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Transition from ferromagnetism to superparamagnetism on the nanosecond time scale

L. Lopez-Diaz* and L. Torres
Departamento de Fisica Aplicada, Universidad de Salamanca, Salamanca E-37071, Spain

E. Moro
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 4 October 2001; revised manuscript received 12 March 2002; published 22 May 2002!

Langevin dynamics has been used to study different aspects of the transition from ferromagnetism to
superparamagnetism when reducing the size of thin magnetic single-domain nanoparticles with in-plane
uniaxial anisotropy for observation times in the order of a few nanoseconds. It is found that nonuniformities in
the magnetization, usually ignored for such small particles, favor thermal relaxation. Quantitatively, the size
range over which the transition occurs is found to move roughly 1 nm towards larger sizes due to this
contribution. On the other hand, we also find that the thickness-dependent perpendicular demagnetizing field
induces thermal switching between the two in-plane energy minima. The results are in good agreement with the
Arrhenius law, which is used to characterize this effect. A strong dependence of the preexponential factort0 on
the particle thickness is found.

DOI: 10.1103/PhysRevB.65.224406 PACS number~s!: 75.75.1a, 75.20.2g, 75.40.Mg
er
ar
tio
s

et
p
g
-
d
ro
ct

ri-
ha

a
a
e
d

tic
ul

s-
ar

ch
ts

to-
tion

me
re-
ex-

in

rro-
cale

t of
that
ost
the

ob-

val-

x-
e

ith
an.
ar-
ed
n

-

e

I. INTRODUCTION

Small ferromagnetic particles present, in general, sev
magnetization equilibrium states separated by energy b
ers. Their hysteresis properties are the result of the evolu
of the magnetization in a multistable energy landscape a
response to a varying external field. In particular, magn
memory is based on the fact that the system remains trap
at a given metastable state over a time period much lon
than the observation timetexp. However, at a given tempera
ture TÞ0 thermal activation over the energy barriers lea
the system towards thermodynamic equilibrium. This p
cess is known as thermal relaxation and there is a chara
istic time for it called relaxation timet rel .

1 Thus, ferromag-
netic hysteretic behavior is found whentexp!t rel , whereas
in the opposite situation (texp@t rel) the particle maintains
the statistical equilibrium distribution of magnetization o
entations as in a classical paramagnetic material. This be
ior is known as superparamagnetism because the total m
netic moment of the particle is much larger than typic
individual magnetic moments at atomic level. In the interm
diate situation (texp;t rel) nonequlibrium phenomena an
magnetic relaxation occur.

In most of the literature thermal relaxation of magne
nanoparticles is explained in terms of the Arrhenius form

t rel5t0expS EB

kBTD , ~1!

whereEB is the height of the energy barrier,kB is the Bolt-
zmann’s constant,T is the temperature, andt0 is a charac-
teristic time constant, which is known to be in the ranget0
;10210–10212 s for magnetic nanoparticles. It is often a
sumed that the transition from ferromagnetism to superp
magnetism occurs when the energy barrierEB is around
25kB T,2 since this value gives, according to Eq.~1! and for
typical values oft0, relaxation times of some seconds, whi
is in the order oftexp for standard magnetic measuremen
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However, the growing importance of high-speed magne
electronics makes it necessary to understand magnetiza
dynamics and thermal relaxation on much shorter ti
scales. As an example, thermally assisted magnetization
versal in the nanosecond regime has been investigated
perimentally on submicron-sized magnetic thin films.3 In this
paper we study thermal relaxation for observation times
the order of a nanosecond (texp;1029 s!. In particular, we
investigate the transition from superparamagnetism to fe
magnetism as the particle size decreases. On this time s
the transition will occur for a value ofEB /kBT much smaller
than 25 ~for instance, texp;t rel510t0 gives EB /kBT
5 ln 1052.3). Consequently, the Arrhenius model~1!, which
is only valid in the high-energy barrier case (EB /kBT@1),2

is not applicable. Fortunately, there is a significant amoun
research on thermal relaxation in single-domain particles
is not restricted to the high-energy barrier case. In m
cases, the starting point is the Fokker-Planck equation for
system, which is the equation for the dynamics of the pr
ability distribution of the magnetization.4 Some techniques
have been developed to solve this equation directly,5 whereas
others are based on the numerical evaluation of the eigen
ues and amplitudes of the relevant dynamical modes.6 Both
approaches give insightful information on the thermal rela
ation of the particles but, due to the complexity of th
Fokker-Planck equation, they are limited to problems w
very few degrees of freedom and a very simple Hamiltoni
In particular, it is assumed that the magnetization of the p
ticle is uniform and therefore, its magnetic state is specifi
by a single vectorMW and the energy of the system is give
by

E5@v~MW !1MW •HW ext#V, ~2!

where v(MW ) is the anisotropy energy density,HW ext is the
external field, andV is the particle volume. However, ex
change forces between neighboring spins are finite andMW is
never completely uniform inside the particle. In this work w
©2002 The American Physical Society06-1
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have investigated the effect of the small nonuniformities

MW in the thermal relaxation properties of the particle. T
uniform magnetization approach~from now on referred to as
the uniform-magnetization model! is assumed to be a goo
approximation on the grounds that the deviations from u

form MW are necessarily small in a particle of a few nm
size. Our goal is to estimate to what extent the unifor
magnetization model is a good approximation. In order
carry out our task, we have used the micromagnetic form
ism, which considers the magnetization inside the particle

a continuous function of the positionMW (rW) and, conse-
quently, takes into account the nonuniformities in a natu
way. Our approach is based on the Langevin equation, w
is the Landau-Lifshitz dynamic equation for the magneti
tion augmented by a stochastic term that couples the sys
to a thermal bath.4 This way we generate individual trajecto
ries by numerically solving the Langevin equation and c
culate the thermal relaxation properties by computing so
relevant averaged quantities. Garcia-Palacios and Laz7

studied some aspects of the Langevin dynamics for n
interacting magnetic nanoparticles in nonequilibrium
gime (texp;t rel) using the uniform-magnetization mode
Langevin dynamics in the context of the micromagnetic f
malism has received a lot of attention lately,8–12although the
focus has been on particles of significantly larger size t
the ones considered here, therefore presenting nonuni
switching modes9,10 and even multidomain magnetizatio
configurations.11,12

According to the Arrhenius formula~1!, thermal relax-
ation is governed by the height of the energy barrier in
exponential, whereas the other details of the energy la
scape are assumed to play a minor role and are groupe
the preexponential factort0. However, these details can in
fluence the relaxation time to a great extent, as has b
pointed out by Coffeyet al. by studying oblique applied
fields and nonaxially symmetric Hamiltonians.13,14 On the
other hand, the Arrhenius model also neglects the pecul
ties in the dynamics of the system under study. In particu
the precessional term in the Landau-Lifshitz equation gi
rise to interesting phenomena, such as multiple crossin
the potential barrier, which are not taken into account in
~1!.7 Recent studies have shown how this term influences
superparamagnetic relaxation time.15 In particular, Palacios
and Svendlindh16 observed a field-induced interplay betwe
precessional motion and thermoactivation that largely in
ences the nonlinear response of the particle. In this work
insist on these ideas, but from a different point of view. W
will study thermal relaxation of a thin nanosized partic
with in-plane uniaxial anisotropy and we will investigate t
effect of the particle thickness on the relaxation time. W
will show how the thickness-dependent perpendicular
magnetizing fields influences thermal activation over the
ergy barrier between the two in-plane equilibrium states.

The rest of the paper is organized as follows. In Sec. II
discuss the main features of the uniform-magnetization
micromagnetic models, as well as some details in the
merical integration of the equations. In Sec. III we pres
the results and discuss them. The section is divided into
22440
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parts. The first one~Sec. III A! deals with the effect of non-
uniformities in MW , whereas the second one~Sec. III B! is
focused on the role of the particle thickness. The most
evant conclusions of this work are presented in Sec. IV.

II. MODELS AND NUMERICAL TECHNIQUES

In the uniform-magnetization model, the nanoparticle
assumed to have uniform magnetization. Therefore, its m
netic state is determined by the direction of the magnet
tion vector MW and its total magnetic moment isMW V. The
energy of the particle in a given state isE(MW ) and the effec-
tive field acting onMW it is given by

HW 52
1

V

]E~MW !

]MW
, ~3!

whereV is the particle volume. AtT50, the dynamics of the
particle is given by the deterministic Landau-Lifshitz equ
tion

dMW

dt
5gMW 3HW 1gl

MW

Ms
3~MW 3HW !, ~4!

whereg521.763107 Oe21 s21 is the gyromagnetic ratio
and l is the adimensional damping constant. Since
modulus ofMW is constant~its value is given by the magne
tization saturationMs) it is useful to describe the state of th
particle by the adimensional unitary vectormW 5MW /Ms .
Similarly, we define the dimensionless fieldhW 5HW /Ms . By
multiplying Eq. ~4! by (Ms

2ugu)21 we obtain

dmW

dt
52mW 3hW 2lmW 3~mW 3hW !, ~5!

wheret5Msugut is a dimensionless time. In order to tak
into account thermal agitation atTÞ0, we introduce a ran-
dom fluctuating fieldHW f l whose origin lies on the interactio
of the magnetization with the surrounding medium~phonons,
conducting electrons, nuclear spins, etc!. The deterministic
dynamic equation~5! is then converted into the stochast
Langevin equation

dmW

dt
52mW 3~hW 1hW f l !2lmW 3~mW 3hW !, ~6!

where hW f l5HW f l /Ms . It is assumed thathW f l is a Gaussian
stochastic process whose statistical properties are given

^hf l ,k~t!&50, ~7a!

^hf l ,k~t!hf l ,l~t8!&52 D dkl d~t2t8!, ~7b!

wherek,l represent the cartesian coordinatesx,y,z. There-
fore, the three components ofhW f l are independent Gaussian
distributed zero-mean white-noise terms. The constanD
measures the strength of the fluctuating term. In order
determine this constant we need to construct the Fok
Planck equation for the probability distribution of the ma
6-2
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TRANSITION FROM FERROMAGNETISM TO . . . PHYSICAL REVIEW B65 224406
netizationP(t). Because the stochastic term in Eq.~6! enters
in a multiplicative way the equation must be supplemen
by an interpretation in order to properly define it.4 In this
work we will follow the Stratonovich interpretation.4 When
interpreted in the Stratonovich sense, Eq.~6! yields the fol-
lowing Fokker-Planck equation.17,18

]P

]t
52

]

]mW
•F2mW 3hW 2lmW 3~mW 3hW !

1DmW 3S mW 3
]

]mW
D GP. ~8!

In order to ensure that the stationary properties of
system, derived from the Langevin equation~6! coincide
with the correct thermal equilibrium properties, the Fokk
Planck equation~8! is forced to have the Boltzmann distr
bution Peq(mW )}exp@2E(mW )/kBT# as stationary solution. This
completely determines the strength of the fluctuating term

D5l
kBT

Ms
2V

~9!

as can be easily checked using Eq.~3!. It should be noted
that in Eq.~6! we introduced the fluctuating term only in th
precessional term. Alternatively, we could have added
the damping term too. It can be shown18 that, in that case
the Fokker-Planck equation~8! is still valid, whereas a dif-
ferent value for the amplitude of the noiseD5(l/1
1l2)kBT/Ms

2V must be considered. Although the individu
stochastic trajectories generated in both cases are diffe
the average properties derived from them are the same.18

In this paper, the Langevin equation~6! is solved numeri-
cally using a first-order Euler scheme,

mW ~t1Dt!5mW ~t!1@2mW 3hW 2lmW 3~mW 3hW !12 D mW #Dt

2mW 3DWW , ~10!

where the three independent components ofDWW

5*t
t1DthW f l(t8)dt8 are Gaussian random numbers who

statistical properties are given by

^DWk&50, ^DWkDWl&52 D Dt dkl . ~11!

The noise-induced drift term 2D mW has been introduced in
order to have a properly defined first-order Euler schem
the context of Stratonovich calculus.18

As we mentioned in Introduction, using the microma
netic formalism we allow for the possibility of nonuniform
magnetization inside the particle. In this context, Eqs.~3!–
~5! are still valid if we keep in mind thatMW (rW) andHW (rW) are
no longer single variables but continuous functions of
position and that ordinary derivatives with respect to
magnetization become functional derivatives. Besides, a
term needs to be added to the energy functionalE(MW ) in
22440
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order to take into account for the exchange interaction
tween the spins. On a continuous approximation, this te
takes the form2

Eexch5E
v
A~ u¹mxu21u¹myu21u¹mzu2!dv, ~12!

whereA is the exchange constant. The analytical express
for the other interaction terms~magnetocrystalline anisot
ropy Eanis , magnetostaticEdemagand external fieldEzeeman)
are trivially obtained from the ones of the uniform
magnetization model.

Eanis5E
v
v~mW !dv, ~13!

Edemag52
1

2
MsE

v
mW ~rW !•HW d~rW !dv, ~14!

Ezeeman52MsE
v
mW ~rW !•HW extdv. ~15!

In the uniform-magnetization model, the demagnetizi
field is given byHd,i5( jNi j M j , whereNi j are the coeffi-
cients of the self-demagnetizing tensor.19 This leads to a qua-
dratic shape-anisotropy term that can be absorbed into
anisotropy termv(MW ).2 In the micromagnetic model the
situation is more complicated becauseHW d(rW) is nonlocal and
needs to be evaluated by solving Maxwell’s equations¹

•HW d52¹•MW and¹3HW d50.
Although the micromagnetic continuous formalism is w

established forT50, to our knowledge a model for the sto
chastic Langevin dynamics in this context has not been
veloped yet. However, in order to solve micromagnetic pro
lems numerically the computational region is discretized a
consequently, the continuous problem is converted int
problem with a finite degrees of freedom. Thus, one need
solve a set ofN equations like Eq.~6! (N being the number
of mesh nodes!, one for each node in the mesh. The equ
tions are coupled between them via the effective field~the
exchange and magnetostatic terms are nonlocal!. Formally,
this problem is analogous to that of a set of interact
uniform-magnetization particles. Consequently, the stoch
tic formalism described above is applicable once the spa
discretization is done. A Langevin equation~6! needs to be
solved for each node in the mesh. The statistical propertie
the fluctuating terms on each nodehW f l ,a (a51,2, . . . ,N) are
given by Eqs.~7b! and~9!, where nowV is the volume of the
computational cell. These fluctuating fields are considere
be independent of each other. In order words, we are ass
ing that the space correlation of the thermal noise is m
smaller than the size of our computational cell. In this pa
the nanoparticle is discretized in a two-dimensional squ
lattice of 131 nm cells. Equation~10! is solved on each
node. The four-neighbor dot product representation is c
sidered when discretizing the exchange term20 whereas the
demagnetizing field is calculated assuming thatmW is constant
on each cell.
6-3
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III. RESULTS AND DISCUSSION

A. Effect of nonuniformities in M¢ „r¢…

We consider a thin rectangular ferromagnetic parti
of dimensions 83431 nm. The following intrinsic param-
eters have been used:A53.031026 erg/cm, Ms
51424 emu/cm3, K50, andl50.1. We note that, although
these are reasonable values for ordinary ferromagnetic m
rials, they do not correspond to a particular one. AtT
5300 K, without applying any external field and startin
with the magnetization along the positiveX direction, which
coincides with the easy axis, thermal relaxation is studied
monitoring the average component of the magnetiza
along the easy axismx over a large number of realizations.
fixed intervalDt55.031026 (Dt52.0310216 s) is used in
the numerical integration of the Langevin equation. Figur
shows the computed curves for the uniform-magnetiza
~solid line! and micromagnetic~dashed line! models. Both
curves present the same features. The particle, initially at
of the two energy minima (^mx&.1), evolves exponentially
towards statistical equilibrium. Since the two equilibriu
states correspond to opposite values ofmx and they both
have the same energy, in statistical equilibrium they will
equally populated and consequently,^mx&50 as t→`. By
comparing both curves we note that the relaxation is fa
in the micromagnetic model. This effect can only be due
nonuniformities in MW (rW) inside the particle since that i
the only difference between the two models. In order
make this result quantitative we consider a simple mode
which the particle can only be found in one of the two eq
librium states, labeled as (1) and (2), with probabilities
P1 andP2 , respectively (P2512P1). P1 obeys the mas-
ter equation

d P1

dt
5v2P22v1P1 , ~16!

FIG. 1. Thermal relaxation of a particle with dimensions 834
31 nm computed using the uniform-magnetization~solid line! and
micromagnetic~dashed line! models. The component of the norma
ized magnetization along the easy axis (mx), averaged over 7000
realizations, is plotted as a function of time~average trial invari-
ances 2.531924 and 2.831924 are obtained for the uniform
magnetization and micromagnetic models, respectively!. The dotted
lines correspond to the exponential fit of the computed curves.
22440
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wherev1 andv2 are the probabilities per unit time to jum
from ~1! to ~2! and from ~2! to ~1!, respectively. The
solution of Eq.~16! is

P1~ t !5P1,eq1@P1~0!2P1,eq#expS 2
t

t rel
D , ~17!

whereP1,eq andP1(0) are the probabilities per unit time o
state~1! in equilibrium and att50, respectively andt rel is
the relaxation time defined byt rel

215v11v2 . The statistical
average value ofmx will be given by

^mx~ t !&5mx
(1)P1~ t !1mx

(2)P2~ t !, ~18!

wheremx
(1) (mx

(2)) is the value ofmx in state~1! @~2!#. In
our case we havev15v25v5(2t rel)

21, P1(0)51,
P1,eq51/2, mx

(1)51, mx
(2)521. Substituting these value

in Eqs.~17! and ~18! we obtain

^mx~ t !&5e2t/trel, ~19!

which predicts an exponential decay towards statist
equilibrium. By fitting the computed curves in Fig. 1 we g
t rel51.87310210 s for the uniform-magnetization mode
and t rel51.50310210 s for the micromagnetic model. Th
exponential fits are also shown in Fig. 1~dotted lines!. The
discrepancies between the computed and fitted curves
attributed to two reasons. First, the two-level model we ha
just described is only valid in thehigh-barrier ~or low-T!
regime (EB /kBT@1), which is not true in our case
(EB /kBT.1.01). Second, this model does not take into a
count the dynamics given by the Landau-Lifshitz equatio

As mentioned in Introduction, we are interested in stud
ing the transition from ferromagnetic to superparamagn
behavior as the particle size decreases. Particles of dim
sions (Lx ,Ly ,Lz)5(2 d,d,h) and with the intrinsic param-
eters given in the first paragraph of the section are con
ered. We have studied the stochastic dynamics atT5300 K
during a time interval oftexp52 ns for different values ofd
keeping h51 nm fixed using the uniform-magnetizatio
model. Figure 2 shows typical individual trajectories for~a!
d518 nm, ~b! d59 nm, and~c! d54 nm. Thed518 nm
particle @Fig. 2~a!# remains in the proximity of the initial
state and, therefore, is ferromagnetic on this time scale.
the contrary, thed54 nm particle@Fig. 2~c!# is clearly su-
perparamagnetic because it is continuously switching
tween the two energy minima. In thed59 nm case@Fig.
2~b!# the characteristic switching time of the particle is of t
same order than the measure timetexp52 ns and just a few
transitions occur. In order to present statistically meaning
results we have computed 500 stochastic trajectories for e
particle size. Figure 3~a! shows the statistical distribution o
in-plane magnetization orientations~f is the azimuthal angle
in cylindrical coordinates! for d518, 9, and 4 nm. We note
that the distributions were obtained by frequency count
over the time intervaltexp and over the 500 realizations
What was observed in Fig. 2 is confirmed here. Thed
518 nm particle presents a sharp distribution centered
the initial state~f50°! indicating that it is able to retain its
magnetic state on this time scale~ferromagnetic behavior!.
6-4
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TRANSITION FROM FERROMAGNETISM TO . . . PHYSICAL REVIEW B65 224406
On the contrary, both equilibrium states are equally po
lated for the smallest particle, indicating that, on this tim
scale, the equilibrium Maxwell-Boltzman distribution
reached~superparamagnetic behavior!. For thed59 nm par-
ticle the magnetization has spent most of the time aro
f50°, but the other peak~f5180°! is significantly popu-
lated too. The energy barrier decreases with particle siz

FIG. 2. Typical individual trajectories for a particle of~a! d
518 nm, ~b! d59 nm, and ~c! d54 nm computed using the

uniform-magnetization model. The projection ofmW along the long
axis of the particle is plotted every 2310213 s.

FIG. 3. Statistical distribution~over 500 trials! of in-plane ori-
entations for three different particle sizes during a time inter
texp52 ns computed using the uniform magnetization model.
22440
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discussed in detail below. Consequently, the low-T condition
(EB /kBT@1) ceases to be fulfilled and the two-level d
scription of our system is no longer valid. This can be o
served by noting how the distribution around the maxim
widens up as the particle size decreases.

The results presented in Figs. 2 and 3 have been obta
using the uniform-magnetization model. When using the m
cromagnetic model very similar results are obtained. Ho
ever, quantitatively there is a small difference between
two models. In order to measure this difference, the aver
value of ^mx& over the time intervaltexp52 ns has been
computed. We represent this quantity by@^mx&# texp52 ns ,
where

@^mx&# texp
5

1

texp
E

0

texp

^mx~ t !&dt. ~20!

This variable would correspond to the measured value ofmx
over an ensemble of non-interacting identical particles in
experiment with characteristic observation timetexp. We
note that @•••# indicates average over a time interva
whereaŝ•••& indicates average over many individual Lang
vin realizations. In Fig. 4 we have plotted@^mx&# texp52 ns as
a function of particle size computed using the uniform
magnetization and micromagnetic models. The larger p
ticles (d>14 nm) are ferromagnetic because they ret
their magnetic state over the time interval of the measu
ment. On the contrary, for the smallest particles (d<6 nm)
the magnetic memory is lost. The transition between the
behaviors is gradual and takes place in a range of a
nanometers. Interestingly, this transition is slightly mov
towards largerd, roughly 1 nm, when the micromagnet
model is used. These results confirm what we anticipa
when discussing Fig. 1, that nonuniformities in the magn
zation assist thermal switching, and it provides an estim
of the error introduced when the uniform-magnetizati
model is used.
l

FIG. 4. Average value ofmx over the time intervaltexp52 ns
for different particle sizes computed using the uniform
magnetization and micromagnetic models.
6-5
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It is well known that small deviations from uniform mag
netization are responsible for what is called configuratio
anisotropy,21 which is well characterized for elements
regular shape and whose order and magntitude is clo
connected with the symmetry of the particle. We would li
to point out that the contribution analyzed here is not rela
to the configurational anisotropy since, as estimated in R
22, this contribution is negligible belowd540 nm. On the
other hand, it could be thought that the difference obser
when using the micromagnetic model is due to the occ
rence of reversal modes different from coherent rotation
cannot be accounted for in the uniform-magnetization mo
A good measure of the degree of nonuniformity in a giv
micromagnetic configuration is provided by what we call t
effective saturation magnetization, Ms,e f f , defined by

Ms,e f f5
1

V H (
i 5x,y,z

F E
V
Mi~rW !dVG2J 1/2

. ~21!

When the magnetization inside the particle is perfec
aligned we have*VMidV5MiV and Mx

21M y
21Mz

25Ms
2 ,

thereforeMs,e f f5Ms . In any other case we haveMs,e f f

FIG. 5. ~a! Statistical distribution ofme f f5Ms,e f f /Ms @see Eq.
~21!# for three different particle sizes.~b! Time (texp52 ns) and
statistical~500 realizations! average value ofme f f as a function of
particle size.
22440
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,Ms. Figure 5~a! shows the statistical distribution ofme f f
5Ms,ef f /Ms for three different particle sizes over a time p
riod texp52 ns and after 500 realizations, although this d
tribution is observed to be independent of the time scale
on the number or realizations, provided that this last one
large enrough. Figure 5~b! shows the averaged value ofme f f
of different particle sizes for the same time scale and num
of realizations of Fig. 5~a!. It is observed that the deviatio
from me f f51 increases withd as one would expect, since a
the particle size increases nonuniformities inMW become
more energetically favorable. In any case, the average v
is always very close tome f f51, indicating that there is al-
most complete alignment inside the particles. It is noticea
however, that in Fig. 5~a! there is a conspicuous asymmet
in the statistical distribution towards lower values ofme f f .
Although it has not been analyzed in detail, the points on
left tail of the distribution probably correspond to the situ
tions in which the particle is switching between the two e
ergy minima, since nonuniform configurations are mo
likely to occur when the particle is far from equilibrium
Nevertheless, no value belowme f f,0.9 has been found in
any case, even for the largest particles simulatedd
520 nm), which completely rules out switching modes oth
than quasicoherent rotation. This is an expected result
cause, for a given material, the distance over which the m
netization direction changes significantly is given by the e
change lengthl ex5@A/(2 p Ms

2)#1/2, which in our case has
the valuel ex54.85 nm. Since the particle sizes consider
here are of the same order of magnitude, highly non-unifo
states are very unfavorable energetically. On the other h
one might wonder whether the results for the micromagn
model would be altered in case of changing the cell size.
exhaustive study of the dependence on the cell size wo
require a lot of computation time and is beyond the scope
this paper. It can be anticipated, though, that a smaller
size would favor nonuniformities in the magnetization an
consequently, the effect analyzed in this section would
amplified. However, a few particle sizes have been simula
reducing the cell size to 0.5 nm and no significant differen
with respect to the results presented in Fig. 5 have b
found.

It has already been mentioned that the Arrhenius form
~1! and the two-level description of the system~16! are only
valid in the high-barrier regime (EB /KBT@1). As will be
shown below, this is not the case for the results that h
been presented in this section. However, it is interesting
estimate to what extent the behavior predicted from th
two approximations differ from the results based on Lan
vin dynamics we have just presented. According to the
ponential decay law predicted by the two-level approxim
tion, Eq. ~19!, we obtain the following expression fo
@^mx&#:

@^mx&# texp
5

1

texp
E

0

texp
e2t/treldt5

t rel

texp
~12e2texp /trel!,

~22!

where the relaxation timet rel is given by Eq.~1!. The shape-
anisotropy energy barrier is given by
6-6
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EB5
1

2
Ms

2~Dy2Dx!V, ~23!

whereDx andDy are the demagnetizing factors along theX
and Y directions, respectively.23 SinceV52 d2h, one could
think that EB is proportional tod2, but the dependence i
significantly weaker because the demagnetizing factorsDx
andDy ~and their difference! decrease with increasingd ~we
are keepingh constant!. Figure 6 is a plot of the energ
barrierEB /KBT as a function of particle size~solid line with
square symbols!, where the analytical expressions for th
demagnetizing factors of rectangular prisms obtained in R
23 have been used. The curve is compared with the quad
curve obtained when the dependence of the demagnet
factors ond is ignored. Once the energy barrier for a givend
is known, the theoretical curve given by Eqs.~22!, ~1!, and
~23! is fully determined except for the parametert0. In Fig.
7 we represent the fit of the computed curves in the unifo
magnetization and micromagnetic models to the theoret
law. The valuest056.24310211 s andt054.43310211 s
were obtained for the uniform-magnetization and microm
netic models, respectively. It can be observed that, in b
cases, the computed curves predict a faster transition tha
analytical approximation. The reasons for the discrepan
are attributed to the same two reasons that were outl
when discussing Fig. 1: we are not in the high-barrier regi
and the three-dimensional dynamics of the magnetizatio
not taken into account. The following section focuses on t
latter aspect.

B. Effect of particle thickness

As pointed out in Secs. I and III A, the precessional n
ture of magnetization dynamics in conjunction with the p
culiarities of the energy landscape can play an important
in the thermal properties of nanoparticles. It is only ve
recently that these effects have started to be studied. In
24, Garaninet al. found that the time-dependent saddle po
created by an oblique applied field in the anisotropy poten

FIG. 6. Dependence of the energy barrier on particle size~solid
line with square symbols!. The dotted line is obtained when th
dependence of the demagnetizing factors on the particle size i
nored.
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barrier favors interpotential jumps. Here we study simi
effects considering the influence of the particle thickness
the magnetization dynamics.

In this section we consider thin square nanoparticles
dimensions d3d3h and intrinsic parameters Ms
51424 emu/cm3, l50.1 andK553105 erg/cm3, with the
magnetocrystalline anisotropy axis (X direction! parallel to
two edges of the square. Although the physical origin of
anisotropy term is different than in the previous section,
also have two equilibrium states (mx561) separated by an
energy barrier. The reason for this change will become c
below. On the other hand, once the role of nonuniformities
MW has been studied in the previous section, it can be an
pated that their inclusion will not lead to significant chang
in the results that follow. Therefore, and in order to sa
computing resources, only the uniform-magnetization mo
has been used in this section.

As outlined before, our aim in this section is to study t
effect of the thickness-induced demagnetizing field on
Langevin dynamics of thin nanoparticles. In order to do th
we first isolate this contribution by comparing thermal rela
ation curves computed with and without including the d
magnetizing field. When ignoring this contribution we wa
to preserve the two energy minima and the height of
barrier between them. This is achieved by simply ‘‘switchi
off’’ magnetostatic interactions, but it would not be possib
in the case of having a shape anisotropy barrier, like in
previous section.

In Fig. 8, a three-dimensional plot of magnetization o
entations during a time intervaltexp54 ns is presented both
with @Fig. 8~a!# and without@Fig. 8~b!# including the demag-
netizing field. The magnetic states (mx ,my ,mz) are plotted
as points in the unit sphere (mx

21my
21mz

251) at a sampling

ig-

FIG. 7. Fit of the computed~a! uniform-magnetization and~b!
micromagnetic curves to the theoretical law given by the two-le
model @Eq. ~22!# and the Arrhenius law@Eq. ~1!#. The solid line
with the square symbols corresponds to the computed cu
whereas the dashed line corresponds to the fit. The only param
in the fit is t0.
6-7
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L. LOPEZ-DIAZ, L. TORRES, AND E. MORO PHYSICAL REVIEW B65 224406
rate of 10212 s. The particle considered has dimensions
31031 nm and a fixed intervalDt51.031024 (Dt54.0
310215 s) was used in the numeric integration of the Lang
vin equation. Due to the low thickness-to-length ra
(1:10), the magnetostatic term tends to constrain the mo
of the magnetization into theX-Y plane, as can be observe
by comparing Figs. 8~a! and 8~b!. In principle, it could be
thought that this contribution hinders thermal relaxatio
since potential barrier crossings with a strong perpendic
componentmz are energetically unfavorable; therefore, co
straining the possible ways of escape to those in whichMW is
mostly contained in the plane of the particle (X-Y). How-
ever, the effect is the opposite, as shown in Fig. 9, where
time evolution of̂ mx& at T5300 K is represented both wit
~solid line! and without~dashed line! the magnetostatic term
Thermal relaxation is found to be considerably faster wh
the demagnetizing field is taken into account. Quantitativ
by fitting the computed curves to the exponential law in E

FIG. 8. Three-dimensional plot of magnetization orientatio
during a time intervaltexp54 ns for a uniaxial particle of dimen
sions 1031031 nm ~a! with and ~b! without considering the de
magnetizing field. The magnetic states (mx ,my ,mz) are plotted as
points in the unit sphere (mx

21my
21mz

251) at a sampling rate o
10212 s.
22440
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~19!, we obtaint rel51.67310210 s when includingHW d and
t rel51.5731029 in the other case. The theoretical fits a
shown as thin dotted lines in the figure. The explanation
this effect is based on the precessional nature of magne
tion dynamics, as shown schematically in Fig. 10, where
projections on theX-Y andX-Z planes of the relevant vec
tors for magnetization dynamics are represented. At a gi
time instant, let us consider the magnetization vectorMW in
the proximity of one equilibrium state with a nonzero pe
pendicular component (mzÞ0), as shown in Fig. 10~for
simplicity, we have consideredmy50). Due to the thinnesss

FIG. 9. Thermal relaxation of a square nanoparticled
510 nm, h51 nm) with magnetocrystalline uniaxial anisotrop
computed with~solid line! and without~dashed line! considering
the demagnetizing field. The component of the normalized mag
tization along the easy axis (mx), averaged over 5000 realization
is plotted as a function of time. The dotted line corresponds to
exponential fit of the computed curves.

FIG. 10. Schematic representation of relevant vectors for un
standing thickness-induced switching in a thin square particle.
top figure represents a projection in theX-Y plane, whereas the
bottom one corresponds to the projection in theX-Z plane.
6-8
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TRANSITION FROM FERROMAGNETISM TO . . . PHYSICAL REVIEW B65 224406
of the particle, the perpendicular componentmz creates a
strong demagnetizing field in the opposite direction~see Fig.
10!. The gyromagnetic term in the Landau-Lifshitz equati
~4!, dominant in our case~l50.1!, forcesMW to move in the
direction of 2MW 3Hd

W , as indicated by the curved arrow i
Fig. 10, therefore favoring switching over the energy barr
That the precessional motion around the thickness-indu
demagnetizing field favors magnetization reversal has b
emphasized recently25,26 but, to our knowledge, its effect o
thermal relaxation has not been studied yet. We have c
puted@^mx&# for different particle sizes and thicknesses ov
a time intervaltexp58 ns and averaging over 200 realiz
tions. The results are shown in Fig. 11. As can be obser
the transition from ferromagnetism to superparamagnet
moves towards larger particle sizes as the thickness is
duced. However, this result cannot be attributed only to
effect described above, since the height of the energy bar
which is given by

EB5K V5K d2t, ~24!

is different for each thickness. However, it is possible
isolate the contribution under study by fitting each curve
Fig. 11 to the theoretical law given by Eqs.~22! and ~1!.
Figure 12~a! shows the fit corresponding to theh51 nm
curve. The agreement between the computed values an
theoretical curve is reasonable. A similar agreement is fo
in the other cases. The effect of the thickness-induced
magnetizing field is fully contained in the characteristic tim
t0, whereas the contribution due to the height of the ene
barrier, which is completely determined using Eq.~24!, is
contained in the exponential factor exp(EB /kBT). In Fig.
12~b! the values oft0 obtained in the fitting process ar
plotted as a function of particle thickness. It is confirmed t
a reduction in the thickness favors thermal activation due
precessional motion around the out-of-plane demagneti
field. A strong dependence is found in the range cove
~70% increase int0 over a thickness range of 2 nm!.

FIG. 11. Average value ofmx over the time intervaltexp

58 ns as a function of particle sized for different values of the
particle thicknessh.
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IV. CONCLUSIONS

In this work we have studied thermal relaxation in sing
domain particles with uniaxial anisotropy by using a Lang
vin approach. By monitoring the average value over a ti
interval texp of the magnetization component along the p
ticle easy axis, the transition from ferromagnetic to sup
paramagnetic behavior has been characterized. Although
as powerful as the techniques based directly on the Fok
Planck equation, the Langevin approach can handle p
lems that are intractable otherwise and also provides phys
insight into the problem under study because it yields in
vidual stochastic trajectories from which averaged quanti
can be computed.

The first aspect we have focused on is the contribut
due to nonuniformities in the magnetization. For particles
a few nanometers in size, the nonuniformities are usu
ignored and the uniform-magnetization model is used. T
error introduced when such an approximation is conside
has been estimated. This error might be negligible in prac
for the particle sizes considered here. Considering the
nificant increase in difficulties and computer power dema

FIG. 12. ~a! Fit of the computed curve for a particle withh
51 nm andd510 nm to the theoretical law given by of Eq.~22!,
wheret rel is given by Eq.~1!. ~b! Plot of the values oft0 obtained
by fitting the computed curves for different particle thicknesses
6-9
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L. LOPEZ-DIAZ, L. TORRES, AND E. MORO PHYSICAL REVIEW B65 224406
when using the micromagnetic model, we conclude that
uniform-magnetization model is a good approximation
the time scale and particle sizes considered. However,
slightly larger particles nonuniform reversal modes oc
and a micromagnetic approach becomes necessary.

Second, we have studied the effect of the thickne
induced demagnetizing field. The gradient of the energy
the plane perpendicular to the long axis of the particle pl
an important role in the precessional motion of the magn
zation, which significantly influences the thermal relaxat
properties. The results are fitted to an analytical formula
rived assuming that the relaxation time is given by
Arrhenius law and that the particle can only be in one of
ts

.

is

n.

n

g

.
n

n

22440
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two equilibrium states~two-level description!. Although
these assumptions are only valid in the high-barrier limit a
we are in theEB;kBT regime, a good agreement is foun
That allowed us to characterize the effect under study b
dependence of the parametert0 on the particle thickness.
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5D. Rodé, H.N. Bertram, and D.R. Fredkin, IEEE Trans. Mag
MAG-23, 2224~1987!.

6W.T. Coffey, D.S.F. Crothers, Y.P. Kalmykov, E.S. Massawe, a
J.T. Waldron, Phys. Rev. E49, 1869~1994!.

7J.L. Garcia-Palacios and F.J. Lazaro, Phys. Rev. B58, 14 937
~1998!.

8E.D. Boerner and H.N. Bertram, IEEE Trans. Magn.33, 3052
~1997!.

9K.Z. Zhang and D.R. Fredkin, J. Appl. Phys.85, 5208~1999!.
10G. Brown, M.A. Novotny, and P.A. Rikvold, J. Appl. Phys.89,

7588 ~2001!.
11L. Lopez-Diaz, E. Della Torre, and E. Moro, J. Appl. Phys.85,

4367 ~1999!.
12T. Schrefl, W. Scholz, D. Suess, and J. Fidler, IEEE Trans. Ma

36, 3189~2000!.
13W.T. Coffey, D.S.F. Crothers, J.L. Dormann, L.J. Geoghegan, Y

Kalmykov, J.T. Waldron, and A.W. Wickstead, J. Magn. Mag
Mater.145, L263 ~1995!.

14W.T. Coffey, D.S.F. Crothers, J.L. Dormann, L.J. Geoghegan, a
a

-

.

.

d

E.C. Kennedy, J. Magn. Magn. Mater.173, L219 ~1997!.
15W.T. Coffey, D.S.F. Crothers, J.L. Dormann, Y.P. Kalmykov, a

S.V. Titov, Phys. Rev. B64, 012411~2001!.
16J.L. Garcia-Palacios and P. Svedlindh, Phys. Rev. Lett.85, 3724

~2000!.
17H. Risken,The Fokker-Planck Equation, 2nd ed.~Springer, Ber-

lin, 1989!.
18J.L. Garcia-Palacios, Adv. Chem. Phys.112, 1 ~2000!.
19Strictly speaking,Hd,i52( jNi j M j is only valid for ellipsoidal

particles ~in which caseNi j is diagonal when referred to th
principal axes of the ellipsoid!, since in any other case the de
magnetizing field is not constant. However, the expression
be generalized to any uniformly magnetized body consider

that HW d is the average demagnetizing field inside the partic
A.J. Newell, W. Williams, and D.J. Dunlop, J. Geophys. Re
@Solid Earth# 98, 9551~1993!.

20M.J. Donahue and R.D. McMichael, Physica B233, 272 ~1997!.
21R.P. Cowburn, A.O. Adeyeye, and M.E. Welland, Phys. Rev. L

81, 5414~1998!.
22R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, and M.E. Wellan

Europhys. Lett.48, 221 ~1999!.
23The self-demagnetizing tensor is diagonal for rectangular pris

Ni j 52Did i j . A. Aharoni, J. Appl. Phys.83, 3432~1998!.
24D.A. Garanin, E.C. Kennedy, D.S.F. Crothers, and W.T. Coff

Phys. Rev. E60, 6499~2000!.
25J. Miltat and A. Thiaville, Science290, 466 ~2000!.
26C.H. Back, R. Allenspach, W. Weber, S.S.P. Parkin, D. Wel

E.L. Garwin, and H.C. Siegmann, Science285, 864 ~1999!.
6-10


