting electrons, calculated for different values of the spin
trons, Ap(z), near the domain wall, calculated for different values coupling constant)s. Due to the screening effects and charge con-
of the spin coupling constag. The coupling constargs is given  servation, the integrated charge accumulated at the wall vanishes.
in units of erd’?cm??.
2). This effect is a result of self-consistency, because by con-
We performed numerical calculations of the chatgg z) trolling the spin density one modifies the magnetic wall,
and excess spin densitys;(z) =As(z) - n(z) using the set of Which in turn influences the eIectroNn density.
equations(42), (46), (48), (25), (36), (37), and (19). The In view of Eq.(48), the functionAp(z), presented in Fig.
results are presented in Figs. 2 and 3 for different values o2, is not the excess charge accumulated at the wall but an
the spin coupling constagt, . In the calculations we take the auxiliary function corresponding to the conditieh(z) =0.
Fermi energiessg;=3 eV andeg =2.5 eV in the bulk, The real distribution of accumulated charge, Ef), is pre-
andm=4m,, wherem, is the free electron mass. The figures sented in Fig. 4 for different values of the coupling constant
demonstrate how the spin coupling constgptaffects both  gs. This figure demonstrates that the integralAgf(z) over
the spin accumulatiofFig. 3) and charge accumulatigfig.  zis zero due to the conservation of electric charge. The char-
acteristic length of the charge distribution is determined by

30 the characteristic thickness of the domain wall.
_ gs:()
————————— 0.5x10™
—————— 1.0x107" VI. IMPURITY SELF-ENERGY
25 e 15x107°
—— 2.0x107"° In this section we shall take into account the scattering of

electrons from impurities. The simplest choice are impurities
with a short-range scattering potential, which scatter simi-
larly both spin-up and spin-down electrons. Let the matrix
element of the scattering potential of a defect\he The
self-energy operator in the Born approximation is

S (e) VZJ d% G, (k) (53
g)= +(K).
) 2m?
After integrating the Green function given by E®3), we
get
i sgne
-2 -1 0 1 2 =_
2/L >(e) > diag lry, 1/7)), (54

FIG. 3. Distribution of the excess spin density near the domairwhere the momentum relaxation times for spin-up and spin-
wall for different values of the spin coupling constayt down electrons are
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TT?Z) = rz_\f Kep+ kg + %arcsinfla(;\%ﬂ

— %arcsinll(l%ﬂ) , (55)
% = rz_\f ( Kep+Kg — %arcsinfla(;\%ﬂ

+ %arcsinll(l%ﬁ) . (56)

PHYSICAL REVIEW B65 224419

Using Egs.(35) and(36), we find the local conductivity in
the form

= e E+m2,6’2k —m°M, B arctaM
Oz7 222m T 3 F1 r M,
EL 2,2 2 kFlB
+7 ?+m BKg —mM, B arctaﬁM— . (60
r

One should note that the dependencefenters here not
only explicitly, but also through the parametets 7|, kg, ,

The difference in scattering times is due to a difference in thé@ndke, . o ) ]
density of states at the Fermi level for spin-up and spin-down 1 he description of the domain wall in terms of local con-

electrons. The formulag55) and (56) take into account

ductivity is justified wherL_>1, wherel is the electron mean

variation of scattering times near the domain wall. Thesdr®€ path. For such a smooth domain wall, there is no elec-

correlations have been neglected in previous works.

VIl. LOCAL CONDUCTIVITY

The general formula for local conductivityithout local-
ization corrections when an electrical field is applied along
the axisz, has the following form:

e? d3k
T Tt [ 5 (kB Gk~ mBo, G
27m? (2m)3
(57

where the gauge potential(z), defined by Eq(9), is taken
into account, and the retardéR) and advancedA) Green
functions are both evaluated at the Fermi level,

—ex— Mo~k Boy+ p,
(_SKT+IU“rii/27T)(_Skl—i_lu“rii/ZTL) '

Gy =Go(k) =

(58)

Owing to the terms containing in the Green functions
and to thez dependence ofy; |, u,, andM,, the local
conductivity o,, is a smoothly varying function of. Given
the o, (), the resistivity of a sample with a domain wall can
be found by(adding resistivities

|

dz

EEIR ®9

tron scattering from the wall but the local conductivity is
changed. The system with a domain wall is macroscopically
inhomogeneous, and thus the electric field in the vicinity of
the domain wall is inhomogeneous when a bias voltage is
applied.

VIII. SPIN CURRENTS AND LOCAL SPIN
CONDUCTIVITY
The spin-current density in the untransformed basis has
the form derived in the Appendix:
d3k
(2m)°

i de . .
=m0 | 5 [k—iA=T o, T(k—iA)]G, (k).

(61)

Suppose the spin current is induced by an electromagnetic
field with vector potential.,, acting on both up- and down-
spin components. Then, using EqS), (11), and (61), we
obtain for the up- and down-spin conductivity

e 3
Trf
47rm? (2m)°

1,0 —
02z =

[k,—mBa,

= (n,0,—Nyoy) (K~ mIBUy)]GE( k,— mBUy)Gﬁ .

(62

The result of calculation can be presented in the form

oo 22 M _ My etk P
027 = 5502z A 7| (MB“+Mn,)| mkg, B arc anM—r
k M2 k mMm k
+(2mB2FM,n,) %\/MerkElﬂz— —rzarcsinhL'B + 7 (mﬁziMrnZ)(mkFT——rarctaniﬁ
28 28 M; B M,
kFT 2,12 Mr2 ; kFTB
—(2mB?FM,n,) 2_32‘/Mr+kFT32_ Z—BZarcsmhM— . (63)
r
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The spin conductivity(63) and (64) describes a response in
the form of up- and down-spin currents to the electric field, APPENDIX: SPIN CURRENT DENSITY
associated with the vector potenti},.
To find the expression for the spin current, we add to the
IX. SUMMARY AND CONCLUSIONS Hamiltonian of Eq.(1) an auxiliary vector potentiadg(t)

) . ) ~acting only on the spin-up states. It produces in the kinetic
We have described behavior of conduction electrons '”terpart of the Hamiltonian the following terrin the untrans-

acting with a magnetic domain wall in ferromagnetic metals oy med basis
In the description we used a realistic model which includes
the Coulomb interaction and screening effects. Within the

semiclassical approximation we calculated self-consistently Hyin=— izﬂ(r,t) L EﬁAem(t))

the equilibrium charge and spin distribution in the presence 2m o ¢ 2

of a domain wall. We showed that this distribution is signifi- g iel+o,

cantly modified by the wall. We have also calculated the X(E_ €TAem(t)) Y(r,t). (A1)
local transport characteristics, like relaxation times and

charge and spin conductivities.

Our approach applies to the linear response regime, a
therefore such nonequilibrium phenomena like spin accumu-
lation at the wall due to flowing current are not taken into AL=—H,.
account. In a recent paper Ebelsal 2! observed large mag- kin
netoresistance due to a domain wall and attributed it to the ieAgn(t)
spin accumulation. On the other hand, Sim&Aedhowed =T T o
that spin accumulation is partially suppressed by spin track-
ing and cannot explain such a large magnetoresistance.  The transformatiori4) changes it to

The approach used in Ref. 22 is based on the kinetic

fter expanding ovetdq(t), we find the linear inAq(t)
rm in the Lagrangian density

d
sme V(LD o) cy(rt).  (A2)

equation for the Wigner function and takes into account non- ieAen(t) d

linear effects, particularly those due to spin accumulation. AL=— Tcl/ﬁ(r,t) E+A(r)

Such effects were not included in our description, since we

analyzed the linear response regime only, which is deter- J

mined by equilibrium characteristics. However, we took into +T(r) o, T(r) E+A(r)> p(rit).  (A3)

account the interaction between electrons and showed that
magnetic wall on transport properties. The local transporhe found by variation

characteristics were described by few parameters character-

izing the domain wall. Variation of the local conductivities at
the wall may lead to several new effects. For instance, one
may expect the Peltier effect at the domain wall. To our
knowledge, such an effect has not been studied yet. Sonw
other interesting phenomena may be related to the spin-
dependent coupling, described by the paramgter

c oL

N 0 -

hich gives us finally

i 1%
j1=— 5=y (r,0)] = +A(r
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