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Displacement field inside a spherical dislocation cage and the Eshelby tensor
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The elasticity problem of a transformed inclusion constrained in an infinite matrix is solved by considering
a dislocation cage made of uniformly stacked dislocation loops. The displacement, strain and stress are found
using the Burgers’ equation, directly yielding the Eshelby tensor. The model provides an alternative physical
picture and solution of the transformed inclusion problem to Eshelby’s method, and compares directly with
transformations produced by a dislocation mechanism.
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INTRODUCTION

When a small volume of material, inside a large matr
transforms, its displacements are constrained by the
rounding matrix. The elastic field in and around the tra
formed volume is important to the understanding of a ran
of solid-state phenomenon, such as solid-state ph
transformations,1–4 the onset of slip under high stresses,5–8

composite materials,9 and defects in crystals.10 The elastic
field inside a transformed inclusion is the key to the ima
stress in the cooperative nucleation of shear disloca
loops.8

Eshelby11,12 calculated«i j
C , the constrained strains insid

a transformed inclusion, and related them to the stress-
transformation strains« i j

T by a tensor S, i.e., « i j
C

5(Si jkl «kl
T . He calculatedS by imagining the small volume

to be cut out of the matrix, transformed, returned to its ori
nal form elastically, welded back into the matrix, and th
released. The Eshelby tensor has been calculated and
lated for inclusions of various shapes.13

In this paper we give an alternative solution for the inc
sion problem and for finding the Eshelby tensor. This a
proach, mentioned in passing but not used by Eshelby,11 is to
consider the transformation to occurin situ by the nucleation
and growth of dislocation loops. The transformed inclus
constrained in the matrix is surrounded by a cage mad
uniformly stacked dislocation loops~a spherical cage is
shown in Fig. 1!. The constrained displacement and stra
are found directly using the Burgers’ equation for dislocat
loops. When the Burgers’ vector and plane spacing are sm
i.e., the transformation is homogeneous, the results agree
actly with Eshelby’s calculations. This method gives iden
cal results as Eshelby without invoking the cutting and we
ing procedure, and provides another physical picture for
problem. The picture is particularly valuable when the tra
formation is produced by a dislocation mechanism. For
ample, if a volume within a large solid were sheared~e.g., by
glide or by twinning! then the dislocations in the cage are t
actual dislocations which accomplished the shear. For a fi
sample containing a large number of dislocation loops,
mean-field stress that drives the cooperative nucleation
0163-1829/2002/65~22!/220103~4!/$20.00 65 2201
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these loops in the sample8 includes the stress field inside th
dislocation cage; the dislocations enveloping the sample
the unbalanced loops/dipoles on the surface.

RESULTS

We consider a large number of circular dislocation loo
stacked uniformly along thez axis in the form of a spherica
cage, as illustrated in Fig. 1. The dislocation loops have
same Burgers’ vectorb on which no restriction is placed
Whenb is in the loop plane, i.e., shear loops, the cage c
responds to a uniformly sheared inclusion. Whenb is per-
pendicular to the loop plane, i.e., prismatic loops, the inc
sion’s transformation is uniaxial dilation or compressio
With three sets of loops, any general transformation str
can be represented. We will examine just one set of loo
The displacement field from more than one set can be fo
simply by symmetry and superposition.

To find the displacement, we start with the Burge
equation14 which gives the total displacement atr due to a
complete dislocation loop

FIG. 1. A transformed inclusion is surrounded by a cage
dislocation loops stacked uniformly and having the same Burg
vectorb.
©2002 The American Physical Society03-1
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uC~r !5
b

4p E ~r 82r !•dA8

ur 82r u3
2

1

4p R b3dl8
ur 82r u

1
1

8p~12n!
“ R b3~r 82r !

ur 82r u
•dl8 ~1!

wheredA8 is an area element in the surface enclosed by
dislocation loop,dl8 is a segment along the dislocation lin
r 8 gives the position of these elements,n is the Poisson ratio
and C stands for ‘‘constrained.’’ The line integrals can b
converted into area integrals using the Stokes’ theorem~Ap-
pendix A!, after which the Burgers’ equation consists entire
of area integrals

uC~r !5
b

4p E ~r 82r !•dA8

ur 82r u3
2

1

4p E b3@~r 82r !3dA8#

ur 82r u3

1
1

8p~12n!
“F E b•dA8

ur 82r u

1b•E ~r 82r !~r 82r !•dA8

ur 82r u3 G . ~2!

The area integral form of the Burgers’ equation is used n
to find the total displacement due to a large number of d
location loops.

Now consider a large number of dislocation loops stac
with uniform densityn along thez axis.dA85dAz8ẑ, where
ẑ is the unit vector in thez direction. For a cage of radiusR,
the total displacement at any pointr is the sum of the dis-
placements from the loops,

UC~r !5nE
2R

R

uC~r !dz8

5
n

4p FbI 12b3~ I23 ẑ!

1
1

2~12n!
“~bzI 31b•I4!G , ~3!

where

I 15E
sphere

~z82z!dV8

ur 82r u3 ,

I25E
sphere

~r 82r !dV8

ur 82r u3 ,

~4!

I 35E
sphere

dV8

ur 82r u
,

I45E
sphere

~r 82r !~z82z!dV8

ur 82r u3 ,

anddV85dAz8dz8.
For any point inside the sphereur u<R, the integrals are

I 152(4p/3)z, I252(4p/3)r , I 35(2p/3)(3R22r 2), and
I45(2p/15)@4zr1(5R223r 2) ẑ# ~See Appendix B for de-
22010
e

xt
-

d

tails for finding these integrals.! The total displacement a
any pointr inside the sphere is therefore

UC~r !52
nb

3
z1

n

3
b3~r3 ẑ!

1
n

15~12n!
@zb24bzr1~b•r !ẑ#. ~5!

The displacement varies linearly with the coordinates, a
hence the strains are constant. The constrained strains in
the dislocation cage, defined by« i j

C5(]Ui
C/]xj

1]U j
C/]xi)/2, are

«xx
C 5«yy

C 5
5n21

15~12n!
«zz

T ,

«zz
C 5

725n

15~12n!
«zz

T ,

«xz
C 5

425n

15~12n!
«xz

T , ~6!

«yz
C 5

425n

15~12n!
«yz

T ,

«xy
C 50,

where «zz
T 52nbz , «xz

T 52nbx , and «yz
T 52nby are the

transformation strains. Note that, for the Burgers’ equati
the Burgers vector is defined by displacing the mate
above the loop plane by -b relative to the material below it.14

This accounts for the negative sign in the transformat
strains. Equation~6! leads to the following terms of the Es
helby tensor:

S11335S22335
5n21

15~12n!
,

S33335
725n

15~12n!
, ~7!

S13135S23235
425n

15~12n!
.

Other non-zero terms in the Eshelby tensor can be obta
similarly using symmetry, givingSiiii 5(725n)/15(12n),
Sii j j 5(5n21)/15(12n), Si ji j 5(425n)/15(12n). All
other terms~e.g.,Siii j ! are zero. These results are the same
given by Eshelby’s method.12,13

The relation 2Si ji j 5Siiii 2Sii j j in Eq. ~7! can be under-
stood by considering two sets of prismatic dislocation loo
with opposite signs stacked perpendicularly, one along thi
axis withb and the other along thej axis withb. The two sets
of prismatic loops produce opposite normal strains~of nb
and 2nb! which are equivalent to two shear strains of t
same sign, resulting in 2Si ji j 5Siiii 2Sii j j . Two sets of pris-
matic dislocation loops of opposite signs stacked perpend
larly produce the same constrained strains as two set
shear loops bisecting the prismatic loops.

The elastic field in the dislocation cage can now be
scribed using Eshelby’s language. The dislocation cage is
3-2
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transformed inclusion. If completely unconstrained by t
matrix, the displacement inside the dislocation cage wo
be entirely plastic, i.e.,UP(r )52nzb from which the stress-
free transformation strain can be found. With the matrix co
straint, the displacement isUC(r ) @Eq. ~5!#, from which the
constrained strain is derived@Eq. ~6!#.

The elastic displacement in the dislocation cage—the
placement that would be gained if the matrix were dissolv
away-is the difference between the transformation and c
strained displacements, i.e.,Ue52(UP2UC), from which
the elastic strains and stresses in the cage can be found.
a shear dislocation cage, withb5bx̂, as an example.Ux

P

52nbz, Ux
C52nbbz, andUz

C52nbbx @Eq. ~5!#, where
b5(425n)/15(12n). The elastic displacements areUx

e

5(12b)nbz and Uz
e52bnbx. The x component of the

displacement varies linearly withz, and thez component
with x. The only stress in the dislocation cage is henc
shear stress sxz

C 5G(]Ux
e/]z1]Uz

e/]x)5(122b)Gnb
5Gnb(725n)/15(12n), the same as given b
Eshelby.12,13 The field inside ellipsoidal dislocation cage
and cages of complex shapes can be treated similarly;
will report these in the future.

A hydrostatically dilated or compressed inclusion can
modeled by three sets of prismatic dislocation loops, alo
three orthogonal directions, each producing a strain given
« i i

T5DT/3, whereDT is the amount of dilatation in the un
constrained state. The constrained strains are« i i

C5(Siiii

12Sii j j )« i i
T5« i i

T(11n)/3(12n). Hence the constrained d
lation is DC5DT(11n)/3(12n), another result given by
Eshelby.10 Since both dilation and shear may be modeled
prismatic loops, the constrained strains and stresses resu
from a general transformation may always be obtained fr
cages containing three sets of prismatic dislocations with
propriate densitiesn.

CONCLUSIONS

The elasticity problem of a transformed inclusion co
strained in an infinite matrix can be solved by considerin
dislocation cage made of uniformly stacked dislocat
loops. The displacement, strain and stress are found usin
Burgers’ equation, yielding directly the Eshelby tensor. T
model provides an alternative physical picture and solut
of the inclusion problem to Eshelby’s cutting and weldi
procedure. The model compares directly with transform
tions produced by a dislocation mechanism.
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APPENDIX A

Here are the details used in converting the line integral
the Burgers’ equation@Eq. ~1!# into area integrals@Eq. ~2!#.
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Starting with Stokes’ theorem, we have

R b3~r 82r !•dl8
ur 82r u

5E “83
b3~r 82r !

ur 82r u
•dA8

5E Fb“8•
~r 82r !

ur 82r u
2~b•“8!

r 82r

ur 82r uG•dA8

5E b•dA8

ur 82r u
1b•E ~r 82r !~r 82r !•dA8

ur 82r u3 ~A1!

where, in the second step, use is made ofA3~B3C!
5~A•C!B2~A•B!C. The above takes care of the third ter
in the Burgers’ equation.

For the second integral in the Burgers’ equation, we lo
at its projection along an arbitrary unit directionê, i.e.,

R b3dl8
ur 82r u

•ê5 R ~ ê3b!•dI 8
ur 82r u

5E “83
~ ê3b!

ur 82r u
•dA8

5F E ~r 82r !

ur 82r u3
b•dA82E ~r 82r !•b

ur 82r u3
dA8G•ê,

~A2!

where the third step is handled similarly as the second ste
Eq. ~A1!. Sinceê is arbitrary,

R b3dl8
ur 82r u

5E ~r 82r !

ur 82r u3 b•dA82E ~r 82r !•b

ur 82r u3
dA8

5E b3@~r 82r !3dA8#

ur 82r u3
.

APPENDIX B

The displacement in Eq.~5! is obtained from Eq.~3! by
making use of the following integrals over a sphere for a
point r inside the sphere:

E
sphere

x82x

ur 82r u3 dV852
4p

3
x

E
sphere

r 82r

ur 82r u3
dV852

4p

3
r

~B1!

E
sphere

1

ur 82r u
dV85

2p

3
~3R22r 2!

E
sphere

~r 82r !~z82z!

ur2r 8u3
dV85

2p

15
@4zr1 ẑ~5R223r 2!#.

Here we give details leading to the first integral in E
~B1!; the others in Eq.~B1! can be worked out similarly.
Let x85x1r sinu cosf, y85y1r sinu sinf, and z85z
1r cosu, whereu50;p andf50;2p are the latitude and
azimuth angles. We havedV85r2 sinud udfdr and hence
3-3
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E
sphere

x82x

ur2r 8u3
dV85E

0

pE
0

2pE
0

rM
sin2 u cosfd rd udf

5E
0

pE
0

2p

rM~u,f!sin2 u cosfd ud f.

~B2!

rM(u,f) is the integration limit ofr on the surface of the
sphere, satisfying

~x1rM sinu cosf!21~y1rM sinu sinf!2

1~z1rM cosu!25R2, ~B3!

where R is the radius of the sphere. The solution f
rM(u,f) from Eq. ~B3! gives

rM~u,f!5AB21C2B,

where B5x sinu cosf1ysinu sinf1zcosu and C5R2

2(x21y21z2). Note thatC>0, since the pointr is inside
d

22010
the sphere and hencerM(u,f)>0. The integral in Eq.~B2!
can be further simplified since

E
0

pE
0

2p
AB21C sin2 u cosfd ud f50

because the integrandAB21C sin2 u cosf is antisymmetri-
cal with respect to inversion (u→p2u,f→p1f). Hence

E
sphere

x82x

ur2r 8u3
dV852E

0

pE
0

2p

B sin2 u cosfd udf

52E
0

pE
0

2p

~x sinu cosf1y sinu sinf

1z cosu!sin2 u cosfd udf

52
4p

3
x. ~B4!
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