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The spin-1
2 Heisenberg antiferromagnet on a1

7-depleted triangular lattice: Ground-state properties
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A linear spin-wave approach, a variational method, and exact diagonalization are used to investigate the
magnetic long-range order~LRO! of the spin-12 Heisenberg antiferromagnet on a two-dimensional1

7 -depleted
triangular~maple leaf! lattice consisting of triangles and hexagons only. This lattice hasz55 nearest neighbors
and its coordination numberz is, therefore, between those of the triangular (z56) and the kagome´ (z54)
lattices. Calculating spin-spin correlations, sublattice magnetization, spin stiffness, spin-wave velocity and spin
gap we find that the classical six-sublattice LRO, strongly renormalized by quantum fluctuations, however, also
remains stable in the quantum model.
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pin
ce
he
n
u
n
o
a

a
ti

he

l

n
te
, s
ha
e
u-

of

in

-
t b
to
o

s
o
be

for
n

g
the

fly
the
iza-
-

is
are
I.

he
ic
s 4
has

s
ing

his
es
ws.
I. INTRODUCTION

The properties of low-dimensional antiferromagnetic s
systems have been the subject of many studies in re
years. A lot of activity in this area was stimulated by t
possible connection of such systems with the phenomeno
high-temperature superconductivity. But, the rather unus
properties of quantum magnets deserve study on their ow
gain a deeper understanding of these quantum many-b
systems, especially at low temperatures. One of the m
issues studied is the presence of long-range order~LRO! in
the ground state of two-dimensional spin-1

2 Heisenberg anti-
ferromagnets~HAF!, described by the Hamiltonian

H5J (
, i , j .

Si•Sj ~1!

on different two-dimensional lattices. The sum runs over
pairs of nearest neighbors on the lattice under considera
and the couplingJ is positive.

It is rather well established that LRO is present in t
ground state of the spin-1

2 HAF on bipartite lattices~square,1

honeycomb,2,3 1/5-depleted square,4,5 square-hexagona
-dodecagonal6! and, contrary to some early works,7,8 also on
triangular lattice.9–11 Those results were obtained and co
firmed by different methods: exact diagonalization, Mon
Carlo simulations, spin-wave and variational approaches
ries expansions, and others. It is also worth noticing t
recent experiments show that real systems can be mod
by spin-12 Heisenberg antiferromagnets with different co
plings on some uniform12,13 and even depleted lattices.14

A regular depletion of the triangular lattice by a factor
1
4 yields the kagome´ lattice with coordination numberz54.
Contrary to the triangular lattice the ground state of the sp
1
2 HAF on the kagome´ lattice is most likely a spin liquid.15,16

However, the kagome´ lattice is not the only regularly de
pleted triangular lattice. As recently has been pointed ou
Betts17 a regular depletion of the triangular lattice by a fac
of 1

7 yields another translationally invariant lattice. The c
ordination number of this lattice isz55 and lies between
those of the triangular (z56) and the kagome´ (z54) lat-
tices. According to Betts in what follows we will call thi
lattice the maple leaf lattice. Since, in general, magnetic
der is weakened by frustration and low coordination num
0163-1829/2002/65~22!/224405~8!/$20.00 65 2244
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z, it is natural to ask whether the magnetic LRO, present
the HAF on triangular lattice but absent for the HAF o
kagomélattice, will survive this1

7 depletion of the triangular
lattice or not. In this paper we will study this problem usin
several analytical and numerical methods to calculate
ground state of model~1!.

The paper is organized as follows: In Sec. II we brie
illustrate the geometrical properties of the lattice and
classical magnetic ground state, in Sec. III exact diagonal
tion data for finite lattices ofN518 and 36 spins are pre
sented and compared with approximate data~spin-wave and
variational!, in Sec. IV a linear spin-wave approach to th
problem is presented, results of variational calculations
described in Sec. V, and the summary is given in Sec. V

II. GEOMETRY OF THE LATTICE AND THE CLASSICAL
GROUND STATE

The maple leaf lattice is shown in Fig. 1. It belongs to t
class of uniform tilings in two-dimensions built by a period
array of regular polygons. In each of the equivalent site
triangles and one hexagon meet. The maple leaf lattice
no reflection symmetry. Its unit cell~marked by dashed line
in Fig. 1! consists of 6 sites and 15 bonds. The underly
Bravais lattice is a triangular one. The basis vectors arer1

FIG. 1. 1
7 -depleted triangular~maple leaf! lattice. The geometri-

cal unit cell containing six spins is marked by the dashed lines. T
lattice may be split into six equivalent triangular sublattic
A,B,C, . . . ,F. Theclassical ground state is represented by arro
©2002 The American Physical Society05-1
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FIG. 2. Finite1
7 -depleted trian-

gular ~maple leaf! lattices withN
518 andN536 sites.
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5bA7@A3/2,1/2# andr25bA7@0,1#, whereb is the distance
between neigboring sites. More information can be found
Ref. 17.

The ground state of a classical spin system on suc
lattice forms the starting point for the calculation of th
ground state properties of the quantum HAF within the sp
wave method~Sec. IV! and variational method~Sec. V!. As
reported previously,19 this ground state is a noncollinea
~canted! planar state with six sublattices. It can be charac
ized as follows: We denote the position ofi th hexagon~unit
cell! by lattice vectorRi and label the sites in the unit cell b
the running indexn51, . . . ,6.Then we can write

Sin5s@cos~fn1Q•Ri !e11sin~fn1Q•Ri !e2#, ~2!

wheree1 ande2 are arbitrary orthogonal unit vectors. For th
anglesfn we havefn2fm56a for nearest neighbors o
the hexagon within the unit cell. The corresponding prod
22440
n

a

-

r-

t

of two spin vectors readsSin•Sm j5s2cos@fn2fm1Q•(Ri
2Rj )#. The classical ground state corresponds to t
sets of ‘‘wave vector’’ Q and pitch anglea5fB2fA ,
namely, Q152p(1/bA7)@1/A3,1/3#,a152 5

6 p and Q2

TABLE I. The exact values of the spin-spin correlation^S0Sj&
compared to their variational values for the lattice ofN518 sites
~see Fig. 2!.

j Exact Variational j Exact Variational

0 0.750 000 0.750 000 7 0.180 027 0.200 775
1 20.186 299 20.180 068 8 0.140 873 0.162 808
2 20.366 673 20.343 444 9 20.072 868 20.106 613
4 0.039 003 0.021 877 11 0.010 923 0.005 425
5 0.145 098 0.171 218 17 20.174 804 20.183 760
6 20.099 672 20.106 613
5-2
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TABLE II. The exact values of the spin-spin correlation^S0Sj& compared to their spin-wave and varia
tional values for the lattice ofN536 sites~see Fig. 2!. Statistical errors are given in parentheses.

j Exact Spin-wave Variational j Exact Spin-wave Variational

1 20.1154 20.167 59 20.1681(90) 19 0.0660 0.058 16 0.1574~70!

2 20.3418 20.318 94 20.3408(90) 20 0.1458 0.141 31 0.1603~60!

3 20.2008 20.191 43 20.1703(90) 21 20.0111 20.008 01 20.0784(90)
4 0.0618 0.031 35 0.0249~70! 22 20.3929 20.318 78 20.3395(90)
5 0.1394 0.152 00 0.1701~50! 23 20.0433 20.063 02 0.0027~60!

6 20.0155 20.006 25 20.0811(90) 24 0.0434 0.011 86 0.1503~70!

7 20.0243 20.015 25 20.0788(90) 25 20.0491 20.036 22 20.0845(90)
8 0.0089 20.003 04 0.0190~60! 26 20.0448 20.021 26 20.1393(90)
10 0.1142 0.127 45 0.1546~60! 28 0.0034 20.013 80 0.0089~60!

11 20.0493 20.040 12 20.1470(90) 29 0.0298 0.011 52 0.1249~70!

12 20.0155 20.006 25 20.0832(70) 30 20.1059 20.098 04 20.0990(90)
13 0.1488 0.128 92 0.1960~50! 31 20.0740 20.067 87 20.0939(80)
14 0.0327 0.018 39 0.1261~80! 32 0.0387 0.020 60 0.0156~70!

15 20.0797 20.069 93 20.0946(80) 33 0.1785 0.152 90 0.1997~50!

16 20.0500 20.030 38 20.1407(90) 34 0.0501 0.041 21 0.1313~70!

17 0.0390 0.027 91 0.0151~60! 35 20.1561 20.115 96 20.1716(90)
18 20.1059 20.098 04 20.0992(90)
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52p1/bA7@0,2/3#,a25 5
6 p. This is a kind of trivial degen-

eracy which one can also encounter in the system of clas
spins residing on the triangular lattice. The classical grou
state energy is given by

E0
cl52

J

2
Ns2~11A3!, ~3!

whereN is the number of sites. For spins5 1
2 andJ51, we

have the energy per bondE/bond52(A311)/20
'20.137. Notice that for the HAF on triangular an
kagomélatticesE/bond520.125.

The classical ground state forQ5Q2 is illustrated in Fig.
1. One has six triangular sublattices A,B,. . . ,F. Theclassi-
cal spins attached to the sublattices are rotated from one
cell to the next one by the angle2 2

3 p in the direction of
basis vectorr1 and by the angle2

3 p in the direction ofr2.
The angle between the nearest spins on each hexagon i5

6 p
or 2 5

6 p and three spins residing on each equilateral trian
~marked by light and dark gray in Fig. 1! coupled to three
nearest hexagons form a 120° structure.

Though the classical ground state of the maple leaf lat
is more complex than that of the triangular lattice, both
Néel states, however, with more than two sublattices. At
same time the classical ground state properties of the kag´
lattice exhibiting a nontrivial ground state degeneracy
completely different.

III. THE EXACT DIAGONALIZATION

We used the Lanczos algorithm to calculate the low
eigenvalue and the corresponding eigenstate of finite latt
of N512,18,24,30, and 36 sites. This method has sucess
applied to finite triangular and kagome´ lattices. Unfortunatly,
for the maple leaf lattice only the lattice withN518 has the
22440
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FIG. 3. The dependence of the spin-spin correlation on the
clidean distance for the HAF on the finite maple leaf lattice w
N536 sites shown in Fig. 2.~a! comparison between exact diago
nalization results for different lattices. Data for kagome´ are taken
from Ref. 18.~b! Comparison between exact diagonalization, sp
wave, and variational results. The lines are guide for the eyes.
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completep6 symmetry of the infinite lattice and only mu
tiples of 18 fit to the symmetry of the classical ground sta
Hence we focus on the lattices withN518 andN536 shown
in Fig. 2. To reduce the Hilbert space of the Hamiltonian
use all possible translational and point symmetries as we
spin reflection. The number of symmetries of theN536 lat-
tice is lower than that of correspondingN536 triangular and
kagomélattices and the number of symmetrized basis in
Stot

z 50 ground state sector is 378 221 361. The ground s
energy per bond forN518 is E0 /bond520.219 004 2J
and for N536 is E0 /bond520.215 589 0J. The spin-spin
correlation functions forN518 are collected in Table I an
for N536 in Table II where they are compared to tho
obtained within spin-wave and variational approach~see be-
low!. In the fully symmetricN518 lattice we have three
different nearest-neighbor~NN! correlations. The NN corre
lation ^S0S1&520.186 299 ~solid lines in Fig. 2! corre-
sponds to the classical 120° bond~see Fig. 1!; the respective
averaged value forN536 is 20.177 732. Both values ar
very close to the NN correlation for the triangular lattic
The NN correlation along a hexagon~dashed lines in Fig. 2!
is strong^S0S2&520.366673~the respective averaged valu
for N536 is 20.365555) and is close to the NN correlatio
of the honeycomb lattice. Finally, the NN correlation corr
sponding to a classical 90° bond~dotted lines in Fig. 2! is
very small^S0S11&50.010923~the respective averaged valu
for N536 is20.037 491). Hence the NN correlations of th
quantum system reflect very well the classical ground st

The finite-system order parameter corresponding to
classical ground state is the structure factor~square of sub-
lattice magnetization!

m25
6

N2 (
i , j 51

N/6

(
n51

6

eiQ(Ri2Rj )^SinSjn&. ~4!

The values forN518 and 36 are listed in Table IV. A finite
size scaling of the order parameter with only two poin
seems to be not reasonable, however, doing so with aN21/2

scaling we obtain a finite value ofm2 for N→`.
A better way is the direct comparison of the spin-sp

correlations with those for the HAF on triangular an
kagomélattices.18 For the presentation of the data we have
take into account that in the classical six-sublattice N´el
state, we have, for instance, spins with a relative angle of
leading to special correlations being zero for arbitrary d
tances. Therefore, we consider as a measure for mag
order the strongest correlations. Consequently we prese
22440
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Fig. 3~a! the maximal absolute correlationsu^S0Sr&u versus
Euclidian distancer. As expected we have very rapidly de
caying correlations for the disordered kagome´ case, whereas
the correlations for the Ne´el ordered triangular lattice ar
much stronger for larger distances. Though the correlati
for the maple leaf lattices are smaller than those of the tri
gular lattice they are significantly stronger than those of
kagomélattice and a kind of saturation for larger distances
suggested.

The results for the spin-spin correlation are used to e
mate the quality of the spin-wave and variational meth
used below by comparing the exact and approximate co
lations u^S0Sr&u for the finite lattice ofN536 @Fig. 3~b!#.

IV. THE LINEAR SPIN-WAVE APPROACH

Taking into account that we have six sites in the geome
cal unit cell the appropriate representation of the gene
Hamiltonian~1! reads

H5J (
^ i , j ;n,m&

Sin•Sjm, ~5!

wherei , j label the unit cells andn,m51, . . . ,6 the different
sites in one unit cell. Of course, the sum runs over neighb
ing sites, only. The linear spin-wave theory~LSWT! is car-
ried out as usual. However, we need at least six differ
types of magnons, w hich makes the calculation more am
tious than for the triangular or the kagome´ lattice. We use as
a quantization axis the local orientation of the spins in
classical ground state. Performing the linear Holste
Primakoff transformation the scalar productSin•Sjm in Eq.
~5! is replaced by the bosonic quadratic form

SinSjm→s2cosQnm
i j 2s cosQnm

i j ~ani
1ani1am j

1 am j!

1s~cosQnm
i j 21!~ani

1am j
1 1aniam j!/2

1s~cosQnm
i j 11!~ani

1am j1aniam j
1 !/2, ~6!

wheren,m51, . . . ,6 label the different magnons in a un
cell i. Qnm

i j represents the angle between the respective c
sical spin vectors. After transforming the Hamiltonian~5!
into thek space one obtains

H52
J

2
Ns2~11A3!1Js(

k
Hk , ~7!

where
Hk5~11A3!~a1k
1 a1k1a2k

1 a2k1a3k
1 a3k1a4k

1 a4k1a5k
1 a5k1a6k

1 a6k!2
~21A3!

4
g1k* ~a2k

1 a32k
1 1a6k

1 a52k
1 !

2
~21A3!

4
g1k~a2ka32k1a6ka52k!1

~22A3!

4
g1k* ~a2k

1 a3k1a6k
1 a5k!1

~22A3!

4
g1k~a2ka3k

1 1a6ka5k
1 !

2
~21A3!

4
g2k* ~a4k

1 a52k
1 1a2k

1 a12k
1 !2

~21A3!

4
g2k~a4ka52k1a2ka12k!1

~22A3!

4
g2k* ~a4k

1 a5k1a2k
1 a1k!
5-4
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1
~22A3!

4
g2k~a4ka5k

1 1a2ka1k
1 !2

~21A3!

4
g3k* ~a6k

1 a12k
1 1a4k

1 a32k
1 !2

~21A3!

4
g3k~a6ka12k1a4ka32k!

1
~22A3!

4
g3k* ~a6k

1 a1k1a4k
1 a3k!1

~22A3!

4
g3k~a6ka1k

1 1a4ka3k
1 !2

3

4
g1k* ~a4k

1 a62k
1 1a3k

1 a12k
1 !

2
3

4
g1k~a4ka62k1a3ka12k!1

1

4
g1k* ~a4k

1 a6k1a3k
1 a1k!1

1

4
g1k~a4ka6k

1 1a3ka1k
1 !2

3

4
g2k* ~a6k

1 a22k
1 1a5k

1 a32k
1 !

2
3

4
g2k~a6ka22k1a5ka32k!1

1

4
g2k* ~a6k

1 a2k1a5k
1 a3k!1

1

4
g2k~a6ka2k

1 1a5ka3k
1 !

2
3

4
g3k* ~a2k

1 a42k
1 1a1k

1 a52k
1 !2

3

4
g3k~a2ka42k1a1ka52k!1

1

4
g3k* ~a2k

1 a4k1a1k
1 a5k!1

1

4
g3k~a2ka4k

1 1a1ka5k
1 !

2
1

2
g1k* ~a5k

1 a22k
1 2a5k

1 a2k!2
1

2
g1k~a5ka22k2a5ka2k

1 !2
1

2
g2k* ~a1k

1 a42k
1 2a1k

1 a4k!

2
1

2
g2k~a1ka42k2a1ka4k

1 !2
1

2
g3k* ~a3k

1 a62k
1 2a3k

1 a6k!2
1

2
g3k~a3ka62k2a3ka6k

1 ! ~8!
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with gkn5exp(ikqn), q15b/A28(2A3,5), q25b/A28
(22A3,24), q35b/A28(3A3,21) and with b being the
distance between two neighboring spins. This Hamilton
can be diagonalized by the Bogoljubov transformation

ank5 (
m51

6

unmkamk1vnm2k* am2k
1 . ~9!

The new bosonic operatorsamk describe the normal mode
vmk . In order to determine them and the Bogoljubov co
ficients one has to solve the following equations:

@amk ,H#25vmkamk , @am2k
1 ,H#252vmkam2k

1 .
~10!

The solution gives six different, nondegenerated spin-w
branches — five of them are optical whereas the remain
one is an acoustical branch. The acoustical branch beco
zero in the center (k50) and at the edges of the Brilloui
zone (k56Q with Q52p(1/bA7)@1/A3,1/3#). The expan-
sion of the zero modes in the vicinity of those points giv
the spin-wave velocities

ck505Jsb
A14A39123A3

4~21A3!
,

ck56Q5Jsb
A7A4071235A3

4~714A3!
. ~11!

The acoustical branch of the maple leaf lattice is similar
that of the HAF on the triangular lattice,20,21where one has a
threefold degenerated acoustical branch being zero fok
50 and at the edges of the Brilloiun zonek56Q
22440
n
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e
g
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o

562p/a@1/A3,1/3#. The situation for the HAF on the
kagomélattice is completely different. Starting from the so
called classicalk50 state one obtains three branches, o
dispersionsless~flat! mode vk50 and two degenerate
acoustical branches.22

In analogy to the triangular lattice20 it can be shown that
the zero modesk50,6Q of the maple leaf lattice describ
out-of-plane and in-plane oscillations, respectively. The
fore, we denoteck50 asci andck56Q asc' . Together with
the spin-wave velocity the spin stiffness constitutes the f
damental parameters which determine the low-energy
namics of magnetic systems.23 To calculate the spin stiffnes
r in the leading orders2 one can use the hydrodynam
relation r5xc2. The magnetic susceptibilitiesx i5xzz/V
~out-of-plane! andx'5xxx /V5xyy /V ~in-plane! can be de-
termined minimizing the classical energy in the limit of
vanishing external field. We findxzz5N/J(61A3), xxx

5xyy52N/3J(41A3), andV57A3Nb2/12 as the volume
of the lattice and from the hydrodynamic relation one obta

r i50.633 975Js2, r'50.211 325Js2, r i /r'53.
~12!

The comparison with the corresponding parameters ca
lated in the same order ins for the square and the triangula
lattice are given in Table III. We find that the spin stiffne
parameters for the maple leaf lattice are lower than the c
responding values of the triangular lattice indicating that
Néel is more strongly influenced by quantum fluctuations
the maple leaf lattice than in the triangular one.

The ground state energyE0,N
sw is given by

E0,N
sw 52

J

2
Ns~s11!~11A3!1(

k
(

m51

6

vmk/2, ~13!
5-5
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which leads in the thermodynamic limit to an energy p
bond

e0
sw5~20.546 410 6s220.136 520 65s!J. ~14!

The sublattice magnetization

^Sin
z &N5^Sz&N5s2

6

N (
k

^ank
1 ank& ~15!

calculated in the thermodynamic limit is

^Sz&`5s20.346. ~16!

A comparison between all those values for HAF on squa
triangular and maple leaf lattices is given in Table III. Obv
ously, for all these parametersc, r, and^Sz&` the same ten-
dency is found, namely to be largest for the unfrustra
lattice and to be lowest for the frustrated maple leaf latt
with z55. Notice, that for the kagome´ lattice the LSWT
yields divergent contributions in the sum overk in (^SN

z

2s)}(k^ank
1 ank& indicating a vanishing sublattic

magnetization.26

Finally, we compare the spin-spin correlations^S0Sj&
~where j runs over all spins in the system! obtained within
the LSWT for the finite lattice withN536 shown in Fig. 2
with the exact numerical Lanczos data@see Fig. 3~a! and
Table II#. One finds a surprisingly good agreement betwe
the approximative LSWT data and the exact Lanczos d
Hence the finding of finite sublattice magnetization obtain
within LSWT is supported by the Lanczos data.

IV. THE VARIATIONAL APPROACH

The classical ground state, described in Sec. II, is
basis for the construction of the variational Huse-Else27

ground state which, expanded in the Ising basis statesua& of
the total spin componentSz50,6,28 reads

uC&5(
a

expS 1

2
H̃class1

1

2
H̃quant1

1

2
H̃ frustD ua&. ~17!

The operatorsH̃ are diagonal in the baseua&. The term

H̃class52 i(
j

f jSj
z ~18!

produces a proper ‘‘classical’’ phase for a given stateua& in
the expansion given by Eq.~17!. The sum runs over all spin

TABLE III. Comparison of the LSWT results for the spin-wav
velocities, spin stiffness parameters, and sublattice magnetiza
for the square~Refs. 24 and 25!, the triangular~Refs. 20 and 21!
and the maple leaf lattice (J51, b51, ands51/2).

Lattice ci c' r i r' ^Sz&`

Square 1.414 213 5 1.414 213 5 0.25 0.25 0.3
Triangular 1.299 038 1 0.918 558 6 0.216 506 3 0.108 253 2 0
Maple leaf 1.112 735 6 0.677 461 6 0.158 493 6 0.052 831 2 0
22440
r

e,

d
e

n
a.
d

e

in the system@i.e., the indexj corresponds to a pair (i ,n) of
indices in Eqs.~4! and~5!#. f j is the angle specified in Fig
1.

The second operator containing variational parame
K jk:

H̃quant5(
j ,k

K jkSj
zSk

z ~19!

provides the amplitude for a given basis stateua& and intro-
duces the quantum corrections to the classical function
taking into account spin-spin correlations. It means that
this approach one starts from the state with a broken r
tional symmetry and this is still present during the minim
zation procedure producing the final symmetry-broken
dered state.6,27

Finally, the third operator which contains the variation
parameterL jkl and the corresponding sign factorsg jkl
561:

H̃ frust5 i (
j ,k,l

g jklL jklSj
zSk

zSl
z ~20!

describes an additional possible change of the classical p
due to the quantum fluctuations. Following the ideas of Hu
and Elser27 we assume that the wave function of the quant
ground state~i.e., uC& from Eq. ~17! with all three terms
H̃class, H̃quant, andH̃ frust) has the same symmetry properti
as its classical part@i.e., uC& from Eq.~17! with only H̃class#;
the sign of the imaginary part of the wave function chang
under the rotationRz(p/3) by the anglep/3 whereas remains
unchanged under the rotationRz(2p/3) by the angle 2p/3
about the center of a hexagon. This transformation de
mines the ‘‘shape’’ of three-spin termsL jkl and the proper
sign of g jkl561 in Eq. ~20!. Similarly to the triangular
lattice27 the most simple three-spin terms are ‘‘dog leg
with j and l being nearest neighbors ofk. For example, for
spin number 5 of theN518 lattice shown in Fig. 2~top!
there exist four such ‘‘interactions’’:L3,5,13,L3,5,4,L2,5,12,
andL4,5,13. EachLi jk is connected with its correspondingg
factor, i.e., L3,5,13→g3,5,135gEFA , L3,5,4→g3,5,45gEFD ,
L2,5,12→g2,5,125gBFC , and L4,5,13→g4,5,135gDFA , where
the lettersA, B, C, D, E, andF correspond to the 6 equivalen
triangular sublattices illustrated in Fig. 1. Taking into a
count that Rz(p/3)(ACE)5(BDF), Rz(p/3)(BDF)
5(CEA) and Rz(2p/3)(ACE)5(CEA), Rz(2p/3)(BDF)
5(DFB), i.e., the ‘‘120° structure’’ACE ~dark triangles in
Fig. 1! transforms into a ‘‘120° structure’’BDF ~gray tri-
angles in Fig. 1! under Rz(p/3) or into itself under
Rz(2p/3), one obtains a proper signs ofg factors

gaab52gbba . ~21!

The indexaab means that two~different! spins in the three-
spin term belong to the same 120° structure, the remain
one belongs to the other 120° structure. Thus, for exampl
one putsgBFC51 it follows that gCAD521 ~or g2,5,1251
andg12,13,10521, see Fig. 2!.

How does one choose the variational parametersK jk and
L jkl in Eq. ~17! for the HAF on the maple leaf lattice? We
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have applied two criteria: a better choice of parameter sp
should give a lower value of the ground state energy and
two energies for different parameter spaces are appr
mately the same, one should choose the parameter s
which leads to a lower value of the variance^H2&2^H&2. In
order to find an optimal choice of the wave function we ha
tested some possibilities for the parameter space for the
symmetricalN518 lattice taking into account the wholeSz

50 basis in the expansion~17!. The best choice found is th
following five-parameter space~results for the correlation ar
collected in Table I!: (Khex,K tr ,Kothers,L1 ,L2). Spins ‘‘inter-
acting’’ via Khex are nearest neighbors lying on a hexag
hex5 AB, BC, CD, . . . , FA, those interactingvia Ktr are
nearest neighbors belonging to the 120° structure: tr5 EC,
CA, andAE or BF, FD, andDB; and all remaining neares
neighbors are coupled byKothers, thus others5 BE, BC, and
EF. Note that there is no long-range variational parame
for pairs of spins not being the nearest neighbors. Moreo
one takes into account only three, from the four exist
‘‘dog leg’’ interactions, i.e., dog legs around a hexagon
absent. For example, in each pointF one hasL15LBFC and
L25LEFD5LAFD andLEFA is absent~or correpondingly for
spin number 5 in Fig. 2,L15L2,5,12 and L25L3,5,45L13,5,4
andL3,5,13 is absent!. All the expectation values of operato
reported in the following are calculated for this choice of t
variational parameters.

Having obtained the ground state function one can ca
late the expectation values of the operators which charac
ize the ground state of a given, finite spin system. This
be accomplished by a Monte-Carlo approach27 and the finite-
size scaling29 tells how to extrapolate those expectation v
ues to the thermodynamic limit. We have investigated
finite systems of 18, 72, 162, and 288 spins with perio
boundary conditions. Note that they have the full symme
of the maple leaf lattice. The relevant quantities are collec
in Table IV and the finite-size analysis is presented in Figs
and 5.

The leading term of the finite-size correction of th
ground state energy per bonde is N23/2. The data in Table IV

TABLE IV. The ground state energy per bondE0 /bond, the
square of sublattice magnetizationm2, and the spin gap for the HAF
on finite 1

7 -depleted triangular~maple leaf! lattices (J51). For the
N518 and theN536 lattice the results of exact diagonalization a
also included. In the case of theN518 lattice the variational value
were obtained in the whole basis of Ising states, for larger syst
the Monte-Carlo method was applied. Statistical errors are give
parentheses.

N E0 /bond m2 Gap

18 Exact 20.2190 0.2832 0.5452
variational 20.2083 0.2855 0.3353

36 Exact 20.2155 0.1534
variational 20.2027(1) 0.179~1! 0.146~5!

72 20.2001(1) 0.128~1! 0.071~7!

162 20.1991(1) 0.099~1! 0.020~10!

288 20.1988(1) 0.088~1! 0.005~12!

` 20.1988(2) 0.072~1! 20.019(25)
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can be fitted to this dependence~see Fig. 4! and hence
the energy per bonde` in the thermodynamic limit is
obtained:e(N)5e`1aN23/2 with e`520.1988(2)J anda
520.7327(164)J. This value fore` is about 3% higher than
the value obtained from spin-wave theory@see Eq.~14!#.

In Fig. 5 the finite-size extrapolation of the square of su
lattice magnetization defined in Eq.~4! is shown. We find
m2(N)5m`

2 1cN21/21dN21 with m`
2 50.0723(10), c

50.0444(18) andd53.650(60) suggesting that the long
range magnetic order persists in the ground state of this
system. Note, however, that the applied variational ans
tends to overestimate the magnetic order@see Ref. 27 and
Table II as well as Fig. 3~a!#.

The variational approach enables us to calculate the
gap D5E02E1, where E0 (E1) is the variational energy
in the subspace of totalSz50 (Sz51). This new aspect
of the Huse-Elser ansatz was used for the first time in Re
to calculate the spin gap for the HAF on the squa
hexagonal-dodecagonal lattice. Magnetic LRO is connec
with gapless Goldstone modes whereas quantum diso
in the ground state is accompanied by a finite spin g
Therefore the calculation ofD yields an additional argumen
for or against the existence of magnetic LRO order in
ground state. Figure 6 shows the finite-size extrapolation

FIG. 4. Variational energy per bond for the spin system on
1
7 -depleted triangular~maple leaf! lattice as a function ofN23/2.

FIG. 5. Square of sublattice magnetizationm2 as a function of
N21/2. Circles—values obtained by applying the variation
method. Solid line—fit to the circles. The sizes of circles are co
parable to the statistical error bars.
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the spin gap according to the relationD(N)5D`1dN21

with D`520.0180(10)J andd56.3610(34)J. The negative
D` is a result of the limitted accuracy of the approximati
but, nevertheless, suggests a zero spin gap. Hence we
an additional indication for the existence of LRO.

V. SUMMARY

In this paper the results of exact diagonalization, line
spin-wave theory and a Huse-Elser like variational investi
tion for the ground state of the spin-1

2 Heisenberg antiferro-
magnet on a new1

7 -depleted triangular~maple leaf! lattice
are presented. The coordination number of this frustrated

FIG. 6. The spin-gapD5E12E0 vs 1/N in units of J. E0 and
E1 denote variational energies of the ground state and a first exc
state, respectively. Errors result from adding the errors forE0 and
E1.
o,

ev

in

22440
ave

r
-

t-

tice z55 lies between those of the triangular and the kago´
lattices. Quantum fluctuations and frustration tend to dest
classical magnetic ordering. Their influence becomes str
ger the smaller the coordination number. But contrary to
kagomélattice with z54, for the maple leaf lattice we find
strong arguments that the classical six-sublattice Ne´el LRO
survives the strong quantum fluctuations present in this fr
trated quantum magnet. This conclusion is drawn from
calculated values of the spin-spin correlation, sublattice m
netization, spin stiffness, spin-wave velocity as well as
spin gap.

The comparison between exact data and approximate
for the spin-spin correlation on finite lattices gives a surpr
ingly good agreement between the linear spin-wave and
exact-digonalization data, whereas the variational appro
tends to overestimate the strength of correlations.

Finally, we mention that on the passage from the trian
lar to the 1

7 depleted~maple leaf! lattice ~i.e., some interac-
tions J in spin system on triangular lattice are varied fro
J51 to J50), one would encounter a transition betwe
three-sublattice and six-sublattice Ne´el LRO, which may
have interesting features worth considering in the future.
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