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Thermal mobility of interstitial defects in irradiated materials

S. L. Dudarev
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~Received 5 April 2001; revised manuscript received 30 January 2002; published 4 June 2002!

Thermally activated mobility of clusters of interstitial atoms is an important factor driving microstructural
evolution of materials under irradiation. Molecular dynamics simulations show that the statistics of one-
dimensional Brownian motion of clusters is characterized by unusual correlated jumps spanning many inter-
atomic distances. We use the Frenkel-Kontorova model to investigate the dynamics of one-dimensional Brown-
ian motion of a spatially delocalized interstitial defect interacting with acoustic phonon excitations. Using a
quantum-mechanical approach, we evaluate the coefficient of dissipative friction characterizing the stochastic
motion of the defect. We show that the origin of unusual features observed in atomistic simulations is associ-
ated with low friction experienced by an interstitial defect propagating through the crystal lattice in the
presence of thermal fluctuations. We also find that the coefficient of dissipative friction is highly sensitive to
the character of interatomic bonding in the material.
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I. INTRODUCTION

The evolution of the microstructure of a material und
irradiation is characterized by the presence of dynamic q
siequilibrium between the generation of lattice defects
incident energetic particles and recombination and abs
tion of defects at dislocations, grain boundaries, and f
surfaces. The rates characterizing the temporal evolutio
microstructure depend on the type of mobility of defe
formed in collision cascades. Trinkauset al.1 showed that
one-dimensional glide of small interstitial clusters, as o
posed to the more conventional three-dimensional diffus
of point defects, may have a significant effect on the ac
mulation of radiation defects in the material. The recognit
of this fact has stimulated several recent studies, where r
tionships between the structure of defects and the type
thermally activated motion performed by those defects,
the microstructure of irradiated materials were investiga
numerically using molecular dynamics2–7 and kinetic Monte
Carlo8,9 approaches. For example, Caturlaet al.10 performed
a comprehensive comparative study of accumulation of
diation damage in Cu and Fe using a combined molec
dynamics and kinetic Monte Carlo approach.

One of the striking observations that emerged from co
puter simulations was the discovery of high thermally ac
vated mobility of small clusters of interstitial atoms forme
during the solidification of collision cascades. Clustering
interstitial atoms in collision cascades predicted by mole
lar dynamics simulations4 is responsible for a number of ex
perimentally observed phenomena that involve both mo
and immobile defects.11,12These phenomena include the se
regated growth of voids and dislocations observed in so
materials, the spatially inhomogeneous swelling that of
occurs in the vicinity of grain boundaries, and high rates
growth of voids observed in the limit of low irradiatio
doses. The very small size of interstitial clusters makes di
observation of their motion a difficult experiment
problem,13 and the development of theoretical models rel
ing properties of microscopic and mesoscopic defects to
observed macroscopic behavior of materials under irra
0163-1829/2002/65~22!/224105~8!/$20.00 65 2241
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tion is presently considered to be an important element of
fusion materials research.14

Glissile clusters of interstitial atoms interacting with the
mal fluctuations perform stochastic one-dimensional Brow
ian motion in one of the close-packed crystallographic dir
tions. By treating an interstitial cluster as a defect that reta
its shape in the process of Brownian motion, we obtain t
the coordinateX(t) of the center of the cluster, projected o
the direction of motion, satisfies the Langevin equation

m* Ẍ52m* gẊ1h~ t !, ~1!

wherem* is the effective mass of the defect,g is the coef-
ficient of thermal friction, and the random thermal forceh(t)
satisfies conditions15

^h~ t !&T50, ^h~ t !h~ t8!&T52m* gTd~ t2t8!, ~2!

whereT is the absolute temperature. Equations~1! and ~2!
are equivalent15,16 to the Fokker-Planck equation

]F

]t
1

p

m

]F

]x
2

]

]p FgS pF1m* T
]F

]p D G50 ~3!

for the distribution functionF(p,x,t). The term in round
brackets in Eq. ~3! vanishes in the limit F(p,x,t)
;exp(2p2/2m* T) corresponding to thermal equilibrium
This asymptotic condition does not depend of the magnit
of the friction coefficientg, which is a function of the abso
lute temperature and the effective mass of the mov
defect.17

The statistics of real-space Brownian motion of an int
stitial cluster does depend strongly on the magnitude of
friction coefficient g. At a given temperature the mea
square displacement of the defect^X2& scales withg as
^X2&;g22. This gives rise to the occurence of long-distan
jumps in the low-friction limit.18 Similar jumps were ob-
served experimentally for clusters of adsorbed atoms mov
on crystal surfaces.19,20

In this paper we evaluate the coefficient of thermal fr
tion characterizing one-dimensional Brownian motion of
spatially delocalized interstitial defect moving in a crys
©2002 The American Physical Society05-1
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S. L. DUDAREV PHYSICAL REVIEW B 65 224105
lattice in the presence of thermal fluctuations. To obtain
analytical solution, we consider a single-atom defect~a
crowdion! described by the Frenkel-Kontorova model a
assume that it performs thermally activated motion in one
the close-packed crystallographic directions. Althou
molecular-dynamics simulations show that a real single a
crowdion may frequently change its direction of motion
switching between equivalent crystallographic directions,
motion of clusters containing two or more interstitial atom
is known to be almost perfectly one dimensional.3–5 There-
fore the model considered below is likely to be applicable
the description of Brownian motion of a relatively broa
class of interstitial defects interacting with phonon exci
tions in the crystal lattice.

In this paper we derive the quantum-mechanical Ham
tonian of interaction between a mobile defect, considered
a soliton quasiparticle solution of the Frenkel-Kontoro
model, and acoustic phonons. We then use this Hamilton
to derive the kinetic equation for the one-particle dens
matrix of the soliton describing creation and annihilation
phonons by the moving defect. Considering the Fokk
Planck limit of this equation, we obtain an explicit expre
sion for the thermal friction coefficient. We show that in th
case where the degree of spatial delocalization of the de
is substantial, its motion is well described by the low-frictio
approximation.

II. THE INTERACTION HAMILTONIAN

We begin by deriving a Hamiltonian that describes t
interaction between a mobile interstitial defect and acou
phonon excitations of the surrounding crystal lattice. To
vestigate the dynamics of the defect we use the Fren
Kontorova model. In this model we take into account t
interaction between atoms constituting a closed-pac
string and the interaction of the string with the lattice. Figu
1 gives an example of an interstitial defect, which can
described by the Frenkel-Kontorova model. Although the

FIG. 1. Atomic structure of a mobile interstitial defect~a ^111&
crowdion! in a body-centered cubic lattice. The equilibrium atom
structure shown in this figure was computed using the Fin
Sinclair-type many-body interatomic potential developed by A
land et al. ~Ref. 24! for the bcc iron. Although the energy of for
mation of this configuration is slightly higher than the energy
formation of thê 110& dumbbell, this configuration is important fo
determining the pathway of diffusion of a single interstitial atom
the bcc lattice.
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ergy of formation of this defect~a ^111& crowdion! in bcc
iron is known to be higher than the energy of formation o
more localized dumbbell configuration,24 the defect structure
shown in Fig. 1 is representative of a broader class of mo
interstitial clusters of similar type containing several inters
tial atoms that, according to molecular dynami
simulations,3–5 are thermally stable. The defect shown in F
1 was created by embedding asingleextra atom in the body-
centered cubic lattice and by the subsequent constra
minimization of energy of the entire ensemble of atom
shown in the figure. The perturbation of the crystal struct
caused by embedding an atom spreads in one of the cl
packed̂ 111& directions. The resulting field of displacemen
of atoms along this direction can be described by the ana
cal model considered below.

The Lagrangian function of the Frenkel-Kontorova mod
describing a string of atoms embedded in a crystal lattice
the form21,22

L5 (
n52`

` mẋn
2

2
2

a

2 (
n52`

`

~xn112xn2a!2

2V~x1 , . . . ,xn , . . . !, ~4!

where a is a constant characterizing~in the harmonic ap-
proximation! the strength of repulsion between neighbori
atoms in the string,n is the index of an atom in the string
andx is the coordinate in the direction parallel to the axis
the string~see Fig. 1!. In the absence of thermal fluctuation
the potential of interaction of the string with the surroundi
lattice V(x1 , . . . ,xn , . . . ) is aperiodic function of atomic
coordinatesx1 , . . . ,xn , . . . . To simplify the subsequen
analytical treatment of the problem, we choose this poten
in the form

V~x1 , . . . ,xn , . . . !5
mv0

2a2

2p2 (
n52`

`

sin2S pxn

a D . ~5!

Several other realizations of potentialV(x1 , . . . ,xn , . . . )
were studied in the literature22 leading to results qualitatively
similar to those obtained using Eq.~5!. In Eq. ~5! parameter
a denotes the period of translations of the potential of
lattice, and frequencyv0 characterizes the amplitude o
variation of this potential. Figure 2 illustrates how the ma
nitude ofv0 reflects the character of interatomic bonding
the material. In the case where the interaction between at
is directionless~case A of Fig. 2!, the motion of the string
with respect to the surrounding lattice gives rise to a re
tively small variation of the total energy of the system. T
effective value of parameterv0 corresponding to case A
shown in Fig. 2 is therefore relatively small. However, in t
limit where the interaction between atoms is highly dire
tional ~case C shown in Fig. 2!, the motion of the defect is
characterized by a large value ofv0.

Introducing the displacementun(t)5xn(t)2an of thenth
atom from its equilibrium position in the string, from Eq.~4!
we find equations of motion of atoms in the string
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THERMAL MOBILITY OF INTERSTITIAL DEFECTS IN . . . PHYSICAL REVIEW B65 224105
m
d2un

dt2
5a~un111un2122un!2

mv0
2a

2p
sinS 2pun

a D .

In the limit of slowly varying displacement fieldu(x,t)
'u(xn ,t)[un(t) these equations can be tranformed into
sine-Gordon equation23

m
]2u

]t2 5aa2
]2u

]x2 2
mv0

2a

2p
sinS 2pu

a D . ~6!

A soliton solution of this non-linear equation, describing
glissile interstitial defect moving uniformly in the positiv
direction ofx, is given by21,22

FIG. 2. Sketches illustrating how the directionality of inte
atomic bonding affects the behavior of the energy of an ato
system considered as a function of the displacement of atoms o
mobile string~shown in the center of each sketch! with respect to
the surrounding lattice. The effective potentialV(x1 , . . . ,xn , . . . )
given by Eq.~5! varies stronger as a function ofxn in the case C
than it does in the case A. Note that although the structure of in
stitial defects depends on parameters characterizing the shape
potential function~5! only in the form of dimensional combinatio
N5c/v0a ~see Fig. 3 below!, the coefficient of thermal frictiong
cannot be expressed as a function ofN alone, see formula~24!.
22410
e

u~x,t !5
2a

p
arctanS expH 2

v0@x2X~ t !#

Ac22V2 J D , ~7!

whereX(t)5Vt is the coordinate of the center of the defe
V is its velocity, andc5(aa2/m)1/2 is the speed of sound
The field of displacementsu(x,t) given by Eq.~7!, satisfies
boundary conditionsu(2`,t)5a and u(`,t)50, and de-
scribes the case where the string contains one extra ato

To assess how well solutions of the Frenkel-Kontoro
model describe the structure of interstitial defects in real m
terials, in Fig. 3 we plotted the field of atomic displaceme
evaluated for two types of interstitial defects~a crowdion and
a double crowdion! using molecular dynamics simulation
carried out for a system containing approximately 30 0
atoms. For comparison, in the same figure we also plo
the field of displacements calculated analytically using
pression~7!. Ratioc/av0 represented the only adjustible p
rameter of the model and the comparison involved no res
ing of analytical solution~7!. The good correspondenc
between values obtained by using numerical molecular
namics simulations and by solving the Frenkel-Kontoro
model confirms the validity of the analytical solution~7!.
Note the substantial degree of spatial delocalization of in
stitial defects shown in Fig. 3. Results plotted in Fig. 3 a
illustrates an important point that it is not the value ofv0

itself but a dimensionless combinationN5c/v0a of param-
eters of the Frenkel-Kontorova model~4! that characterizes
the structure of an interstitial defect in a given material. P
rameterN has a simple meaning, namely, it equals the eff
tive number of atoms participating in the formation of th
crowdion.

In the presence of thermal phonon excitations in the
tice surrounding the defect, positions of minima of the p
tential of the lattice~5! undergo random displacements a
the equation of motion of the string acquires the form

m
]2u

]t2 5aa2
]2u

]x2 2
mv0

2a

2p
sinH 2p@u~x,t !2j~x,t !#

a J , ~8!

wherej(x,t) describes the field of acoustic phonon displac
ments of the lattice. The field of phonon displaceme
j(x,t) vanishes after averaging over the thermodynam
equilibrium^j(x,t)&T50. Note that at low temperatures on
the long wavelength acoustic phonons are excited with
preciable probability25 and it is in this temperature limi
where the motion of an interstitial cluster can be treated
one dimensional.

Looking for a solution of this equation in the form
u(x,t)5u0@x2X(t)#1F(x,t), whereu0@x2X(t)# is given
by Eq.~7! and whereX(t) is now assumed to be an arbitra
function of timet, and retaining terms linear and quadratic
F(x,t) andj(x,t), we obtain
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S. L. DUDAREV PHYSICAL REVIEW B 65 224105
FIG. 3. The structure and the displacement field of two inter
tial defects in bcc iron. The structure shown at the top results fr
embedding a single extra atom in the string marked by the star
the subsequent relaxation of the entire crystal. The structure sh
in the bottom figure results from embedding two extra atoms in
two adjacent atomic strings. Only atoms with potential energy
ceeding by 0.01 eV the average potential energy of an ideal la
are shown. In the graph shown in the middle circles indicate p
tions of atoms in the corresponding crystal structure. Solid cur
were calculated using Eq.~7! assumingc/v0a52.11 in the case of
a single andc/v0a52.34 in the case of a double crowdion.
22410
u09@x2X~ t !#S dX

dt D
2

2u08@x2X~ t !#S d2X

dt2 D1
]2F

]t2

5c2
]2F

]x2 2v0
2@F~x,t !2j~x,t !#H 122 sech2Fx2X~ t !

l 0
G J

1
4pv0

2

a
@F~x,t !2j~x,t !#2 tanhFx2X~ t !

l 0
G

3sechFx2X~ t !

l 0
G , ~9!

wherel 05c/v0. Bearing in mind the treatment of Brownia
motion of the defect, we assume that the velocity of t
defectdX/dt is small in comparison with the speed of sou
c in the material.

In Eq. ~9! the term proportional toj(x,t) plays the part of
a random force disturbing the motion of atoms in the str
and giving rise to stochastic time-dependent fluctuations
the position of the center of the interstitial defect. Functi
F(x,t) describes phonon excitations in the string itself.

To obtain a closed equation describing the motion of
center of the defectX(t), we use an approach analogous
the conventional quantum-mechanical perturbat
theory.26,22Consider a linearised equation describing phon
excitations of the string for a given positionX of the center
of the defect

]2F

]t2 5c2
]2F

]x2 2v0
2F~x,t !H 122 sech2Fx2X

l 0
G J . ~10!

A general solution of this equation has the form

F~x,t !5A0F0~x!1E
2`

` dk

2p
AkFk~x,t !, ~11!

where

F0~x!5sechS x2X

l 0
D ,

and

Fk~x,t !5Fkl01 i tanhS x2X

l 0
D Gexp~ ikx2 ivkt !.

Here Fk(x,t) are the internal phonon modes of the stri
characterized by the dispersion relationvk5v0A11(kl0)2,
andF0(x) is the Goldstone mode describing translations
the center of the defect along the string.21 Note that
limk→0vk5v0.0, and therefore there are no acous
modes in the spectrum of vibrational excitations of the str
itself.

By multiplying Eq.~9! by F0(x), integrating it overx and
taking into account the orthogonality27 of functions F0(x)
andFk(x,t), we obtain a closed equation describing the m
tion of the center of the defect in the presence of an exte
phonon displacement field28,29,22
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m*
d2X

dt2
5

mv0
2

p l 0
E

2`

`

dx sechS x2X~ t !

l 0
D

3F122 sech2S x2X~ t !

l 0
D Gj~x,t !1

4mv0
2

al0
E

2`

`

dx

3tanhS x2X~ t !

l 0
D sech2S x2X~ t !

l 0
D j2~x,t !, ~12!

wherem* 5m(2a/p2l 0) is the effective mass of the defec
In the case where the degree of spatial delocalization of
defect is substantiall 0@a, the effective mass of the defec
m* is many times smaller than the massm of an individual
atom. Note also that in the case where the fluctuating forc
associated with phonon excitations in the lattice surround
the defect, we only retain terms that are linear and quadr
in the displacement fieldj(x,t). For comparison, in the cas
where the defect interacts with the field of internal phon
excitationsF(x,t) of the string itself and where the extern
potential of the lattice~5! is assumed to remain unaffected b
thermal fluctuations, the first nonvanishing contribution
the force acting on the defect is proportional to the th
power of the amplitude of phonon displacements.30,29

Consider the process of creation or annihilation of
acoustic phonon by an interstitial defect. Energy conser
tion requires thatep1\ f2ep2\cu f u50, wheref is the pro-
jection of the wave vector of the phonon on the direction
motion of the defect andep5p2/2m* . In the limit of smallf
this is equivalent to the conditionp/m* 5c, which is impos-
sible to satisfy in the case where the defect performs s
thermal Brownian motion. It is therefore only the secon
order two-phonon term in Eq.~12! that gives a nonvanishing
contribution to the friction force.

The field of displacementsj(x,t) associated with an
acoustic phonon mode propagating in the lattice surround
the soliton has the form

jk~x,t !5ck exp~ ikx2 icukut !. ~13!

Since in the Frenkel-Kontorova model~4! we only consider
displacements of atoms in the direction of the string a
neglect displacements in the plane normal to the axis of
crowdion, only the projection of the phonon displaceme
field on thex axis needs to be retained in Eq.~13!. Substi-
tuting Eq.~13! into Eq. ~12! we find

m*
d2X

dt2
5 i

pmv0
2

a F ckck8

~k1k8!2l 0
2

sinhS p

2
~k1k8!l 0D

3exp@ i ~k1k8!X~ t !2 ic~ uku1uk8u!t#

1ckck8
*

~k2k8!2l 0
2

sinhS p

2
~k2k8!l 0D exp@ i ~k2k8!X~ t !

2 ic~ uku2uk8u!t#1c.c.G . ~14!
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We now introduce a fully three-dimensional field of ph
non excitations and note that the right-hand side of Eq.~14!
can be represented in a conventional form as a gradie
2]U(X,t)/]X of an effective interaction potential, the se
ond quantized matrix element of which is equal to

Û~x,t !5V
pmv0

2l 0
2

2%ca (
a,a8

E d3f d3f 8

~2p!6
exp@ i ~ f•n1f8•n!x#

3
~ f•n1f8•n!

sinhFp2 l 0~ f•n1f8•n!G
\

Aufuuf8u
~ef,a•n!~ef8,a8•n!

3@ â2fa
† âf8a8 exp@2 ic~ uf8u2ufu!t#

1âfa
† â2f8a8 exp@ ic~ uf8u2ufu!t##. ~15!

To obtain Eq.~15! we used the second quantized represen
tion of the projection of the phonon displacement field on
directionn of the axis of the string~see Ref. 31!

ĵ~x,t !5V(
a

E
BZ

d3f

~2p!3A \

2%cufuV

3@~ef,a•n!âf,aei f•nx2 icufut

2~ef,a* •n!âf,a
† e2 i f•n1 icufut#, ~16!

where the summation is over branches of the acoustic p
non spectruma, V is the volume of the crystal,% is the
mass density of the material, and BZ denotes integra
over the Brillouin zone. In Eq.~16! ef,a is the vector of
polarization of theath branch of the phonon spectrum, an
âf,a and âf,a

† are the annihilation and creation operators
phonons in the normal mode (f,a). The minus sign before
the second term in the right-hand side of Eq.~16! takes into
account the change in the sign of the projection of the d
placement field on the direction of propagation of the def
in the crystal.

In Eq. ~16! we approximate the field of phonon displac
ments by a superposition of acoustic excitations propaga
in all directions with the same velocityc that is assumed to
be independent of the direction of polarization of a phon
mode. This approximation neglects the difference betw
longitudinal and transverse phonons. It is important to ta
this difference into account, for example, in the treatment
surface Rayleigh waves.32 However, in the case where onl
scattering by bulk phonons is involved, contributions fro
longitudinal and transverse phonons to the correlation fu
tion of atomic displacements are qualitatively similar~see,
e.g., formula~23! of Ref. 32! and this justifies the use o
approximate representation~16!.

Having obtained the explicit form of the Hamiltonian o
interaction between an interstitial defect and phonon exc
tions in the lattice surrounding the defect, we can now der
the quantum kinetic equation for the density matrix of t
5-5



tic

il
e

io
e
ra
ti
rm
io
on

n
b-
ct
t

in

r

to
t

le

an
f

ec
em
ive

ose

r-
the
o
of

ky.

S. L. DUDAREV PHYSICAL REVIEW B 65 224105
defect. Considering the Fokker-Planck limit of this kine
equation, we shall find the coefficient of thermal frictiong
entering the Langevin equation~1!.

Before proceeding further, we note that although a mob
interstitial defect is a classical object, a consistent treatm
of the interaction between the defect and phonon excitat
requires using a quantum-mechanical approach. This st
from the fact that in many materials even at room tempe
ture it is necessary to take into account the Bose statis
obeyed by phonons. We also note that the process of the
equilibration of the defect is accompanied by the emiss
and absorption of phonons, and here effects of n
Boltzmann statistics play an important part, too.

III. KINETIC EQUATION FOR THE DENSITY MATRIX

We now derive the quantum kinetic equation for the de
sity matrix of the mobile interstitial defect. Since in the a
sence of an external random force the motion of the defe
uniform, it is convenient to use the momentum represen
tion of the density matrix and write the Liouville equation
the form

i\
]

]t
r~q,q8,n,l ,t !5~eq2eq81En2El !r~q,q8,n,l ,t !

3E dk

2p (
f

@^nuÛku f &

3r~q2k,q8, f ,l ,t !

2r~q,q81k,n, f ,t !^ f uÛku l &#, ~17!

where the energy of the defecteq is related to its wave vecto
q5p/\ via eq5\2q2/2m* . En is the energy of thenth ex-
cited state of the phonon subsystem of the crystal. In Eq.~17!

Ûk is a matrix element of the Hamiltonian corresponding
the exchange of momentumDp5k/\ between the defec
and the phonon sybsystem of the crystal.

To obtain a self-consistent equation for the diagonal e
ments of the one-particle density matrix of the defect

r~q,q8,t !5Trphr̂~ t !5(
n

r~q,q8,n,n,t ! ~18!

we follow a conventional procedure~see, e.g., Refs. 33,34!
and assume that the density matrix entering the right-h
side of the kinetic equation is representable in the form o
direct product of the one-particle density matrix of the def
and the equilibrium density matrix of the phonon subsyst
of the crystal. After some relatively lengthy algebra we arr
at

]

]t
r~q,t !5E dkE dvS~k,v!d~eq1k2eq2\v!r~q1k,t !

2E dkE dvS~k,v!d~eq1k2eq1\v!r~q,t !,

~19!

where the structure factorS(k,v) is given by
22410
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S~k,v!5\S pml0v0
2

%ca D 2 ~kl0!2

sinh2S pkl0
2 D EBZ

d3f d3f 8

~2p!5

3d@k2~ f•n1f8•n!#
1

ufuuf8u
n̄f~ n̄f811!

3d@v2c~ uf8u2ufu!#. ~20!

In this equation the equilibrium numbern̄f of phonons occu-
pying a given modea is independent ofa and is equal to

n̄f5^âfa
† âfa&T5

1

exp~\cufu/T!21
.

Taking the Fokker-Planck limit of Eq.~19!

]

]t
r~q,t !5

]

]qFBS \2q

m* T
r~q,t !1

]

]q
r~q,t ! D G , ~21!

where

B5S ml0
2v0

2

%ca D 2E
BZ

d3f d3f 8

~2p!5

~ f•n1f8•n!4

sinh2Fp2~ f•n1f8•n!l 0G
3

1

ufuuf8u
n̄f~ n̄f811!d@eq1(f•n1f8•n)2eq2\c~ uf8u2ufu!#

~22!

and comparing it with Eq.~3!, we obtain the coefficient of
thermal frictiong,

g5
\2B

m* T
. ~23!

In the high-temperature limitn̄f'T/\cufu@1 by carrying out
integration in Eq.~22! we find

g51.06v0S av0

c D 3S T

mc2D lnS 2pc

v0a D . ~24!

In the low-temperature limitTa/\c!1 ~this limit corre-
sponds to the case where effects associated with the B
statistics of phonons are significant! we obtain that

g55.53
\v0

amcS Ta

\cD 4

. ~25!

In the high-temperature limit~24! the friction coefficient de-
pends on parameterv0 characterizing the strength of inte
action between atoms of the string and the potential of
lattice ~5! asg;v0

4. This functional dependence is similar t
that known from the treatment of the Rayleigh scattering
light by density fluctuations in the atmosphere,35 where the
v0

4 dependence is responsible for the blue color of the s
5-6
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IV. DISCUSSION

Consider the classical high-temperature limit~24!. The
average lengthLT of random thermal displacements of th
defect is given byLT;vTt, wherevT;(T/m)1/2 is the aver-
age thermal velocity of atoms in the crystal@note that ac-
cording to Eq.~7! the defect propagates through the crys
lattice as a free quasiparticle# andt;g21 is the average time
over which the defect retains memory about its direction
motion. Substituting expression~24! in this formula, we ob-
tain an estimate for the average length of a thermal jump

LT;aS c

vT
D S c

v0aD 4

. ~26!

Considering thermal motion of an interstitial defect at roo
temperature, wherevT;104 cm/s andc/vT;10, and using
data shown in Fig. 3, we obtain that Brownian motion o
single crowdion may involve correlated jumps that are
large as 102 interatomic distances. Long-range jumps of d
fects have indeed been observed in molecular-dynam
simulations~see, e.g., the analysis performed by Wirthet al.3

and Fig. 10 of Ref. 5!, but the typical scale of these jumps
approximately one order of magnitude smaller than that p
dicted by formula~26!. This shows that formula~24! may
underestimate the value of the thermal friction coefficieng
by approximately one order of magnitude. This inaccura
may partly be associated with the very strong functional
pendence of the friction coefficient on parameters charac
izing interatomic interactions in the material. For examp
LT given by Eq.~26! depends on the speed of sound in t
material asLT;c5 and on frequencyv0 characterizing the
degree of directional bonding in the material asLT;v0

24.
This strong functional dependence makes it difficult to o
tain accurate numerical values ofLT directly from Eq.~26!.

There is an additional important point that needs to
taken into account when applying results obtained using
continuous displacement field approximation~6! to the inter-
pretation of molecular dynamics simulations. It is the effe
of discreteness of the lattice on the dynamical behavior
solutions of the Frenkel-Kotorova model~4!. On one hand,
discreteness leads to trapping of interstitial defects in
lattice at sufficiently low temperatures. Indeed, the treatm
of the discrete Frenkel-Kontorova model~4! gives rise to the
Peierls-Nabarro potential barriers.36,37 By substituting solu-
tion ~7! into Eq.~4!, we obtain that the energy of the movin
defect is equal to

E5m* c21
m* Ẋ2~ t !

2
18mc2 expS 2

p2c

v0aD cosS 2pX~ t !

a D .

~27!

The third~periodic! term in the right-hand side of this equa
tion is the Peierls-Nabarro potential energy of the defect
low temperatures mobile interstitial defects are trapped in
minima of the Peierls-Nabarro potential. The height
Peierls-Nabarro barriers is given by

EPN516mc2 expS 2
p2c

v0aD . ~28!
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This equation shows that the smaller the effective value
v0 the lower are the Peierls-Nabarro potential barriers~28!
and the larger is the average length of random thermal jum
of the defect~26!. The limit c/av0@1 corresponds both to
low Peierls-Nabarro barriers and also to low thermal fricti
experienced by defects performing random Brownian mot
in the lattice. This observation correlates well with results
recent molecular dynamics simulations5 performed using di-
rectionless embedded atom many-body potentials and sh
ing relatively low (;0.025 eV) activation energies corre
sponding to the translational motion of interstitial clusters

The discreteness of the original Frenkel-Kontorova mo
~4!,~5! gives rise to an additional channel of scatteri
through which a moving defect may dissipate energy to p
non excitations.22,38Although this type of scattering has no
been included in the treatment described above, it may c
tribute to the rate of dissipation of energy of a moving def
giving rise to a larger value of the friction coefficientg than
that estimated on the basis of equations~24! and ~25!. The
dependence of the friction coefficient on parameterv0 asso-
ciated with this additional channel of scattering is likely
be qualitatively similar to that characterizing scattering
thermal fluctuations, but the temperature dependence of
contribution to the friction coefficient arising from the dis
creteness of the model may be different from that given
Eq. ~24!.

The fact that the coefficient of thermal frictiong shows
strong dependence on parameters characterizing the int
tion between atoms in the material and in particular to
value of frequencyv0, may offer some insight into the origin
of the long-range effect observed in experiments on
implantation.39–41 Experimentally it is observed that th
depth characterizing radiation damage induced by the i
dent high-energy ions in fcc metals may exceed many tim
the range of ions in the material. The long-range effec
also observed, though in a somewhat weaker form, in
metals but it is almost absent in silicon. Assuming that int
stitial defects formed in collision cascades occurring near
surface diffuse into the bulk of the material, we may reas
ably expect that the depth characterizing the long-range
fect should be inversely proportional to the coefficient
thermal frictiong. It is known that the degree of directiona
bonding increases from fcc through bcc to diamond-struct
materials.42 Given the strong functional dependence of t
thermal friction coefficient on the type of interatomic bon
ing, the conclusion that thermal friction is greater in mate
als characterized by a substantial degree of directional bo
ing agrees with what is found in experimental investigatio
of the long-range effect in ion implantation. Furthermore, t
same experimental data suggest that there may be a con
tion between the presence of directional bonding in b
metals42 and their higher swelling and creep resistance un
irradiation.43

V. SUMMARY

By using the analytically solvable Frenkel-Kontorov
model we investigated how a mobile interstitial defect int
acts with phonon excitations in the lattice, and how this
5-7
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teraction gives rise to the random one-dimensional Brown
motion of the defect. We found that in the case where
degree of spatial delocalization of the defect is significant
motion is characterized by low thermal friction. This corr
lates well with recent observations of unusual statistics
displacements observed in molecular dynamics simulat
of Brownian motion of interstitial defects.3–5 Our model also
shows that parameters characterizing the dynamical pro
ties of interstitial defects are sensitive to the degree of dir
tionality of interatomic bonding in the material, pointing
the significance of using accurate models of interatom
ter
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.
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forces in predictive modelling of microstructural evolution
irradiated materials.
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