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Displacement field inside a spherical dislocation cage and the Eshelby tensor
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The elasticity problem of a transformed inclusion constrained in an infinite matrix is solved by considering
a dislocation cage made of uniformly stacked dislocation loops. The displacement, strain and stress are found
using the Burgers’ equation, directly yielding the Eshelby tensor. The model provides an alternative physical
picture and solution of the transformed inclusion problem to Eshelby’s method, and compares directly with
transformations produced by a dislocation mechanism.
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INTRODUCTION these loops in the samplincludes the stress field inside the
dislocation cage; the dislocations enveloping the sample are
When a small volume of material, inside a large matrix,the unbalanced loops/dipoles on the surface.
transforms, its displacements are constrained by the sur-
rounding matrix. The elastic field in and around the trans-
formed volume is important to the understanding of a range We consider a large number of circular dislocation loops
of solid-state phenomenon, such as solid-state phasstacked uniformly along theaxis in the form of a spherical
transformations;* the onset of slip under high stresse§, cage, as illustrated in Fig. 1. The dislocation loops have the
composite materiaf$,and defects in crystald. The elastic same Burgers’ vectob on which no restriction is placed.
field inside a transformed inclusion is the key to the imageWhenb is in the loop plane, i.e., shear loops, the cage cor-

stress in the cooperative nucleation of shear dislocatiofésponds to a uniformly sheared inclusion. Whefs per-
loops® pendicular to the loop plane, i.e., prismatic loops, the inclu-
Eshelby12 calculatedsﬁ, the constrained strains inside S|Qtr;]’sthtransfo:ma:c|oln is uniaxial d|Iat||c:n orf comgreSSIton_.
a transformed inclusion, and related them to the stress-fred! ree sets of loops, any general transtormation strain
C can be represented. We will examine just one set of loops.

. . T .
tiaznsformTan(')_'n stlrallns 833 bby, a tgnsor: S "IT" Igii The displacement field from more than one set can be found
=SS ey - He calculateds by imagining the small volume iy o1 "summetry and superposition.

to be cut out of the matrix, transformed, returned to its origi- 14" find the displacement, we start with the Burgers’
nal form elastically, welded back into the matrix, and thengquatio* which gives the total displacement mtdue to a
released. The Eshelby tensor has been calculated and taligmplete dislocation loop
lated for inclusions of various shap¥s.
In this paper we give an alternative solution for the inclu-
sion problem and for finding the Eshelby tensor. This ap-
proach, mentioned in passing but not used by Eshélisyto
consider the transformation to ocdarsitu by the nucleation
and growth of dislocation loops. The transformed inclusion e
constrained in the matrix is surrounded by a cage made of
uniformly stacked dislocation loopga spherical cage is
shown in Fig. ). The constrained displacement and strains
are found directly using the Burgers’ equation for dislocation
loops. When the Burgers’ vector and plane spacing are small,
i.e., the transformation is homogeneous, the results agree ex-
actly with Eshelby’s calculations. This method gives identi-
cal results as Eshelby without invoking the cutting and weld-
ing procedure, and provides another physical picture for the
problem. The picture is particularly valuable when the trans-
formation is produced by a dislocation mechanism. For ex-
ample, if a volume within a large solid were sheated)., by
glide or by twinning then the dislocations in the cage are the
actual dislocations which accomplished the shear. For a finite FIG. 1. A transformed inclusion is surrounded by a cage of
sample containing a large number of dislocation loops, thelislocation loops stacked uniformly and having the same Burgers
mean-field stress that drives the cooperative nucleation ofectorb.

RESULTS
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b ((r'=r)-dA’ 1 bxdl’ tails for finding these integralsThe total displacement at
uc(r)= in T i fﬁ [ —r] any pointr inside the sphere is therefore
nb n
1 bXx(r'=r) US(r)=— —=z+ =bX(rx2)
+—87-r(1—v)v§—|r’—r| -dl (1) 3 3
wheredA’ is an area element in the surface enclosed by the + L[zb—4bzr+(b- rz]. (5)
dislocation loopdl’ is a segment along the dislocation line, 15(1-v)

r’ gives the position of these elemenitds the Poisson ratio,

The displacement varies linearly with the coordinates, and

and C stands for “constrained.” The line integrals can be hence the strains are constant. The constrained strains inside

converted into area integrals using the Stokes’ thed®m  the dislocation cage, defined bysff:(auf:/axj
pendix A), after which the Burgers’ equation consists entirely + auf/axi)/z, are
of area integrals
c_ c_ Ssv—1
c.._ b f (r'=r)y-dA’ 1 f bX[(r'—r)xdA’] ExT Eyy TR —p) T2z
un=g, Ir'—r|® A [r'—r|®
c_ 7—=5v
L1 b-dA’ f2z 51— ) P22
8m(1l—v) [r"—r]
c 4-5v ®)
r'—r)(r'—r)-dA’ Exz= 51 5 Exz
b ( |)r(’—r|3) 2 X2 15(1—v) X2
. L c 4-5v
The area integral form of the Burgers’ equation is used next €y2 =15 1= ) £z’
to find the total displacement due to a large number of dis- A1-v)
location loops. € =0
Xy !

Now consider a large number of dislocation loops stacked

with uniform densityn along thez axis.dA’ =dA,2, where
Z is the unit vector in the direction. For a cage of radilg
the total displacement at any pointis the sum of the dis-
placements from the loops,

U‘3(r)=nfR uc(r)dz’
-R
n a
ZE[bH—bX“zXZ)

+mV(bZ|3+b~|4) , (3)

where

| f (z' —z)dV’
1= T e _ 3
sphere |r’—r|3

| f (r'=rdVv’
2 sphere |I”—I’|3 ’

_f dv’
B spherér,_”,

| _f (r'=r)(z'—zdVv'
4 sphere |I”—I’|3 ,

anddV’'=dA,dz'.

For any point inside the sphefg|<R, the integrals are
l,=—(47I3)z, 1,=—(4=mI3)r, 13=(27/3)(3R?>~r?), and
l,=(27/15)[4zr + (5R?—3r?)2] (See Appendix B for de-

(4)

T_ T_ T_
where g,,=—nb,, &,,=—nb,, and e, ,=—nb, are the

transformation strains. Note that, for the Burgers’ equation,
the Burgers vector is defined by displacing the material
above the loop plane byprelative to the material below .
This accounts for the negative sign in the transformation
strains. Equatiori6) leads to the following terms of the Es-
helby tensor:

5v—-1
S1135= Spo3™ m )

_ 7—5v 7
83333_ 15(1—1}) ' ( )
4—5p
S1315= Soz0a™ 51-0)

Other non-zero terms in the Eshelby tensor can be obtained
similarly using symmetry, givings;;;; =(7—5v)/15(1-v),
other termge.g.,S;;;;) are zero. These results are the same as
given by Eshelby’s methotf:*3

The relation &;j;; =S;;;; — S;ij; in Eg. (7) can be under-
stood by considering two sets of prismatic dislocation loops
with opposite signs stacked perpendicularly, one along the
axis withb and the other along thjeaxis withb. The two sets
of prismatic loops produce opposite normal straiof nb
and —nb) which are equivalent to two shear strains of the
same sign, resulting ing;;; = S;;;; — S;j; - Two sets of pris-
matic dislocation loops of opposite signs stacked perpendicu-
larly produce the same constrained strains as two sets of
shear loops bisecting the prismatic loops.

The elastic field in the dislocation cage can now be de-
scribed using Eshelby’s language. The dislocation cage is the
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transformed inclusion. If completely unconstrained by theStarting with Stokes’ theorem, we have
matrix, the displacement inside the dislocation cage would
be entirely plastic, i.elJP(r)= —nzb from which the stress- % bX(r"—r)-dl’
free transformation strain can be found. With the matrix con- Ir'—r|
straint, the displacement I$¢(r) [Eq. (5)], from which the ,
constrained strain is derivdéq. (6)]. :f V,Xbx(r -n A’
The elastic displacement in the dislocation cage—the dis-

placement that would be gained if the matrix were dissolved , ,
away-is the difference between the transformation and con- zf {bV’- u_(b.vr) :}dA’
strained displacements, i.dJf=—(U”—UC), from which r'—r|
the elastic strains and stresses in the cage can be found. Take b-dA’ . . )

. . . N P . (r'=r)(r'=r)-dA
a shear dislocation cage, with—bX, as an exampleU, = — f —
=—nbz US=—-nbpz, andUS=—nbpx [Eq. (5)], where [r' = r' =
B=(4—5v)/15(1-v). The elastic displacements atd; where, in the second step, use is made A0k (BXC)
=(1—pB)nbz and US=—Bnbx. The x component of the =(A-C)B—(A-B)C. The above takes care of the third term
displacement varies linearly with, and thez component in the Burgers’ equation.
with x. The only stress in the dislocation cage is hence a For the second integral in the Burgers’ equation, we look
shear stress oy _G(aue/az+ USox)=(1—-2B)Gnb at its projection along an arbitrary unit directiéni.e.,
=Gnb(7- 5v)/15(1— v), the same as given by , R , R
Eshelby!212 The field inside ellipsoidal dislocation cages Jf Pxdl" é (éxb)-di :J ' (éxb) A’

(A1)

and cages of complex shapes can be treated similarly; weJ [r’—r| r’—rl Ir’—rl
will report these in the future. 0 F'—1)-b
A hydrostatically dilated or compressed inclusion can be U' —gb dA’ — J(—s—dA' 8
modeled by three sets of prismatic dislocation loops, along
three orthogonal directions, each producing a strain given by (A2)

e =AT/3, whereAT is the amount of dilatation in the un-
constrained state. The constrained strains a,?lt,t (Siiii
+25“”)8” ,|(1+ v)/3(1—v). Hence the constrained di-
lation is A°=AT(1+ »)/3(1—v), another result given by bxdl’ (r'=r) '—1)-b
Eshelby!® Since both dilation and shear may be modeled by sb-dA’ — f —3—dA’
prismatic loops, the constrained strains and stresses resulting rl
from a general transformation may always be obtained from f bX[(r'—r)xdA’]

where the third step is handled similarly as the second step in
Eq. (Al). Sinceé is arbitrary,

CEIRALE

cages containing three sets of prismatic dislocations with ap- K
propriate densities.

CONCLUSIONS APPENDIX B

The elasticity problem of a transformed inclusion con- The displacement in Ed5) is obtained from Eq(3) by

strained in an infinite matrix can be solved by considering a[na.\kmg. us_g ofrfhe fc;]llow.mg integrals over a sphere for any
dislocation cage made of uniformly stacked dislocationP@!Ntr Inside the sphere:

loops. The displacement, strain and stress are found using the %' —x A
Burgers’ equation, yielding directly the Eshelby tensor. The f ——3dV' =— —x
model provides an alternative physical picture and solution spherd! " 1| 3
of the inclusion problem to Eshelby’s cutting and welding
procedure. The model compares directly with transforma- f r'—r dv o ;
tions produced by a dislocation mechanism. spherél’ Ir'—r3 3
(B1)
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f L oav=2T3re-r?)
I ra— =— —r
spherér’_r| 3

Here we give details leading to the first integral in Eq.
(B1); the others in Eq(B1) can be worked out similarly.
Let X'=x+psinfcose, y' =y+psinfdsing, and z'=z

Here are the details used in converting the line integrals int p cosé, where §=0~ and ¢=0~27 are the latitude and
the Burgers’ equatiofiEg. (1)] into area integral§Eq. (2)].  azimuth angles. We haw#V’ = p? sinéd 6d ¢dp and hence

APPENDIX A
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X' —X 7 (27 (pm the sphere and hengg,(6,¢)=0. The integral in Eq(B2)
j ——adV’ =j J f sir” 6 cos¢d pd 6d can be further simplified since
spherézr r | 0 Jo 0
m (27 m (27
=f f pm( 0, P)sir? 6 cosepd od . J f VBZ+C sir? 6 cosed 6d =0
0 Jo o Jo
(B2)

because the integrangB?-+ C sir? 9cos¢ is antisymmetri-

pm(0,¢) is the integration limit ofp on the surface of the cal with respect to inversioné(— =— 6, p— 7+ ¢). Hence
sphere, satisfying

. . . r— T (27
h - 0JoO
+(z+ py €0S6)%>=R?, (B3) et
T (27
where R is the radius of the sphere. The solution for = —j f (xsingcos¢p+ysinfsing
pm(6,¢) from Eq.(B3) gives 0 Jo
pui(0.4)= JBZFC—B +2z cosh)sir? 6 cos¢d 6d
where B=xsinfcos¢+ysindsing+zcosd and C=R2 _ 4_7TX (B4)
—(x?+y?+7%). Note thatC=0, since the point is inside 37
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