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Dynamical mean-field theory of electron-phonon interactions in correlated systems:
Application to isotope effects on electronic properties

Andreas Deppeler and A. J. Millis
Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
(Received 27 November 2001; revised manuscript received 11 February 2002; published 22 May 2002

We use a recently developed formalisitombining an adiabatic expansion and dynamical mean-field
theory) to obtain expressions for isotope effects on electronic properties in correlated systems. As an example
we calculate the isotope effect on electron effective mass for the Holstein model as a function of electron-
phonon interaction strength and doping. Our systematic expansion generates diagrams which turn out to give
the dominant contributions. The isotope effect is small unless the system is near a lattice instability. We
compare this to experiment.
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[. INTRODUCTION Very recently, we have introduced a different metfidd,
combining the dynamical mean-fie{l®MF) theory’® and an

In solid-state physics the term “isotope effect” has comeadiabatic(small-y) expansion, for studying electron-phonon
to mean a dependence of an electronic property on an ionigiteractions in systems with arbitrary electronic correlations.
mass. The isotope effect on the superconducting transitiohlere we use this method to calculate the electron effective
temperaturel, of conventional superconductors was impor- massm* due to interactions with phonons. Our analytic re-
tant evidence for the role played by phonons in the pairingUlt includes ordery quantum lattice fluctuations that were
mechanisnt:2 In conventional metals the isotope effect on Neglected by ME. These fluctuations give rise to a nonzero
electronic properties other than the superconduclipgs  iSotope effect orm™, which is small unless the system is
negligible. The Migdal-Eliashber¢VE) theory of electron- sufflplently close toa polaro_nlc instability. W]th|n our mocjgl,
phonon coupling in metalsexplains this as follows: most the isotope effect is negative near half filling and positive

electronic properties are determined by processes occurrir@’vay from half filling, which is due to the competition of

on the scale of the electron kinetic enetgynteraction with ttice and density fluctuations.

honons affects electronic properties only on the scale of The paper is organized as follows. In Sec. Il we introduce
bho propertie y the electron-phonon lattice Hamiltonian and its associated
typical phonon frequency»g, which is much less tham

. . effective phonon action within the local DMF formalism and
Thus isotope effects are generically expected to be small, Qb5 the main ideas underlying the adiabatic expansion. In

the order of the adiabatic parameter wo /t<1. ME theory  gec 1| we calculate physical quantities “beyond ME”: the
essentially retains terms only of ordef; therefore most | yttinger-ward functional, electron self-energy, and isotope
isotope effects are beyond the scope of this theory. The onlgffect on electron effective mass. In Sec. IV we compare our
exception is the superconducting transition temperalire results to recent experimental findings and draw some gen-
=woexp{—1[N—u*(wg)]} where the phonon frequency eral conclusions.
enters as the upper cutoff of the logarithmic divergence in
the pairing interaction and the lower cutoff of the logarithmic Il. MODEL AND METHOD
divergence in the Coulomb pseudopotenjil.

Recent observations in several classes of “strongly corre- We study a general tight-binding based Hamiltontdn
lated” materials(high-temperature superconductors, “colos- =He+Hpnt He—pn, Where
sal magnetoresistance” manganites, and alkali-metal doped
Cgo) Of large isotope effects on electronic properties, includ-
ing electron effective ma$s® and superconductirtty,’
magnetict®*3 and charge orderif§’ transition tempera-
tures pose a fundamental challenge to this understanding and 1 .
call for a theory that goes beyond ME. Some auth6812 Hpn=> > (MX2+Kx?), 2)
have attempted to relate their experimental data to formulas '
derived for the case of a “polaron”: a single electron inter-
acting with lattice deformation. All experimentally relevant _ _
systems, however, have a metallic density of electrons, of He'_ph_gz Xi(i=n). @
order one per unit cell, so the applicability of polaron formu-
las is not clear. Othet&have considered the first corrections The operatorc], creates an electron with spin on lattice
to ME theory for the electron mass using standard diagramsitei. The mean densitp=(1/N);,c/ c;, (whereN is the
matic methods but have not considered the feedback effectsumber of lattice sitgsis fixed by adjusting the chemical
of electrons on phonons and have presented results that cgpetentialw. Electron-electron interactiornts$.. are not explic-
not easily be extended to correlated systems. itly written. The operatok; measures the ionic displacement

Helz_; ti—j(CiTUCJ'O'—’—CJ'TUCia)_Nlu'n+Hee' @
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at sitei. From spring constanK and ion masdM we can
define the characteristic oscillator frequenay=(K/M)2,
which we take to be dispersionlegEinstein model The

electron-phonon interaction couples the phonon displace-

ment x; to the electron densityliZE,,c?(,ci,, on the same

site. We defing(x;)=0 to be the equilibrium phonon dis-
placement for a uniform electron distribution.

In DMF theory the properties dfi may be obtained from
the solution of an impurity mod®! specified by the action

Sc,c,x,a]=Sy[x]+S.d c,c.,a]+S;[c,c,x,a], with

1
Solx]= o7 > Xe(K+Mod)x_y, (4)

Sl[C,C,X,a]I—nZ Cn(rcnaan"'g% CnoCn+k,oXk - 5
g ag
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FIG. 1. Luttinger-Ward functional t®(y?). A wavy line stands
for the phonon Green functioD. The shaded circles stand for the

phonon vertices',, T'5, andT,.

¢P" derived from it. In generap= ¢+ ¢""is defined as the
sum of all vacuum-to-vacuum skeleton diagrams. Within the
DMF approximation it is related to the local free enefdy,,

: 20
via

ﬁﬂms¢uﬂ+§wmem—zmem» ®)

The electron self-energy =3+ 3P" is a saddle point of

The impurity electron is represented by Grassmann fieldgimp_ This impliesS = 54/5G. Since the thermodynamic

Cno:Cno» Which depend on odd Matsubara frequenaigs
=(2n+1)#T and spinc=1,]. The impurity phonon is rep-
resented by a Bosonic fielq,, which depends on even Mat-
subara frequencias, = 2k#T. Electron-electron interactions
(arising fromH.9 are described by... The local electron
Green function is defined b,/ al,= dinZ[a] /da, where

Z[a]= f [dedadx]exp—Sc,c,x,a] (6)

is the partition function. The mean-field functi@n(which
contains information about the nonlocal physitsfixed by
the self-consistency condition

p(€)
+M_E[a]n_ €’

Godaly= [ deci- )

which equate$5,,J a] and the momentum integrated lattice

Green function. The momentum integral has been converte

to an energy integral using the lattice density of states).

We integrate out the electron fields and work with an,

effective phonon action§[x,a]=S[x]+ Sed a]+S;[x,a]
= —Inf[dcddexp(—9c,c,x,a]). In practiceS may depend on

additional auxiliary fieldgsuch as spin and charge fluctua-
tion fields, which have to be averaged over. We then use th

crucial fact that the scalesy=(K/M)? on which the pho-

non fieldsx vary is much smaller than the scaléandwidth
or interaction scaleon which electronic quantitiesuch as

G anda) vary so that an expansion is possible in the “adia-

batic parameter’y=wy/t<1. In a first step we formally

expandS; in powers ofx aboutx=0 (corresponding to a
conventional metallic state with no lattice distortipns
using’® x"~ y"2, In a second stefio be performed below, in
the analysis leading up to Eqa.0)—(14)] the phonon verti-
ces of the action may be evaluated via a low-frequency e
pansion.

Ill. PHYSICAL QUANTITIES

In the following we will not directly work with the effec-
tive phonon action but with the Luttinger-Ward functional

potential();,, [given by Eq.(8)] and the partition functiod
[given by Eq.(6)] are related via exp{BQin,) =Z we may
obtain ¢P" from an adiabatic expansion @f To ordery? we
find

1 ONT -
¢"Gl=5 > InD, - . > Tu[Glek —k - DiDic
K kk’
AT - )
- ? FS[G]k,k',kfk’Dka’Dkfk’ s (9)

kk'

where Dy ={1+ (0, /w)?—\T,[G], ! is the phonon
Green function antTTn[G]kl _____ Kk, are dimensionless phonon

vertices whose explicit form depends &.. The phonon
fields gx—x were rescaled to have units of energy. The pa-
rameter A=g%/(Kt) is the electron-phonon interaction
atrength. The Feynman diagrams corresponding to (8.
are shown in Fig. 1.

We use Eq(9) to formally calculate®, to O(y?). Follow-

ing the adiabatic expansion outlined above we may further

simplify the resulting expressions by evaluating the
(whose dominant contributions come from frequencies of or-

dert) via a low-frequency expansion. To the given ordeyin

we may approximate the cubic and quartic vertices by their
static value(which we writeT'; andT';) and the phonon
Green function by Dy=[1—N A+ (0 wo)?

+ N yap| ol wo|+ O(y?)]1 7L, whereh .=T',[ Gl is a criti-

cal interaction strength andl, is a damping parameter. The
staticT', vertex acts as a phonon self-energy and renormal-
izes the expansion parameters y& y(1—N/\)*2 and A

=N (1—=N/N\p). If \— N from below ther\ — . This “po-
laronic instability” was analyzed in great detail in Ref. 19. In

Xthe following we assum& <\.. The self-energy ta@(y?)

can be written a&P'=3 |+ 3 )+ 3.+ 3,.+ 35, (see Fig.
2), where

2la n:)\tTEk DGk (10
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TABLE I. Limiting values of\ and\ as a function ofy at half
Sy, = filling, using the first criterion(valid for | u|< ;) described in the
.=
text.

0.1 0.079 6.2804 0.9920
0.15 0.091 4.4458 0.9313
0.2 0.100 3.4168 0.8760
0.25 0.109 2.7456 0.8244

Y M1 fmax 40) N max 1(0)
0.05 0.062 10.8407 1.0626

Yigq = % Yoy =

FIG. 2. Self-energy diagrams t(y?). A straight line stands for ~ where the leading term comes from the derivative acting on
G, a wavy line stands fob. The phonon vertice'; andT, are ~ G°" producing a delta functiod(«w), and theO(y) term
represented by shaded circles. comes fromG™. The phonon damping-|w| in D does not
give rise to anyO(y) corrections to Eq(16). The two-loop
~ diagrams can be analyzed in a similar fashion. We just give
316 0=, T2 DD Gk, (1)  the results:
Kk’

1 -
- Np=5Nytp(w)T 4, (17)
S 16n=2NT3T22) DZDy Dy Gnik, (12) 2
kk’

I ~
2,212 )\1c:§)\47tP(M)F2, (18
20an=N1T E DDk GnskGnik' Gnsksk » (13
kk’

I
B N2a= = M Vtp(w)[37°p ()= 5(p/2)?],  (19)
S0 0= 225 T, DDy Do GG - (14)
kk’
—\3 T
The O(y) one-loop diagram®,, is at the basis of ME Aap=Ntp(p) (/20T 5. 20
theory. TheO(»?) two-loop diagramsS,p,, 241, 324, and  In principle our adiabatic expansion is based on the small-
>, represent lowest-order corrections to ME. Apart fromness of the parametey alone, with no assumption being
Y1 they all arise from vertex corrections of the electron-made aboui. However,O(y") terms in the expansion are
phonon coupling. The diagramS;,, 1., and %y, Were  of the formx™y"~(1—\/\o)"2" ™ with m=n and become
overlooked in Refs. 18 and 22. _arbitrarily large if\ — ). We therefore need to set the range

¢ Wetz how turr:hto thre] electron g’l&f\SS gnhincer?elnt from Nof parameters\ and y where the expansion is valid. We
eractions ~ wi phonons, eline ym*/m| py=1 propose two different criteria.

— 3P ) A v)|,mo=1+Ngat - +App, with ZP(i)
written atT=0. We will calculatem /mto O(y). Since the First we notice that at half fillingn* /m as a function oh

frequency derivative is 0D(y~ 1) we needS to O(y?) as  has a local maximum &t ; and then goes te- asx_
above. We first calculate the mass enhancemepfrom the ~ —o. This unphysical behavior comes from the fact that

basic  one-loop diagram 21a(iv) =NJdw/(2m)G(iv  vanishes ap=0 and that the dominant terky,~\3y1", to
+iw)/[1= NN+ (0l wg)?]. In general INE 1, g(v) isof or-  this order is negative. For|u|<u,<1, i.e., sufficiently
der Ny and is zero forl v|<wo. From this and Eq(7) it close to half filling, the local maximum almay 1 can still be
follows thatG(i») =G"(iv) + G**iv) where defined, but nown*/m— +% as\— because the domi-
1 nant term)\lc~f4;l':§ is positive. The upper bound; de-
G"(i v) = —(iv+p), GNiv)=—imsgnv)p(u) pends weakly ony, as shown in the first two columns of
Table 1. We thus suggest that for givenand |pe]<p1(y)

(15 our adiabatic expansion is valid )f<)\max1 In Table | we
at low frequencies, forS,=0, and neglecting terms of GiVe Amac1 and the corresponding unrenormalized quantity

O(y). Weak electron-electron interactions renormalize the\max1at half filling («=0), for a few representative values

scalet in Egs.(15), but their general form remains the same. of y.
We thus find Farther away from half filling, i.e., folu|> w4, the local

maximum inm*/m ceases to exist and we need a different
criterion A yax » Which we define as follows: for givefn we

1
Ma Mp(’u)_ )\7’ (16 need\ <A\, > Small enough so that the ratio of tii&(y)
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TABLE II. Limiting values of\ and\ as a function ofy at half 0
filling and at w/(2t) =0.4, using the second criterion described in ) N o(;; i
the text. -0.025 | . . 0.05 |
o 0.025 £
Y fmax A0) M max 40) Kimax 4£0.4) N max 40.4) ~0.05 | =.:_H \\\ 0 T ">I "{2'=°'I4
0.05 8.5620 1.0356 4.7589 1.1579 G D vl
0.1 5.2225 0.9613 3.7243 1.0846 -0.075 | o N =01
0.15 38793  0.9037 3.2578 1.0412 P (=02
0.2 3.1268 0.8557 2.9782 1.0109 01 [
0.25 2.6369 0.8143 2.7874 0.9879
-0.125 e
0 1 2 3 4 5 6 7 8 9 10
- . M1 —MA)
terms and the)(1) term inm*/m be less thap<<1. We fix e
the parametep by setting\ mayx 1=Amax 2 @t #=0: the result FIG. 4. Effectve mass isotope exponentax
is p~0.25, which is compatible with th@(y) terms beinga =-dInm*/dinM as a function of renormalized electron-phonon
small perturbation. In Table Il we givRqax2 @and N at  coupling for different values of adiabatic parameter wy/t, at
half filling and atu/(2t)=0.4, for some values of. T=0 and within the range of validity of the adiabatic expansion.

We now return to the effective mass. In the following Main graph: half filling (=0). Inset: away from half filling
we assumeS,.=0 and a semicircular density of states [#/(2t)=0.4]
p(e) =1/(2mt?) (4t2— €2)Y20(4t2— €2), for which the -
vertices can be evaluated exactlj,=8[1— (u/2t)?]*%  In the main graph of Fig. 4 we plat.« as a function of\
(3m),T3=4(u/2t)[1— (u/2t)?1% = and T,= <\max 40) (cf. Table ll), at half filling and for different val-
—161— (u/2t)2]3¥1—6(u/2t)?])/(157). In Fig. 3 we plot  ues ofy. The isotope effect is negative and its absolute value
m*/m as a function o\ for three different values of. At IS limited by 0.125=p/2. In the inset of Fig. 4 we plo,:
half filling (=0, main graph we plot up to Xmax (Cf. at u/(2t)=0.4, for the same values of. For 1.5\
Table ). Far away from half filling[ #/(2t)=0.4, Fig. 3 ~<AmaxA0.4), the isotope effect is positive. We explain this
insefl we plot up toX pay £0.4) (cf. Table Ii). in the next section.

The isotope effect on electron effective mass is defined by

Ay = —dInm*/dinM. USing M ~ 7—2 it is convenient to re- IV. DISCUSSION AND CONCLUSION
write this asa = y/(2m*)dm*/dy, so that
We start with a brief analysis &f. The correct two-loop
self-energy consists of four diagrams, three of which, the

1 - ~
LR ARSCRERRRR diagrams containing the verticés andI',, were neglected
Qe = _ +O(2). (21) by previous author§¥*? Figure 2 and Eqs(11) and (12)
2[1+Atp(p)] suggest that the diagran¥s, and3, ;. can be absorbed in a

y-dependent A, as follows: A '(y)=T,+(A\T,
+B1 A2T3) y+O(¥?). If we assumeT<wq (which is ap-
propriate for calculatingn*) then A; and B, (which arise
from the summation oved,) are positive constants of order
1. As pointed out in the previous section, ty) term in
Nc(y) changes sign when the system is doped away from
half filling. The same is true for the mass enhancement
+ Ny, from the remaining two diagrams. We explain this as
follows. Very close to half filling, low-frequency lattice fluc-
tuations reduce the average local ion displacenxerits a
result, the electron-phonon coupling in E®) is less effi-
L , cient, m*/m decreases relative to the value-1,, corre-
0 1 2 3 4 5 sponding to a completely static lattice, and the isotope effect
0 1 2 3 456 7 8 9 1011 is negative. This is the physics behind the tedmg andX ,,
M1 -MA) and the second part af;, . It is reflected in the main graphs
of Figs. 3 and 4. Away from half filling, on the other hand,
FIG. 3. Electron mass enhancementt/m due to interactions  the physics is dominated by density fluctuations, which have
with phonons as a function of renormalized electron-phonon couthe opposite effect. They enhance the density-coupled inter-
pling A and for different values of adiabatic parameter wo/t.  action(3), increasen*/m, and lead to a positive . This is
Main graph: half filing (@=0) andA<\na (7). Inset: u/(2t)  represented by the terms,. and \,, and in the insets of
=0.4 and\ <\ iy £7). Figs. 3 and 4.

0
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We now comment on the subject of expansion parametersyith the observed reasonably good conductance of figh-
which has been the source of some controversy in the literamaterials. On the other hand, Refs. 25 and 26 have demon-
ture. The original ME articlésand more recent wofRindi-  strated that in the “colossal magnetoresistance” material
cate thai\ y is the proper expansion parameter of a nonadiata; ,CaMnO; (0.2<x=<0.5) the isotope effect on low-
batic theory, whereas other authdsee, e.g., Ref. 24 and temperature properties including the carrier madster-
references therein and, for a particularly clear discussiormined via specific heais very small, even though electron-
Ref. 22 argue that the expansion breaks dowk Exceeds a lattice interactions are believed to be strong in this material
critical value of order 1, irrespective of. Within our  and even though the isotope effect on the ferromagnetic tran-
method, it is possible to reconcile these two points of viewsition temperatur@ is large’®*3In the manganites it seems
By Working with renormalized paramete)‘s and v we im- ||ke|y that the very Iarge iSOtOpe effects 6@ are associated
plicitly take into account the presence of the polaronic instaWith & phase transition that is now believed to be first
bility at A.. The condition\ <\, of Refs. 22 and 24 thus order” we speculate that a similar phenomenon might ex-
appears as a natural limitation of our theory\lfis suffi- ~ Plain the data on the high; material.
ciently close to the instability at (which is possible even ~ In summary, we have presented a detailed theory of iso-

for N=Nay(y), @s can be seen from Tables | angitHen the tope effects in models with strong electron-lattice coupling.
dominanntm n?a'ss enhancement termsy—(1—\/\.) 52 We have determined the correct expansion parameters and
C

(close to half filling and Ay~ (1—\/\.)~ "2 (away from have found diagrams over'looked in previous works: Our re-
half filling) act by shiftingxz to higherc and lower values, sults suggest that a large isotope effect on electronic proper-

respectively, as shown in the previous paragraph. This argL}'-eS IS very difficult 1o obtain ina _metagg?system. Unlike
ment can immediately be extended to higher ordersy,in previous treatments of nonadiabatic eff ;our formal-

ism can easily be generalized to include electron correla-

noting that the odd verticeB,,, ; all vanish at half filling  (ions " which enter in two placesi) vertex and self-energy

due to partcle-hole symmetry. We thus conclude that the eféorrections renormalize the phonon vertidas, and i) ir-

fectiv.e_expansEn_parameters of ogr.theory.nr)eclose.to reducible particle-hole scattering vertices renormalize the
half filling and Ny away from half filling. This generalizes electron-phonon coupling. Both effects are believed to
the results of Refs. 3 and 23. _ strongly suppress the electron-phonon interaction. An exten-
Next we compare our calculations to experiments. Referg;jyq analysis of problenti) for T', in the presence of local
ence 6 presented measurements of the oxygen isotope depefisctron-electron interactions can be found in Ref. 19.

dence of the Meissner fraction of 4aSrCuQ, high-  progress orii) will be presented in a future publication.
temperature superconductors. The assumption that the

dependence arose from an isotope effect on the carrier mass
m** (and hence the penetration deptimplied o+ ~

—0.5 for x=0.15. Within our theory, such large values of = We thank S. Blawid and R. L. Greene for useful discus-
an+ imply that the material is at or beyond the polaronic sions. We acknowledge NSF DMR00081075 and the Univer-
instability; however, this assumption may not be consistensity of Maryland/Rutgers MRSEC for support.
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