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Thermal mobility of interstitial defects in irradiated materials
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Thermally activated mobility of clusters of interstitial atoms is an important factor driving microstructural
evolution of materials under irradiation. Molecular dynamics simulations show that the statistics of one-
dimensional Brownian motion of clusters is characterized by unusual correlated jumps spanning many inter-
atomic distances. We use the Frenkel-Kontorova model to investigate the dynamics of one-dimensional Brown-
ian motion of a spatially delocalized interstitial defect interacting with acoustic phonon excitations. Using a
guantum-mechanical approach, we evaluate the coefficient of dissipative friction characterizing the stochastic
motion of the defect. We show that the origin of unusual features observed in atomistic simulations is associ-
ated with low friction experienced by an interstitial defect propagating through the crystal lattice in the
presence of thermal fluctuations. We also find that the coefficient of dissipative friction is highly sensitive to
the character of interatomic bonding in the material.
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[. INTRODUCTION tion is presently considered to be an important element of the
fusion materials researcfi.

The evolution of the microstructure of a material under Glissile clusters of interstitial atoms interacting with ther-
irradiation is characterized by the presence of dynamic quamal fluctuations perform stochastic one-dimensional Brown-
siequilibrium between the generation of lattice defects byian motion in one of the close-packed crystallographic direc-
incident energetic particles and recombination and absorgions. By treating an interstitial cluster as a defect that retains
tion of defects at dislocations, grain boundaries, and freds shape in the process of Brownian motion, we obtain that
surfaces. The rates characterizing the temporal evolution dhe coordinateX(t) of the center of the cluster, projected on
microstructure depend on the type of mobility of defectsthe direction of motion, satisfies the Langevin equation
formed in collision cascades. Trinkaws al® showed that . :
one-dimensional glide of small interstitial clusters, as op- m* X=—m* yX+ (1), 1

posed to the more conventional three-dimensional diffusioRyherem* s the effective mass of the defeat,is the coef-

of point defects, may have a significant effect on the accuficient of thermal friction, and the random thermal forgét)
mulation of radiation defects in the material. The recognitiongatisfies conditiori€

of this fact has stimulated several recent studies, where rela-
tionships between the structure of defects and the type of (n(t))1=0, (p()n(t"))r=2m*yTS(t—t"), (2
thermally activated motion performed by those defects, and : .
the mich(/)structure of irradigted materia{s were investigatetyv hereT_ is the ?6"50'“‘6 temperature. Equatl_((m); and (2)
. ; 7 - are equivalertt®to the Fokker-Planck equation
numerically using molecular dynamiés’ and kinetic Monte
Carld®® approaches. For example, Catueteal 1° performed GF poF 4
a comprehensive comparative study of accumulation of ra- —+
diation damage in Cu and Fe using a combined molecular g mox Ip
dynamics and kinetic Monte Carlo approach. for the distribution functionF(p,x,t). The term in round
One of the striking observations that emerged from combrackets in Eq. (3) vanishes in the limit F(p,x,t)
puter simulations was the discovery of high thermally acti-~exp(—p%2m*T) corresponding to thermal equilibrium.
vated mobility of small clusters of interstitial atoms formed This asymptotic condition does not depend of the magnitude
during the solidification of collision cascades. Clustering ofof the friction coefficienty, which is a function of the abso-
interstitial atoms in collision cascades predicted by moleculute temperature and the effective mass of the moving
lar dynamics simulatioffss responsible for a number of ex- defect?’
perimentally observed phenomena that involve both mobile The statistics of real-space Brownian motion of an inter-
and immobile defects:**These phenomena include the seg-stitial cluster does depend strongly on the magnitude of the
regated growth of voids and dislocations observed in soméiction coefficient y. At a given temperature the mean
materials, the spatially inhomogeneous swelling that oftersquare displacement of the defg¢t?) scales withy as
occurs in the vicinity of grain boundaries, and high rates of{ X?)~ y~2. This gives rise to the occurence of long-distance
growth of voids observed in the limit of low irradiation jumps in the low-friction limit*® Similar jumps were ob-
doses. The very small size of interstitial clusters makes directerved experimentally for clusters of adsorbed atoms moving
observation of their motion a difficult experimental on crystal surface¥:?°
problem!® and the development of theoretical models relat- In this paper we evaluate the coefficient of thermal fric-
ing properties of microscopic and mesoscopic defects to théon characterizing one-dimensional Brownian motion of a
observed macroscopic behavior of materials under irradiaspatially delocalized interstitial defect moving in a crystal

=0 (3)
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ergy of formation of this defecta (111) crowdion in bcc

iron is known to be higher than the energy of formation of a

more localized dumbbell configuratiéfthe defect structure

shown in Fig. 1 is representative of a broader class of mobile

interstitial clusters of similar type containing several intersti-

tial atoms that, according to molecular dynamics

simulations®~® are thermally stable. The defect shown in Fig.

1 was created by embeddingimgleextra atom in the body-

centered cubic lattice and by the subsequent constrained

minimization of energy of the entire ensemble of atoms

shown in the figure. The perturbation of the crystal structure
FIG. 1. Atomic structure of a mobile interstitial defeet(111) ~ caused by embedding an atom spreads in one of the close-

crowdion in a body-centered cubic lattice. The equilibrium atomic packed(111) directions. The resulting field of displacements

structure shown in this figure was computed using the Finnis-Of atoms along this direction can be described by the analyti-

Sinclair-type many-body interatomic potential developed by Ack-cal model considered below.

land et al. (Ref. 24 for the bcc iron. Although the energy of for- The Lagrangian function of the Frenkel-Kontorova model

mation of this configuration is slightly higher than the energy of describing a string of atoms embedded in a crystal lattice has

formation of the(110) dumbbell, this configuration is important for the fornft:22

determining the pathway of diffusion of a single interstitial atom in

the bcc lattice.

m3<ﬁ o -
- "5 2 (Xniimx—a)?
n=—ow

lattice in the presence of thermal fluctuations. To obtain an n=—o
analytical solution, we consider a single-atom deféat
crowdion described by the Frenkel-Kontorova model and “V(Xg, - Xny ), 4

assume that it performs thermally activated motion in one of

the close-packed crystallographic directions. Althoughwhere « is a constant characterizingh the harmonic ap-
molecular-dynamics simulations show that a real single atonproximation the strength of repulsion between neighboring
crowdion may frequently change its direction of motion by atoms in the stringn is the index of an atom in the string,
switching between equivalent crystallographic directions, theandx is the coordinate in the direction parallel to the axis of
motion of clusters containing two or more interstitial atomsthe string(see Fig. 1 In the absence of thermal fluctuations
is known to be almost perfectly one dimensiofial There-  the potential of interaction of the string with the surrounding

fore the model considered below is likely to be applicable tolattice V(Xq, ... X,, . ..) is aperiodic function of atomic
the description of Brownian motion of a relatively broad coordinatesx,, ... X,, ... . To simplify the subsequent
class of interstitial defects interacting with phonon excita-analytical treatment of the problem, we choose this potential
tions in the crystal lattice. in the form

In this paper we derive the quantum-mechanical Hamil-
tonian of interaction between a mobile defect, considered as

2,2
a soliton quasiparticle solution of the Frenkel-Kontorova VX1, oo Xy o n )= Maod Sinz(wxn)_ (5)
model, and acoustic phonons. We then use this Hamiltonian Lo 27?2 a

to derive the kinetic equation for the one-particle density
matrix of the soliton describing creation and annihilation of seyeral other realizations of potentis(x,, ... X, ...)

phonons by the moving defect. Considering the Fokkeryere studied in the literatufeleading to results qualitatively
Planck limit of this equation, we obtain an explicit expres- similar to those obtained using E®). In Eq. (5) parameter
Sion f0r the thermal friction CoeffiCient. We ShOW that in the a denotes the period of translations Of the potential Of the
case where the degree of spatial delocalization of the defegittice, and frequencyw, characterizes the amplitude of
is subs_tantl_al, its motion is well described by the low-friction ygriation of this potential. Figure 2 illustrates how the mag-
approximation. nitude of w, reflects the character of interatomic bonding in
the material. In the case where the interaction between atoms
is directionlesscase A of Fig. 2, the motion of the string
with respect to the surrounding lattice gives rise to a rela-
We begin by deriving a Hamiltonian that describes thetively small variation of the total energy of the system. The
interaction between a mobile interstitial defect and acoustieffective value of paramete®©, corresponding to case A
phonon excitations of the surrounding crystal lattice. To in-shown in Fig. 2 is therefore relatively small. However, in the
vestigate the dynamics of the defect we use the Frenkelimit where the interaction between atoms is highly direc-
Kontorova model. In this model we take into account thetional (case C shown in Fig.)2the motion of the defect is
interaction between atoms constituting a closed-packedharacterized by a large value ©f.
string and the interaction of the string with the lattice. Figure Introducing the displacement(t) =x,(t) —an of thenth
1 gives an example of an interstitial defect, which can beatom from its equilibrium position in the string, from E¢)
described by the Frenkel-Kontorova model. Although the enwe find equations of motion of atoms in the string

Il. THE INTERACTION HAMILTONIAN
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u(x,t)= 2—:arctar( exp{ - M

\/W L (7)

whereX(t) =Vt is the coordinate of the center of the defect,
V is its velocity, andc=(@a?/m)*? is the speed of sound.
The field of displacements(x,t) given by Eq.(7), satisfies
boundary conditionsi(—<,t)=a and u(,t)=0, and de-
A scribes the case where the string contains one extra atom.
To assess how well solutions of the Frenkel-Kontorova
model describe the structure of interstitial defects in real ma-
terials, in Fig. 3 we plotted the field of atomic displacements
evaluated for two types of interstitial defe¢tscrowdion and
a double crowdioh using molecular dynamics simulations
carried out for a system containing approximately 30000
atoms. For comparison, in the same figure we also plotted
the field of displacements calculated analytically using ex-
pression(7). Ratioc/aw, represented the only adjustible pa-
rameter of the model and the comparison involved no rescal-
B ing of analytical solution(7). The good correspondence
between values obtained by using numerical molecular dy-
namics simulations and by solving the Frenkel-Kontorova
model confirms the validity of the analytical solutidid).
Note the substantial degree of spatial delocalization of inter-
stitial defects shown in Fig. 3. Results plotted in Fig. 3 also
illustrates an important point that it is not the value «f
itself but a dimensionless combinatidVi= c/ wya of param-
eters of the Frenkel-Kontorova mod@l) that characterizes
the structure of an interstitial defect in a given material. Pa-
C rameter\ has a simple meaning, namely, it equals the effec-
) _ o ) tive number of atoms participating in the formation of the
FIG. 2. Sketches illustrating how the directionality of inter- crowdion.

atomic bonding affects the behavior of the energy of an atomic In the presence of thermal phonon excitations in the lat-
system considered as a function of the displacement of atoms of tl}?ce surrounding the defect, positions of minima of the po-
mobile string(shown in the center of each sketakith respect to . . ' .

the surrounding lattice. The effective potentiéli, , . . . X, . . .) tential of Fhe Iattlce(_5) undergo rgndom Q|splacements and
given by Eq.(5) varies stronger as a function &f, in the case C the equation of motion of the string acquires the form

than it does in the case A. Note that although the structure of inter-
stitial defects depends on parameters characterizing the shape of the
potential function(5) only in the form of dimensional combination

2 2 2 _
N=clwya (see Fig. 3 beloyy the coefficient of thermal frictiory m‘? u _ 2‘? u _ mwoa,- 2afu(x,t) — &(x.1)]
) — =ad"—— sin , (8)
cannot be expressed as a function\6fllone, see formulé24). ot X 2 a

2up, ) moga
M—— = a(Uyy 1+ Uy —2Upy) — sin
dt2 ( n+1 n—-1 n) 2

27U,
a

whereé&(x,t) describes the field of acoustic phonon displace-
ments of the lattice. The field of phonon displacements

In the limit of slowly varying displacement fielai(x,t) ~ §(x,t) vanishes after averaging over the thermodynamic
~u(x,,t)=u,(t) these equations can be tranformed into theauilibrium{&(x,t))r=0. Note that at low temperatures only
sine-Gordon equatid the long wavelength acoustic phonons are excited with ap-
preciable probabilitf? and it is in this temperature limit
where the motion of an interstitial cluster can be treated as
() one dimensional.
Looking for a solution of this equation in the form
u(x,t) =ug[x—X(t) ]+ P(x,t), whereug[ x—X(t)] is given
A soliton solution of this non-linear equation, describing aby Eq.(7) and whereX(t) is now assumed to be an arbitrary
glissile interstitial defect moving uniformly in the positive function of timet, and retaining terms linear and quadratic in
direction ofx, is given by!?? d(x,t) and £(x,t), we obtain

2mu

a

é%u ,0°u moga
— = qa’— — sin
at?

m
FNG 2
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. ax\? | d?x| o*®
Uo[X_X(t)]<dt) _Uo[X—X(t)]((j,[z)+(9t2
2 _
=c2(m2)w§[¢>(x,t)§(x,t)]{12 sech| X(t)H
X lo
Arrw? -
+ 7mo[cp(x,t)—g(x,t)]Ztanr{x X(t)}
a lo
><sec+x_lx(t)}, 9
0

wherel y= ¢/ wg. Bearing in mind the treatment of Brownian

crowdion motion of the defect, we assume that the velocity of the
0.03 defectdX/dt is small in comparison with the speed of sound
—0.02 \\\ f/_’ c in the material.
) In Eq. (9) the term proportional tg(x,t) plays the part of
-0.07 a random force disturbing the motion of atoms in the string
\ % and giving rise to stochastic time-dependent fluctuations of

2 -0.12 the position of the center of the interstitial defect. Function

? V d(x,t) describes phonon excitations in the string itself.

v -g:ag dowble crowdion] To obtain a closed equation describing the motion of the
_ s center of the defeck(t), we use an approach analogous to
£ _0.02 the  conventional = quantum-mechanical perturbation

x theory?®?2Consider a linearised equation describing phonon

-0.07 excitations of the string for a given positiofof the center
of the defect
-0.12
Y e I 7 x—X
-0.17_5 5 15 25 W_C 2 oP(x,t){ 1—2 sec o[ (10

index of an atom in a string . ] )
A general solution of this equation has the form

» dk
q)(X,t):Aoq)o(X)‘f’J' EAkq)k(X't)l (11)

where

X=X

CIDO(x)—secrﬁ )
lo
and
. X=X . :
D (X,1)= kI0+|tam‘( I ) expikXx—iwt).
0

Here @, (x,t) are the internal phonon modes of the string

FIG. 3. The structure and the displacement field of two intersti-Characu‘:‘”Zed by the dispersion relatiop= woy1+ (klo)",

. . X and®y(x) is the Goldstone mode describing translations of
tial defects in bcc iron. The structure shown at the top results fro f the defect al th t#laNote that
embedding a single extra atom in the string marked by the star an e center of the defect along the stringNote tha .
the subsequent relaxation of the entire crystal. The structure showHk-0@k=@o=>0, and therefore there are no acoustic
in the bottom figure results from embedding two extra atoms in thd"0des in the spectrum of vibrational excitations of the string
two adjacent atomic strings. Only atoms with potential energy extSelf. o _ o

ceeding by 0.01 eV the average potential energy of an ideal lattice BY multiplying Eq.(9) by ®(x), integrating it ovex and

are shown. In the graph shown in the middle circles indicate positaking into account the orthogonafifyof functions ®(x)
tions of atoms in the corresponding crystal structure. Solid curve@nd®,(x,t), we obtain a closed equation describing the mo-
were calculated using E¢7) assumings/wga=2.11 in the case of tion of the center of the defect in the presence of an external
a single anct/ wga=2.34 in the case of a double crowdion. phonon displacement fief8222
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m* T non excitations and note that the right-hand side of (E4)
0 can be represented in a conventional form as a gradient

— o0

d2x mwgfw rﬁx_x(t)) We now introduce a fully three-dimensional field of pho-
c

lo

x—X(t) aAmw? (= —dU(X,t)/oX of an effective interaction potential, the sec-
X|1-2 secﬁ( I ) E(x,t)+ al f dx ond quantized matrix element of which is equal to
0 0 J-o
X—X(t)) X—X(t)) 22 3¢ 4357
Xtanl‘( seck £xt1, (12 - TMwgly fd fd*f .
I I o U(x,t)=Q exdi(f-n+f"-n)x
0 0 (0= o E e S )x]
wherem* =m(2a/?l,) is the effective mass of the defect. ,
In the case where the degree of spatial delocalization of the (f-n+f"-n) h (&, N)(&r -1
defect is substantidly>a, the effective mass of the defect K , NI o«
m* is many times smaller than the massof an individual sinh > lo(f-n+f"-n)
atom. Note also that in the case where the fluctuating force is
associated with phonon excitations in the lattice surrounding x[al;,ap, exd —ic(|f'|—|f)t]
the defect, we only retain terms that are linear and quadratic
in the displacement field(x,t). For comparison, in the case +al a_p . exdic(|f|—|f)t]]. (15)

where the defect interacts with the field of internal phonon

excitations® (x,t) of the string itself and where the external i )
potential of the latticé5) is assumed to remain unaffected by 10 0Ptain Eq.(15) we used the second quantized representa-

thermal fluctuations, the first nonvanishing contribution totion of the projection of the phonon displacement field on the
the force acting on the defect is proportional to the thirddirectionn of the axis of the stringsee Ref. 31
power of the amplitude of phonon displacemefits’

Consider the process of creation or annihilation of an

acoustic phonon by an interstitial defect. Energy conserva- (x t>=02 d°f N h

tion requires thatk, . ;s — e,—#Ac|f|=0, wheref is the pro- ’ = Jez(2m)3 N 20c|f|Q

jection of the wave vector of the phonon on the direction of o _

motion of the defect and,=p2/2m*. In the limit of smallf X[ (€ o-N)ay e M ielflt

this is equivalent to the conditigsé m* = c, which is impos- R o

sible to satisfy in the case where the defect performs slow —(ef,-n)af e il (16)

thermal Brownian motion. It is therefore only the second-
order two-phonon term in E¢12) that gives a nonvanishing
contribution to the friction force.

The field of displacementg(x,t) associated with an
acoustic phonon mode propagating in the lattice surroundin
the soliton has the form

where the summation is over branches of the acoustic pho-
non spectrume, () is the volume of the crystalp is the
ass density of the material, and BZ denotes integration
ver the Brillouin zone. In Eq(16) &, is the vector of
polarization of theath branch of the phonon spectrum, and
&(x,t) =c, explikx—ic|k|t). (13)  ar, anda], are the annihilation and creation operators for
phonons in the normal modd, &). The minus sign before
Since in the Frenkel-Kontorova modg@l) we only consider the second term in the right-hand side of ELp) takes into
displacements of atoms in the direction of the string andaccount the change in the sign of the projection of the dis-
neglect displacements in the plane normal to the axis of thglacement field on the direction of propagation of the defect
crowdion, only the projection of the phonon displacementin the crystal.

field on thex axis needs to be retained in EG.3). Substi- In Eq. (16) we approximate the field of phonon displace-
tuting Eq.(13) into Eq. (12) we find ments by a superposition of acoustic excitations propagating
in all directions with the same velocitythat is assumed to
LA meg[ (k+k")23 be independent of the direction of polarization of a phonon
m G2 ! CkCrr = mode. This approximation neglects the difference between
{ sin)-(E(kJr k’)lo) longitudinal and transverse phonons. It is important to take
this difference into account, for example, in the treatment of
x exdi(k+k)X(t)—ic(|k|+]|k't] surface Rayleigh wave€.However, in the case where only
scattering by bulk phonons is involved, contributions from
. (k—k")213 ) ) longitudinal and transverse phonons to the correlation func-
T CkCy exdi(k—k")X(t) tion of atomic displacements are qualitatively similaee,

sint‘(%(k—k’)l0 e.g., formula(23) of Ref. 32 and this justifies the use of
approximate representati@h6).
Having obtained the explicit form of the Hamiltonian of
—ic(Jk|=|k'Dt]+c.c.|. (14  interaction between an interstitial defect and phonon excita-
tions in the lattice surrounding the defect, we can now derive
the quantum kinetic equation for the density matrix of the
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defect. Considering the Fokker-Planck limit of this kinetic
equation, we shall find the coefficient of thermal friction S(k,w)zh(

entering the Langevin equatidf).

Before proceeding further, we note that although a mobile
interstitial defect is a classical object, a consistent treatment
of the interaction between the defect and phonon excitations % S[k—(F-n+"-n)] 1 n(np +1)
requires using a quantum-mechanical approach. This stems 91| [
from the fact that in many materials even at room tempera-
ture it is necessary to take into account the Bose statistics X Slo—c(|f'|—|f)]. (20
obeyed by phonons. We also note that the process of thermal .
equilibration of the defect is accompanied by the emissiorin this equation the equilibrium numbaf of phonons occu-
and absorption of phonons, and here effects of nonpying a given modex is independent o& and is equal to

Boltzmann statistics play an important part, too.

7Tm|0a)% 2
oca

(klg)? J’ d3fd3
B
2

sinl‘?(ﬂ z (2m)°

_ 1
_/at 2 _
IIl. KINETIC EQUATION FOR THE DENSITY MATRIX N=(a1,8ra) 7= exphclfiT)—1°

We now derive the quantum kinetic equation for the denTaking the Fokker-Planck limit of E¢(19)
sity matrix of the mobile interstitial defect. Since in the ab-
sence of an external random force the motion of the defect is

2
u_niform, it is co_nvenier_1t to use_the momentum representa- Ep(q,t): ;[B(%p(q’t)_'—&ip(q't)”’ (21
tion of the density matrix and write the Liouville equation in g \m q
the form
where
1 a ! !
Iﬁap(q!q ,nalut):(fq_fq’+En_EI)P(qaq Ynillt) _(m%w% ZJ‘ d3fd3f/ (fn+f’n)4
| eca BZ

CLIRIE ;(1°-n+f’-n)|0

dk -
% [ 5= nlou)
, 1
Xp(q_kvq 1f1|=t) X_nf(nfr+1)5[€q+(f_n+fr,n)_Gq_hc(|f,|_|f|)]

fl|f’

—p(,9"+k,n,f,0(F[0 1], (17) i

where the energy of the defeg} is related to its wave vector o ) o

q=p/h via e,=f%g%2m*. E, is the energy of thath ex- and comparing it with Eq(3), we obtain the coefficient of

cited state of the phonon subsystem of the crystal. INEg.  thermal frictiony,
U, is a matrix element of the Hamiltonian corresponding to

(22

2
the exchange of momentump=k/#% between the defect y= h B_ (23)
and the phonon sybsystem of the crystal. m*T
To obtain a self-consistent equation for the diagonal ele- _ - _
ments of the one-particle density matrix of the defect In the high-temperature limit;~ T/7%c|f|>1 by carrying out
integration in Eq(22) we find
p(a,0",D=Trm()=2 p(a,a"nnt (18 o [a0e) T [2me N
7= 10800 =7 | e 1M g ) 29

we follow a conventional procedursee, e.g., Refs. 33,34
and assume that the density matrix entering the right-hanﬂ] the low-temperature limiffa/fic<1 (this limit corre-

side of the kinetic equation is representable in the form of asponds to the case where effects associated with the Bose
direct product of the one-particle density matrix of the defeCtstatistics of phonons are significante obtain that
and the equilibrium density matrix of the phonon subsystem

of the crystal. After some relatively lengthy algebra we arrive o
0

at y=5.53—
amc

Ta\*

7c (25

J
Ep(q,t)zf dkf dwS(K,w)d(€qs k= €q—hw)p(q+Kk,t) In the high-temperature limi24) the friction coefficient de-
pends on parametes, characterizing the strength of inter-
action between atoms of the string and the potential of the
_j dkf dwS(k,w) 8(€q+k— €gthw)p(q,1), lattice (5) asy~ wg. This functional dependence is similar to
that known from the treatment of the Rayleigh scattering of
(19 light by density fluctuations in the atmosphérayhere the
where the structure fact@(k,w) is given by wg dependence is responsible for the blue color of the sky.
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IV. DISCUSSION This equation shows that the smaller the effective value of
wg the lower are the Peierls-Nabarro potential barri@®

and the larger is the average length of random thermal jumps
of the defect(26). The limit c/awy>1 corresponds both to

Consider the classical high-temperature li24). The
average length.; of random thermal displacements of the

- . — — 1/2 - _
geraeiazesrr?\glle\?e?&:?t ETét\grrr]]esr?thhéTc/rmg[ ak')?etrm;v;_ low Peierls-Nabarro barriers and also to low thermal friction
9 y y experienced by defects performing random Brownian motion

cor_dlng to Ea.(7) the_ def_ect propagiltle_s through the c_rystalin the lattice. This observation correlates well with results of
lattice as a free quasiparti¢land7~ y~* is the average time

X . L= ecent molecular dynamics simulatiGneerformed using di-
over which thg d_efect reta|n§ memory.about its direction Oi!r’ectionless embedded atom many-body potentials and show-
motion. Substituting expressid@4) in this formula, we ob-

tain an estimate for the average length of a thermal jum ing relatively low (-0.025 eV) activation energies corre-
9 9 jump sponding to the translational motion of interstitial clusters.

4 The discreteness of the original Frenkel-Kontorova model
(26) (4),(5) gives rise to an additional channel of scattering
through which a moving defect may dissipate energy to pho-
. . . . . H H 2,38 ; H
Considering thermal motion of an interstitial defect at roomnon excitation$?* Although this type of scattering has not
temperature, where;~10* cm/s andc/vy~ 10, and using been included in the treatment described above, it may con-
single crowdion may involve correlated jumps that are adgdiving rise to a larger value of the friction coefficieptthan
large as 18 interatomic distances. Long-range jumps of de-that estimated on the basis of equati¢@d) and (25). The
fects have indeed been observed in molecular-dynamicdependence of the friction coefficient on parameigrasso-
simulations(see, e.g., the analysis performed by Withal3 ciated with this additional channel of scattering is likely to
and Fig. 10 of Ref. § but the typical scale of these jumps is be qualltatlvely'5|mllar to that characterizing scattering by
approximately one order of magnitude smaller than that prethermal fluctuations, but the temperature dependence of the
dicted by formula(26). This shows that formul&24) may contribution to the friction coefficient arising from the dis-
underestimate the value of the thermal friction coefficipnt Ccreteness of the model may be different from that given by
by approximately one order of magnitude. This inaccuraC)Eq- (24). o o
may partly be associated with the very strong functional de- The fact that the coefficient of thermal frictiop shows
pendence of the friction coefficient on parameters characteStrong dependence on parameters characterizing the interac
izing interatomic interactions in the material. For example,tion between atoms in the material and in particular to the
L+ given by Eq.(26) depends on the speed of sound in thevalue of frequencys,, may offer some insight into the origin
material asL;~c® and on frequency, characterizing the ©Of the long-range effect observed in experiments on ion
degree of directional bonding in the material lag~ wg *. implantation®®~*' Experimentally it is observed that the
This strong functional dependence makes it difficult to ob-depth characterizing radiation damage induced by the inci-
tain accurate numerical values bf directly from Eq.(26). ~ dent high-energy ions in fcc metals may exceed many times
There is an additional important point that needs to bdh® range of ions in the material. The long-range effect is
taken into account when applying results obtained using th&/SC observed, though in a somewhat weaker form, in bce
continuous displacement field approximati@ to the inter- metals but it is almost absent in silicon. Assuming that inter-
pretation of molecular dynamics simulations. It is the effectStitial defects formed in collision cascades occurring near the
of discreteness of the lattice on the dynamical behavior ofurface diffuse into the bulk of the material, we may reason-
solutions of the Frenkel-Kotorova modé). On one hand, ably expect that. the depth chara_cterlzmg the Iong-.ra.mge ef-
discreteness leads to trapping of interstitial defects in th&€Ct should be inversely proportional to the coefficient of
lattice at sufficiently low temperatures. Indeed, the treatmeni’€rmal frictiony. It is known that the degree of directional
of the discrete Frenkel-Kontorova modé) gives rise to the bondlng increases from fcc through bcc to diamond-structure
Peierls-Nabarro potential barriefs>’ By substituting solu- materials*? Given the strong functional dependence of the

tion (7) into Eq.(4), we obtain that the energy of the moving f[hermal friction <_:oefficient on the type qf interatomic bond_—
defect is equal to ing, the conclusion that thermal friction is greater in materi-

als characterized by a substantial degree of directional bond-
e, m* X2(t) \amd 2c 27X(1) ing agrees with what is found in experimental investigations
=m*c 5 mc ex oy co a .

c

vt

c

L~a
T woa

of the long-range effect in ion implantation. Furthermore, the
same experimental data suggest that there may be a connec-
27) tion between the presence of directional bonding in bcc
The third (periodid term in the right-hand side of this equa- metald? and their higher swelling and creep resistance under
tion is the Peierls-Nabarro potential energy of the defect. Airradiation®®
low temperatures mobile interstitial defects are trapped in the
minima of the Peierls-Nabarro potential. The height of
Peierls-Nabarro barriers is given by

V. SUMMARY

By using the analytically solvable Frenkel-Kontorova
(28) model we investigated how a mobile interstitial defect inter-
' acts with phonon excitations in the lattice, and how this in-

m’c

Epn=16mc? exp( ~on
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teraction gives rise to the random one-dimensional Browniarforces in predictive modelling of microstructural evolution of
motion of the defect. We found that in the case where therradiated materials.

degree of spatial delocalization of the defect is significant, its

motion is chgractenzed by low .thermal friction. Th|s. corre- ACKNOWLEDGMENTS
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