RAPID COMMUNICATIONS

Violation of the Wiedemann-Franz law in a largeN solution of the t-J model

PHYSICAL REVIEW B, VOLUME 65, 22050&R)

A. Houghton, S. Lee, and J. B. Marston
Department of Physics, Brown University, Providence, Rhode Island 02912-1843
(Received 8 March 2002; published 28 May 2p02

We show that the Wiedemann-Franz law, which holds for Landau Fermi liquids, breaks down in a large-
treatment of the-J model. The calculated ratio of the in-plane thermal and electrical conductivities agrees
quantitatively with experiments on the normal state of the electron-doped®gCuQ, (x=0.15) cuprate
superconductor. The violation of the Wiedemann-Franz law in the uniform phase contrasts with other proper-
ties of the phase that are Fermi liquid like.
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A recent experiment that measured the electrical and theRefs. 4—6. Implementing the single-occupancy constraint by
mal conductivities of the copper-oxide superconductorintroducing slave-boson operatdss, thet-J model may be
Pr,_,CeCuQ, in its normal state found striking deviations written
from the Wiedemann-Franz law.Simply stated, the
Wiedemann-Franz law says that fermion quasiparticles trans- . "
port both electrical and heat currents, with the ratio of the H=-t> (c| bicj.bj+H.c)

U X . . (.j)
heat conductivityx to the electrical conductivity given by
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Ordinary Landau Fermi liquids respect the Wiedemann. Number and spin operators are related to the electron cre-
Franz law, so deviations from it indicate the presence ofition and annihilation operators bg=c'“c;, and S
non-Fermi liquid physics. The results of Ref. 1 are therefore:—(1/2)cI afc,ﬂ, where there is an implicit sum over pairs
broadly consistent with other experimental evidence thabf raised and lowered Greek indices. The single-occupancy
points to non-Fermi liquid behavior in the cuprate phase diaconstraint is now holonomicbiniJrciT“cia:l, with the
gram. physical meaning that only a hole, or a single electron, may
One possible interpretation of the breakdown of theoccupy each site of the latticén the following we generally
Wiedemann-Franz law is that the quasiparticle fractionalizesefer to hole doping with the understanding that our calcula-
into separate carriers of charge and spin. To see what effecfi®ns apply equally well to electron doped systenhscluded
such fractionalization might have, consider first heat transin Eq. (2) is the off-site Coulomb repulsio¥(r); however,
portin a system of weakly interacting electrons, which couldin the uniform and staggered flux phases discussed below it
be viewed as a crude approximation to electrons in thelays no role other than to contribute an additive constant to
highly overdoped region of the cuprate phase diagram. Thehe total energy.
electrons transport both charge and heat. The electrical con- Because spin-exchange involves no net flow of charge,
ductivity is given by the Drude formula=ne’s/m and the  electrical current only arises from the hopping term. The
thermal conductivityx=T because while each quasiparticle continuity equation relates the time rate of change of the
carries fixed charge, it only carries an energy of order the occupancy on a given site to the lattice divergence of the
temperature. Next consider a model for the undoped cueurrent flowing into the site:
prates: the Nel ordered antiferromagnetic insulator with

1 I
i +E 2 V(lri_rj|)ninj .
3

zero electrical conductivity. Phonons and spin waves trans- dni(t) I
port heat, and as both excitations are bosonic in character e*J—=—i*e*[nj H]=— 2 M 3)
with linear dispersions at low energy, each contributes simi- dt e=xy a

larly, yielding a thermal conductivityo: T3,

Leaving aside these ordinary states of matter, consider th&
case in which the spins in the insulator, instead of ordering, o . s
fractionalize into spinons with an extended Fermi surface Jj jre= Tlextrax(ci"bjcjig.b; s —H.C) (4)
and a nonzero density of state§Now spins transport heat A
in much the same way as charges do in the noninteracting the electric current flowing from sijeinto sitej +e along
electron system, witlkkeT. The Lorenz ratio is infinite, and the link connecting the two sites. We emphasize that neither
remains significantly larger than 1 upon doping with holes orthe spin-spin exchange interactidmor the Coulomb inter-
electrons. action V(r) appear in the expression for the electrical cur-

Just this scenario is predicted in a lamgéreatment of the  rent. This result, which is a direct consequence of the gauge
t-J model on the square lattice. We follow the approach ofinvariance of the spin-exchange and Coulomb interactions in

herea is the lattice spacing between copper atoms. Thus
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our microscopic calculation, contrasts with that obtainedphase with counter-circulating orbital curréht$® occurs
recently within the more phenomenologicald‘density for x<0.12, that is, in the underdoped region of the phase

wave” picture® diagram.(The biquadratic interaction which simultaneously
The heat current?H;3 can be found by taking the time exchanges four fermions disappears in the physical
derivative of the Hamiltonian density: limit of up and down spins, and thus does not alter the phys-
ics of thet-J model®) More realistic models include nonzero
dhy(t) ngJ'*'é_.Jg—éJ next- and third-nearest neighbor hopping amplit&ﬁémt
T —2 T (5) these terms do not qualitatively affect the phase diagram or
e=x\y transport behavior.
where The expressions for the two currents simplify in the large-

n limit. As the boson operators may be replaced by the
5 = c-numbery/x, the electrical current becomes
hi= X (—tc/*bicjb/+H.c)+IS-S (6 W

iy jT o= —iextrxxax (¢ cj 5, — H.C). (10)
and the sum is only over the four siteghat are nearest- e
neighbors of sitgf. We have dropped the;n; interaction ~Upon further replacing the fermion bilinear operatr}f“cja
terms. These do not contribute to the dc thermal conductivitwvith (n/J)x, the heat current also simplifiés:

becausén;) remains unchanged in the presence of currents.

However, in contrast to the electrical current, the heat current jjq‘j_'_é: (trX+ x)* a* (¢ “0,Cj 1 2o+ H.C). 1Y
has contributions both from hopping, and from spin- . .
exchange: As the heat current dlffers_ only_ by the _@<+X) prefac_tor
from that of a noninteracting tight-binding system, in the
J?i+é:t* a*[C}Labjﬁt(CHéabHé)*' H.c] low-temperature limit the Lorenz ratio for in-plane transport
’ is simply
+ A ta 9:Ci.n )bl 2 (ka2 2
2 [Cj ( th+ea)Cj+eCjﬁ L:W_ Ke) ", X+ x (12)
. ol 3 \e tx
+¢/Cj 4 2a(d1C; | )1 ] (7)

Thus for anyy# 0 the ratio differs from unity, indicating a
breakdown of Fermi liquid theory. Note that all details of the
scattering mechanisms cancel out in the ratio. Direct calcu-
lation of the two conductivities in linear response shows that
the integrals over momentum have identical form. Only the

channel. Formally this factorization is implemented via afrequency integrals differ; hence for static impurities in the

Hubbard-Stratonovich transformation within the functionalV"eak'scattering,Iimit the Lorenz ratio ?S given by HG2).
integral approach. Complex-valued mean fields along thdVe note that while the order paramejers perturbed by the

The model generalizes from the physical casaef2 (up
and down spinsto arbitrary (even integer values ofn by
letting the Greek indices run over, 1 . n. In the largen
limit the spin-spin interaction factorizes in the particle-hole

bonds are introduced: application of external electric fields or thermal gradients,
the perturbation iny does not alter the dc responée.
J o, In the SF phase the fields are complex numbefs® and
Xij =1 (€ “Cja)- (8)  the prefactor {x+ )2 should be replaced bigx+ y|2. Spe-

cifically, for y=|x|exp(6), with phased, the Lorenz ratio
The xj; fields function as the order parameter, and as they argeneralizes
spin-rotation invariant, there is no possibility of &eor
other spin order, and the mean-field Hamiltonian respects L (tx)2+|X|2+ 2tx| x|cog 6)
spin-rotational symmetry. Furthermore, at sufficiently low L_o: (tx)2 ' (13
temperatures th@olon) boson fields condendeand we may
make the replacemetii=b! = \x, wherex is the hole den- Where L=«/(sT) and Lo=(7"/3)(kg/e)*~2.45

sity. The mean-field Hamiltonian, which is exact in the <10 *WQK™? s the Lorenz number. .
—o limit, then takes the form We turn now to a comparison of our predictions, EG%)

and(13), with experiments. In Fig. 1 we plot the Lorenz ratio
n ) ta as a function of the doping. As expected, the ratio diverges as
HMF:%:> 3 [ xij|* = (X xip (e CiptH.C) | (9 the insulating limitx— 0 is approached because the spinons
’ transport only heat, not charge. In the opposite limit of large
For parameters appropriate to the cuprates).44 eV(fol-  dopingxy—0, and the ratio approaches unity. Landau Fermi
lowing Hybertsenet all® and J=0.13 eV (obtained by liquid theory is recovered in the dilute limit of widely spaced
Singh et al!?), the minimum energy configuration hag; electrons. We emphasize that the uniform phase yititon-
both real and constant when the doping exceed$.12.  stant and real does not break any symmetries. It exhibits
There are no broken symmetries in this “uniform” phase.weak pseudogap behavior because, according to the mean-
Upon suppressing dimerization with the addition of a biqua-field equations|y| increases slightly in size at low tempera-
dratic spin-exchange interactiont? a staggered flu{SP  tures, which in turn increases the quasiparticle bandwidth
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FIG. 1. The Lorenz ratigEgs. (12) and (13)] as a function of FIG. 2. The Lorenz ratigEgs. (12) and(13)] as a function of

temperature at dopings=0.06, 0.15, and 0.26 far=0.44 eV,J
=0.13 eV. In the underdoped=0.06 case there is a transition to
the staggered flux phase at a temperature of approximately 300 K.

the doping fort=0.44 eV, J=0.13 eV. The ratio approaches
unity in the dilute limit,x—1.

[see Eq(9)] and decreases the density of std@6S).® For 0.3 K is again in reasonable quantitative agreement with the
example, at a hole concentration 0%x=0.15, |x| theoretical value of 1.95. At temperatures below 0.18 K,
=0.024 eV atT=500 K rising to|y|=0.026 eV at zero however, the experimentally determined ratio drops rapidly
temperature; consequently the DOS drops by 2%. This corbelow 1. We have no explanation for the observed behavior
trasts with the strong pseudogap behavior of the SF phasat the lowest temperaturéb.
which has a gap along most of the Fermi surface and which Finally, in the highly overdoped regime Proust al??
breaks time reversal invariance. In either phase, however, theave studied the JBa,CuQ;, ;s material at a hole concen-
fermionic quasiparticles are noninteracting in the- limit  tration ofx~0.26. Superconductivity was suppressed in a 13
and hence behave as long-lived Landau quasiparticles sudhfield, andL/L,=0.99+0.01 in good agreement with the
as those found in ordinary Fermi liquids. Wiedemann-Franz law for Fermi liquids. The theoretical
We note that the Wiedemann-Franz law is strongly vio-value of the ratio is 1.5. We speculate that the persistence of
lated ins-wave superconducting states because while Coopaton-Fermi liquid behavior at large doping in the mean-field
pairs carry charge, the condensate has no entropy. In taeory is an artifact of the large-approximation. Finita
d-wave superconductor, quasiparticle excitations at the nodeasbrrections could possibly restore Fermi liquid behavior in
result in a modified Wiedemann-Franz [&wThe violation  the overdoped region. At large dopifg is small compared
that we find occurs in the normal state, and is a consequencs the effective hole hopping amplitude, so fluctuations in
of the spin-charge separation inherent in the largmlution ) may be expected to be relatively more important than at
of the t-J model, and not of any incipient superconducting low doping.
tendencies. In summary we have shown that the Wiedemann-Franz
In Fig. 2 we plot the temperature dependence of the Lotaw is violated in a mean-field treatment of the model.
renz ratio for three dopings at which transport experiment©ur analysis, which holds for weak scattering, is exact in the
have been conducted=0.06, 0.15, and 0.26. For a single n—c limit. The Lorenz ratio is significantly larger than 1
crystal of the La_,Sr,CuQ, material with hole dopingx  both in the uniform phasex(>0.12) and in the SF phase
=0.06, the resistivity was measured upon suppressing thgx<0.12). The theoretical prediction is in reasonably good
superconductivity by application of a 18 T magnetic field quantitative agreement with existing experimental measure-
along thec axis?® The thermal conductivity was, however, ments on the cuprate materials.
measured in the superconducting state, so it is not possible to After this work was completed a paper by Kim and Car-
extract a real Lorenz ratio. Nevertheless it is intriguing thathotte (KC) appearetf that examined the Wiedemann-Franz
L/Lo~5 at low temperatures, based on the numbers appeafaw within the context of the phenomenologiadddensity
ing in the inset to Fig. 3 of Ref. 20. This compares reasonwave picture. There are several differences between their
ably well with the theoretical value of 4.1 seen in Fig. 2. work and ours. The main difference is that we study both the
At optimal doping, experimentally available magnetic uniform phase which has no broken symmetries, and the SF
fields can only eliminate superconductivity in electron-dopedor d-density phase with time-reversal breaking counter-
compounds. In Refl a 13 T field was applied to circulating currents. We find that the Lorenz ratio is signifi-
Pr,_,CgCuQ, at x=0.15 to access the normal state. Thecantly larger than 1 in both phases. Furthermore, at low tem-
measured ratio olL/Ly~2 found at temperatures above peratures KC find only small deviations from the
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Wiedemann-Franz law. This is due in part to the fact thalarge temperature variation in the Lorenz ratio for the case of
their d-density order parametéthe analog of oury;;) was  strong scattering because the quasiparticle lifetime has a
chosen to be purely imaginarfequivalent to settingg  strong frequency dependence.

= /2 in our Eq.(13)] and also because their kinetic energy  we thank John Fjeerestad and Louis Taillefer for helpful

is not rescaled by the slave-boson doping factogs itis in  comments. This work was supported in part by the NSF un-
our microscopic analysis of thed model. KC also find a der Grant No. DMR-9712391.
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