
s

PHYSICAL REVIEW B, VOLUME 65, 214531
Nonlinear dynamics of vortices in easy flow channels along grain boundaries in superconductor

A. Gurevich
Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706

~Received 15 January 2002; published 12 June 2002!

A theory of nonlinear dynamics of mixed Abrikosov vortices with Josephson cores~AJ vortices! on low-
angle grain boundaries~GB! in superconductors is proposed. As the misorientation angleq increases, vortices
on low-angle GBs evolve from the Abrikosov vortices with normal cores to intermediate AJ vortices with
Josephson cores, whose lengthl along GB is smaller that the London penetration depthl, but larger than the
coherence lengthj. Dynamics and pinning of the AJ vortex structures determine the in-field current transport
through GB and the microwave response of polycrystal in the crucial misorientation rangeq,20–30° of the
exponential drop of the local critical current densityJb(q) through GB. An exact solution for an overdamped
periodic AJ vortex structure driven along GB by an arbitrary time-dependent transport current in a dc magnetic
field H.Hc1 is obtained. It is shown that the dynamics of the AJ vortex chain is parametrized by solutions of
two coupled first-order nonlinear differential equations which describe self-consistently the time dependence of
the vortex velocity and the AJ core length. Exact formulas for the dc flux flow resistivityRf(H), and the
nonlinear voltage-current characteristics are obtained. Dynamics of the AJ vortex chain driven by superim-
posed ac and dc currents is considered, and general expressions for a linear complex resistivityR(v) and
dissipation of the ac field are obtained. A flux flow resonance is shown to occur at large dc vortex velocitiesv
for which the imaginary part ofR(v) has peaks at the ‘‘washboard’’ ac frequencyv052pv/a, wherea is the
intervortex spacing. This resonance can cause peaks and portions with negative differential conductivity on the
averaged dc voltage-current (V-I ) characteristics. ac currents of large amplitude cause generation of higher
voltage harmonics and phase locking effects which manifest themselves in steps on the averaged dcI -V curves
at the Josephson voltages,n\v/2e with n51.2, . . . .
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I. INTRODUCTION

Mechanisms of current transport through grain bounda
~GB! in high-temperature superconductors~HTS! have at-
tracted much attention because they reveal thed-wave sym-
metry of the HTS pairing1 and determine the curren
carrying capability of HTS materials.2 Unlike low-Tc
superconductors, GBs in HTS exhibit weak-link behav
due to the exponential drop of the local critical current de
sity of a GB,Jb5J0 exp(2q/q0), as the misorientation angl
q between the neighboring crystallites increases aboveq0
.5 –6°. The strong dependence ofJb(q) on q makes high-
angle GBs crucial current-limiting defects in HT
polycrystals.2 Since pioneering experiments of the IBM
group,3 much progress has been made in understanding
multiscale microstructure of GBs and its effect on th
weak-link behavior,4–7 but primarily in the absence of
strong magnetic fieldH. Detailed atomic structure of GB
revealed by high-resolution electron microscopy has b
used to determine local underdoped states of GB, def
induced suppression of superconducting properties at
nanoscale and controlled increase ofJb by overdoping of
GB.8–11 Recent models have also pointed out the importa
of charging and strain effects which drive the HTS state
GB toward the metal-insulator transition asq increases.12,13

At the same time, little is known about vortices on low
angle GBs, although it is the dynamics and pinning of
GB vortices, which mostly limit critical currents of HTS
polycrystal in a magnetic field,2 and determine a microwav
response of HTS films.14–18 Generally, pinning of vortices
along GBs is weaker than in the grains, so GBs form a na
0163-1829/2002/65~21!/214531~16!/$20.00 65 2145
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ral percolating network for preferential motion of vortice
through a superconductor.19–27 Such percolating networks
are not only characteristic of polycrystals, but represen
rather generic feature of vortex dynamics and pinning in
perconductors. For instance, networks of easy flow vor
channels have been suggested by Kramer in early shear m
els of flux pinning28 and later discovered in molecula
dynamics simulation of vortices inrandom pinning
potential,29,30 numerical simulations of time-depende
Ginzburg-Landau equations that describe moving vor
structure near twin boundaries31 and observed by
decoration32 and Lorentz microscopy.33 Matching effects in
dynamics and pinning of mesoscopic vortex flow channels
artificial thin film superconducting structures have been
tensively studied by Kes and co-workers.34,35 Many observ-
able features of global current-voltage characteristics, m
netization, rf response, and flux creep of HTS polycrys
may be due to dynamics and pinning of vortices in easy-fl
channels, rather than stronger pinned vortices in
grains.36–40 By contrast, GBs in low-Tc materials do not
block macroscopic currents, but can enhance flu
pinning41,42 and play the role of ‘‘hidden’’ weak links tha
strongly affect the vortex mass and viscosity19 crucial for
transport and microwave response of superconductors,14,15

The behavior of vortices in easy flow channels on GBs
polycrystal is mostly determined by the structure of vort
cores which depends on the local depairing current den
Jb through a GB at the nanoscale of few current chann
between the dislocations. The extreme sensitivity ofJb(q) to
the misorientation angleq makes GBs in HTS a unique too
to trace a fundamental transition between the Abrikosov~A!
©2002 The American Physical Society31-1
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A. GUREVICH PHYSICAL REVIEW B 65 214531
and Josephson~J! vortices. Asq increases,Jb(q) rapidly
decreases, from the bulk depairing current densityJd at q
!q0 down to much lower valuesJb!Jd at q@q0. In turn,
vortices on a GB evolve from theA vortices with normal
cores atq!q0 to intermediate Abrikosov vortices with Jo
sephson cores~AJ vortices!19 and then to theJ vortices at
higherq. There is no order parameter suppression in the
core, which is a phase kink whose lengthl along GB is
greater than the coherence lengthj, but shorter than the scal
of circulating screening currents set by the London pene
tion depthl. As q increases further, the AJ vortices turn in
J vortices in which both the Josephson currents and the m
netic fieldH(x) vary on the same scale along GB set by t
Josephson penetration depthlJ .43,44This continuousA to AJ
vortex transition occurs as the spacing between GB dislo
tion cores becomes shorter thanj, giving rise to a suppres
sion of the amplitudeD of the order parameterC
5D exp(iw) in current channels between dislocations12

Thus, a low-angle GB behaves as a high-Jb superconducting-
normal-superconducting~SNS! Josephson contact, for whic
the Josephson cores of the AJ vortices do not cause
breaking effects responsible for the suppression ofD in the
normal A cores. Such contacts are described by integ
equations of a nonlocal Josephson electrodynam
~NJE!,19,21,44–50which account for the variations of phas
differenceu(x)5w12w2 along a GB on any length scal
greater thanj. If u(x) varies slowly on the scales;l, the
NJE equations reduce to the usual sine-Gordon equation
long Josephson junctions.44,43The key difference of the non
local approach from the local sine-Gordon theory is that
NJE equations can describe the AJ vortex core in the reg
of parameters whereJb.Jdj/l, andu(x) varies on the scale
l 5lJ

2/l.jJd /Jb much shorter than the decay lengthl of
the circulating supercurrents.

The importance of the Josephson nonlocality for th
films has been recognized long ago.44,45Because the penetra
tion depth l̃52l2/d increases as the film thicknessd de-
creases, the nonlocality conditionlJ,l̃ can be fulfilled even
for comparatively low-Jb junctions. Independently, the NJ
approach was developed for bulk superconductors to
scribe mixed AJ vortices on high-Jb ‘‘hidden weak links,’’
such as low-angle GBs in HTS and thina-Ti ribbons in
NbTi19. A nonlocal generalization of the sine-Gordon equ
tion was also considered in Ref. 46. It turns out that, in
strong nonlocality limit, the NJE equation reduces to t
well-studied Peierls equation of dislocation theory, thus,
AJ single vortex solution19 is similar to that for the core of an
edge dislocation.51 The NJE equations have other exa
solutions19,46,51–53for static and dynamic AJ vortex struc
tures. Recently, the existence of AJ vortices in low-an
YBa2Cu3O7 bicrystals was proven by transport measu
ments, using an exact expression for the flux flow resistiv
of AJ vortices.53 The good agreement between the theory a
experiment made it possible to extract the core lengthl (T)
and the intrinsic depairing current densityJb(q) of a GB on
a nanoscale of few dislocation spacings. The tempera
dependence ofJb}(Tc2T)2 extracted from these measur
ments does indicate the SNS coupling on GBs in HTS
21453
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agreement with the model of Ref. 12.
This paper presents a theory of a nonlinear flux flow of

vortices driven by dc and ac currents in a magnetic field.
exactly solvable model that describes a chain of AJ vorti
moving along a GB through the strongly pinnedA vortex
lattice in the grains, is proposed. This model of the ov
damped vortex dynamics describes self-consistently b
nonlinear dissipative processes in the AJ vortex cores
magnetic interaction between AJ vortices, showing how
distributions of circulating superconducting and quasiparti
currents change as a function of the vortex velocity. The
vortices exhibit many characteristic features of the dynam
of the periodicA vortex lattice, for example, viscous flu
flow,54 static and dynamic matching effects, and Josephs
like voltage oscillations.35,55,56At the same time, the AJ vor
tices can also exhibit effects characteristic of the dynamic
short Josephson contacts in ac field, orJ vortices in long
Josephson junctions, for example, flux flow resonanc57

phase locking in ac field,43,58 etc. Pronounced resonance e
fects occur if the strongly overdamped AJ structure is driv
by superimposed ac and dc currentsJ(t)5J01Ja cosvt at
J0.Jb . It is shown that all this rich AJ vortex dynamics
described by two coupled first-order nonlinear ordinary d
ferential equations for the vortex velocity and the core si
for any time dependentJ(t). These equations have the for
of a complex resistively-shunted junction~RSJ! equation for
a short Josephson contact.

The paper is organized as follows. In Sec. II a qualitat
description of length scales of vortices on a GB and th
evolution withq is given. In Sec. III the NJE equations an
an exact solution that describes a chain of AJ vortices dri
by an arbitrary ac current in a dc magnetic field are p
sented. In Sec. IV, the nonlinearV-J characteristics and the
flux flow resistivity of a GB in a magnetic field are calcu
lated. In Sec. V a linear complex resistivity and rf dissipati
are calculated for a chain of AJ vortices driven by superi
posed ac and dc currents. A flux flow resonance is predic
Section VI is devoted to nonlinear effects caused by sup
imposed ac and dc currents, in particular the averaged dcV-J
characteristics in the presence of an ac signal, generatio
higher harmonics and phase locking effects. Section VII c
cludes with a discussion of the obtained results.

II. VORTEX LENGTH SCALES ON GRAIN BOUNDARIES
IN A MAGNETIC FIELD

The results of this paper are independent of the deta
atomic structure of GB,3–5 so we consider a simplest plana
@001# tilt GB between two crystallites misoriented by th
angleq. Such low-angle GB can be regarded as a perio
chain of edge dislocations spaced byd05b/2 sin(q/2),
whereb is the Burgers vector.5 Because of the proximity of
the HTS state to the antiferromagnetic metal-insulator tr
sition, regions of size.b near dislocation cores are drive
into insulating state by local nonstoichiometry, strains, a
charging effects.12 As q increases, the spacingd0(q) de-
creases, becoming smaller than the zero-T coherence length
j0 and the in-plane Debye screening length at the angleq0
.4 –6°. Forq.q0, the proximity effect, strain and charg
1-2
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NONLINEAR DYNAMICS OF VORTICES IN EASY FLOW . . . PHYSICAL REVIEW B65 214531
coupling cause suppression ofD between dislocation cores
which becomes more pronounced asq increases. In this
model a GB thus behaves as a SNS Josephson con
whose critical current densityJb(q) decreases nearly expo
nentially asq increases withJb(q);Jd at q,q0.

A magnetic fieldH above the lower critical fieldHc1 pro-
ducesA vortices in the grain, and vortices of different cha
acter on the GB, depending on the ratioj/d0. For u!u0, the
GB vortices areA vortices with normal cores pinned by G
dislocations.22 As q further increases, a GB exhibits a co
tinuous transition from metallic to tunneling behavior abo
q.q0, similar to high-Jb SNS Josephson junction59 for
which the normal core ofA vortices disappears ifD on the
junction drops below a critical value.44 For vortices on a GB,
the normal core disappears quite naturally because of
exponential decrease ofJb(q). Since vortex currents mus
cross the GB which can only sustainJb much smaller than
the depairing current densityJd , the modulusD of the order
parameter is unaffected by vortex cores. As a result, the
mal A core turns into a Josephson core in which the ph
differenceu(x,t) on GB varies by 2p over the lengthl along
GB, but the amplitudeD is independent ofx. The phase core
lengthl .jJd /Jb is greater thenj, but smaller then the Lon
don penetration depthl, if Jb.Jd /k, wherek5l/j.102 is
the Ginzburg-Landau parameter.19 As q increases, the core
length l (q).jJd /Jb(q) increases, so the GB vortice
evolve fromA vortices forq!q0 to mixed AJ vortices at
Jd,Jb(q),Jd /k. The AJ vortices turn intoJ vortices at
higher angles, for whichl becomes greater thanl if

q.qJ.q0 ln~ l̃/j!, ~1!

wherel̃ is the magnetic screening length. In bulk samplel̃
is the London penetration depthl, while a thin film of thick-
nessd,l the magnetic screening length isl̃52l2/d. For
bulk samples, Eq.~1! yieldsuJ.23° if u055°, k5100, and
J05Jd . For a film with d!l, the AJ region expands con
siderably, for example, ifd50.1l, thenqJ.38°. Therefore,
the AJ vortices exist in a rather wide range of misorien
tions,q0,q,qJ.22–40°, which comprises the crucial re
gion of the exponential drop ofJb(q). In this region the
in-field current transport through GBs in HTS is determin
by dynamics and pinning of AJ vortices.

Due to the lack of the order parameter suppression in
AJ cores, AJ vortices can be described by the NJE the
which regards the GB as a Josephson contact whoseJb(q)
can be tuned in a very broad range by varying the misor
tation angleq. Once the AJ core sizel 5jJd /Jb exceeds the
scales set by the coherence length, the Debye scree
length and the dislocation spacing, the structure of AJ vo
ces is entirely determined by the electrodynamics of curre
circulating around the cores, regardless of the atomic st
ture of GB, pairing mechanisms and the symmetry of
order parameter. The current distribution in the AJ vortex
described by the universal Josephson and London equat
while the GB imposes a boundary condition of current co
tinuity for the sum of the Josephson, quasiparticle, and
placements current densitiesJ5Jb sinu(x,t)1V/R1CV̇
21453
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crossing the GB, whereV is the voltage on a GB,R, andC
are the quasiparticle resistance and capacitance per unit
of a GB, respectively.

The structure of a vortex on a GB is determined by t

ratio kb5l̃/ l reminiscent of the GL parameterk5l/j for
the A vortices. Here kb5(l/lJ)

2.kJb /Jd for a bulk
sample,kb5dl3/lJ

2d for a film of thicknessd,l. The case
kb!1 corresponds to the local relationH(x)5f0]xu/4pl
characteristic of low-Jb high-angle GB, for which bothu(x)
andH(x) vary on the same spatial scale. Such GBs exh
the J vortices of lengthlJ described by the sine-Gordo
equation.43 However, the low-angle GB~especially in thin
films! correspond tokb.1 in which case the relation be
tweenu(x) andH(x) is nonlocal, andu(x) andH(x) vary
on essentially different spatial scalesl 5jJd /Jb and l, re-
spectively. This gives rise to the mixed AJ vortices describ
by integral NJE equations19,21,44–46,49,47,48,50which reduce to
the sine-Gordon equation ifu(x) varies weakly on the scale
;l. The NJE equations provide a universal description
vortex structures on GB for which all microscopic details a
hidden in the intrinsic parametersJb andR of a GB. These
parameters are very difficult to calculate, given the pres
state of the microscopic theory of HTS, but they can
extracted from resistive measurements on HTS bicryst
with the help of exact NJE solutions that describe the fl
flow resistance of moving AJ vortices.53

In a strong magnetic fieldH@Hc1, the A vortex spacing
a5(f0 /H)1/2 is shorter thanl, thus the relation between
u(x,t) and H(x,y) is always nonlocal, regardless of th
value of Jb . The AJ vortex chain is then has two leng
scales: the core sizel .j and the inter vortex spacinga(H).
Both lengthsa and l become comparable at a characteris
field H0;f0 / l 2;(Jb /Jd)2Hc2 much smaller then the uppe
critical field Hc2. Thus, unlike theA lattices, there is a wide
field regionH0,H,Hc2 in which the AJ vortex cores over
lap, but the bulk superconductivity persists.

The larger core of AJ vortices leads to their weaker p
ning along a GB, which thus becomes a channel for mot
of AJ vortices between pinnedA vortices in the grains19 ~Fig.
1!. This gives rise to an extended linear region in theV-I
characteristic of a polycrystalline HTS that is dominated
motion of AJ vortices along GBs.10,22–27Pinning of AJ vor-
tices results from interaction of the AJ phase core with str
tural inhomogeneities of GB and the magnetic interaction
AJ vortices with more strongly pinnedA vortices in the
grains. If the periods of the AJ vortices and bulkA vortices
are slightly different, the AJ vortex chain breaks into com
mensurate domains~in which A and AJ periods coincide!
separated by domain walls. This behavior, characteristic
commensurate-incommensurate transitions,60,61 was ob-
served in molecular-dynamics simulations ofA vortices in
artificial flux flow channels35 for which the width of the do-
main walls~dislocations! considerably exceeds the intervo
tex spacing. In this case the pinning of domain walls by
intrinsic Peierls potential is exponentially weak, so the d
pinning critical currentI gb(H) is most likely due to macro-
scopic variations of superconducting properties along G
for example, facet structures that cause significant peak
1-3
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A. GUREVICH PHYSICAL REVIEW B 65 214531
I gb(H) if the A vortex spacing is commensurate with th
facet period,62 strains and local nonstoichiometry along GB2

etc.
At low field, only a single AJ vortex row moves alon

GB, while theA vortices in the grains remain pinned.21 At
higher field the moving AJ vortices start dragging neighb
ing rows ofA vortices in a flux flow channel along GB. Th
field H1 below which only a single AJ vortex row move
along the GB, can be estimated from the condition that
pinning forcef m of AJ vortices due to their magnetic inte
action with fixed A vortices equals the intergrain pin
ning forcef0Jc /c. The pinning force of AJ vortices is th
maximum gradient of the magnetic energyf (x)
52f0]xH(x)/4p, whereH(x)5B1DH cos(2px/a) is the
local field produced by the fixedA vortex lattice along GB,
DH5f0e22pu/a/pl2 is the amplitude of the oscillating pa
of the local fieldH(x) due to the periodicity of theA lattice,
andu;a is the spacing of the firstA vortex row from GB.63

Therefore,

H1.F2pl2Jc

cAf0
G 2

expS 4pu

a D . ~2!

For u5a, l52000 Å, andJc5105–106 A/cm2, Eq. ~2!
yieldsH1.0.1210 T. Note that the essential dependence
the transition fieldH1 on the bulkJc indicates that the region
0,H,H1 can be significantly widened by irradiation whic
increasesJc while weakly affecting GB properties.53 In ad-
dition, H1 is very sensitive to the positionu of the first vor-
tex row that can be strongly affected by the GB microstr
ture, facets, long-rangeTc variations due to strains, etc.

In this paper we neglect the pinning of vortices on a G
assuming that the driving currentJ(t) is higher than the de

FIG. 1. Current streamlines around AJ vortices on a GB~dashed
line! and the bulkA vortices in the grains, calculated from Eq.~18!
for l 50.2a.
21453
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pinning current of the AJ vortices, but lower thanJc of theA
vortices in the grains. This behavior has been observed
HTS bicrystals in a wide regionH,H1 of magnetic
fields.10,22–27,53Under the ac current, pinning effects in ele
tromagnetic response weaken even more as the ac frequ
v exceeds a characteristic depinning frequency.64,65 Further-
more, low-angle GBs can be regarded as overdamped
sephson contacts for which the displacements currents ca
neglected. Indeed, the overdamped state correspondsv
!vc5(CR)21;4p/drde, wheredr andde are the excess
resistivity and dielectric susceptibility on GB. Because f
low-angle GB the dielectric dislocation cores do not overla
dr;rn , andde;1, wherern is the normal state resistivity
at Tc . Thus, the conditionv!vc always holds forv smaller
than the superconducting gap~see also Refs. 16,17!. We also
neglect the time dispersion of the the GB resistanceR and
contribution of bulk quasiparticles, adopting the simple
frequency independentR in the framework of a standard RS
model.43

III. GENERAL DYNAMIC EQUATIONS

The NJE equations for current-driven vortex structures
an overdamped Josephson contact are19–21

H5
f0

~2pl!2E2`

`

u8~u!K0FAy21~x2u!2

l Gdu1Bv , ~3!

tu̇5
l

pE2`

`

u9~u!K0S x2u

l Ddu2sinu1b, ~4!

l 5cf0/16p2l2Jb , t5f0/2pcRJb . ~5!

Here the overdot and the prime denote differentiation w
respect to time and the coordinatex along GB, b(x,t)
5J(x,t)/Jb , J5(c/4p)“3Bv is the current density acros
GB induced by bulk vortices,

Bv~x,y!5
f0

2pl2 (
n

K0F ur2r nu
l G , ~6!

where r n is the position of thenth A vortex, K0(x) is a
modified Bessel function,f0 is the flux quantum, andc is
the speed of light. The first term in the right-hand side of E
~3! describes the magnetic field produced by all currents
culating near GB, and the second term represents the co
bution of bulk vortices without GB. To provide the bounda
condition for J(x,y) on a GB, the phase differenceu(x,t)
must satisfy Eq.~4!, which results from the current continu
ity condition,cH8/4p5Jb sinu1\u̇/2eR. Equations~3! and
~4! describe spatial variation ofu(x,t) andH(x,y,t) on any
scale greater thanj, irrespective of the microscopic mecha
nisms of current transport through the GB. The only assum
tion Jb!Jd behind Eqs.~3! and ~4! ensures the lack of the
order parameter suppression by currents flowing thro
GB. The geometry of the sample manifests itself in the lon
range asymptotics of the kernel in Eq.~4! at ur2r 8u.l. For
instance, Eqs.~3! and ~4! correspond to an infinite GB in a
1-4
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parallel field. More complicated expressions for the ker
K̃@(x2u)/l̃ # have been obtained for thin films in a perpe
dicular field,45,47,48and slabs in parallel49 and perpendicular50

fields.
In the vicinity of the AJ cores,r !l, and also in the high-

field limit, H@Hc1, Eq. ~4! acquires a simple universal form
independent of the sample geometry. This universality res
from the fact that forH@Hc1, the derivativeu9(u) in Eq. ~4!
rapidly oscillates over the intervortex spacing (f0 /H)1/2

!l. In this case the main contribution to the integral com
from the regionux2uu,l, where the Bessel functionK0(x)
in Eq. ~4! can be replaced by its expansionK0(x).2 ln(x) at
small x. Thus, the equation foru becomes

tu̇5
l

pE2`

` u8~u!du

u2x
2sinu1b, ~7!

For other geometries,K0@(x2u)/l# in Eq. ~4! should be
replaced with the appropriate kernelK̃@(x2u)/l̃ # which al-
ways has a logarithmic singularity atx5u, and a geometry-
dependent nonsingular part,K̃reg(x,u),

K̃~ ux2uu/l̃ !52 lnu~x2u!/l̃u1K̃reg@~x2u!/l̃ #. ~8!

This general behavior ofK̃@(x2u)/l̃ # is illustrated in Ap-
pendix A whereK̃@(x2u)/l̃ # for a thin film (d!l), is con-
sidered. Because of the rapid oscillations ofu9(u) at H
@Hc1, the main contribution to the integral in Eq.~4! comes
from the narrow region aroundu5x, so neitherK̃reg@(x
2u)/l̃ #, nor the screening lengthl̃ contribute to Eq.~7!.
This feature of Eq.~7! reflects the physical fact that the di
tribution of currents near the AJ cores is unaffected by
London screening. Indeed, the Green functionK̃@(x2u)/l̃ #
is proportional to the single-vortex London solutionH(r ), so
the difference betweenK̃@(x2u)/l̃ # for bulk samples and
thin films is basically the same as betweenH(r ) for the A
vortex and the Pearl vortex,66 respectively. Both vortices
have the same distributions of currentsJ(r ) near the core,
r ,l, but very different asymptotics ofJ(r ) for r .l. Thus,
the universal Eq.~7! describes the distributions of the pha
differenceu(x) in the AJ vortex cores and circulating supe
currents on the scales,l̃ away from the cores where th
London screening is inessential.

The driving parameterb5b01db(x) is a sum of the
constant transport currentb0 due to the gradient of theA
vortex density in the grains, and an oscillating compon
db(x) due to the discreteness of theA vortex lattice. The
termdb(x) gives rise to a critical currentbc through GB due
to pinning of AJ vortices byA vortices in the grains.21 In this
paper we consider a rapidly moving AJ structure in the fl
flow state,b@bc , for which the pinning termdb(x)!1 can
be neglected, andb(x) be replaced byb0(t). As shown in
Appendix B, the nonlinear Eq.~7! then has the following
exactsolution that describes a stable periodic vortex str
ture:

u5p1g12 tan21@M tank~x2x0!/2#, ~9!
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whereg(t), M (t), and the vortex velocityv(t)5 ẋ0 depend
only on t and obey the following equations:

tȧ1sinha cosg5Ah, ~10!

tġ1sing cosha5b0~ t !, ~11!

ktv52sing sinha. ~12!

Hereh5(kl)2 is the dimensionless magnetic field, the wa
vectork52p/a defines the perioda of the AJ structure, and

sinha52M /~M221!. ~13!

Using the complex variablesz5g1 ia and f 5b01 iAh,
Eqs.~10!–~12! can be written in a more compact form

t ż1sinz5 f , ktv5Im cosz. ~14!

The equation for the complex ‘‘phase’’z(t) has the same
form as the usual RSJ equation for the phase difference o
overdamped point contact.

Equations~9!–~12! were obtained in Appendix B by the
Hilbert transform, which was used to obtain static period
solutions of the Peierls equation~7! in the dislocation
theory,51 and then employed to describe AJ structures.52 It is
instructive to derive Eqs.~9!–~12! using a more transparen
approach, starting from the basic London equation

H2l2¹2H5f0u~x!d~y!/2p, ~15!

whereu(x) is determined by a particular vortex structure
a GB. Since screening does not affect the AJ cores and
rent distribution on the scales,l away from GB, Eq.~15!
reduces to the Laplace equation¹2H50 supplemented by
the boundary condition for the tangential and normal co
ponents of the current density on GB.

]yH~x,10!2]yH~x,20!52f0u8~x!/~2pl2!, ~16!

Jy~x,60!52
c

4p
H8~x,60!5Jb sinu1

f0u̇

2pcR
2J.

~17!

If screening is inessential,H(x,y) becomes a potential field
which in some cases can be found directly using the the
of analytic functions. For instance,H(x,y) from a periodic
AJ vortex structure in theupperhalf-planey.0, is given by
the following ansatz:

H5
f0

2pl2
Re ln sin$x2x0~ t !1 i @ uyu1y0~ t !#%

k

2
, ~18!

which describes the field produced by a chain of fictitiousA
vortices displaced byy52y0 away from GB in thelower
half-plane~we omit a constant term inH(x,y), inessential
for uyu,l!. Equation~18! is an exact solution of the Laplac
equation¹2H50. It turns out thaty0(t) can be chosen suc
that H(x,y) also satisfies the boundary conditions~16! and
~17! provided thatu(x,t) is given by Eq.~9! while g, a, and
x0(t) obey Eqs.~10!–~12!. To show that we first observe tha
1-5
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]xH5
kf0

4pl2

sinz

@coshk~y2y0!2cosz#
, ~19!

]yH52
kf0

4pl2

sign~y!sinha

@coshk~y2y0!2cosz#
, ~20!

wherez5@x2x0(t)#k. In turn, Eqs.~9! and ~13! yield

u85
k sinha

cosha2cosz
, ~21!

u̇5ġ2
ȧ sinz1kẋ0 sinha

cosha2cosz
, ~22!

sinu5
~12cosha cosz!sing2sinha sinz cosg

~cosha2cosz!
.

~23!

Now y0 can be chosen such that the denominators of E
~19!–~23! would coincide aty50,

ky05a5 ln@~M11!/~M21!#. ~24!

Equations~20! and ~21! with ky05a automatically satisfy
the first boundary condition~16!. Furthermore, substituting
Eqs. ~19!–~24! into the second boundary condition~17! re-
duces the latter to the form:C1(t)coskz1C2(t)sinkz1C3(t)
50. The self-consistency conditionsCi(t)50 are satisfied
only if u(t), a(t), andx0(t) do obey the dynamic equation
~10!–~12!.

Figure 1 shows the current streamlines calculated fr
Eq. ~18!, which has a clear interpretation similar to that o
single AJ vortex.19 Namely, the current streamlines describ
by Eq.~18! in the upper half-planey.0 coincide with those
produced by a chain of moving fictitiousA vortices displaced
by y52a(t)/k away from GB. Likewise, the curren
streamlines in the lower half-planey,0 coincide with those
produced by a chain of fictitiousA vortices displaced byy
5a(t)/k away from GB. The resulting nonsingular field di
tribution H(x,y) is an exact solution for moving AJ vortices
where the transverse displacementy0 determines the AJ core
size along GB. The time-dependent Cartesian coordin
x0(t) and y0(t)5a(t)/k of these fictitiousA chains obey
Eqs. ~10!–~12!. The transition from AJ toA vortices occurs
as Jb increases, reachingJb.Jd , while y0 decreases down
to y0.j. Likewise, the transition from AJ toJ vortices oc-
curs asJb decreases belowJd /k, in which casey0 becomes
greater thanl.

The set of coupled ordinary differential equations~10!–
~12! describe the evolution of the AJ phase core length,
phase shiftg(t), and the vortex velocityẋ0(t) for any time-
dependent transport currentb0(t). These equations alon
with Eqs. ~9! and ~18! determine distributions of the phas
differenceu(x,t) and screening currents for an interacti
moving AJ vortex chain, including nonlinear dissipative d
namic states caused by ac and dc driving currents of la
amplitude,J(t);Jb . Equations~10!–~12! considerably sim-
21453
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plify in the low-field limit, a→` for which Eq.~9! reduces
to a superposition of independent single AJ vort
solutions19

u~x,t !5g~ t !1(
n

Fp12 tan21
x2na2x0~ t !

L~ t ! G . ~25!

Here k52p/a→0, a→2/M→0, so the AJ core length
L(t)5a/k is independent of the magnetic field, whilea
5Lk→0. If a→0, Eqs.~10!–~12! turn into the following
equations that describe a single AJ vortex20

tġ1sing5b0 , ~26!

tL̇1L cosg5 l , ~27!

t ẋ052L sing. ~28!

Unlike Eqs.~10!–~12!, the equation forg is decoupled, from
Eqs.~27! and~28!. Thus, in the limita@L, the dynamics of
the core lengthL(t) and the vortex velocityẋ0 is integrable
for any giveng(t), which in turn is determined by Eq.~26!
for any time–dependentb0(t). This result is no longer valid
if the interaction between AJ vortices at a finiteH is taken
into account, when bothg(t) anda(t) are determined self-
consistently by Eqs.~10!–~12!.

Contribution of each AJ vortex to the ‘‘staircase’’ solutio
~25! gives a 2p phase shift along GB, thus the AJ vorte
carries exactly one flux quantumf0.21 Generally, the inter-
vortex spacinga(H) on GB is different from the period
(f0 /H)1/2 of the bulkA lattice, because of the reducedHc1
on a GB.19 In the low-field region,H;Hc1, the magnetic
inductionB is very different fromH, which causes a signifi-
cant mismatch in the periods of AJ and bulkA vortex lat-
tices. However, for strong fieldsH@Hc1 considered in this
paper, the difference betweenB and H is negligible, so the
AJ spacing a(H) nearly coincides with the bulk one
(f0 /H)1/2 as both are fixed by the same flux quantizati
condition.

The averaged voltageV on a GB produced by the movin
AJ vortex structure is given by

V5
f0

2pcaE0

a

u̇dx. ~29!

Substituting Eq.~22! into Eq. ~29!, we see that the term
proportional toȧ vanishes after integration, while the part
u̇(x2x0) proportional toẋ0 reduces to the full derivative
2 ẋ0u8. Integration ofu8 from 0 to a gives 2p due to the
flux quantization condition,21 u(x1a)2u(x)52p, thus

V5
f0

2pc
~ ġ2kv !. ~30!

Here the first term in the parentheses describes the quas
ticle component ofV, and the second term results from vo
tex motion. Equation~30!, along with Eqs.~10!–~12!, deter-
mine the nonlinear electromagnetic response of the mov
1-6



ffe
ap

it

is

r

i-

ic
r

y

J
,

ta

J

e

x

c

an-
t

e

p

n

f
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AJ vortex chain. These equations can be presented in di
ent forms, depending on the way the external drive is
plied. For example, the solutions of Eqs.~10!–~12! deter-
mine the voltage~30! for any time-dependent currentJ(t).

Another regime corresponds to the rf response, when
the voltageV(t) @rather than the current densityJ(t)# on a
GB which is fixed by an external rf source. In this case it
convenient to express the vortex velocity viaV from Eq.~30!
and subtract Eq.~11! from Eq. ~32!. Then the equations fo
a(t), g(t) andb(t) in the fixed voltage mode take the form

tȧ1sinha cosg5Ah, ~31!

tġ1sing sinha5u, ~32!

b5u1e2a sing, ~33!

whereu5V/RJb is the dimensionless voltage on a GB.

IV. NONLINEAR STEADY-STATE FLUX FLOW

The steady-state velocityv of the AJ vortex chain driven
by the constant currentb0 is described by Eq.~9! and Eqs.
~10!–~12! with ȧ5ġ50, whence tanha52sAh/b0 , tang
52s, andsAh52sing sinha. These equations give the d
mensionless propagation velocitys(b0)5v/v0 in the form

s25@A~12b0
21h!214b0

2h212h1b0
2#/2h. ~34!

Here v05 l /t, h5(2p l /a)2 is a dimensionless magnet
field. The limit h→0 corresponds to a single AJ vortex, fo
which both Eq. ~34! and the steady-state Eqs.~26!–~28!
(L cosg5l, sing5b0, and tv52L cosg), give v
5v0b0 /A12b0

2. The so-obtained single vortex velocit
v(J) diverges at J→Jb , because the AJ core sizeL
5 l /A12b0

2 expands asb0 increases.19 The core expansion
as the velocityv(J) increases is characteristic of both A
~Ref. 19! and J~Ref. 44! vortices in the overdamped limit
unlike the Lorentz contraction ofJ vortices in the under-
damped limit. However, as the AJ cores expand, they s
overlapping, so the interaction between vortices atJ.Jb
cannot be neglected even at low fields,h!1. The importance
of the interaction is apparent form the exact Eq.~34!, which
shows that the velocitys(b0) smoothly increases asb0 in-
creases and has no singularity for any nonzeroh.

The dc V-J characteristic due to viscous motion of A
vortices follows from Eq.~30! in which ġ50, andv(J) is
given by Eq.~34!. Hence

V5
V0

A2
@A~12b0

21h!214b0
2h212h1b0

2#1/2, ~35!

whereV05RJb . Equation~35! can also be written in a mor
transparent form

J5
V

RF11
1

H/H01~V/V0!2G 1/2

. ~36!

TheV-J curve shown in Fig. 2 has two linear portions: a flu
21453
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flow part, V5RfJ at J!Jb , and the quasiparticle Ohmi
part, V5RJ for J@Jb . In the crossover region,J;Jb , the
V-J curve becomes nonlinear, because of the AJ core exp
sion asJ increases. Since the AJ vortex core overlap aJ
.Jb , the GB resistance approaches its maximum valueR at
J@Jb .

For J!Jb , Eq. ~36! yields V5RfJ, where Rf

5RAh/(11h) is the flux flow resistivity of AJ vortices. If
H@Hc1, thenh5(2p l /a)25H/H0, and

Rf5
RAH

AH1H0

, H05
f0

~2p l !2
. ~37!

At H!H0, Eq. ~37! describes a chain of AJ vortices whos
cores do not overlap. In this caseRf(H) is similar to the
one-dimensional ~1D! Bardeen-Stephen formula,54 RBS

.RAH/Hc2, except that in Eq.~37! the core structure is
taken into account exactly~see also Ref. 19!. For H.H0
.(Jb /Jd)2Hc2!Hc2, the AJ cores overlap, and Eq.~37! de-
scribes a crossover to a field-independent resistanceR. This
regime has no analogs forA vortices, whose normal overla
only at Hc2.

It is interesting to compare Eq.~37! to Rf(H) for J vorti-
ces atJ!Jb . It is known67 that for small density ofJ vorti-
ces, Rf(B)5RB/Hc1J is proportional toB, similar to the
Bardeen-Stephen resistivity in whichHc2 is replaced by the
Josephson lower critical fieldHc1J5f0 /p2llJ . A general
expression forRf(H) can be written in the following form
~see Appendix C!:

Rf~H !5RB~H !/H. ~38!

Here B(H) is determined by the equilibrium magnetizatio
the J vortex structure,68

B5p2Hc1J/4pK~p!, H5Hc1JE~p!/p, ~39!

whereK(p) andE(p) are the complete elliptic integrals o
the first and the second kinds, respectively,69 and 0,p,1 is
a continuous parameter. As follows from Eqs.~38! and~39!,
Rf first increases linearly with B atB!Hc1J and then ap-

FIG. 2. TheV-J curves calculated from Eq.~35! for different
magnetic fieldsh5H/H0: 0.01~1!, 0.05~2!, 0.1~3!, 0.5~4!, 10~5!.
Inset shows the field dependence of the flux flow resistanceRf(B)
given by Eq.~37!.
1-7
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A. GUREVICH PHYSICAL REVIEW B 65 214531
proaches the constant valueR at H@Hc1J as theJ vortices
overlap, andB→H. By contrast, the saturation ofRf(H) for
the AJ vortices occurs at much higher fields;H0@Hc1 for
which the AJ vortex spacinga5(f0 /B)1/2 becomes of order
the AJ core sizel. The dependence ofRf(H) for J vortices
looks rather different from the simple Eq.~37! mostly be-
cause of the complicated relation~39! betweenB and H at
low fields H.Hc1J . In fact, Eq. ~37! also becomes more
complicated at lowH, of the order of the AJ lower critica
field Hc1b5(f0/4pl2)@ ln(l/l)10.423#,19 for whichH in Eq.
~37! should be replaced by the correspondingB(H) depen-
dence for AJ vortices.49 For H@Hc1b , the inductionB al-
most coincides withH, thusRf(H) for AJ vortices acquires
the universal form~37! independent of demagnetizing effec
crucial atH;Hc1. The simplicity of Eq.~37! is very conve-
nient to extract intrinsic properties of GBs at the nanosc
from transport measurements ofRf(H) in HTS bicrystals.53

V. LINEAR ac RESPONSE

To obtain the dynamic linear resistanceRv for a weak ac
current,Ja cos(vt)!Jb superimposed on the dc currentJ, we
calculate the amplitude of the induced ac voltage,Vv from
Eq. ~30! in which g(t) and v(t) are determined by Eqs
~10!–~12! with b5b01ba exp(ivt). Settinga5a01da, g
5g01dg and calculating the perturbationsda!1 anddg
!1 induced by the ac current from the linearized Eqs.~10!–
~12! yields the following general expression for the ac co
plex resistivityRv5Vv /Ja ~see Appendix D!:

Rv

R
5

h~h1u2!/Ah2V21 iV~h1Ah!

V0
22V212ihV

. ~40!

Here u5V/JbR is the dimensionless dc voltage on a G
V5vt is the normalized ac frequency,V0 andh5b0 /s are
the dimensionless flux flow resonance frequency and vis
ity, respectively,

h5Ah1h/~h1u2!, V05Au21h2. ~41!

In the fixed current mode, it is convenient to expressV0 and
h in terms ofb0,

V05@~11h2b0
2!214hb0

2#1/4, ~42!

h5@A~11h2b0
2!214hb0

2111h2b0
2#1/2/A2. ~43!

The dependencies ofV0 and h on b0 are shown in Fig. 3.
For J,Jb , V0 andh practically coincide, but for higherJ,
the frequencyV0 becomes much higher than the dampi
constanth. In the following subsections various dynam
regimes described by Eq.~40! are considered.

A. Small dc vortex velocities

For v50, Eq. ~40! reduces to

Rv5R1
Rf2R

ivt f11
. ~44!
21453
le
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HereRf is the dc flux flow resistivity~37!, andt f is the flux
flow relaxation time constant in the AJ vortex chain,

t f5
t

A11H/H0

. ~45!

The Drude-like frequency dependence ofRv , results in the
following retarded relation between the induced voltageV(t)
and the driving currentJ(t),

V~ t !5RJ~ t !1~Rf2R!E
2`

t

e(t82t)/t fJ~ t8!
dt8

t f
. ~46!

For example, after a jump-wise increase ofJ(t) from 0 toJ0,
the steady-state flux flow sets in according to

V~ t !5J0@Rf1~R2Rf !e
2t/t f#, t.0, ~47!

andV50 for t,0. The discontinuity inV(t) at t50 disap-
pears if a time dispersion ofR, or a finite capacitanceC of
the GB are taken into account. In the latter caseV(t) sharply
increases from 0 toV(t) given by Eq.~47! during a short
time t i5RC.

The ac powerQ5(1/2)Ja
2Re(Rv), dissipated on a GB

due to viscous flow of AJ vortices can be obtained from E
~37!, ~44!, and~45! in the form

Q5
RJa

2@Ah~11h!1~vt!2#

2@11h1~vt!2#
. ~48!

For a fixed frequency,Q(H) monotonically increases with
H, approaching the quasiparticle limitRJa

2/2 for H@H0, as
shown in Fig. 4. In the steady state,vt→0, the power
Q(H)}Ah/A11h is simply proportional toRf(H). For fi-
nite frequencies,Q(H) becomes finite even with no vortice
(H50) due to quasiparticle ac Ohmic currents through G

FIG. 3. Dependencies ofV0 andh on the normalized dc curren
densityb05J/Jb for H50.05H0.
1-8
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B. Flux flow resonance for moving AJ vortices

Interaction of the moving AJ chain with the ac field ca
cause a resonance, ifv is close to the real partv0 of the
complex eigenfrequencyv f which corresponds to the pole i
Rv(V),

v f5v01 ih0 , ~49!

where the flux flow resonance frequencyv0 and the damping
constanth0 are given by

v05A~kv !21h0
2, ~50!

h05
1

t F H

H0
1

1

11~v/v0!2G 1/2

. ~51!

For small dc velocityv, the AJ oscillations are strongl
overdamped,v0.h0, so no resonance peaks inRv(V) oc-
cur for J,Jb , as evident from Fig. 3. However, because t
frequencyv0 increases, while the damping constanth0 de-
crease asv(J) increases, the flux flow resonance emerge
high dc driving currentsJ.Jb , for which v0@h0. For a
given frequencyv, the resonance occurs at the vortex velo
ity v f , for which

v25~kv f !
21h0

2~v f !. ~52!

If kv@h0, the resonance frequencyv0 approaches the
‘‘washboard ’’ frequency55 for which the vortex velocityv f
equals the phase velocity of the electromagnetic wavev/k
with the wave vectork52p/a of the AJ structure. Becaus
V0(b0) has a minimum atJ.Jb ~see Fig. 3!, the resonance
condition~52! at a given frequencyv can be satisfied eithe
for one or two velocitiesv f . From Eqs.~50!, ~51!, and~52!,
it follows that

v f5FV26AV424h

2h
21G1/2

v0 . ~53!

FIG. 4. Field dependence of the ac dissipated powerQ(H) for
different dimensionless frequenciesV5vt.
21453
at
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The solution forv f exists above the thresholdV.(4h)1/4,
where the resonance can occur either at one or two diffe
velocitiesv f , depending onV,

~4h!1/4,V,~11h!1/2 two v f , ~54!

V.~11h!1/2 one v f . ~55!

At V5(11h)1/2, the smaller resonance velocities vanish
asv f}(A11h2V)1/2. ForV@h1/4, the larger resonance ve
locity approaches the material-independent ‘‘washboa
valuev f5av/2p.

Near the resonance,v'v0, at high vortex velocities (s2

@1, V0'sAh, h'Ah!V0), Eq. ~40! yields

Rv

R
511

1

4V0~ ih2V1V0!
. ~56!

Equation~56! describes a resonance line with a Lorentz pe
in Im Rv52R/4s@h1(V2V0)2#, as shown in Fig. 5. For
s2@1, the amplitude of the peak decreases asv(J) and H
increase. The resonance is most pronounced ifJ.Jb and
H!H0, while at smaller J or higher H, the peak in
Im Rv(V) disappears as the linewidthh becomes of the or-
der of the eigenfrequencyV0.

VI. NONLINEAR RESPONSE

A. Flux flow resonances on the dcV-J curve

The flux flow resonance also manifests itself in the av
aged dc voltageV as a function of the dc current density. T
calculateV(J), it is convenient to use the complex represe
tation ~14! for z5g1 ia, taking z5z01dz01dz, wherez0
is the dc solution without the ac field for which sinz05b
1iAh, and the oscillating correctiondz obeys the linearized
equation

td ż1cosz0dz5db. ~57!

FIG. 5. Flux flow resonance line in ImRv(V) calculated from
Eq. ~40! for b54 and different magnetic fieldsH/H0: 0.05, 0.4,
and 2~from bottom to top curve, respectively!.
1-9
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A. GUREVICH PHYSICAL REVIEW B 65 214531
Heredb(t)5ba cosvt, anddz0 is a dc correction toz0 due
to the ac field, which is determined by Eq.~14! expanded to
quadratic terms indz,

2dz0 cosz05^dz2&sinz0 , ~58!

where the angular brackets mean time averaging over th
period 2p/v. The averaged vortex velocitŷv& is given by
the second of Eqs.~14! expanded to quadratic terms indz
and linear terms indz0,

kt^v&5ImS cosz02
^dz2&

2 cosz0
D . ~59!

The second term in the parentheses describes the corre
due to the ac field. The valuêdz2& can be calculated usin
the solution of Eq.~57!,

dz5
ba

V21cos2z0

~cosz0 cosvt1V sinvt !, ~60!

which yields ^dz2&5ba
2/2@V21cos2z0#. Inserting this ex-

pression into Eq.~59! gives the averaged vortex velocity i
the form

Ah^s&52~11Gv!sing0 sinha0 , ~61!

where the parameterGv quantifies the ac contribution

Gv5
Ja

2~4h21V22V0
2!

~2JbV0!2@~V22V0
2!214h2V2#

. ~62!

Equation ~61! for ^s& is identical to the dc relation,tkv
52sing sinha, if v is replaced by the effective velocityṽ
5v/@11Gv(v)#. Therefore, the averagedJ-V characteristics
can be presented in the dc form~36! if V is replaced by the
effective voltageṼ(V) as follows:

J5
Ṽ

RF11
1

H/H01~Ṽ/V0!2G 1/2

, ~63!

Ṽ5V/@11Gv~V!#, ~64!

whereG(V) is determined by Eqs.~41! and ~62!. The J-V
characteristics described by Eqs.~63! and~64! Ja are shown
in Fig. 6 for different ac amplitudesJa . For stronger ac
signal, theJ-V curves can exhibit two maxima at the res
nance voltagesVf5f0v f /ca, and portions with negative
differential conductivity. As follows from Eqs.~54! and~55!,
there are either one or two resonance voltages, dependin
the relation betweenH andv. The increase of the magnet
field broadens the peaks inJ(V) which eventually disappea
at higherH, because of the increase of the effective damp
constanth0 in Eqs.~49!–~51!.

B. ac dissipation

The mean ac powerQ5^JV& dissipated per unit area of
GB due to the ac voltageV(t)5Va cosvt of large amplitude
can be calculated by solving Eqs.~31!–~33! numerically. The
21453
ac

ion

on

g

situation simplifies for a low-frequency ac signal (vt!1)
for which Q can be obtained using the quasistatic Eq.~36!.
For low fields h!1 and moderate ac amplitudesua
5Va /V0,1, the unity under the square root in Eq.~36! can
be neglected, giving

Q5
vVa

2

2pR
E

0

2p/v cos2vtdt

Ah1ua
2 cos2vt

. ~65!

This integral can be expressed in terms of the complete
liptic integralsK(m) andE(m),69

Q5
2Jb

2Rf

pA11g2
@~11g2!E~m!2K~m!#, ~66!

m5g2/~11g2!, g5Va /RfJb . ~67!

The powerQ(g) is a function of only one dimensionles
parameterg which includes both the ac amplitude and t
magnetic field, as shown in Fig. 7. For a weak ac sign
Va!JbRAh, Eq. ~66! yields the quadratic dependence ofQ
5Va

2/2Rf on Va , whereRf5RAh is the dc flux flow resis-
tivity at h!1. However, for stronger ac signals,JbRAh
!Va!JbR, Eqs.~65! and ~66! yield the linear dependence

Q52VaJb /p, ~68!

which is independent of the GB resistanceR. This behavior
is due to the AJ core expansion at large vortex velocities.
very high ac amplitudeVa@RJb , the full Eq.~36! should be
used instead of Eq.~65!. In this case Eq.~36! yields V
5J/R during most part of the ac cycle, thus the ac pow
dissipated on the GB becomes quadratic inVa , approaching
the normal state limit,Q→Va

2/2R ~not shown in Fig. 7!.

FIG. 6. Manifestation of the flux flow resonance on the averag
dc J-V characteristic forvt50.1, H50.01H0, and different ac
amplitudes, (Ja/2Jb)2: 0 ~1!, 0.05 ~2!, 0.1 ~3!.
1-10
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C. Generation of higher harmonics

The nonlinearity of the electromagnetic response of
AJ structure driven by harmonic ac currentJ(t)5Ja cosvt
gives rise to higher voltage harmonics

V~ t !5 (
n50

`

V2n11~b,v,h!cos~2n11!vt, ~69!

where the Fourier coefficientsV2n11 can in principle be cal-
culated from Eqs.~10!–~12!. The higher harmonics inV(t)
are most pronounced if the amplitude of ac AJ vortex d
placements is maximum. For the overdamped dynamics c
sidered in this paper, the amplitude of the AJ vortex osci
tions decreases withv, so the higher harmonics inV(t) are
most pronounced for the quasistatic ac signal,vt!1. In that
case the coefficients

V2n115
2v

p E
0

p/v

dtV~ba cosvt !cos~2n11!vt ~70!

are independent ofv, andV@b(t)# is given by Eq.~35!. For
instance, the amplitude of the third harmonicsV3 for a small
ac currentba5Ja /Jb!1 is obtained by expanding Eq.~35!
up to cubic terms inb. This yields V(t)'RfJa cosvt
1V3 cos 3vt, where

V35
RJa

3

8Jb
2

Ah

~11h!5/2
. ~71!

The amplitude of the third harmonicsV3(h) has a maximum
at h51/4, as shown in Fig. 8. This field dependence refle
the increase ofV3}Ah at small h proportional to the AJ
vortex density, followed by the decrease ofV3(h) at higher
fields, for which the AJ cores start overlapping, and theV(J)
curve becomes Ohmic. This trend is characteristic of ot
higher order harmonics as well, whose amplitud
V2n11(h)}ba

2n11 strongly decrease withn andh for h.1.

FIG. 7. The powerQ dissipated on a GB as a function of the
amplitude, whereQa52Jb

2Rf /p.
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The maximum inV3(h) could be used for extracting th
field H0 and thus the AJ core sizel on a GB from the ac
measurements. In that case the ac measurements ofV3(H)
may bring some advantages over the dc measurements oH0
from the flux flow resistivityRf(H),53 since the maximum in
V3(H) occurs at the fieldH0/4 independent of the quasipa
ticle resistivity R, while the extracting ofl from Rf(H) re-
quires a two-parameter fit forH0 andR.

D. Phase locking and quasisteps onJ-V curves

AJ vortices in superimposed ac and dc fields can exh
phase locking effects at ac large amplitudesba if the dc
voltageV on a GB is commensurate to the Josephson volt
Vv5\v/2e, where n is any integer, ande is the electron
charge. The electromagnetic response of a GB biased by
voltageV superimposed on ac voltageVa cosvt, is described
by Eqs. ~31!–~33! with u(t)5u1ua cosvt, where u
5V/RJb , andua5Va /RJb . To calculate the dcJ-V charac-
teristic averaged over the ac oscillations with the accoun
the phase locking ofg(t) onto the ac field, we use an ap
proach similar to that for Shapiro current steps onJ-V curves
of small Josephson junctions.43,58 In this case

g5c1nvt1q sinvt1dg, q5ua /V, ~72!

wherec is a constant phase shift, anddg(t) is a nongrowing
oscillating correction. Likewise,a5a01da(t), wherea0 is
a constant to be determined, andda(t) is an oscillating cor-
rection. We consider here the high-frequency signals of la
amplitude (vt@1, ua.1), for which bothda;1/vt!1
and dg;1/vt!1 can be neglected. This situation diffe
from the nonlocked state (n50) considered in the precedin
section, for which the contribution ofda and dg entirely
determine the effect of the ac field on the dcV-J curves.

Equation~72! and Eqs.~31!–~33! yield the following av-
eraged dc equations:

^cosg&sinha05Ah, ~73!

FIG. 8. The field dependencies of the amplitude of the th
harmonicsV3(H) normalized toVn5RJa

3/16Jb
2 and the flux flow

resistanceRf(H).
1-11
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^sing&sinha05u2nV, ~74!

b05u1^sing&e2a0. ~75!

Here the averageŝsing& and^cosg& were calculated in Ap-
pendix E,

^sing&5~21!nJn~q!sinc, ~76!

^cosg&5~21!nJn~q!cosc, ~77!

whereJn(q) is the Bessel function. From Eqs.~73!–~77!, it
follows that

tanc5~u2nV!/Ah, ~78!

sinh2a05@h1~u2nV!2#/Jn
2~q!. ~79!

Equations~75!, ~78!, and ~79! give the following dcJ-V
characteristics atV'nVv :

RJ5nVv1~V2nVv!F11
Jn

2~q!

h1~V2nVv!2/V0
2G 1/2

.

~80!

The behavior ofJ(V) near the resonant voltageV'nVv is
shown in Fig. 9. ForH→H0, the J(V) dependence ap
proaches that of the Shapiro step for a small Josephson j
tion at zero field. For finiteH, the contribution from the AJ
vortex motion broadens the kink inJ(V), whose widthDV
5V2Vv can be estimated from the condition that two ter
in the denominator of Eq.~80! become comparable. Thi
yields

DV.
RcAf0H

8pl2
. ~81!

The valueDV is independent ofJb and goes to zero asTc
2T at Tc .

FIG. 9. Quasistep on the averagedJ-V characteristic atV'Vv

for q53, n51, Vv /RJb51, and different magnetic fieldsH/H0: 0
~1!, 0.01 ~2!, and 0.1~3!.
21453
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The evolution of the AJ core lengthL5 la/Ah as the dc
voltageV sweeps through the resonance atVv is described
by Eq. ~79! as follows:

L5
l

Ah
sinh21FAh1~u2nV!2

uJn~q!u G . ~82!

The core lengthL(V) passes through minima at the res
nance voltagesn\v/2e. Notice that there are specific value
of the ac parameterqn5ua /V, which correspond to zeros o
the Bessel functionJn(q). In this case the core length d
verges logarithmically, so the above approximation, wh
neglects the ac correctionsdg;da}1/V, becomes invalid.
The blowing up of the AJ core length abovel at q→qm may
indicate a conversion of the AJ into theJ vortex under the
action of an ac field.

VII. DISCUSSION

In this paper solutions that describe dc and ac driv
mixed Abrikosov vortices with Josephson cores on highJb
grain boundaries in a magnetic field are obtained. These
lutions give self-consistent distributions of currents circul
ing around moving AJ vortex structure in an exactly solva
model of the overdamped AJ vortex dynamics that descri
both nonlinear dissipative processes in the vortex cores
magnetic interaction between AJ vortices along a GB. Unl
Josephson vortices whose overdamped nonlinear dyna
in the long junctions can be described only numerically,
dynamics of AJ vortices turned out to be integrable just
the overdamped limit that is most relevant to low-angle GB
The analytic theory of the ac response developed in this
per could be used to describe high-Jb flux flow oscillators
based on HTS bicrystals.18

Based on the exact AJ dynamic solutions, both the dc fl
flow resistivity and theV-J characteristics are obtained. Th
field dependence of the flux flow resistivityRf(H) shows the
characteristicAH behavior at lowH, but then it approaches
the quasiparticle limitR for H@H0 as the AJ cores overlap
The simplicity of Eq.~37! for Rf(H) gives a direct way of
extracting the AJ core lengthl and thus the intrinsic depair
ing current densityJb and the quasiparticle resistanceR av-
eraged over few current channels from transport meas
ments. Such measurements have indeed proven the exis
of AJ vortices on 7° irradiated and unirradiated YBCO b
rystals for which the AJ core lengths.100–200 Å at 55–77
K is considerably greater thanj(T), but smaller thanl(T).53

In addition, the extracted temperature dependence ofJd(T)
exhibited a clear SNS behaviorJb5J0(12T/Tc)

2, indicat-
ing a significant order parameter suppression between d
cation cores, even on a rather low-angle 7° GB, in acc
dance with the model of Ref. 12.

The fact that moving AJ vortex core can effectively pro
local GB properties at the nanoscale of few GB dislocat
spacings, makes standard transport measurements a very
ful tool to clarify the structure of vortex core on GBs, mech
nisms of current transport through GBs and the effect
local overdoping onJb andR. This method implies measure
ments of flux flow resistanceRf(H) for bicrystals with the
1-12
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same misorientation angleq, but different local doping
level. In this way, the intrinsic depairing current density o
GB, Jb can be obtained as a function of the dopant conc
tration. Pinning of AJ vortices strongly affects theV-J curve
near the depinning current density,J'Jgb , but for J@Jgb ,
the differential resistivitydV/dJ approaches the free flu
flow resistivity.70 Thus, measuringRf(H) in the flux flow
region atJ.(223)Jgb enables one to avoid the analysis
multiple pinning mechanisms on real grain boundaries
HTS,2 using instead an exact flux flow theory for the inte
pretation of the experimental data in the regionJ@Jgb ,
where pinning is a weak perturbation. This conclusion
consistent with the experimental fact thatV-J curves ob-
served on HTS bicrystals are rather straight aboveJgb in a
wide range of currents.10,22–27,53Thus, the intrinsic properties
of grain boundaries can be extracted from the analysis of
differential resistance~but not V-J curves! measured atJ
@Jgb using our solution forRf which neglects pinning. A
similar approach was used to measure the flux flow resis
ity of pinnedA vortices driven by strong current pulses we
aboveJc .71 SinceJgb is by two to three orders of magn
tudes below the intrinsicJb , the pinning region is much
smaller than the scale of Fig. 2, so the linearRf can be used
to fit the data.

Measuring the local ac response of a GB can bring ad
tional advantages over the dc measurements in which th
current acts both on AJ on GB andA vortices in the grains.
Indeed, using a scanning localized microwave source,15 it
would be possible to probe the ac dynamics of AJ on G
minimizing the effect of pinnedA vortices. For instance, th
AJ core size and thus the localJb can be extracted from a
measurements of higher voltage harmonics, as describe
the preceding section.

The behavior of AJ vortices in a strong dc fieldH@Hc1

considered in this paper is most relevant for bulk HTS. Ho
ever, of much interest for superconducting electronics is a
the electromagnetic response of HTS polycrystaline films
comparatively weak rf fields for which vortices mostly pe
etrate the network of GBs. In equilibrium, this regime cor
sponds to the field rangeHc1b,H,Hc1, where Hc1

5(f0/4pl2)(12N)@ ln(l/j)10.5# is the lower critical field
for intragrain A vortices,69 and Hc1b5(f0/4pl2)(12N)
3@ ln(l/l)10.423# is the lower critical field of AJ vortices,19

and N is the demagnetizing factor. For a film in a perpe
dicular field, the AJ vortex spacinga5(f0 /B)1/2 can now
significantly vary along GB, since the normal component
the local magnetic inductionB(x,y) is now determined by
highly nonuniform distribution of the Meissner surface cu
rents and a domelike vortex distribution due to the geome
cal barrier.72,73 In this case the results of this paper based
the solution~9! with constantk52p/a(B) may be used if
B(x) varies slowly over the intervortex spacinga(x), thus
the parameterh in the above formulas should be replaced
its local valueh(x)5B(x)/H0.

Note added.After this manuscript was submitted, I be
came aware of the papers by Silin52~b! in which equations
analogous to Eqs.~10!–~12! had also been obtained.
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APPENDIX A: DERIVATION OF EQ. „7…

To calculate the 2D current distribution around a plan
Josephson contact in thex-z plane aty50, it is convenient
to use the scalar stream functionc(x,y) so thatJx5]yc,
Jy52]xc, whence

]c

]y
5

c

4pl2 S f0

2p

]w

]x
2AxD , ~A1!

]c

]x
52

c

4pl2 S f0

2p

]w

]y
2AyD , ~A2!

whereA is the vector potential, andw is the phase of the
order parameter. From Eq.~A1!, it follows that the parallel
componentJx(x,10)2Jx(x,20)5(cf0/8p2l2)u8 is dis-
continuous for any nonuniform distribution of the phase d
ferenceu(x)5w(x,10)2w(x,20) along GB. This results
in the following boundary condition for the stream functio
at a GB:

]yc~x,10!2]yc~x,20!5~cf0/8p2l2!u8. ~A3!

Excludingw from Eqs.~A1! and ~A2!, we obtain

¹2c2
cH

4pl2
5

cf0u8

8p2l2
d~y!, ~A4!

where thed functiond(y) in the right-hand side provides th
boundary condition~A3!, andH5¹z3A is thez component
of the magnetic field, related to the stream functionc by the
Biot-Savart law,

H~r !5
1

cEV

@~x2x8!]x8c1~y2y8!]y8c#d3r 8

@~x2x8!21~y2y8!21~z2z8!2#3/2
. ~A5!

Equations~A4! and~A5! give an integrodifferential equation
for c(x,y) which can be solved by the Fourier transform.

For an infinite ~along H) sample, the local relation
c(x,y)5cH(x,y)/4p holds, thus Eq.~A4! becomes the
London equation~15! for H(x,y). For a thin film of thick-
nessd!l, one can putz5z850 in Eq. ~A5!, then the inte-
gration overz8 gives the factord, and Eq.~A5! gives the
following relation between the Fourier components ofH and
c:

Hq5~2pqd/c!cq , ~A6!

whereq25qx
21qy

2 . The Fourier transform of Eq.~A4! yields

cq52
cf0u8~qx!

8p2l2~q21q/l̃ !
, ~A7!

where l̃52l2/d. Making the inverse Fourier transform o
Eq. ~A7! and using the boundary conditionc8(x,0)
1-13
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5Jb sinu1\u̇/2eR, we arrive at the nonlocal Eq.~4! for
u(x,t) in which K0(ux2uu/l) should be replaced by th
kernel K̃(ux2uu/l̃), where47,48

K̃~s!5E
0

` e2spdp

A11p2
. ~A8!

Despite different behaviors ofK0(ux2uu/l) and K̃(ux
2uu/l̃), at large distances, they both have the same loga
mic singularity atx5u, because at short distancesuu2xu
!l, screening is inessential so the vector potentialA in Eqs.
~A1! and~A2! and the fieldH in Eq. ~A4! can be neglected
Then Eq.~A4! becomes a 2D Poisson equation whose so
tion is

c~x,y!5
cf0

32p3l2E2`

`

u8~u!ln@y21~x2u!2#du, ~A9!

both for thin films and bulk samples.

APPENDIX B: EXACT SOLUTION

To show that Eq.~9! is indeed an exact solution of Eq.~7!,
we substitute Eq.~21!–~23! into Eq.~7! in which the integral
is evaluated using the Hilbert transform51,52

E
2`

` sinhady

~x2y!~cosha2cosky!
5

p sinkx

cosha2coskx
. ~B1!

Equation ~7! then reduces to the algebraic formC1 cosz
1C2 sinz1C350, where the coefficientsCi depend only on
time via a(t), g(t), and ẋ0(t). Equating allCi to zero, we
arrive at Eqs.~10!–~12!.

Useful relations for the steady-state vortex propagat
can be obtained from Eqs.~10!–~12! with ġ5ȧ50,

sinha cosg5Ah, ~B2!

sing cosha5b0~ t !, ~B3!

sAh52sing sinha. ~B4!

Adding squared Eqs.~B2! and ~B4! yields

sinh2a5~11s2!h. ~B5!

Subtracting squared Eqs.~B3! and ~B4! yields

sin2g5b0
22s2h, ~B6!

Substituting Eqs.~B5! and ~B6! back to Eq.~B4! gives the
following equation fors:

b0
25hs21

s2

11s2
. ~B7!

The use of the relationsAh5V/JbR reduces Eq.~B7! to Eq.
~36!. Substituting Eq.~B7! into Eq. ~B6! yields
21453
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sing5
s

A11s2
, cosg5

1

A11s2
. ~B8!

These results can also be obtained from the complex
resentation of the dc equations~14!,

sinz05b01 iAh. ~B9!

The vortex velocity is given by the second Eq.~14!,

sAh5Im@12~b01 iAh!#1/2, ~B10!

from which Eq.~34! readily follows.

APPENDIX C: Rf FOR J VORTICES

The sine-Gordon equation for a periodicJ vortex structure
moving with a constant velocityv has the form

lJ
2]zzu1vt]zu2sinu1b50, ~C1!

where thez5x2vt. Multiplying Eq. ~C1! by ]zu and then
integrating fromz50 to z5a, using the flux quantization
conditionu(z1a)2u(z)52p, and the periodicity condition
]zu(z1a)5]zu(z) for H(z), we arrive at the following
equation forv:

2pb52vtE
0

a

~]zu!2dz. ~C2!

Expressing the vortex velocityv(J) in Eq. ~C2! via the dc
voltageV from Eq. ~30! yields the flux flow resistivityRf
5V/J in the form

Rf54p2R/FaE
0

a

~]zu!2dzG . ~C3!

For the linear flux flow state atb!1, u(z) in Eq. ~C3! can
be replaced with staticu0(x) for which

lJ
2u092sinu050, ~C4!

The first integral of Eq.~C4! has the form

~lJu08!254@p222cos2u0/2#. ~C5!

The periodic solutions of Eq.~C5! can be expressed in term
of the Jacobi elliptic function,u0(x)5p12am(x/plJ),
where 0,p,1 is a parameter that is related to the appli
magnetic fieldH and the magnetic inductionB by Eqs.
~39!.68 The perioda of the J structure is given by

a52lJpK~p!, 2laB5f0 , ~C6!

whereK(p) andE(p) are the complete elliptic integrals,69

K~p!5E
0

p/2

~12p2 sin2u!21/2du, ~C7!

E~p!5E
0

p/2

~12p2 sinu2!1/2du. ~C8!
1-14
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Substituting Eq.~C5! into Eq. ~C3! and changing integration
*0

adx→*0
2pdu/u8, we obtain

Rf5
p2RplJ

2aE~p!
. ~C9!

Equations~C6!, ~C9!, and~39! give Eq.~38!.

APPENDIX D: LINEAR RESPONSE

Linearized Eqs.~10!–~12! have the form

tdȧ1da cosha cosg2dg sinha sing50, ~D1!

tdġ1dg cosg cosha1da sing sinha5bveivt, ~D2!

ktdv52dg cosg sinha2da sing cosha. ~D3!

These equations give the following Fourier components
da, dg, andds:

dav5
sinha singdbv

~ iV1cosha cosg!21sinh2a sin2g
, ~D4!

dgv5
~ iV1cosha cosg!dbv

~ iV1cosha cosg!21sinh2a sin2g
, ~D5!

Ahdsv52
sinha~ iV cosg1cosha!dbv

~ iV1cosha cosg!21sinh2a sin2g
, ~D6!

whereV5vt. Substitutingds and dg into Eq. ~30! gives
the complex ac resistanceRv5Vv /Ja ,
ii,

M

. B

.

.
K

,

tt

H

z,
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Rv

R
5

sinha cosha2V21 iVea cosg

sinh2a1cos2g2V212iV cosha cosg
. ~D7!

Equation~D7! reduces to Eq.~40!, using Eqs.~B5!–~B8!.

APPENDIX E: SEPARATION OF FAST AND SLOW
VARIABLES

The time averages of

^sing&5^~sinc cosnvt1cosc sinnvt !cos~q sinvt !

1~cosc cosnvt2sinc sinnvt !sin~q sinvt !&,

~E1!

^cosg&5^~cosc cosnvt2sinc sinnvt !cos~q sinvt !

2~sinc cosnvt1cosc sinnvt !sin~q sinvt !&,

~E2!

can be calculated, using the identities69

cos~q sinvt !5J0~q!12(
k51

`

J2k~q!cos~2kvt !, ~E3!

sin~q sinvt !52(
k50

`

J2k11~q!sin@~2k11!vt#, ~E4!

whereJk(q) is the Bessel function. Averaging Eqs.~E1! and
~E2! yields Eqs.~76! and ~77! because only one resona
term with 2k5n or 2k115n in the sums~E3! and ~E4!
gives a nonzero dc contribution to^sing& and ^cosg&.
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