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The spin-; Heisenberg antiferromagnet on a’-depleted triangular lattice: Ground-state properties
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A linear spin-wave approach, a variational method, and exact diagonalization are used to investigate the
magnetic long-range ordétRO) of the spin% Heisenberg antiferromagnet on a two—dimensio%mlepleted
triangular(maple leaf lattice consisting of triangles and hexagons only. This latticezkas nearest neighbors
and its coordination number is, therefore, between those of the triangula=6) and the kagomé¢z=4)
lattices. Calculating spin-spin correlations, sublattice magnetization, spin stiffness, spin-wave velocity and spin
gap we find that the classical six-sublattice LRO, strongly renormalized by quantum fluctuations, however, also
remains stable in the quantum model.

DOI: 10.1103/PhysRevB.65.224405 PACS nuni®er75.10.Jm, 75.50.Ee, 61.43.Hv

I. INTRODUCTION z, it is natural to ask whether the magnetic LRO, present for
the HAF on triangular lattice but absent for the HAF on
The properties of low-dimensional antiferromagnetic spinkagomelattice, will survive this: depletion of the triangular
systems have been the subject of many studies in recekattice or not. In this paper we will study this problem using
years. A lot of activity in this area was stimulated by the several analytical and numerical methods to calculate the
possible connection of such systems with the phenomenon gfround state of modeil).
high-temperature superconductivity. But, the rather unusual The paper is organized as follows: In Sec. Il we briefly
properties of quantum magnets deserve study on their own tilustrate the geometrical properties of the lattice and the
gain a deeper understanding of these quantum many-bodyassical magnetic ground state, in Sec. Ill exact diagonaliza-
systems, especially at low temperatures. One of the maition data for finite lattices oN=18 and 36 spins are pre-
issues studied is the presence of long-range ofideO) in  sented and compared with approximate dafzn-wave and
the ground state of two-dimensional sgirHeisenberg anti- variationa), in Sec. IV a linear spin-wave approach to this
ferromagnet$HAF), described by the Hamiltonian problem is presented, results of variational calculations are
described in Sec. V, and the summary is given in Sec. VI.

H=J 2> S-S (1)
<hl= Il. GEOMETRY OF THE LATTICE AND THE CLASSICAL
on different two-dimensional lattices. The sum runs over all GROUND STATE
pairs of nearest neighbors on the lattice under consideration o -
and the coupling) is positive. The maple leaf lattice is shown in Fig. 1. It belongs to the

It is rather well established that LRO is present in theclass of uniform tilings in two-dimensions built by a periodic
ground state of the spi-HAF on bipartite lattice¢square, ~ array of regular polygons. In each of the equivalent ;ites 4
honeycomid:® 1/5-depleted squaf®® square-hexagonal triangles gnd one hexagon meet. The maple leaf Iatt!ce has
-dodecagoné) and, contrary to some early work8also on N0 r_eflectlon symmetry. Its unit celinarked by dashed Ilne_s
triangular lattic€ " Those results were obtained and con-in Fig. 1) consists of 6 sites and 15 bonds. The underlying
firmed by different methods: exact diagonalization, Monte-Bravais lattice is a triangular one. The basis vectorsrare
Carlo simulations, spin-wave and variational approaches, se-
ries expansions, and others. It is also worth noticing that ’.D
recent experiments show that real systems can be modele

by spin4 Heisenberg antiferromagnets with different cou- x 0

plings on some uniford®*®and even depleted latticé$. v 213
A regular depletion of the triangular lattice by a factor of 4n/3

% yields the kagomdattice with coordination number=4.

Contrary to the triangular lattice the ground state of the spin-  5n/6

1 HAF on the kagoméattice is most likely a spin liquid®*® A 32

However, the kagoméattice is not the only regularly de- - T7/6

pleted triangular lattice. As recently has been pointed out by
Betts'” a regular depletion of the triangular lattice by a factor
of 3 yields another translationally invariant lattice. The co-
ordination number of this lattice isg=5 and lies between

those of the triangularz=6) and the kagom¢z=4) lat- FIG. 1. 3-depleted triangulafmaple leaf lattice. The geometri-

tices. According to Betts in what follows we will call this cal unit cell containing six spins is marked by the dashed lines. This
lattice the maple leaf lattice. Since, in general, magnetic ortattice may be split into six equivalent triangular sublattices
der is weakened by frustration and low coordination numbeR,B,C, . .. ,F. Theclassical ground state is represented by arrows.
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FIG. 2. Finite2-depleted trian-
gular (maple leaf lattices withN
=18 andN= 36 sites.

=b\/7[ V3/2,1/2 andr,=b\7[0,1], whereb is the distance of two spin vectors read§,- Sy;=s?cog ¢,— dn+Q- (R,
between neigboring sites. More information can be found in—R;)]. The classical ground state corresponds to two
Ref. 17. sets of “wave vector’Q and pitch anglea= ¢g— ¢pa,
The ground state of a classical spin system on such aamely, Q,=2m(1b\7)[1/1/3,1/3],a;=—2%7 and Q,
lattice forms the starting point for the calculation of the
ground state properties of the quantum HAF within the spin- TABLE I. The exact values of the spin-spin correlati¢®,S;)
wave methodSec. IV) and variational metho@Sec. \J. As  compared to their variational values for the latticeNof 18 sites
reported previously® this ground state is a noncollinear (see Fig. 2
(canted planar state with six sublattices. It can be character=
ized as follows: We denote the positionith hexagonunit
ceII) by lattice vectorRi and label the sites in the unit cell by 0 0.750 000 0.750 000 7 0.180 027 0.200775

the running indexn=1, . ..,6.Then we can write 1 —0.186299 —0.180068 8  0.140873 0.162 808
Sp=9[cog ¢,+Q-R)e;+sin(¢,+Q-R)e,], ) 2 —0.366673 —0.343444 9 -0.072868 —0.106613
4 0.039003 0.021877 11 0.010923  0.005425
wheree; ande, are arbitrary orthogonal unit vectors. Forthe 5 0.145 098 0.171218 17 -0.174804 —0.183760
angles¢, we have¢,— ¢,,= = « for nearest neighbors on g —(0.099672 —0.106 613
the hexagon within the unit cell. The corresponding product

Exact Variational Exact Variational
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TABLE II. The exact values of the spin-spin correlati¢®S;) compared to their spin-wave and varia-
tional values for the lattice dii= 36 sites(see Fig. 2. Statistical errors are given in parentheses.

j Exact Spin-wave Variational j Exact Spin-wave Variational
1 —0.1154 -0.16759 —0.1681(90) 19 0.0660 0.058 16 0.1%70
2 —0.3418 —0.31894  —0.3408(90) 20 0.1458 0.141 31 0.1660
3 —0.2008 —0.19143 —0.1703(90) 21 —-0.0111 -0.00801 —0.0784(90)
4 0.0618 0.031 35 0.02410) 22 —0.3929 —-0.31878 —0.3395(90)
5 0.1394 0.152 00 0.17080) 23 —0.0433 —0.06302 0.002(60)
6 —0.0155 —-0.00625 —0.0811(90) 24 0.0434 0.011 86 0.1%00
7 —0.0243 —0.01525 —0.0788(90) 25 —0.0491 -0.03622 —0.0845(90)
8 0.0089 —0.00304 0.019@®0) 26 —0.0448 —-0.02126 —0.1393(90)
10 0.1142 0.127 45 0.15480) 28 0.0034 —0.01380 0.008®0)
11 —0.0493 —0.04012 —0.1470(90) 29 0.0298 0.011 52 0.12729
12 —0.0155 —0.00625 —0.0832(70) 30 —0.1059 —0.09804 —0.0990(90)
13 0.1488 0.128 92 0.19680) 31 —0.0740 —0.06787 —0.0939(80)
14 0.0327 0.018 39 0.12630) 32 0.0387 0.020 60 0.01680)
15 —0.0797 —0.06993 —0.0946(80) 33 0.1785 0.152 90 0.1950)
16 —0.0500 —0.03038 —0.1407(90) 34 0.0501 0.041 21 0.13109
17 0.0390 0.027 91 0.01840) 35 —0.1561 —-0.11596 —0.1716(90)
18 —0.1059 —0.09804 —0.0992(90)
=2m1/b\7[0,2/3],a,= 2. This is a kind of trivial degen- 0.4 . . : . . . .
eracy which one can also encounter in the system of classice N @ maple leaf |
- L . . . 0.35 kagome —o—
spins residing on the triangular lattice. The classical ground triangular —&—
state energy is given by 03 1
3 A 025 1
E8'=—§N32(1+ J3), (3) é 02 b ]
¢ o015t ]
whereN is the number of sites. For spg¥ 3 andJ=1, we -
have the energy per bondE/bond=—(y3+1)/20 011 |
~—0.137. Notice that for the HAF on triangular and 0.05 ]
kagomelatticesE/bond= —0.125. 0 . . ; ) . .
The classical ground state f@=Q, is illustrated in Fig. 1 15 2 25 3 35 4 45 5
1. One has six triangular sublattices A,B,. ,F. Theclassi- "
cal spins attached to the sublattices are rotated from one un
cell to the next one by the angle $7 in the direction of 0.4 (b') ' "exact diagonalization —&—
basis vector,; and by the anglé = in the direction ofr,. 0.35 spin wave —o— -
The angle between the nearest spins on each hexagan is 03 & variational —&— |
or — 21 and three spins residing on each equilateral triangle _ ’
(marked by light and dark gray in Fig) toupled to three A 025 ¢ 1
nearest hexagons form a 120° structure. A o2k 1

Though the classical ground state of the maple leaf lattice S
is more complex than that of the triangular lattice, both are ¥ 015
Neel states, however, with more than two sublattices. At the 01+ i
same time the classical ground state properties of the kagom
lattice exhibiting a nontrivial ground state degeneracy are 00 |

completely different. 0 . . s . . . .
1 15 2 25 3 35 4 45 5

Ill. THE EXACT DIAGONALIZATION r
) FIG. 3. The dependence of the spin-spin correlation on the Eu-
~We used the Lanczos algorithm to calculate the lowestjigean distance for the HAF on the finite maple leaf lattice with
eigenvalue and the corresponding eigenstate of finite lattice§= 36 sites shown in Fig. 2a) comparison between exact diago-
of N=12,18,24,30, and 36 sites. This method has sucessfullyalization results for different lattices. Data for kagoare taken
applied to finite triangular and kagontatices. Unfortunatly, from Ref. 18.(b) Comparison between exact diagonalization, spin-
for the maple leaf lattice only the lattice witit=18 has the wave, and variational results. The lines are guide for the eyes.
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completep6 symmetry of the infinite lattice and only mul- Fig. 3@ the maximal absolute correlatioféS,S;)| versus
tiples of 18 fit to the symmetry of the classical ground state Euclidian distance. As expected we have very rapidly de-
Hence we focus on the lattices with= 18 andN =36 shown  caying correlations for the disordered kagooase, whereas

in Fig. 2. To reduce the Hilbert space of the Hamiltonian wethe correlations for the Mg ordered triangular lattice are
use all possible translational and point symmetries as well aguch stronger for larger distances. Though the correlations
spin reflection. The number of symmetries of te=36 lat-  for the maple leaf lattices are smaller than those of the trian-
tice is lower than that of correspondify=36 triangular and  gular lattice they are significantly stronger than those of the
kagomelattices and the number of symmetrized basis in thekagomelattice and a kind of saturation for larger distances is
Si,:=0 ground state sector is 378221 361. The ground statsuggested.

energy per bond foN=18 is Ey/bond=—-0.219004 2 The results for the spin-spin correlation are used to esti-
and forN=36 isEy/bond=—0.215589 0. The spin-spin mate the quality of the spin-wave and variational method
correlation functions foN=18 are collected in Table | and used below by comparing the exact and approximate corre-
for N=36 in Table Il where they are compared to thoselations|(S,S;)| for the finite lattice ofN=36 [Fig. 3(b)].
obtained within spin-wave and variational appro#ske be-

low). In the fully symmetricN=18 lattice we have three IV. THE LINEAR SPIN-WAVE APPROACH
different nearest-neighb@NN) correlations. The NN corre- o L .
lation (S,S;)=—0.186299 (solid lines in Fig. 2 corre- Taking into account that we have six sites in the geometri-

sponds to the classical 120° bofske Fig. 1; the respective cal u_nit pell the appropriate representation of the general
averaged value foN=236 is —0.177 732. Both values are Hamiltonian(1) reads

very close to the NN correlation for the triangular lattice.

The NN correlation along a hexagédashed lines in Fig.)2 H=J > Sin* Sjm» (5

is strong(S,S,) = —0.366673(the respective averaged value (i.j;n,m)

for N=36 is —0.365555) and is close to the NN correlation yherei,j label the unit cells and,m=1, . . . ,6 the diferent

of the honeycomb lattice. Finally, the NN correlation corre-sites in one unit cell. Of course, the sum runs over neighbor-
sponding to a classical 90° borfdotted lines in Fig. Ris  ing sites, only. The linear spin-wave thediySWT) is car-
very small( $S,;) = 0.010923the respective averaged value ried out as usual. However, we need at least six different
for N=36 is —0.037 491) Hence the NN correlations of the types of magnons, w hich makes the calculation more ambi-
quantum system reflect very well the classical ground statetious than for the triangular or the kagoragtice. We use as
The finite-system order parameter corresponding to the quantization axis the local orientation of the spins in the
classical ground state is the structure fadtmuare of sub- classical ground state. Performing the linear Holstein-

lattice magnetization Primakoff transformation the scalar produ&j- Sy in Eq.
5 N6 6 (5) is replaced by the bosonic quadratic form
2_ 2 iQ(R—Ri) : y .
M= 2 2 O SnS), @ SnSim— $70050 1y~ 5 COSO (@ i+ a1 8m)
The values foN=18 and 36 are listed in Table IV. A finite- +5(cosO 1)(ap@m;* aniamj)/2

size scaling of the order parameter with only two points i 4 N
seems to be not reasonable, however, doing so with +5(CosOnmt 1) (@niam;+ anidm))/2, ©®)
scaling we obtain a finite value of” for N—oe. ~ wheren,m=1,...,6label the different magnons in a unit

A better way is the direct comparison of the spin-spincelli. @] represents the angle between the respective clas-

correlations with those for the HAF on triangular and sica| spin vectors. After transforming the Hamiltoniéy
kagomelattices.™ For the presentation of the data we have tojnig thek space one obtains

take into account that in the classical six-sublatticeelNe

state, we have, for instance, spins with a relative angle of 90° J

leading to special correlations being zero for arbitrary dis- H=— ENSZ(l"' \/§)+35; Hy., )
tances. Therefore, we consider as a measure for magnetic

order the strongest correlations. Consequently we present inhere

(2++/3)

_ + + + + + + % ot ot + oo
Hy= (14 3)(afyar+azdo+ agdsc+ alaa+ g dsc+ agdsk) — 2 Yik(@kAz_k+ Agk@s k)

(2+4/3) (2—+3) (2—13)

T4 Yi(@zk@3 -kt Agkds—K) T —a Yi(ag@sk+ ageask) + 1 Y1k(@ak@zy + Agk@sy)
(2+3) (2+13) (2-\3)

T4 Va(@ds_ +aga; ) — 1 Yok(@ak@s -k + Ay ) + 1 Va(agask+azak)
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(2-13) (2+13) (2+43)

A — Yo(@ak@sy + apidy) — —7 Yic(Bg@1_k+agds_y) — —a Yak(QgkA1 -kt Aak@z k)
(2—13) (2—13) 3

e Va(@gkaukt 8acdai) + 1 Yak(Qek@1k+ Qakdsi) 1 Yik(ag@s+agar i)

1 + 1 + + 3 it + o+
7 Yik(@ak@e -k + Az )+ 2 Yik(Ask@6k + Agi1x) + 2 Y1k(Bak@gk t Azk@1k) — 2 Yok(@skdz—k+ sz k)
3 1 x o+ + 1 + +
2 Yor(@ek@z -kt As@z ) T 2 Yak(@gk@ok + Asiaszi) + 2 Y2k(@ekAok + Askdzk)
3 * (ot ot + o+ 3 1 * (ot + 1 + +
2 Yak(Agds— +ag@s k) — 2 Yak(@okaa -k +agas ) + 2 Yak(@gkaak+agasg) + ) Yak(QokAg + a1x@sy)

_l* ot ot _1 _ +_E* Yot ot
271k(a5kaz—k asyAzk) 5 Vik(@sk@2-k Askdgk) 272k(a1ka4—k ayy k)

+ 1 * (ot oot + 1 +
5 Yor(@1k@a—k— Ak@q) — 5 ¥ak(Qzk@6 -k — Agk@ek) — > Yak(@3k@s—k— AzkAgk) 8

with  yn=expika,), q;=b/\28(—=+3,5), q,=b/\28 ==2x/a[1/{/3,1/3]. The situation for the HAF on the
(—243,—4), g3=b/\28(3\/3,—1) and withb being the kagomelattice is completely different. Starting from the so-
distance between two neighboring spins. This Hamiltoniarcalled classicak=0 state one obtains three branches, one
can be diagonalized by the Bogoljubov transformation dispersionslessflat) mode =0 and two degenerated
acoustical brancheg.
. . In analogy to the triangular lattiéit can be shown that
""nk:mz:l Unmk@mk T U nm-—k%m-—k - ©)  the zero mode&=0,=Q of the maple leaf lattice describe
out-of-plane and in-plane oscillations, respectively. There-
The new bosonic operatorsy, describe the normal modes fore, we denote,_, asc| andcy- . asc, . Together with
ok - In order to determine them and the Bogoljubov coef-the spin-wave velocity the spin stiffness constitutes the fun-

6

ficients one has to solve the following equations: damental parameters which determine the low-energy dy-
N . namics of magnetic systeri$To calculate the spin stiffness
Lamk H]-=omam,  [ap o Hl-=—omag . p in the leading ordeis® one can use the hydrodynamic

(10 relation p= yc?. The magnetic susceptibilitieg = x,./V
The solution gives six different, nondegenerated spin-wavéout-of-plang and x, = xyx/V=xyy/V (in-plang can be de-
branches — five of them are optical whereas the remainin§ermined minimizing the classical energy in the limit of a
one is an acoustical branch. The acoustical branch becom#gnishing external field. We fingk,,=N/J(6+/3), xxx
zero in the centerK=0) and at the edges of the Brillouin = x,,=2N/3J(4+ V3), andvV=73Nb%12 as the volume
zone k= *Q with Q=2m(1b ﬁ)[l/\/§,1/3]). The expan- of the lattice and from the hydrodynamic relation one obtains
sion of the zero modes in the vicinity of those points gives

the spin-wave velocities p|=0.633979s", p,=02113285", pj/p,= 3-(12)

\/51\/3%L 23\/5 The comparison with the corresponding parameters calcu-

Ck=0=1JS , lated in the same order mfor the square and the triangular

4(2+13) lattice are given in Table Ill. We find that the spin stiffness
parameters for the maple leaf lattice are lower than the cor-

ﬁ\/407+ 235\/§ responding values of the triangular lattice indicating that the

Ck=+q=JsSb . (12) Neel is more strongly influenced by quantum fluctuations in

4(7+443) the maple leaf lattice than in the triangular one.

W
The acoustical branch of the maple leaf lattice is similar to The ground state energS%’N is given by

that of the HAF on the triangular lattic&?*where one has a

6
: : J
threefold degenerated acoustical branch being zerokfor sw_ _ ZNg(s+1)(1+3)+ /2. (13
=0 and at the edges of the Brilloiun zonk==*Q ON 2 a A \/—) ; mE:l oml2, (13
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TABLE Ill. Comparison of the LSWT results for the spin-wave in the systenii.e., the index corresponds to a paii () of

velocities, spin stiffness parameters, and sublattice magnetizatiomdices in Eqs(4) and(5)]. ¢; is the angle specified in Fig.
for the squargRefs. 24 and 2 the triangular(Refs. 20 and 21 1.

and the maple leaf lattice =1, b=1, ands=1/2). The second operator containing variational parameters
Kik:
Lattice C| c, P Pl (Se Ik
Square 14142135 1.4142135 0.25 0.25 0.304 Flauan= > K SIS (19)
],k

Triangular 1.299 0381 0.9185586 0.216506 3 0.108 2532 0.239

Maple leaf 1.1127356 0.677 4616 0.1584936 0.0528312 0.15frovides the amplitude for a given basis stats and intro-

duces the quantum corrections to the classical function by
taking into account spin-spin correlations. It means that in
this approach one starts from the state with a broken rota-

which leads in the thermodynamic limit to an energy per

bond tional symmetry and this is still present during the minimi-
esV=(—0.546 410 62— 0.136 520 65)J. (14) zation procggure producing the final symmetry-broken or-
dered staté:
The sublattice magnetization Finally, the third operator which contains the variational
parameterL;, and the corresponding sign factorgy
, , 6 N ==*1:
(SIN=(S)n=5s~ N ; (@pk@nk) (19
H —i . . QIZcz
calculated in the thermodynamic limit is Hf“’sr_'j% Vb S SS 20
(S9)..=s—0.346. (16)  describes an additional possible change of the classical phase

_ due to the quantum fluctuations. Following the ideas of Huse
A comparison between all those values for HAF on squareand Elsef’ we assume that the wave function of the quantum
triangular and maple leaf lattices is given in Table Ill. Obvi- ground state(i.e., |¥) from Eq. (17) with all three terms
ously, for all these parametecsp, and(S’).. the same ten- | ﬁquam andHy,) has the same symmetry properties

dency is found, namely to be largest for the unfrustratedas its classical paft.e.,|¥) from Eq.(17) with only A asd:
lattice and to be lowest for the frustrated maple leaf lattice,,, sign of the imagin’ary part of the wave functionc(?ﬁe{nges
with z=>5. Notice, that for the kagomiattice the LSWT e rthe rotatioR,(w/3) by the angler/3 whereas remains
yields d|ve+rgent contributions in the sum overin ((S\  ynchanged under the rotatid®,(27/3) by the angle /3
—s)*2{anay) indicating a  vanishing sublattice apout the center of a hexagon. This fransformation deter-
mag.netlzatlor’r. . ) ) mines the “shape” of three-spin ternisy, and the proper
Finally, we compare the spin-spin correlatiof&S;)  sign of y;,=+1 in Eq. (20). Similarly to the triangular
(wherej runs over all spins in the systgrobtained within  |attice?” the most simple three-spin terms are “dog legs”
the LSWT for the finite lattice witiN=36 shown in Fig. 2 ith j and| being nearest neighbors &f For example, for
with the exact numerical Lanczos ddtsee Fig. 8a) and spin number 5 of theN=18 lattice shown in Fig. Ztop)
Table I1]. One finds a surprisingly good agreement betweefnere exist four such “interactions”L 5 5 13,L 3.5 4:L 2,512

the approximative LSWT data and the exact Lanczos datayng, . . EachL; is connected with its corresponding
Hence the finding of finite sublattice magnetization obtaine¢gctor

ie., L = , Laes— = ,
within LSWT is supported by the Lanczos data. 35137 Y3513 YEFA 354 V3547 YEFD

Los12~ Y2512~ Yerc, and Lgs i3~ ¥Vas515 YoFAS W_here
the lettersA, B, C, D, E, andF correspond to the 6 equivalent
IV. THE VARIATIONAL APPROACH triangular sublattices illustrated in Fig. 1. Taking into ac-

The classical ground state, described in Sec. I, is thé:ount that R,(w/3)(ACE)=(BDF), Ry(w/3)(BDF)

: ! L =(CEA) and R,(27/3)(ACE)=(CEA), R,(27/3)(BDF)
basis for the construction of the variational Huse-EiSer _( : AN y z ; .
ground state which, expanded in the Ising basis statpef _.(DFB)’ Le., the .120 s}ruct‘ljreACE (dark triangles n
the total spin componeriZ= 0 28 reads Fig. 1) transforms into a “120° structureBDF (gray tri-

P P ' angles in Fig. 1 under R,(w/3) or into itself under
1. 1. 1. R,(27/3), one obtains a proper signs gffactors
|‘I’>:E €X EHcIass"' EHquant+ EHfrust |a> (17)
« Yaap™ ~ VBBa- (21)

The Operatoréq are diagona| in the baéeo The term The indEXaa,B means that tW(Qdiﬂ:erenl) SpinS in the three-
spin term belong to the same 120° structure, the remaining

one belongs to the other 120° structure. Thus, for example, if

Hlass= _i; ¢ij2 (18) one putsygrc=1 it follows that ycap=—1 (0or yp517~1
and vy 1316 — 1, see Fig. 2
produces a proper “classical” phase for a given statg in How does one choose the variational parameiggsand

the expansion given by E@¢L7). The sum runs over all spins Lj, in Eq. (17) for the HAF on the maple leaf lattice? We
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TABLE IV. The ground state energy per borit},/bond, the -0.198
square of sublattice magnetizatiorf, and the spin gap for the HAF
on finite %-depleted triangulafmaple leaf lattices J=1). For the -0.200
N=18 and theN = 36 lattice the results of exact diagonalization are -0.202
also included. In the case of tie= 18 lattice the variational values -
were obtained in the whole basis of Ising states, for larger systems 2 0.004
the Monte-Carlo method was applied. Statistical errors are given in &
parentheses. -0.206
N Eo/bond nt Gap -0.208
18 Exact —0.2190 0.2832 0.5452 -0.210 ' ' '
variational  —0.2083  0.2855 0.3353 0 0004 0008 9012 0016
36 Exact —0.2155 0.1534 N
variational  —0.2027(1)  0.174) 0.1465) FIG. 4. Variational energy per bond for the spin system on the
72 —-0.2001(1)  0.128) 0.0717) 1_depleted triangulafmaple leaf lattice as a function oN =32
162 —0.1991(1) 0.0941) 0.02G110)
288 —0.1988(1)  0.08a@)  0.00912 can be fitted to this dependendsee Fig. 4 and hence
% —0.1988(2)  0.07@) —0.019(25)  the energy per bonc, in the thermodynamic limit is

obtained:e(N) =e..+aN~%? with e,.= —0.1988(2) anda

o : ‘ on b
have applied two criteria: a better choice of parameter spac o \(/)él7ugezz)(bltgié::n)ég?rlg%/aslgient(jvrgi/éstﬁggig ég'(%z)e]r than
should givg a Iower.value of the ground state energy and, i.% In Fig. 5 the finite-size extrapolation of the sq.uare. of sub-
two energies for different parameter spaces are aPProXfe ice magnetization defined in E¢) is shown. We find
mately the same, one should choose the parameter spa '

—_m2 -1/2 -1 H 2 _
which leads to a lower value of the variande?)—(H)2. In =~ ™ (N)=m:, +cN _+dN with  m;.=0.0723(10), ¢
order to find an optimal choice of the wave function we have 0.0444(18) _anobl—3.650_(60)_ suggesting that the ang- .
nge magnetic order persists in the ground state of this spin

tested some possibilities for the parameter space for the full . o
ystem. Note, however, that the applied variational ansatz

symmetricalN= 18 lattice taking into account the who& d ) h . Ref. 27 and
=0 basis in the expansigi7). The best choice found is the tenads to overest|mat.e the magnetic orfisze Ref. an
Table Il as well as Fig. @&].

following five-parameter spadeesults for the correlation are L .
g P pad The variational approach enables us to calculate the spin

collected in Table)t (Kpey, Ky, KotherssL1,L2). Spins “inter- g X e
acting” via Ky are nearest neighbors lying on a hexagongap A=Eo—E,, whereE, (E,) is the variational energy

_ : — the subspace of toteb,=0 (S,=1). This new aspect
hex= AB, BC, CD, ..., FA, those interactingia K;, are In s
nearest neighbors belonging to the 120° structure: EC, of the Huse-Elser ansatz was used for the first time in Ref. 6

CA, andAE or BF, FD, andDB; and all remaining nearest LO calculalta ghe Spin IgIaE[)t' for l\;he H?\FLgno t.he squarte—d
neighbors are coupled ¢, thus others= BE, BC, and exagonal-docecagonal fatiice. Magnetic IS connecte

EF. Note that there is no long-range variational paramete\rN'th gapless Goldstone modes whereas quantum disorder

. . . . In the ground state is accompanied by a finite spin gap.
for pairs of spins not being the nearest neighbors. IVIOreovel:l'herefore the calculation &f yields an additional argument

one takes into account only three, from the four eXIStmgfor or against the existence of magnetic LRO order in the

a?a(;ger:?gF c;?tsizﬁlslgs’ir'{%égﬁ %Olég;snzrﬁgg_d EC exag(r)]rclj areground state. Figure 6 shows the finite-size extrapolation of
. ’ 1— =BFC

Lo=Lgrp=Larp andLgga is absenior correpondingly for
Sp|n number 5 in F|g 2|,_1= L2’5'12 and L2= L3,5,4= L1315y4 0.30
andL ;s 13is absent All the expectation values of operators

reported in the following are calculated for this choice of the 025
variational parameters. 0.20 |
Having obtained the ground state function one can calcu- o
late the expectation values of the operators which character- EO015
ize the ground state of a given, finite spin system. This can 040 -
be accomplished by a Monte-Carlo apprddand the finite- '
size scaling’ tells how to extrapolate those expectation val- 0.05 |
ues to the thermodynamic limit. We have investigated the
finite systems of 18, 72, 162, and 288 spins with periodic 0-0%'00 005 010 045 020 025 030
boundary conditions. Note that they have the full symmetry N2

of the maple leaf lattice. The relevant quantities are collected

in Table IV and the finite-size analysis is presented in Figs. 4 FIG. 5. Square of sublattice magnetizatioR as a function of

and 5. N~%2  Circles—values obtained by applying the variational
The leading term of the finite-size correction of the method. Solid line—fit to the circles. The sizes of circles are com-

ground state energy per boeds N~ %2 The data in Table IV  parable to the statistical error bars.
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FIG. 6. The spin-gaj\=E;—Ej vs 1N in units of J. E, and

E, denote variational energies of the ground state and a first excite,

state, respectively. Errors result from adding the errorsEpand
El.

the spin gap according to the relatigdh(N)=A.+dN"?!
with A= —0.0180(10y andd=6.3610(34). The negative
A, is a result of the limitted accuracy of the approximation

PHYSICAL REVIEW B5 224405

ticez=5 lies between those of the triangular and the kagome
lattices. Quantum fluctuations and frustration tend to destroy
classical magnetic ordering. Their influence becomes stron-
ger the smaller the coordination number. But contrary to the
kagomelattice with z=4, for the maple leaf lattice we find
strong arguments that the classical six-sublatticelNd&RO
survives the strong quantum fluctuations present in this frus-
trated quantum magnet. This conclusion is drawn from the
calculated values of the spin-spin correlation, sublattice mag-
netization, spin stiffness, spin-wave velocity as well as the
spin gap.

The comparison between exact data and approximate data
for the spin-spin correlation on finite lattices gives a surpris-
ingly good agreement between the linear spin-wave and the
Sxact-digonalization data, whereas the variational approach
tends to overestimate the strength of correlations.

Finally, we mention that on the passage from the triangu-
lar to the$ depleted(maple leaf lattice (i.e., some interac-
tions J in spin system on triangular lattice are varied from
J=1 to J=0), one would encounter a transition between
three-sublattice and six-sublattice’®leLRO, which may

but, nevertheless, suggests a zero spin gap. Hence we havave interesting features worth considering in the future.

an additional indication for the existence of LRO.

V. SUMMARY
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