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Transition from ferromagnetism to superparamagnetism on the nanosecond time scale
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Langevin dynamics has been used to study different aspects of the transition from ferromagnetism to
superparamagnetism when reducing the size of thin magnetic single-domain nanoparticles with in-plane
uniaxial anisotropy for observation times in the order of a few nanoseconds. It is found that nonuniformities in
the magnetization, usually ignored for such small particles, favor thermal relaxation. Quantitatively, the size
range over which the transition occurs is found to move roughly 1 nm towards larger sizes due to this
contribution. On the other hand, we also find that the thickness-dependent perpendicular demagnetizing field
induces thermal switching between the two in-plane energy minima. The results are in good agreement with the
Arrhenius law, which is used to characterize this effect. A strong dependence of the preexponentiaj faictor
the particle thickness is found.
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[. INTRODUCTION However, the growing importance of high-speed magneto-
electronics makes it necessary to understand magnetization
Small ferromagnetic particles present, in general, severalynamics and thermal relaxation on much shorter time
magnetization equilibrium states separated by energy barrscales. As an example, thermally assisted magnetization re-
ers. Their hysteresis properties are the result of the evolutioversal in the nanosecond regime has been investigated ex-
of the magnetization in a multistable energy landscape as perimentally on submicron-sized magnetic thin filfri. this
response to a varying external field. In particular, magnetipaper we study thermal relaxation for observation times in
memory is based on the fact that the system remains trappétle order of a nanosecond{,~ 10 % s). In particular, we
at a given metastable state over a time period much longenvestigate the transition from superparamagnetism to ferro-
than the observation tintg,,. However, at a given tempera- magnetism as the particle size decreases. On this time scale
ture T#0 thermal activation over the energy barriers leadsthe transition will occur for a value d&g/kgT much smaller
the system towards thermodynamic equilibrium. This prothan 25 (for instance, tey;~t,e=107, gives Eg/kgT
cess is known as thermal relaxation and there is a characterIn 10=2.3). Consequently, the Arrhenius modgl, which
istic time for it called relaxation timé,,.* Thus, ferromag- is only valid in the high-energy barrier casBg/kgT>1)?
netic hysteretic behavior is found wheg <t , whereas is not applicable. Fortunately, there is a significant amount of
in the opposite situationt{,>t,.) the particle maintains research on thermal relaxation in single-domain particles that
the statistical equilibrium distribution of magnetization ori- is not restricted to the high-energy barrier case. In most
entations as in a classical paramagnetic material. This behagases, the starting point is the Fokker-Planck equation for the
ior is known as superparamagnetism because the total magystem, which is the equation for the dynamics of the prob-
netic moment of the particle is much larger than typicalability distribution of the magnetizatichSome techniques
individual magnetic moments at atomic level. In the interme-have been developed to solve this equation diréatlijereas
diate situation {exp~tre;) Nonequlibrium phenomena and others are based on the numerical evaluation of the eigenval-
magnetic relaxation occur. ues and amplitudes of the relevant dynamical m§d@eth
In most of the literature thermal relaxation of magneticapproaches give insightful information on the thermal relax-
nanoparticles is explained in terms of the Arrhenius formulaation of the particles but, due to the complexity of the
Fokker-Planck equation, they are limited to problems with
Eg very few degrees of freedom and a very simple Hamiltonian.
el = ToeXF< K) @ In particular, it is assumed that the magnetization of the par-
ticle is uniform and therefore, its magnetic state is specified
whereEg is the height of the energy barride is the Bolt- by a single vectoM and the energy of the system is given
zmann’s constanfT is the temperature, ang, is a charac- by
teristic time constant, which is known to be in the range
~10 1°-10"12 s for magnetic nanoparticles. It is often as- E=[w(M)+M-Hg,V, )
sumed that the transition from ferromagnetism to superpara- . .
magnetism occurs when the energy bariigy is around Where w(M) is the anisotropy energy densitile,; is the
25kg T,? since this value gives, according to E@) and for ~ external field, andv is the particle volume. However, ex-
typical values ofry, relaxation times of some seconds, which change forces between neighboring spins are finiteNarig
is in the order ofte,, for standard magnetic measurements.never completely uniform inside the particle. In this work we
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have investigated the effect of the small nonuniformities ofparts. The first onéSec. Ill A) deals with the effect of non-

M in the thermal relaxation properties of the particle. Theuniformities in M, whereas the second ori8ec. Il B) is
uniform magnetization approa¢from now on referred to as focused on the role of the particle thickness. The most rel-
the uniform-magnetization modeis assumed to be a good evant conclusions of this work are presented in Sec. IV.
approximation on the grounds that the deviations from uni-

form M are necessarily small in a particle of a few nm in

size. Our goal is to estimate to what extent the uniform- | the uniform-magnetization model, the nanoparticle is
magnetization model is a good approximation. In order toassumed to have uniform magnetization. Therefore, its mag-
carry out our task, we have used the micromagnetic formalnetic state is determined by the direction of the magnetiza-
ism, which considers the magnetization inside the particle 8§y, vector M and its total magnetic moment MV. The

a continuous function of the positioM(r) and, conse- gnergy of the particle in a given stateB¢M) and the effec-
quently, takes into account the nonuniformities in a naturahve field acting onM it is given by

way. Our approach is based on the Langevin equation, whic

is the Landau-Lifshitz dynamic equation for the magnetiza- R 1 JE(M)
tion augmented by a stochastic term that couples the system H=- v =
to a thermal batfl.This way we generate individual trajecto- M

ries by numerically solving the Langevin equation and calwhereV is the particle volume. AT=0, the dynamics of the
culate the thermal relaxation properties by computing some@article is given by the deterministic Landau-Lifshitz equa-
relevant averaged quantities. Garcia-Palacios and Lazargon

studied some aspects of the Langevin dynamics for non-

interacting magnetic nanoparticles in nonequilibrium re- dm L M ..
gime (texp~trel) USiNg the uniform-magnetization model. gr = YMXHF A X (MXH), (4)
Langevin dynamics in the context of the micromagnetic for- S

malism has received a lot of attention lat&ly?although the ~where y=—1.76x10" Oe ! s™! is the gyromagnetic ratio
focus has been on particles of significantly larger size tha@nd \ is the adimensional damping constant. Since the
the ones considered here, therefore presenting nonuniformodulus ofM is constanfits value is given by the magne-
switching mode¥™® and even multidomain magnetization tization saturatioM ) it is useful to describe the state of the

: ind1.12 ) : _ _ I
configurations. particle by the adimensional unitary vecton=M/Mjg.

According to the Arrhenius formulél), thermal relax- . . . . e
ation is governed by the height of the energy barrier in theS|m|IarIy, we define the %'Tiﬁf'@gliﬁ;‘?‘#w'\ﬂs' By
slY

exponential, whereas the other details of the energy |and"_nultiplying Eq.(4) by (M
scape are assumed to play a minor role and are grouped in

IIl. MODELS AND NUMERICAL TECHNIQUES

: ()

-

the preexponential factor,. However, these details can in- d_m: —mxh—xmx(mxh), (5)
fluence the relaxation time to a great extent, as has been dr

pointed out by Coffeyet al. by studying oblique applied \here 7= M |4t is a dimensionless time. In order to take

. . . . . 4
fields and nonaxially symmetric Hamiltoniafts.* On the i account thermal agitation dt+0, we introduce a ran-

other hand, the Arrhenius model also neglects the peculiarla fluctuating fieldd . wh iain i the int "
ties in the dynamics of the system under study. In particular om fluctuating fieidy Wnose ongin lies on the interaction

the precessional term in the Landau-Lifshitz equation giveé)f the magnetization with the surrounding medigphonons,

rise to interesting phenomena, such as multiple crossing o onduc_tmg elet<_:tr05ns! ntuhclear spmst,)gﬂ_ihte ?re]terT'tht'ct.
the potential barrier, which are not taken into account in Eq ynamic equatior(s) is then converted into the stochastic

(1).” Recent studies have shown how this term influences th]Eangevm equation

superparamagnetic relaxation tirtfeln particular, Palacios dm
and Sve.ndlindﬁ3 observed a field-induced interplay between ——=-—mx(h+hg)—Amx(mxh), (6)
precessional motion and thermoactivation that largely influ- dr

ences the nonlinear response of the particle. In this work we

S ; : . . Where hy;=H /Mg. It is assumed thah; is a Gaussian
insist on these ideas, but from a different point of view. We ; - . .

; . . . ., stochastic process whose statistical properties are given by
will study thermal relaxation of a thin nanosized particle

with in-plane uniaxial anisotropy and we will investigate the (e ((7))=0, (78
effect of the particle thickness on the relaxation time. We ’
will show how the thickness-dependent perpendicular de- (hi kl(Dhe (7))=2D 8 8(7— 1), (7b)

magnetizing fields influences thermal activation over the en-

ergy barrier between the two in-plane equilibrium states. Wherek,| represent the cartesian coordinaseg,z. There-
The rest of the paper is organized as follows. In Sec. Il wefore, the three components bf; are independent Gaussian-

discuss the main features of the uniform-magnetization andistributed zero-mean white-noise terms. The consfant

micromagnetic models, as well as some details in the numeasures the strength of the fluctuating term. In order to

merical integration of the equations. In Sec. Il we presentetermine this constant we need to construct the Fokker-

the results and discuss them. The section is divided into tw®lanck equation for the probability distribution of the mag-
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netizationP(t). Because the stochastic term in E6). enters  order to take into account for the exchange interaction be-
in a multiplicative way the equation must be supplementedween the spins. On a continuous approximation, this term
by an interpretation in order to properly definé' i this  takes the forrh

work we will follow the Stratonovich interpretatichWhen

interpreted in the Stratonovich sense, .yields the fol- _
:owir?g Fokkler-PIanck equa\lltlioﬁ*18 Y Eexcr™ J' AV >+ [Vmy |2+ |[Vm,*)do,  (12)

whereA is the exchange constant. The analytical expression
—mxh—Amx (mxh) for the other mteractlop terméﬂagnetocrystgllme anisot-
ropy Eanis, magnetostati€ jemagand external fieldE, ¢ema)
are trivially obtained from the ones of the uniform-
magnetization model.

P4

E_ Jm

P. (8
om

- . d
+Dmx(mx7

Eanis= f w(m)d, (13
In order to ensure that the stationary properties of the v
system, derived from the Langevin equati@) coincide 1
with the corre_ct thgrmal equilibrium properties, the Fo_kk_er- Egemad™ — _MSJ rﬁ(F) . I:|d(F)dv, (14)
Planck equation{8) is forced to have the Boltzmann distri- 2 v

bution Peq(ﬁ])ocexp[—E(n?)/kBT] as stationary solution. This

completely determines the strength of the fluctuating term E,eomar — Msf ﬁ](F)'ﬁextdv- (15)
kgT . o .
D=\— 9 In the uniform-magnetization model, the demagnetizing
MsV field is given byHg;==;N;; M;, whereN;; are the coeffi-

cients of the self-demagnetizing ten$dThis leads to a qua-

as can be easily checked using E8). It should be noted  y5iic shape-anisotropy term that can be absorbed into the
that in Eq.(6) we introduced the fluctuating term only in the anisotropy terme(M).2 In the micromagnetic model the
precessional term. Alternatively, we could have added in Py @ ' 9

the damping term too. It can be shotfhat, in that case, situation is more complicated bean?.@(F) is nonlocal gnd
the Fokker-Planck equatiof®) is still valid, whereas a dif- N€eds to be evaluated by solving Maxwell's equatiahs
ferent value for the amplitude of the noisB=(A/1 ‘Hy=—V-M andVXxXH4=0.
+2A?) kBT/Mgv must be considered. Although the individual ~ Although the micromagnetic continuous formalism is well
stochastic trajectories generated in both cases are differeftstablished foif =0, to our knowledge a model for the sto-
the average properties derived from them are the d8me. chastic Langevin dynamics in this context has not been de-
In this paper, the Langevin equatiéd) is solved numeri- veloped yet. However, in order to solve micromagnetic prob-
cally using a first-order Euler scheme, lems numerically the computational region is discretized and
consequently, the continuous problem is converted into a
problem with a finite degrees of freedom. Thus, one needs to
solve a set ol equations like Eq(6) (N being the number
—MXAW, (100  of mesh nodes one for each node in the mesh. The equa-
tions are coupled between them via the effective fighe

where the three independent components ANV exchange and_ magnetostatic terms are non)oEid_rmally, _
:fT+Afﬁ (7')dr’ are Gaussian random numbers whoseth'.s problem is an_alogous. to that of a set of interacting
T Iﬂ TUT . b uniform-magnetization particles. Consequently, the stochas-
statistical properties are given by tic formalism described above is applicable once the spatial
discretization is done. A Langevin equati®®) needs to be

solved for each node in the mesh. The statistical properties of

. the fluctuating terms on each noldg , (a=1,2, ... N) are

The noise-induced drift term2m has been introduced in given by Eqs(7b) and(9), where nowV is the volume of the
order to have a properly defined first-order Euler scheme idomputational cell. These fluctuating fields are considered to
the context of Stratonovich calculdf$. _ be independent of each other. In order words, we are assum-

As we mentioned in Introduction, using the micromag-ing that the space correlation of the thermal noise is much
netic formalism we allow for the possibility of nonuniform smajler than the size of our computational cell. In this paper
magnetization inside the particle. In this context, E@~  the nanoparticle is discretized in a two-dimensional square
(5) are still valid if we keep in mind thal(r) andH(r) are lattice of X1 nm cells. Equation10) is solved on each
no longer single variables but continuous functions of thenode. The four-neighbor dot product representation is con-
position and that ordinary derivatives with respect to thesidered when discretizing the exchange t€rmhereas the

magnetization become functional derivatives. Besiqes, a neWemagnetizing field is calculated assuming thds constant
term needs to be added to the energy functida@) in on each cell.

m(r+A7)=m(7)+[—mxh—Axmx(mxh)+2D m]A~+

<AWk>:O, <AWkAW|>: 2DAT 5k| . (11)
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1.0 wherew, andw_ are the probabilities per unit time to jump
from (+) to (=) and from(—) to (+), respectively. The
Macrospin Model soluti(()n )of Ec(4 (iG) is e P g
0.8+ 3 - - - Micromagnetic Model )
) t
Ax 0.6 P+(t):P+,eq+[P+(0)_P+,eq]eXF<_t_|>' 17)
re
E
v 04 whereP , .qandP, (0) are the probabilities per unit time of
state(+) in equilibrium and at=0, respectively and,, is
0.2 the relaxation time defined hy,| =, + w_ . The statistical
average value ofn, will be given by
> - : — (my()y=m{IP, (1) +m{ P _(1) (18)
0.0 02 04 06 0.8 1.0 x x T x A
t (ns) wherem{") (m{™)) is the value ofm, in statf(+) [(5)] In
. i . ) our case we havew,=w_=w=(2t,¢) -, P.(0)=1,
FIG. 1. Thermal relaxation of a particle with dimensions 8 Py e=12, m§(+): 1, mi”= — 1. Substituting these values

X1 nm computed using the uniform-magnetizatisolid line) and
micromagnetiddashed lingmodels. The component of the normal-
ized magnetization along the easy axig,], averaged over 7000 — ot
realizations, is plotted as a function of tinteverage trial invari- (my(t))=e"rel, (19)
ances 2.519°* and 2.8<19°* are obtained for the uniform- \yhich predicts an exponential decay towards statistical
magnetization and micromagnetic models, respectjvélye dotted equilibrium. By fitting the computed curves in Fig. 1 we get
lines correspond to the exponential fit of the computed curves. tyo=1.87X10" 10g for the uniform-magnetization model

in Egs.(17) and (18) we obtain

IIl. RESULTS AND DISCUSSION andt,,=1.50x 10 19 s for the micromagnetic model. The
L exponential fits are also shown in Fig.(dotted line$. The
A. Effect of nonuniformities in M(r) discrepancies between the computed and fitted curves are

We consider a thin rectangular ferromagnetic particleattributed to two reasons. First, the two-level model we have
of dimensions &4x1 nm. The following intrinsic param- just described is only valid in thaigh-barrier (or low-T)
eters have been used:A=3.0x10 ®erg/lcm, Mg regime Eg/kgT>1), which is not true in our case
=1424 emu/crh, K=0, and\=0.1. We note that, although (Eg/kgT=1.01). Second, this model does not take into ac-
these are reasonable values for ordinary ferromagnetic mateeunt the dynamics given by the Landau-Lifshitz equation.
rials, they do not correspond to a particular one. At As mentioned in Introduction, we are interested in study-
=300 K, without applying any external field and starting ing the transition from ferromagnetic to superparamagnetic
with the magnetization along the positiXedirection, which  behavior as the particle size decreases. Particles of dimen-
coincides with the easy axis, thermal relaxation is studied bgions (,L,,L,)=(2d,d,h) and with the intrinsic param-
monitoring the average component of the magnetizatioreters given in the first paragraph of the section are consid-
along the easy axis, over a large number of realizations. A ered. We have studied the stochastic dynamicE=aB800 K
fixed intervalA 7=5.0x 10 ® (At=2.0x 10 % s) is used in  during a time interval ofexp=2 ns for different values od
the numerical integration of the Langevin equation. Figure keeping h=1 nm fixed using the uniform-magnetization
shows the computed curves for the uniform-magnetizationmodel. Figure 2 shows typical individual trajectories fay
(solid line and micromagneti¢dashed ling models. Both  d=18 nm, (b) d=9 nm, and(c) d=4 nm. Thed=18 nm
curves present the same features. The particle, initially at ongarticle [Fig. 2(a)] remains in the proximity of the initial
of the two energy minima{fn,)=1), evolves exponentially state and, therefore, is ferromagnetic on this time scale. On
towards statistical equilibrium. Since the two equilibrium the contrary, thed=4 nm particle[Fig. 2(c)] is clearly su-
states correspond to opposite valuesngf and they both perparamagnetic because it is continuously switching be-
have the same energy, in statistical equilibrium they will between the two energy minima. In thg=9 nm case{Fig.
equally populated and consequently,)=0 ast—o. By  2(b)] the characteristic switching time of the particle is of the
comparing both curves we note that the relaxation is fastesame order than the measure titgg,=2 ns and just a few
in the micromagnetic model. This effect can only be due tatransitions occur. In order to present statistically meaningful
nonuniformities inh7I(F) inside the particle since that is results we have computed 500 stochastic trajectories for each

the 0n|y difference between the two models. In order topartide size. Figure (&) shows the statistical distribution of
make this result quantitative we consider a simple model in-plane magnetization orientatiof is the azimuthal angle
which the particle can only be found in one of the two equi-in cylindrical coordinatesfor d=18, 9, and 4 nm. We note

librium states, labeled asH) and (~), with probabilities that the distributions were obtained by frequency counting
P, andP_, respectively P_=1—P.). P, obeys the mas- Over the time intervale,, and over the 500 realizations.

ter equation What was observed in Fig. 2 is confirmed here. The
=18 nm particle presents a sharp distribution centered on
dP, —w P = 16 the initial state(¢p=0°) indicating that it is able to retain its
I T (16 hagnetic state on this time scalierromagnetic behavior
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M (t)

FIG. 2. Typical individual trajectories for a particle ¢&) d
=18 nm, (b) d=9 nm, and(c) d=4 nm computed using the
uniform-magnetization model. The projection rtfxfalong the long
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FIG. 4. Average value ofn, over the time intervat.,,=2 ns
for different particle sizes computed using the uniform-
magnetization and micromagnetic models.

discussed in detail below. Consequently, the wendition
(Eg/kgT>1) ceases to be fulfilled and the two-level de-
scription of our system is no longer valid. This can be ob-
served by noting how the distribution around the maxima
widens up as the particle size decreases.

The results presented in Figs. 2 and 3 have been obtained
using the uniform-magnetization model. When using the mi-
cromagnetic model very similar results are obtained. How-
ever, quantitatively there is a small difference between the
two models. In order to measure this difference, the average
value of (m,) over the time intervak.,,=2 ns has been
computed. We represent this quantity pym,)];

where

exp:2 ns:»

On the contrary, both equilibrium states are equally popu-

lated for the smallest particle, indicating that, on this time
scale, the equilibrium Maxwell-Boltzman distribution is
reachedsuperparamagnetic behavioFor thed=9 nm par-

1 te><p
(Mo e, .= tijo (my(t))dt. (20)
exp

ticle the magnetization has spent most of the time around

¢=0°, but the other peak¢=180° is significantly popu-

lated too. The energy barrier decreases with particle size akhis variable would correspond to the measured value,of

P (9)

FIG. 3. Statistical distributiorfover 500 trial$ of in-plane ori-

——d=4nm

-==d=9nm

------ d=18 nm
I ~

¢ (deg)

270

over an ensemble of non-interacting identical particles in an
experiment with characteristic observation tirg,. We
note that[---] indicates average over a time interval,
whereag- - -) indicates average over many individual Lange-
vin realizations. In Fig. 4 we have plotté(llmxﬂtexp:z ns @S

a function of particle size computed using the uniform-
magnetization and micromagnetic models. The larger par-
ticles (d=14 nm) are ferromagnetic because they retain
their magnetic state over the time interval of the measure-
ment. On the contrary, for the smallest particles<@ nm)

the magnetic memory is lost. The transition between the two
behaviors is gradual and takes place in a range of a few
nanometers. Interestingly, this transition is slightly moved
towards largerd, roughly 1 nm, when the micromagnetic
model is used. These results confirm what we anticipated
when discussing Fig. 1, that nonuniformities in the magneti-
zation assist thermal switching, and it provides an estimate

entations for three different particle sizes during a time intervalof the error introduced when the uniform-magnetization

texp=2 Ns computed using the uniform magnetization model.

model is used.
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T T T : T ! <M. Figure §a) shows the statistical distribution ofis

. =Mge1t/M for three different particle sizes over a time pe-
riod tex,=2 ns and after 500 realizations, although this dis-
tribution is observed to be independent of the time scale and
on the number or realizations, provided that this last one is
. large enrough. Figure(b) shows the averaged value 1o, ¢

of different particle sizes for the same time scale and number
of realizations of Fig. &). It is observed that the deviation
from mgss=1 increases witlll as one would expect, since as

] the particle size increases nonuniformities M become
i more energetically favorable. In any case, the average value
is always very close tongss=1, indicating that there is al-

y y T . — most complete alignment inside the particles. It is noticeable,
0.80 082 084 086 088 100 however, that in Fig. &) there is a conspicuous asymmetry
off in the statistical distribution towards lower valuesrfs;.

0.974 Although it has not been analyzed in detall, the points on the
- (b) left tail of the distribution probably correspond to the situa-
0.9724 \ tions in which the particle is switching between the two en-
ergy minima, since nonuniform configurations are more
likely to occur when the particle is far from equilibrium.
0.068 Nevertheless, no value belom;<<0.9 has been found in
any case, even for the largest particles simulated (
0.966+ =20 nm), which completely rules out switching modes other
than quasicoherent rotation. This is an expected result be-
cause, for a given material, the distance over which the mag-
0.962. \-\_ netization direction changes significantly is given by the ex-

e change lengthq,=[A/(2 = M2)]¥2, which in our case has
0.960 - the valuel.,=4.85 nm. Since the particle sizes considered
- y T T here are of the same order of magnitude, highly non-uniform
4 8 8 10 12 14 .

states are very unfavorable energetically. On the other hand,

d (nm) one might wonder whether the results for the micromagnetic

model would be altered in case of changing the cell size. An

exhaustive study of the dependence on the cell size would
require a lot of computation time and is beyond the scope of
this paper. It can be anticipated, though, that a smaller cell
size would favor nonuniformities in the magnetization and,
It is well known that small deviations from uniform mag- consequently, the effect analyzed in this section would be

netization are responsible for what is called configurationaPMPlified. However, a few particle sizes have been simulated
anisotropy?* which is well characterized for elements of reducing the cell size to 0.5 nm and no significant differences
regular shape and whose order and magntitude is close ith respect to the results presented in Fig. 5 have been

connected with the symmetry of the particle. We would like ©0Und- . .
to point out that the contribution analyzed here is not related 't Nas already been mentioned that the Arrhenius formula

to the configurational anisotropy since, as estimated in Refl) @nd the two-level description of the systeir) are only
22, this contribution is negligible below=40 nm. On the Valid in the high-barrier regimeHg/KgT>1). As will be
other hand, it could be thought that the difference observe§noWn below, this is not the case for the results that have
when using the micromagnetic model is due to the occurP€€N presented in this section. However, it is interesting to

rence of reversal modes different from coherent rotation thagStimate to what extent the behavior predicted from these
cannot be accounted for in the uniform-magnetization modelfVO @pproximations differ from the results based on Lange-

A good measure of the degree of nonuniformity in a given’!n dynamics we have just presented. According to the ex-

micromagnetic configuration is provided by what we call thePonential decay law predicted by the two-level approxima-
effective saturation magnetizatiohl g o, defined by tion, Eq. (19, we obtain the following expression for

[(m]:

2y 172
(r 1 [tex t
val(r)dV} ] . (0 (Mol = f e gt rm(l_ef{e”’/tre'),
exp texpJo t

exp

P (meff)

0.9704

[<Mes>]

0.964+

FIG. 5. (a) Statistical distribution ofmesi=Mg¢¢1/Ms [Se€E EQ.
(21)] for three different particle sizegb) Time (t..,=2 ns) and
statistical(500 realizationsaverage value ofn.¢; as a function of
particle size.

1
M s,eff:v { 2

i=x,y,z

When the magnetization inside the particle is perfectly (22)
aligned we have/yM;dV=M;V and MZ+M7+MZ=MZ,  where the relaxation timg,, is given by Eq(1). The shape-
thereforeMg .;;=M. In any other case we hawelg.¢;  anisotropy energy barrier is given by
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FIG. 6. Dependence of the energy barrier on particle @néd 0.0 ia-n-u
line with square symbo)s The dotted line is obtained when the o 1 2 3 4 5 & 7 8
dependence of the demagnetizing factors on the particle size is ig-
nored. EB / Iﬂa T
1 FIG. 7. Fit of the computeda) uniform-magnetization an¢b)
E :_MZ(D —DyV (23) micromagnetic curves to the theoretical law given by the two-level
BT sty X2 model [Eqg. (22)] and the Arrhenius laWEq. (1)]. The solid line

with the square symbols corresponds to the computed curve,

whereD, andD, are the demagnetizing factors along ke whereas the dashed line corresponds to the fit. The only parameter
and Y directions, respectivef? SinceV=2 d?h, one could in the fit is ,.
think that Eg is proportional tod?, but the dependence is ) . L -
significantly weaker because the demagnetizing faclys barrier favors mterpote_nﬂal jumps. Here we study similar
andD, (and their differencedecrease with increasirgy(we effects cons_lde.rmg the mf_luence of the particle thickness on
are keepingh constant Figure 6 is a plot of the energy tNe magnetization dynamics. ,
barrierEg /KgT as a function of particle sizesolid line with ) In th_'s section we conS|der_ th'_n square nanoparticles of
square symbo)s where the analytical expressions for the dimensions dxdxh and intrinsic = parameters M
demagnetizing factors of rectangular prisms obtained in Ref 1424 emu/cy, A=0.1 andK =5x 10" erg/cn?, with the
23 have been used. The curve is compared with the quadrafj@gnetocrystalline anisotropy axiX (direction parallel to
curve obtained when the dependence of the demagnetizify/© €dges of the square. Although the physical origin of the
factors ond is ignored. Once the energy barrier for a givén anisotropy term is 'd.|ff(.=;rent than in the previous section, we
is known, the theoretical curve given by Eqg2), (1), and @S0 have two equilibrium statesy(= = 1) separated by an
(23) is fully determined except for the parameteyr In Fig.  €N€rgy barrier. The reason for this change will bgcom_e_ cle_ar
7 we represent the fit of the computed curves in the uniform-b*elow- On the other hand, once the role of nonuniformities in
magnetization and micromagnetic models to the theoreticd/! has been studied in the previous section, it can be antici-
law. The valuesr,=6.24x10 1! s and7,=4.43x10 s  pated that their inclusion will not lead to significant changes
were obtained for the uniform-magnetization and micromag.in the results that follow. Therefore, and in order to save
netic models, respectively. It can be observed that, in bot§omputing resources, only the uniform-magnetization model
cases, the computed curves predict a faster transition than th@s been used in this section.
analytical approximation. The reasons for the discrepancies As outlined before, our aim in this section is to study the
are attributed to the same two reasons that were outlinegfffect of the thickness-induced demagnetizing field on the
when discussing Fig. 1: we are not in the high-barrier regimd-angevin dynamics of thin nanoparticles. In order to do that,
and the three-dimensional dynamics of the magnetization i#e first isolate this contribution by comparing thermal relax-
not taken into account. The following section focuses on thigtion curves computed with and without including the de-
latter aspect. magnetizing field. When ignoring this contribution we want
to preserve the two energy minima and the height of the
barrier between them. This is achieved by simply “switching
off” magnetostatic interactions, but it would not be possible

As pointed out in Secs. | and IIl A, the precessional na-in the case of having a shape anisotropy barrier, like in the
ture of magnetization dynamics in conjunction with the pe-previous section.
culiarities of the energy landscape can play an important role In Fig. 8, a three-dimensional plot of magnetization ori-
in the thermal properties of nanoparticles. It is only veryentations during a time interval,,=4 ns is presented both
recently that these effects have started to be studied. In Refith [Fig. 8@)] and without{Fig. 8b)] including the demag-
24, Garaniret al. found that the time-dependent saddle pointnetizing field. The magnetic states{,m,,m,) are plotted
created by an oblique applied field in the anisotropy potentiahs points in the unit spheren +mZ+m>=1) at a sampling

B. Effect of particle thickness
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B — with H,
v - - - without H,

FIG. 9. Thermal relaxation of a square nanoparticlé (
=10 nm, h=1 nm) with magnetocrystalline uniaxial anisotropy
computed with(solid line) and without(dashed ling considering
the demagnetizing field. The component of the normalized magne-
tization along the easy axisr), averaged over 5000 realizations,
is plotted as a function of time. The dotted line corresponds to the
exponential fit of the computed curves.

(19), we obtaint,e=1.67x 10" s when includingH4 and
t,e;=1.57x10"° in the other case. The theoretical fits are
shown as thin dotted lines in the figure. The explanation of
this effect is based on the precessional nature of magnetiza-
tion dynamics, as shown schematically in Fig. 10, where the
projections on theX-Y and X-Z planes of the relevant vec-
tors for magnetization dynamics are represented. At a given

time instant, let us consider the magnetization vedioin
the proximity of one equilibrium state with a nonzero per-

pendicular componentng,#0), as shown in Fig. 1Qfor
FIG. 8. Three-dimensional plot of magnetization orientationssimplicity, we have considereat,=0). Due to the thinness

during a time intervat,,,=4 ns for a uniaxial particle of dimen-
sions 110X 1 nm (@) with and (b) without considering the de-
magnetizing field. The magnetic states,(m,,m,) are plotted as
points in the unit sphereng;+mJ+m?=1) at a sampling rate of
10722,

rate of 1012 s. The particle considered has dimensions 10
x10x1 nm and a fixed intervah r=1.0x10"* (At=4.0

% 10 1® s) was used in the numeric integration of the Lange-
vin equation. Due to the low thickness-to-length ratio
(1:10), the magnetostatic term tends to constrain the motion
of the magnetization into th¥-Y plane, as can be observed
by comparing Figs. &) and 8b). In principle, it could be
thought that this contribution hinders thermal relaxation,
since potential barrier crossings with a strong perpendicular
componenim, are energetically unfavorable; therefore, con-

straining the possible ways of escape to those in whcts
mostly contained in the plane of the particl¥-{). How-
ever, the effect is the opposite, as shown in Fig. 9, where the
time evolution of{m,) at T=300 K is represented both with
(solid line) and without(dashed lingthe magnetostatic term.

M
H,; >
x
—M xH,
d
M

FIG. 10. Schematic representation of relevant vectors for under-

Thermal relaxation is found to be considerably faster whenstanding thickness-induced switching in a thin square particle. The
the demagnetizing field is taken into account. Quantitativelytop figure represents a projection in teY plane, whereas the
by fitting the computed curves to the exponential law in Eqg.bottom one corresponds to the projection in ¥1& plane.
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FIG. 11. Average value ofn, over the time intervalt,, EB“%T
=8 ns as a function of particle sizfor different values of the 55
particle thickness. (b) .
. , 5.0
of the particle, the perpendicular component creates a
strong demagnetizing field in the opposite directisee Fig.
10). The gyromagnetic term in the Landau-Lifshitz equation = 4.54 g
(4), dominant in our casé\=0.1), forcesM to move in the e /
direction of —M X Hyg, as indicated by the curved arrow in S 4p-
Fig. 10, therefore favoring switching over the energy barrier. x /
That the precessional motion around the thickness-inducet o .
demagnetizing field favors magnetization reversal has beer = 37 /
emphasized recently?® but, to our knowledge, its effect on ] .
thermal relaxation has not been studied yet. We have com 4, . . . . .
puted[(m,)] for different particle sizes and thicknesses over 0.5 1.0 15 20 25 3.0 35
a time intervalt.,,=8 ns and averaging over 200 realiza- h (nm)

tions. The results are shown in Fig. 11. As can be observed,
the transition from ferromagnetism to superparamagnetism FIG. 12. (a) Fit of the computed curve for a particle with
moves towards larger particle sizes as the thickness is re=1 nm andd=10 nm to the theoretical law given by of E@2),
duced. However, this result cannot be attributed only to thevheret,e is given by Eq.(1). (b) Plot of the values ofr, obtained
effect described above, since the height of the energy barriepy fitting the computed curves for different particle thicknesses.
which is given by

IV. CONCLUSIONS

In this work we have studied thermal relaxation in single-
domain particles with uniaxial anisotropy by using a Lange-
vin approach. By monitoring the average value over a time
is different for each thickness. However, it is possible tointervalt.,, of the magnetization component along the par-
isolate the contribution under study by fitting each curve inticle easy axis, the transition from ferromagnetic to super-
Fig. 11 to the theoretical law given by Eq®2) and (1). paramagnetic behavior has been characterized. Although not
Figure 12a) shows the fit corresponding to the=1 nm  as powerful as the techniques based directly on the Fokker-
curve. The agreement between the computed values and tRéanck equation, the Langevin approach can handle prob-
theoretical curve is reasonable. A similar agreement is fountems that are intractable otherwise and also provides physical
in the other cases. The effect of the thickness-induced densight into the problem under study because it yields indi-
magnetizing field is fully contained in the characteristic timevidual stochastic trajectories from which averaged quantities
79, Whereas the contribution due to the height of the energgan be computed.
barrier, which is completely determined using E@4), is The first aspect we have focused on is the contribution
contained in the exponential factor ekg(kgT). In Fig.  due to nonuniformities in the magnetization. For particles of
12(b) the values ofr, obtained in the fitting process are a few nanometers in size, the nonuniformities are usually
plotted as a function of particle thickness. It is confirmed thatignored and the uniform-magnetization model is used. The
a reduction in the thickness favors thermal activation due t@rror introduced when such an approximation is considered
precessional motion around the out-of-plane demagnetizingas been estimated. This error might be negligible in practice
field. A strong dependence is found in the range coveredor the particle sizes considered here. Considering the sig-
(70% increase iny over a thickness range of 2 nm nificant increase in difficulties and computer power demands

Eg=K V=K d?t, (24)
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when using the micromagnetic model, we conclude that théwo equilibrium states(two-level description Although
uniform-magnetization model is a good approximation forthese assumptions are only valid in the high-barrier limit and
the time scale and particle sizes considered. However, fawe are in theEg~kgT regime, a good agreement is found.
slightly larger particles nonuniform reversal modes occurThat allowed us to characterize the effect under study by a
and a micromagnetic approach becomes necessary. dependence of the parametgron the particle thickness.

Second, we have studied the effect of the thickness-
induced demagnetizing field. The gradient of the energy in
the plane perpendicular to the long axis of the particle plays
an important role in the precessional motion of the magneti- The authors would like to thank J. Rothman for helpful
zation, which significantly influences the thermal relaxationdiscussions. This work was partially supported by the Span-
properties. The results are fitted to an analytical formula deish Department of Education and Culture under project
rived assuming that the relaxation time is given by thePB98-0264 and by the Government@éstilla y Leonunder
Arrhenius law and that the particle can only be in one of theproject SA 056/02.
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