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Nonlinear dynamics of vortices in easy flow channels along grain boundaries in superconductors
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A theory of nonlinear dynamics of mixed Abrikosov vortices with Josephson dé@wortices on low-
angle grain boundarig§B) in superconductors is proposed. As the misorientation afigtereases, vortices
on low-angle GBs evolve from the Abrikosov vortices with normal cores to intermediate AJ vortices with
Josephson cores, whose lengdlong GB is smaller that the London penetration deptibut larger than the
coherence lengtlj. Dynamics and pinning of the AJ vortex structures determine the in-field current transport
through GB and the microwave response of polycrystal in the crucial misorientation #angé—30° of the
exponential drop of the local critical current density ) through GB. An exact solution for an overdamped
periodic AJ vortex structure driven along GB by an arbitrary time-dependent transport current in a dc magnetic
field H>H_, is obtained. It is shown that the dynamics of the AJ vortex chain is parametrized by solutions of
two coupled first-order nonlinear differential equations which describe self-consistently the time dependence of
the vortex velocity and the AJ core length. Exact formulas for the dc flux flow resis®gii#), and the
nonlinear voltage-current characteristics are obtained. Dynamics of the AJ vortex chain driven by superim-
posed ac and dc currents is considered, and general expressions for a linear complex ré®{ssiviagnd
dissipation of the ac field are obtained. A flux flow resonance is shown to occur at large dc vortex velocities
for which the imaginary part dR(w) has peaks at the “washboard” ac frequeney=2mv/a, wherea s the
intervortex spacing. This resonance can cause peaks and portions with negative differential conductivity on the
averaged dc voltage-curren?{) characteristics. ac currents of large amplitude cause generation of higher
voltage harmonics and phase locking effects which manifest themselves in steps on the averagedides
at the Josephson voltages; w/2e with n=1.2, .. ..
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[. INTRODUCTION ral percolating network for preferential motion of vortices
through a superconductbt.?’ Such percolating networks
Mechanisms of current transport through grain boundarieare not only characteristic of polycrystals, but represent a
(GB) in high-temperature superconductdidTS) have at- rather generic feature of vortex dynamics and pinning in su-
tracted much attention because they revealdtheave sym-  perconductors. For instance, networks of easy flow vortex
metry of the HTS pairiny and determine the current- channels have been suggested by Kramer in early shear mod-
carrying capability of HTS materiafs. Unlike low-T,  els of flux pinning® and later discovered in molecular-
superconductors, GBs in HTS exhibit weak-link behaviordynamics simulation of vortices inrandom pinning
due to the exponential drop of the local critical current den-potential?>3® numerical simulations of time-dependent
sity of a GB,J,= Jy exp(—9/), as the misorientation angle Ginzburg-Landau equations that describe moving vortex
9 between the neighboring crystallites increases abdye structure near twin boundariés and observed by
~5-6°. The strong dependenceXy{¥) on ¥ makes high- decoratiof? and Lorentz microscops? Matching effects in
angle GBs crucial current-limiting defects in HTS dynamics and pinning of mesoscopic vortex flow channels in
polycrystals® Since pioneering experiments of the IBM artificial thin film superconducting structures have been ex-
group? much progress has been made in understanding thiensively studied by Kes and co-workéfs®® Many observ-
multiscale microstructure of GBs and its effect on theirable features of global current-voltage characteristics, mag-
weak-link behaviof~" but primarily in the absence of a netization, rf response, and flux creep of HTS polycrystal
strong magnetic field. Detailed atomic structure of GBs may be due to dynamics and pinning of vortices in easy-flow
revealed by high-resolution electron microscopy has beeshannels, rather than stronger pinned vortices in the
used to determine local underdoped states of GB, defecgrains>®~*° By contrast, GBs in lowF, materials do not
induced suppression of superconducting properties at thelock macroscopic currents, but can enhance flux
nanoscale and controlled increase Jof by overdoping of  pinning*2 and play the role of “hidden” weak links that
GB & Recent models have also pointed out the importancstrongly affect the vortex mass and viscoSltgrucial for
of charging and strain effects which drive the HTS state atransport and microwave response of superconduttdrs,
GB toward the metal-insulator transition dsincreased?3 The behavior of vortices in easy flow channels on GBs in
At the same time, little is known about vortices on low- polycrystal is mostly determined by the structure of vortex
angle GBs, although it is the dynamics and pinning of thecores which depends on the local depairing current density
GB vortices, which mostly limit critical currents of HTS J, through a GB at the nanoscale of few current channels
polycrystal in a magnetic fieldland determine a microwave between the dislocations. The extreme sensitivity ) to
response of HTS film& 18 Generally, pinning of vortices the misorientation anglé makes GBs in HTS a unique tool
along GBs is weaker than in the grains, so GBs form a natuto trace a fundamental transition between the Abriko@gv
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and Josephsofi) vortices. As? increases]J,(9) rapidly  agreement with the model of Ref. 12.

decreases, from the bulk depairing current dendjtyat o This paper presents a theory of a nonlinear flux flow of AJ
< ¥, down to much lower valued,<Jy at 9> d,. In turn,  vortices driven by dc and ac currents in a magnetic field. An
vortices on a GB evolve from thA vortices with normal €xactly solvable model that describes a chain of AJ vortices
cores atd< 1, to intermediate Abrikosov vortices with Jo- Moving along a GB through the strongly pinnédvortex
sephson coregAJ vortices™® and then to the) vortices at lattice in the grains, is proposed. This model of the over-
higher 9. There is no order parameter suppression in the A§lamped vortex dynamics describes self-consistently both
core, which is a phase kink whose lendttalong GB is nonlinear dissipative processes in the AJ vortex cores and

greater than the coherence lengttbut shorter than the scale g:agirl;et;ic rllnte:caci:lonl tt)i(;tween '?‘] \r/lgrtlt:tes, shgwmg howt.tflle
of circulating screening currents set by the London penetra- stributions ot circulating superconducting and quasipartic'e

. . . .~ “currents change as a function of the vortex velocity. The AJ
tion d.e pth)_\. As 19 increases further, the AJ vortices turn into vortices exhibit many characteristic features of the dynamics
Jvortices in which both the Josephson currents and the ma

o %t the periodicA vortex lattice, for example, viscous flux
netic fieldH(x) vary on the same scale along GB set by theﬂ0W154 static and dynamic matching effects, and Josephson-

; 43,4411 :
Josephson penetration depth.™ " This continuOUA O AJ iy yoltage oscillations® >56At the same time, the AJ vor-

v_ortex transition occurs as the spacing t_)etween GB d'S|ocaLTces can also exhibit effects characteristic of the dynamics of
tion cores becomes shorter thdngiving rise to a suppres-

) £ th itude A of th short Josephson contacts in ac field,Jovortices in long
sion of the amplitudeA of the order parametetV  j,q00hs0n junctions, for example, flux flow resondtce,
=Aexplg) in current channels between dislocatidfs.

_ phase locking in ac fieltf>® etc. Pronounced resonance ef-
Thus, a low-angle GB behaves as a higfsuperconducting-  fgcts occur if the strongly overdamped AJ structure is driven

normal-superconductinggNS Josephs_on contact, for which by superimposed ac and dc curred{s) = J,+J, coset at

the Josephson cores of the AJ vortices do not cause pajf ~ j |t is shown that all this rich AJ vortex dynamics is
breaking effects responsible for the suppression of the afescribed by two coupled first-order nonlinear ordinary dif-
normal A cores. Such contacts are described by integrajerential equations for the vortex velocity and the core size,
equations of a nonlocal Josephson electrodynamicg, any time dependeni(t). These equations have the form

19,21,44-50 H o
(NJE), which account for the variations of phase ot 5 complex resistively-shunted junctiéRSJ equation for
difference 6(x) = ¢1— ¢, along a GB on any length scale 5 gport Josephson contact.

greater thart. If 6(x) varies slowly on the scalesA, the The paper is organized as follows. In Sec. Il a qualitative
NJE equations reduce to }?e usual sine-Gordon equation fQfescription of length scales of vortices on a GB and their
long Josephson junctioft&:” The key difference of the non- gy o1tion with o is given. In Sec. IIl the NJE equations and
local approach from the local sine-Gordon theory is that they, gyact solution that describes a chain of AJ vortices driven
NJE equations can describe the AJ vortex core in the rgioBy an arbitrary ac current in a dc magnetic field are pre-
of parameters wherd, > J4é/\, andé(x) varies on the scale  ggnteq. In Sec. IV, the nonlinetJ characteristics and the

'Z)‘g/)‘zf‘_]d”b much shorter than the decay lengthof  fuy flow resistivity of a GB in a magnetic field are calcu-
the circulating supercurrents. _ _lated. In Sec. V a linear complex resistivity and rf dissipation
~ The importance of the Joseph%on nonlocality for thingre calculated for a chain of AJ vortices driven by superim-
films has been recognized long dyd>Because the penetra- posed ac and dc currents. A flux flow resonance is predicted.
tion depthh=2\?/d increases as the film thicknessde-  Section VI is devoted to nonlinear effects caused by super-
creases, the nonlocality conditian<\ can be fulfilled even imposed ac and dc currents, in particular the averagéd-dc

for comparatively lowd,, junctions. Independently, the NJE characteristics in the presence of an ac signal, generation of
approach was developed for bulk superconductors to ddhigher harmonics and phase locking effects. Section VII con-
scribe mixed AJ vortices on highs “hidden weak links,”  cludes with a discussion of the obtained results.

such as low-angle GBs in HTS and thia-Ti ribbons in

NbTilg. A nonlocal genera]ization of the sine-Gordon equa- || vORTEX LENGTH SCALES ON GRAIN BOUNDARIES

tion was also an5|c_1ered in Ref. 46. It tL_Jrns out that, in the IN A MAGNETIC FIELD

strong nonlocality limit, the NJE equation reduces to the

well-studied Peierls equation of dislocation theory, thus, the The results of this paper are independent of the detailed
AJ single vortex solutiolY is similar to that for the core of an atomic structure of GB;® so we consider a simplest planar
edge dislocatior! The NJE equations have other exact[001] tilt GB between two crystallites misoriented by the
solutions®#6:5153for static and dynamic AJ vortex struc- angled. Such low-angle GB can be regarded as a periodic
tures. Recently, the existence of AJ vortices in low-anglechain of edge dislocations spaced loy=b/2 sin(/2),
YBa,Cu;O, bicrystals was proven by transport measure-whereb is the Burgers vectarBecause of the proximity of
ments, using an exact expression for the flux flow resistivitythe HTS state to the antiferromagnetic metal-insulator tran-
of AJ vortices>® The good agreement between the theory andition, regions of size=b near dislocation cores are driven
experiment made it possible to extract the core lenglh into insulating state by local nonstoichiometry, strains, and
and the intrinsic depairing current densiy(9) of a GB on  charging effects? As o increases, the spacirdp(9) de-

a nanoscale of few dislocation spacings. The temperaturereases, becoming smaller than the Zeroeherence length
dependence od,x(T.—T)? extracted from these measure- &, and the in-plane Debye screening length at the arigle
ments does indicate the SNS coupling on GBs in HTS, in=4—6°. Ford> 1, the proximity effect, strain and charge

214531-2



NONLINEAR DYNAMICS OF VORTICES IN EASY FLOW . .. PHYSICAL REVIEW B65 214531

coupling cause suppression &fbetween dislocation cores, crossing the GB, wher¥ is the voltage on a GBR, andC
which becomes more pronounced ésincreases. In this are the quasiparticle resistance and capacitance per unit area
model a GB thus behaves as a SNS Josephson contact,a GB, respectively.
whose critical current density, () decreases nearly expo-  The structure of a vortex on a GB is determined by the
nentially asd increases withlp(9) ~Jq at 9< . ratio x,=\/| reminiscent of the GL parametar=\/& for

A magnet.|c flgIdH aboveT the lower gr|t|cal flqldi-lcl Pro- e A vortices. Here Kkp=(N\5)2=xJy/dy for a bulk
ducesA vortices in the grain, and vortices of different char- samplex,=d\3/\2d for a film of thicknessi<\. The case
acter on the GB, depending on the radial,. For < 6, the . B
GB vortices areA vortices with normal cores pinned by GB Ko<l cor_re_sponds to t_he local relatiah(x) __¢05X6/4777‘

characteristic of lowd,, high-angle GB, for which bott#(x)

dislocations?? As 9 further increases, a GB exhibits a con- . _
tinuous transition from metallic to tunneling behavior above@ndH(x) vary on the same spatial scale. Such GBs exhibit

9>, similar to highd, SNS Josephson juncti®hfor the J _voztsices of length\; described by the_sineTGorgIon
which the normal core oA vortices disappears ik on the ~€quatiori:” However, the low-angle GRespecially in thin
junction drops below a critical valué.For vortices on a GB, films) correspond tok,>1 in which case the relation be-
the normal core disappears quite naturally because of th@veen#(x) andH(x) is nonlocal, and¥(x) andH(x) vary
exponential decrease df,(9). Since vortex currents must on essentially different spatial scales £J4/J, and\, re-
cross the GB which can only sustalg much smaller than spectively. This gives rise to the mixed AJ vortices described
the depairing current densifly, the modulusA of the order by integral NJE equationg?!#4-464947.48 5§ hich reduce to
parameter is unaffected by vortex cores. As a result, the nothe sine-Gordon equation éf(x) varies weakly on the scales
mal A core turns into a Josephson core in which the phase-A. The NJE equations provide a universal description of
differenced(x,t) on GB varies by 2r over the length along  vortex structures on GB for which all microscopic details are
GB, but the amplitudé\ is independent ok. The phase core hidden in the intrinsic parametedg andR of a GB. These
lengthl=¢J4/Jy, is greater therg, but smaller then the Lon- parameters are very difficult to calculate, given the present
don penetration deptk, if J,>J4/k, wherek=\/é=10%is  state of the microscopic theory of HTS, but they can be
the Ginzburg-Landau parametérAs 9 increases, the core extracted from resistive measurements on HTS bicrystrals
length |(9)=£J4/3,(9) increases, so the GB vortices with the help of exact NJE solutions that describe the flux
evolve fromA vortices for 9<9, to mixed AJ vortices at flow resistance of moving AJ vortices.

J4<Jp(9)<J4/k. The AJ vortices turn intal vortices at In a strong magnetic fielth>H_.,, the A vortex spacing
higher angles, for which becomes greater thanif a=(¢o/H)Y? is shorter thar\, thus the relation between
6(x,t) and H(x,y) is always nonlocal, regardless of the
9> 9,= 9, IN(N &), (1) value of J,. The AJ vortex chain is then has two length

scales: the core side> ¢ and the inter vortex spacirg(H).

whereX, is the magnetic screening length. In bulk samples Both lengthsa and| become comparable at a characteristic
9 g 1engih. field Ho~ o /1%~ (I /J4) *H¢p, much smaller then the upper

's the London penetration depif while a thin film of thick- critical field H¢,. Thus, unlike theA lattices, there is a wide

nessd<\ the magnetic screening lengthAs=2\%/d. For  fie|d regionH,<H<H,, in which the AJ vortex cores over-
bulk samples, Eq(1) yields 6,=23° if 6,=5°, k=100, and |35 put the bulk superconductivity persists.
Jo=Jq. For a film withd<\, the AJ region expands con- The |arger core of AJ vortices leads to their weaker pin-
siderably, for example, ii=0.1\, thend,=38°. Therefore, ping along a GB, which thus becomes a channel for motion
the AJ vortices exist in a rather wide range of misorienta-of A J vortices between pinnedlvortices in the grain$ (Fig.
tions, ¥o<< 9 < 9,=22-40°, which comprises the crucial re- 1) This gives rise to an extended linear region in e
gion of the exponential drop ay(d). In this region the  characteristic of a polycrystalline HTS that is dominated by
in-field current transport through GBs in HTS is determinedmotion of AJ vortices along GBY¥:?2~?7Pinning of AJ vor-
by dynamics and pinning of AJ vortices. ~tices results from interaction of the AJ phase core with struc-
Due to the lack of the order parameter suppression in thgral inhomogeneities of GB and the magnetic interaction of
AJ_cores, AJ vortices can be described by the NJE theoryj yvortices with more strongly pinned vortices in the
which regards the GB as a Josephson contact wigs#)  grains. If the periods of the AJ vortices and bulkvortices
can be tuned in a very broad range by varying the misoriengre slightly different, the AJ vortex chain breaks into com-
tation angled. Once the AJ core side=£J4/J, exceeds the  mensurate domainén which A and AJ periods coincide
scales set by the coherence length, the Debye screenir@parated by domain walls. This behavior, characteristic of
Iength and the dislocation Spacing, the structure of AJ Vorti'commensurate_incommensurate transitm, was ob-
ces is entirely determined by the electrodynamics of currentgeryved in molecular-dynamics simulations Afvortices in
circulating around the cores, regardless of the atomic struggrtificial flux flow channel® for which the width of the do-
ture of GB, pairing mechanisms and the symmetry of themain walls(dislocations considerably exceeds the intervor-
order parameter. The current distribution in the AJ vortex isex spacing. In this case the pinning of domain walls by the
described by the universal Josephson and London equationgrinsic Peierls potential is exponentially weak, so the de-
while the GB imposes a boundary condition of current cOnpinning critical current 4,(H) is most likely due to macro-
tinuity for the sum of the Josephson, quasiparticle, and disscopic variations of superconducting properties along GB,
placements current densities)=J,sind(x,t)+V/IR+CV  for example, facet structures that cause significant peaks in
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pinning current of the AJ vortices, but lower thanof the A
vortices in the grains. This behavior has been observed on
HTS bicrystals in a wide regiorH<H; of magnetic
fields1922-27:53ynder the ac current, pinning effects in elec-
tromagnetic response weaken even more as the ac frequency
w exceeds a characteristic depinning frequétiéy.Further-
more, low-angle GBs can be regarded as overdamped Jo-
sephson contacts for which the displacements currents can be
neglected. Indeed, the overdamped state corresponds to
<w.=(CR) 1~4%/5pbe, wheresp and Se are the excess
resistivity and dielectric susceptibility on GB. Because for
low-angle GB the dielectric dislocation cores do not overlap,
ép~pn, andde~1, wherep, is the normal state resistivity
atT.. Thus, the conditiom < w. always holds fow smaller

than the superconducting gégee also Refs. 16,LAVe also
neglect the time dispersion of the the GB resistaRcand
contribution of bulk quasiparticles, adopting the simplest,
frequency independeitin the framework of a standard RSJ

model®?
I1l. GENERAL DYNAMIC EQUATIONS

FIG. 1. Current streamlines around AJ vortices on a(@&hed ) )
line) and the bulkA vortices in the grains, calculated from Ha8) The NJE equations for current-drlgven vortex structures on
for |=0.2a. an overdamped Josephson contact®are
l,(H) if the A vortex spacing is commensurate with the ¢o [ y*+(x—u)?
gb e AV mm H= f 9" (u)Ko ——————|du+B,, (3)
facet period? strains and local nonstoichiometry along &B, (2mn)2) = A
etc.

At low field, only a single AJ vortex row moves along e X—u )
GB, while theA vortices in the grains remain pinnétAt 79=—| 0"(WKo| —|du=sind+p, (4)
higher field the moving AJ vortices start dragging neighbor-
ing rows of A vortices in a flux flow channel along GB. The | =Co/16m2N2,, 7= bo/2mCRY, . (5)

field H; below which only a single AJ vortex row moves

along the GB, can be estimated from the condition that thélere the overdot and the prime denote differentiation with

pinning forcef,,, of AJ vortices due to their magnetic inter- respect to time and the coordinate along GB, B(x,t)

action with fixed A vortices equals the intergrain pin- =J(x,t)/J,, J=(c/4m)V XB, is the current density across

ning force ¢oJ./c. The pinning force of AJ vortices is the GB induced by bulk vortices,

maximum gradient of the magnetic energy(x)

= — ¢pdyH(X) /47, where H(X) =B+ AH cos(2mx/a) is the ®o [r=ryl

local field produced by the fixed vortex lattice along GB, B,(x,y)= P ; o

AH= ¢oe 23/ N2 is the amplitude of the oscillating part

of the local fieldH(x) due to the periodicity of th@ lattice, = wherer, is the position of thenth A vortex, Ky(x) is a

andu~a is the spacing of the firs vortex row from GB%®>  modified Bessel functiong, is the flux quantum, and is

Therefore, the speed of light. The first term in the right-hand side of Eq.
(3) describes the magnetic field produced by all currents cir-

: (6)

27N2), 2 47U culating near GB, and the second term represents the contri-
1= Vo exp— |- (2)  pution of bulk vortices without GB. To provide the boundary
0

condition forJ(x,y) on a GB, the phase differena#x,t)
For u=a, A\=2000 A, andJ.=10°-1¢° Alcm?, Eq. (2) must satisfy Eq(4), which results from the current continu-
yieldsH;=0.1-10 T. Note that the essential dependence ofity condition, cH'/47=J, sin 6+%6/2eR Equations(3) and
the transition fieldH; on the bulkJ, indicates that the region (4) describe spatial variation @f(x,t) andH(x,y,t) on any
0<H<H/ can be significantly widened by irradiation which scale greater thaé, irrespective of the microscopic mecha-
increasesl, while weakly affecting GB properti€s.In ad-  nisms of current transport through the GB. The only assump-
dition, H, is very sensitive to the positiom of the first vor-  tion J,<<J4 behind Eqgs(3) and (4) ensures the lack of the
tex row that can be strongly affected by the GB microstruc-order parameter suppression by currents flowing through
ture, facets, long-rangé&. variations due to strains, etc. GB. The geometry of the sample manifests itself in the long-
In this paper we neglect the pinning of vortices on a GB,range asymptotics of the kernel in Eg) at|r—r'|>X\. For
assuming that the driving curred(t) is higher than the de- instance, Eqs(3) and (4) correspond to an infinite GB in a
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parallel field. More complicated expressions for the kernelyhere y(t), M(t), and the vortex velocity (t) = x, depend
K[(x—u)/X] have been obtained for thin films in a perpen-only ont and obey the following equations:
dicular field;>4"*8and slabs in parall® and perpendicula?

fields. ra+sinha cosy=h, (10)
In the vicinity of the AJ cores;<\, and also in the high-

field limit, H>H,, Eq. (4) acquires a simple universal form T'y+ siny cosha = By(t), (11)

independent of the sample geometry. This universality results

from the fact that foH>H_,, the derivatived”(u) in Eq. (4) krv=—sinysinha. (12

rapidly oscillates over the intervortex spacingq(H)?
<\. In this case the main contribution to the integral come
from the regionx—u| <X\, where the Bessel functidfy(x)

in Eq.(4) can be replace_d by its expansikg(x) = —In(x) at sinha=2M/(M2—1). (13)
smallx. Thus, the equation fof becomes

§-|ereh=(kl)2 is the dimensionless magnetic field, the wave
vectork=27/a defines the period of the AJ structure, and

Using the complex variableg=y+ia and f=pg,+ih,

.l (=68 (uwdu Egs.(10)—(12) can be written in a more compact form
T0=— 1 x —siné+ g, (7)

mT) -

rz+sinz=f, krv=Imcosz. (14

For other geometnes,(O[(_x—u)/)\]Jn Eq. (A,',) sho.uld be The equation for the complex “phase(t) has the same

replaced with the appropriate kerrte] (x—u)/\] which al-  form as the usual RSJ equation for the phase difference on an

ways has a logarithmic singularity at=u, and a geometry- oyerdamped point contact.

dependent nonsingular paﬁ,eg(x,u), Equations(9)—(12) were obtained in Appendix B by the
Hilbert transform, which was used to obtain static periodic

K(|x—u]/x)= —|n|(X—u)/7\|+Rreg[(x—u)/7\]- (8) solutions of the Peierls equatiof¥) in the dislocation

theory®! and then employed to describe AJ structufes.is

This general behavior dk[(x—u)/\] is illustrated in Ap-  instructive to derive Eqs(9)—(12) using a more transparent

pendix A whereK[ (x—u)/X] for a thin film (d<\), is con- approach, starting from the basic London equation

sidered. Because of the rapid oscillations &fu) at H 2021 _

>H,,, the main contribution to the integral in E@t) comes H—\VoH= ¢ 0(x) 8(y)/ 2, (15

from the narrow region around=x, so neitherRreg[(x where §(x) is determined by a particular vortex structure on

_u)/y\], nor the screening Iengtﬁ contribute to Eq.(7). a GB..Sir_me _screening does not affect the AJ cores and cur-

This feature of Eq(7) reflects the physical fact that the dis- €Nt distribution on the scales\ away from GB, Eq(15)

tribution of currents near the AJ cores is unaffected by thdeduces to the Laplace equatidtfH=0 supplemented by

London screening. Indeed, the Green funcliditx— u)/x ] the boundary condition for the tangential and normal com-

is proportional to the single-vortex London solutibifr), so ponents of the current density on GB.

the difference betweeR[(x—u)/X] for bulk samples and ayH(x,+O)—ayH(x,—0)=—¢O¢9’(x)/(2m\2), (16)
thin films is basically the same as betwed(r) for the A

vortex and the Pearl vortéR, respectively. Both vortices c ¢09

have the same distributions of curredt@) near the core, Jy(X,£0)=— 4—H’(x,i0)=Jb sin 6+ 5 R—J.
r<X, but very different asymptotics df(r) for r>x. Thus, ™ me 17

the universal Eq(7) describes the distributions of the phase
differencef(x) in the AJ vortex cores and circulating super- If screening is inessentiat (x,y) becomes a potential field,
currents on the scales\ away from the cores where the Which in some cases can be found directly using the theory
London screening is inessential. of analytic functions. For instancé](x,y) from a periodic
The driving paramete3=B,+ 5B(x) is a sum of the AJ vortex structure in thepperhalf-planey>0, is given by
constant transport currem, due to the gradient of tha  the following ansatz:
vortex density in the grains, and an oscillating component
6B(x) due to the discreteness of tievortex lattice. The H— bo
term 6B(X) gives rise to a critical currerg. through GB due 2m\2
to pinning of AJ vortices byA vortices in the grainé! In this
paper we consider a rapidly moving AJ structure in the fluxwhich describes the field produced by a chain of fictitidus
flow state 3> ., for which the pinning ternd3(x)<1 can  vortices displaced by=—y, away from GB in thelower
be neglected, an@(x) be replaced by3y(t). As shown in  half-plane(we omit a constant term iki(X,y), inessential
Appendix B, the nonlinear Eq7) then has the following for |y|<\). Equation(18) is an exact solution of the Laplace
exactsolution that describes a stable periodic vortex strucequationV2H=0. It turns out thay(t) can be chosen such
ture: that H(x,y) also satisfies the boundary conditiofi$) and
(17) provided thatd(x,t) is given by Eq.(9) while y, «, and
6=+ y+2 tan [ M tank(x—xq)/2], (9)  Xxo(t) obey Eqs(10)—(12). To show that we first observe that

k
Re Insifx—xq(t) +i[|y] +y0(t)]}§, (18
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Ko sin¢ plify in the low-field limit, a—o for which Eq.(9) reduces
dyH= , (19 to a superposition of independent single AJ vortex
4\? [coshk(y—yo) — cos{] solutiond?
kg sign(y)sinha 7lx—na—x0(t)
=_ O(x,t)=y(t)+ +2tan t——————— 25
W= e [costk(y —yo)—cost]’ 2O (xO=y(0+ 2 |m o @
where=[x—Xo(t)]k. In turn, Egs.(9) and (13) yield Here k=27_-r/a_—>0, a—2M—0, so the AJ core Iength
L(t)=a/k is independent of the magnetic field, white
b k sinha - =Lke_0. If «a—0, E_qs.(lO)_—(lZ) turn Ii'geto the following
= Gosha—cos{’ (21)  equations that describe a single AJ voftex
. . y+siny=Bo, 26
a sin{+kxg sinha v Y=Fo 26
~ Y " cosha—cost 22 -
= CoS{ 7L+L cosy=I, 27)

sing= (1—cosha cos{)siny—sinha sm{cos;/. T>-<o: “Lsiny. 28)
(cosha—cos?)

(23 Unlike Eqgs.(10)—(12), the equation fory is decouplegdfrom
Egs.(27) and(28). Thus, in the limita>L, the dynamics of
Ihe core length_(t) and the vortex velocityko is integrable
for any giveny(t), which in turn is determined by E§26)
o _ for any time—dependermg(t). This result is no longer valid
Kyo=a=In[(M+1)/(M=1)]. @4 if the interaction between AJ vortices at a finkeis taken
Equations(20) and (21) with ky,=« automatically satisfy into account, when bothy(t) and «(t) are determined self-
the first boundary conditiofil6). Furthermore, substituting consistently by Eqs(10)—(12).
Egs. (19)—(24) into the second boundary conditi¢h7) re- Contribution of each AJ vortex to the “staircase” solution
duces the latter to the forn€,(t)cosk{+Cy(t)sink+Cy(t) (25 gives a 27 phase shift along GB, thus the AJ vortex
=0. The self-consistency conditior®(t)=0 are satisfied carries exactly one flux quantug,.”* Generally, the inter-
only if 6(t), a(t), andxq(t) do obey the dynamic equations Vortex spacinga(H) on GB is different from the period
(10—(12). (¢po/H)¥? of the bulkA lattice, because of the reduceid,
Figure 1 shows the current streamlines calculated fronen @ GB In the low-field region,H~H,,, the magnetic
Eq. (18), which has a clear interpretation similar to that of ainductionB is very different fromH, which causes a signifi-
single AJ vortex® Namely, the current streamlines describedcant mismatch in the periods of AJ and bukvortex lat-
by Eq.(18) in the upper half-plang>0 coincide with those tices. However, for strong fieldd>H_, considered in this
produced by a chain of moving fictitiousvortices displaced ~paper, the difference betwe&andH is negligible, so the
by y=—a(t)/k away from GB. Likewise, the current AJ spacinga(H) nearly coincides with the bulk one,
streamlines in the lower half-plane<0 coincide with those (¢o/H)"? as both are fixed by the same flux quantization
produced by a chain of fictitioud vortices displaced by  condition.
= a(t)/k away from GB. The resulting nonsingular field dis-  The averaged voltagé on a GB produced by the moving
tribution H(x,y) is an exact solution for moving AJ vortices, AJ vortex structure is given by
where the transverse displacemggidetermines the AJ core
size along GB. The time-dependent Cartesian coordinates _ %o fa- X (29
Xo(t) and yq(t)=«a(t)/k of these fictitiousA chains obey 2mcalo
Egs. (10)—(12). The transition from AJ t@A vortices occurs
as J, increases, reaching,=Jgy, while y, decreases down Substituting Eq.(22) into Eq. (29), we see that the term
to yo=£. Likewise, the transition from AJ td vortices oc-  proportional toe vanishes after integration, while the part of

curs asl, decreases belody/«, in which casey, becomes  g(x—x,) proportional tox, reduces to the full derivative

greater than. —Xo#'. Integration ofd’ from 0 to a gives 27 due to the
The set of coupled ordinary differential equatiofi€)— 0 e 21 _ _

(12) describe the evolution of the AJ phase core length, théqu quantization condtiof, 6(x-+a)— 6(x) =2, thus

phase shifty(t), and the vortex veIocity'(O(t) for any time- b0 -

dependent transport currefiy(t). These equations along V=s_c(r—kv). (30

with Egs. (9) and (18) determine distributions of the phase

difference 6(x,t) and screening currents for an interacting Here the first term in the parentheses describes the quasipar-

moving AJ vortex chain, including nonlinear dissipative dy- ticle component o¥/, and the second term results from vor-

namic states caused by ac and dc driving currents of largeex motion. Equatiort30), along with Eqs(10)—(12), deter-

amplitude,J(t) ~Jy, . Equationg10)—(12) considerably sim- mine the nonlinear electromagnetic response of the moving

Now yq, can be chosen such that the denominators of Eq
(19—(23) would coincide aty=0,
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AJ vortex chain. These equations can be presented in differ- 2.5r—
ent forms, depending on the way the external drive is ap- R7Re
plied. For example, the solutions of Eq40)—(12) deter- 2
mine the voltagd30) for any time-dependent curred(t).
Another regime corresponds to the rf response, when it is 15 W
the voltageV(t) [rather than the current densifit)] on a > -
GB which is fixed by an external rf source. In this case it is =
convenient to express the vortex velocity idrom Eq.(30)
and subtract Eq11) from Eq. (32). Then the equations for 05
a(t), y(t) andB(t) in the fixed voltage mode take the form
ra+sinha cosy=h, (31) % 05 1 15
b
Ty+sinysinha=u, 32 FIG. 2. TheV-J curves calculated from Eq35) for different
o magnetic fieldsh=H/H,: 0.01(1), 0.052), 0.1(3), 0.54), 10(5).
B=ut+e *sinvy, (33 Inset shows the field dependence of the flux flow resist&¢B)

whereu=V/RJ, is the dimensionless voltage on a GB.  9iven by Ea.(37).
flow part, V=R;J at J<J,, and the quasiparticle Ohmic
part,V=RJ for J>J,. In the crossover regiord~J,, the

The steady-state velocity of the AJ vortex chain driven V-J curve becomes nonlinear, because of the AJ core expan-
by the constant curreng, is described by Eq9) and Egs. Sion asJ increases. Since the AJ vortex core overlap) at
(10)—(12) with &= =0, whence tankh=—s\h/ By, tany >J,, the GB resistance approaches its maximum v&ae
— —s, andsyh= —sinysinha. These equations give the di- 3> Jb-

: : : _ : For J<J,, Eq. (36) yields V=R;J, where R
mensionless propagation velock =v/vg in the form b f f
propag {Bo) =vlvo =RJh/(1+h) is the flux flow resistivity of AJ vortices. If

Sz:[\/(1—,334‘h)2+4,3%h—1—h+,33]/2h (34) H>HC1, thenh:(27rlla)2=H/H0, and

IV. NONLINEAR STEADY-STATE FLUX FLOW

Here vo=I/7, h=(2=l/a)? is a dimensionless magnetic RVH do

field. The limith—0 corresponds to a single AJ vortex, for Rf:ﬁa Ho= Pyl (37)
which both Eg.(34) and the steady-state Eq&6)—(28) +Ho (271)

(Lcosy=l, siny=f, and rv=-Lcosy), give v At H<H,, Eq.(37) describes a chain of AJ vortices whose

=voBo/V1— By The so-obtained single vortex velocity cores do not overlap. In this casg(H) is similar to the
v(J) diverges atJ—J,, because the AJ core size  one-dimensional (1D) Bardeen-Stephen formut4, Rgs
=1/\/1- 5 expands ag, increases’ The core expansion =R\H/H,,, except that in Eq(37) the core structure is
as the velocityv(J) increases is characteristic of both AJ taken into account exactljsee also Ref. 19 For H>H,
(Ref. 19 and J(Ref. 44 vortices in the overdamped limit, =(J,/J4)?Hs<H,,, the AJ cores overlap, and EQ7) de-
unlike the Lorentz contraction o vortices in the under- scribes a crossover to a field-independent resist&deéis
damped limit. However, as the AJ cores expand, they staiegime has no analogs férvortices, whose normal overlap
overlapping, so the interaction between vorticesJatd,  only atH,.
cannot be neglected even at low fieldss1. The importance It is interesting to compare E¢37) to Ry(H) for J vorti-
of the interaction is apparent form the exact E2f), which  ces atJ<Jy,. It is knowrf’ that for small density ofl vorti-
shows that the velocitg(8,) smoothly increases g8, in-  ces, R{(B)=RB/H_,; is proportional toB, similar to the
creases and has no singularity for any nonzero Bardeen-Stephen resistivity in whit, is replaced by the
The dcV-J characteristic due to viscous motion of AJ Josephson lower critical fieltl ;3= ¢o/7°\\;. A general
vortices follows from Eq(30) in which y=0, andv(J) is  expression folR;(H) can be written in the following form
given by Eq.(34). Hence (see Appendix ©

Ri(H)=RB(H)/H. (39)

_ ﬁ \/ Y h 2 Zh_ —h 291/2
V=—=[V(1-g5+h)*+4psh—1—h+B5]7% (35 _ _ I —
V2 Here B(H) is determined by the equilibrium magnetization

8
whereV,=RJ,. Equation(35) can also be written in a more the J vortex structure

transparent form B=m?Hei4pK(P), H=HeE(P)/P,  (39)
vV vz whereK(p) andE(p) are the complete elliptic integrals of
J= R 1+ H/H o+ (V/V,)? (36) the first and the second kinds, respectiV@lgnd 0<p<1 is

a continuous parameter. As follows from E¢38) and(39),
TheV-J curve shown in Fig. 2 has two linear portions: a flux Rs first increases linearly with B @<H.,; and then ap-
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proaches the constant val&eat H>H,; as theJ vortices
overlap, andB—H. By contrast, the saturation &;(H) for
the AJ vortices occurs at much higher fieldddy>H, for
which the AJ vortex spacing= (¢,/B)Y? becomes of order
the AJ core sizé. The dependence d®;(H) for J vortices
looks rather different from the simple E¢37) mostly be-
cause of the complicated relati@89) betweenB andH at
low fields H=H_.;. In fact, Eq.(37) also becomes more
complicated at lowH, of the order of the AJ lower critical
field Hepp= (po/4mA2)[IN(AM1)+0.423,° for which H in Eq.
(37) should be replaced by the correspondBigd) depen-
dence for AJ vortice&® For H>H_,,, the inductionB al-
most coincides witiH, thusR¢(H) for AJ vortices acquires
the universal forn{37) independent of demagnetizing effects
crucial atH~H;. The simplicity of Eq.(37) is very conve-

nient to extract intrinsic properties of GBs at the nanoscale

from transport measurements Rf(H) in HTS bicrystals®

V. LINEAR ac RESPONSE

To obtain the dynamic linear resistanRg for a weak ac
current,J, cos(t)<<J, superimposed on the dc currehtwe
calculate the amplitude of the induced ac voltagg, from
Eqg. (30) in which y(t) andv(t) are determined by Egs.
(10—(12) with B= B+ Baexplwt). Settinga= ag+ da, y
=yo+ 8y and calculating the perturbatiorgx<1 and sy
<1 induced by the ac current from the linearized E46)—

(12) yields the following general expression for the ac com-

plex resistivityR, =V, /J, (see Appendix D

R, n(h+u®)/Vh—02+iQ(n+h)

BT 40
03— 0%+2inQ 40

R

Here u=V/J,R is the dimensionless dc voltage on a GB,
Q= w7 is the normalized ac frequendy,, and »= B, /s are
the dimensionless flux flow resonance frequency and visco
ity, respectively,

n=+vh+h/(h+u?), Qu=u?+ 7%

In the fixed current mode, it is convenient to expr&gsand
7 in terms of By,

(41)

Qo=[(1+h—B5)2+4hp51"", (42)

n=[V(1+h—pB3)2+4hpZ+1+h—p31Y%\2. (43

The dependencies &, and  on B, are shown in Fig. 3.
For J<Jy, Qg and » practically coincide, but for highet,
the frequency(}l, becomes much higher than the damping
constantn. In the following subsections various dynamic
regimes described by E€40) are considered.

A. Small dc vortex velocities

Forv=0, Eq.(40) reduces to

Ri—R
+ - .
loT+1

R

w

(44)

PHYSICAL REVIEW B 65 214531

FIG. 3. Dependencies &1, and  on the normalized dc current
density 8,=J/J,, for H=0.09H,.

HereR; is the dc flux flow resistivity37), and 7; is the flux
flow relaxation time constant in the AJ vortex chain,

T

N

The Drude-like frequency dependenceRyf, results in the
following retarded relation between the induced volt&ge)
and the driving curreni(t),

(45)

dt’

Tt

V(t):RJ(t)+(Rf—R)ft et =0mg(t") (46)

For example, after a jump-wise increasel@f) from 0 toJo,

dhe steady-state flux flow sets in according to

V(t)=Jo[Ri+ (R—Ry)e Y], >0, (47)
andV=0 for t<0. The discontinuity inv(t) att=0 disap-
pears if a time dispersion d®, or a finite capacitanc€ of
the GB are taken into account. In the latter c¥$e) sharply
increases from 0 t&/(t) given by Eq.(47) during a short
time r,=RC.

The ac powerQ=(1/2)J§Re(Rw), dissipated on a GB
due to viscous flow of AJ vortices can be obtained from Egs.
(37), (44), and(45) in the form

o- RE[Vh(1+h)+(w7)?]

2[1+h+(w7)?] 49
For a fixed frequencyQ(H) monotonically increases with
H, approaching the quasiparticle IinRngz for H>H,, as
shown in Fig. 4. In the steady state,r—0, the power
Q(H)eh/\1+h is simply proportional toR¢(H). For fi-
nite frequenciesQ(H) becomes finite even with no vortices
(H=0) due to quasiparticle ac Ohmic currents through GB.
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. o FIG. 5. Flux flow resonance line in IR,() calculated from
FIG. 4. Field dependence of the ac dissipated pdQgH) for  £q.(40) for =4 and different magnetic fieldsl/H,: 0.05, 0.4,

different dimensionless frequencifs= wr. and 2(from bottom to top curve, respectively
B. Flux flow resonance for moving AJ vortices The solution forv; exists above the threshold > (4h)*4,
Interaction of the moving AJ chain with the ac field can where the resonance can occur either at one or two different
cause a resonance, df is close to the real paib, of the  velocitiesv¢, depending orf},
complex eigenfrequenay; which corresponds to the pole in
R,(Q), (4h)YA<Q<(1+h)¥2 two vy, (54)

wi= wotino, (49 Q>(1+h)2 one vy. (55)

where the flux flow resonance frequengy and the damping

) At Q=(1+h)? the smaller resonance velocities vanishes
constanty, are given by

asv;*(yY1+h—Q)Y2 ForQ>h' the larger resonance ve-

locity approaches the material-independent “washboard”
wo=(kv)*+ 7](2), (50) valuev¢=aw/27.

Near the resonancey~ w,, at high vortex velocities

1/ H 1 2 >1, Qy~svh, 7~/h<Qy), Eq.(40) yields
7 Fo T 1 (oloo? o
UIlg Rw 1
AT . . (56)
For small dc velocityv, the AJ oscillations are strongly R 4Qo(i p—Q+ Qo)

overdampedwy= 79, SO N0 resonance peaks Ry,({}) oc- . , ) )

cur forJ<J,, as evident from Fig. 3. However, because theEduation(56) describes a resonance line with a Lorentz peak
frequencyw, increases, while the damping constaptde- ) IMR,=—R/4s[h+ (0~ )"], as shown in Fig. 5. For
crease as(J) increases, the flux flow resonance emerges af > 1 the amplitude of the peak decreasesy@3) and H
high dc driving currents)>J,, for which wo> 7, For a  Increase. The resonance is most pronounced>ifl, and

given frequencyw, the resonance occurs at the vortex veloc-H<Ho, while at smallerJ or higher H, the peak in
ity vy, for which ImR,(€) disappears as the linewidth becomes of the or-

der of the eigenfrequendi,.

w?=(kvg)2+ 75(v¢). (52)
VI. NONLINEAR RESPONSE

If kv>7%g, the resonance frequency, approaches the
“washboard " frequency? for which the vortex velocity A. Flux flow resonances on the d¢/-J curve
equals the phase velocity of the electromagnetic walle The flux flow resonance also manifests itself in the aver-
with the wave vectok=2m/a of the AJ structure. Because aged dc voltag®/ as a function of the dc current density. To
Qo(Bo) has a minimum af=J, (see Fig. 3, the resonance calculateV(J), it is convenient to use the complex represen-
condition(52) at a given frequencw can be satisfied either tation (14) for z= y+i«, taking z= zy+ 6z5+ 6z, wherez,

for one or two velocities ;. From Eqs.(50), (51), and(52), is the dc solution without the ac field for which =g
it follows that +iyh, and the oscillating correctiodz obeys the linearized
equation
02 J07an |
v 2h —1] vo (53 762+ C0SZ,62= 5. (57)
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Here 6B(t) = B, coswt, and dz, is a dc correction t@, due
to the ac field, which is determined by Ed4) expanded to
guadratic terms iz,

262y c0szy={ 6z%)sinz,, (58) o
where the angular brackets mean time averaging over the ac
period 27/ w. The averaged vortex velocity) is given by

the second of Eqg14) expanded to quadratic terms #z

and linear terms irbz,

JA,

(62%) ) | 0.5}

kT<v>=|m<COSZO_m (59)
0

The second term in the parentheses describes the correction
due to the ac field. The valugz?) can be calculated using O 05

1 15 2
the solution of Eq(57), VIV,
Ba FIG. 6. Manifestation of the flux flow resonance on the averaged
oz= 2—(00320 coswt+Q sinwt), (60) dc J-V characteristic foror=0.1, H=0.01H,, and different ac
0%+ cosz, amplitudes, §,/23,): 0 (1), 0.05(2), 0.1 (3).

which yields (8z%)= B2/2[ Q%+ cogzy]. Inserting this ex-
pression into Eq(59) gives the averaged vortex velocity in Situation simplifies for a low-frequency ac signab{<1)
the form for which Q can be obtained using the quasistatic E3§).
For low fields h<1 and moderate ac amplitudes,
\/ﬁ<s>= —(1+T,)sinygysinhag, (61) =V,/Vy<1, the unity under the square root in E§6) can

- i be neglected, giving
where the parametdr,, quantifies the ac contribution

J§(4772+92—Q§) wVi 2nlo  COSwtdt
o= . (62 Q=—f —_ (65
(23p00)2 (02— 03)2+47207) 27RJo \hiuZcodut

Equation (61) for (s) is identical to the dc relationtkv
= —sinysinha, if v is replaced by the effective velocity
=vl[1+T ,(v)]. Therefore, the averagedV characteristics
can be presented in the dc for(®6) if V is replaced by the

This integral can be expressed in terms of the complete el-
liptic integralsK (m) and E(m),®°

2

effective voltageV(V) as follows: 23, Ry )
Q= ——=I[(1+g9)E(m)—K(m)], (66)
v 112 m1+9°
J= ﬁ 1+ TTTETVECI R (63)
H/H0+(V/V0) m=g2/(1+gz)' gzva/Rf\]b- (67)
V=VI[1+T (V)] (64)

The powerQ(g) is a function of only one dimensionless
whereI'(V) is determined by Eqg41) and (62). TheJ-v  parameterg which includes both the ac amplitude and the
characteristics described by E¢€3) and(64) J, are shown magnetic field, as shown in Fig. 7. For a weak ac signal,
in Fig. 6 for different ac amplitudes,. For stronger ac Va<JpRvh, Eq.(66) yields the quadratic dependenceQf
signal, theJ-V curves can exhibit two maxima at the reso- =V§/2Rf onV,, whereR;= R\/ﬁ is the dc flux flow resis-
nance voltages/;=¢ov/ca, and portions with negative tivity at h<1. However, for stronger ac signald,Rvh
differential conductivity. As follows from Eq$54) and(55), <V,<JyR, Egs.(65) and(66) yield thelinear dependence
there are either one or two resonance voltages, depending on

the relation betweerl and w. The increase of the magnetic _

field broadens the peaks #{V) which eventually disappear Q=2Valp/m, €8)
at higherH, because of the increase of the effective dampin

constanty, in Eqs. (49)—(51). Qhich is independent of the GB resistariReThis behavior

is due to the AJ core expansion at large vortex velocities. For
o very high ac amplitud®/ ;>R J,, the full Eq.(36) should be
B. ac dissipation used instead of Eq(65). In this case Eq(36) yields V
The mean ac powed=(JV) dissipated per unit area of a =J/R during most part of the ac cycle, thus the ac power
GB due to the ac voltag€(t) =V, coswt of large amplitude  dissipated on the GB becomes quadrati®/jy approaching
can be calculated by solving Eq81)—(33) numerically. The the normal state IimitQ—>V§/2R (not shown in Fig. V.
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a fb FIG. 8. The field dependencies of the amplitude of the third

harmonicsV3(H) normalized toV,=RJ3/16J2 and the flux flow

FIG. 7. The poweR dissipated on a GB as a function of the ac resistanceR;(H).

amplitude, whereQ,=2J2R; /.

The maximum inVz(h) could be used for extracting the
field Hy and thus the AJ core siZzeon a GB from the ac
The nonlinearity of the electromagnetic response of theneasurements. In that case the ac measurements(f)
AJ structure driven by harmonic ac currel{t) =J,coset  may bring some advantages over the dc measuremehts of
gives rise to higher voltage harmonics from the flux flow resistivityR;(H),>® since the maximum in
V3(H) occurs at the fieldd /4 independent of the quasipar-
ticle resistivity R, while the extracting of from R¢(H) re-

quires a two-parameter fit fdi, andR.

C. Generation of higher harmonics

V(t) =n§0 Voni1(B8,0,h)cog2n+1) wt, (69)

where the Fourier coefficients,,, ; can in principle be cal- D. Phase locking and quasisteps 0d-V curves

culated from Eqgs(10)—(12). The higher harmonics iN(t) , . ) i o
are most pronounced if the amplitude of ac AJ vortex dis- /AJ vortices in superimposed ac and dc fields can exhibit
placements is maximum. For the overdamped dynamics cohase locking effects at ac large amplitugés if the dc
sidered in this paper, the amplitude of the AJ vortex oscilla-VOltageV on a GB is commensurate to the Josephson voltage
tions decreases with, so the higher harmonics M(t) are ~ Vo=7®/2€e, wheren is any integer, and is the electron
most pronounced for the quasistatic ac signat<1. In that charge. The ele_ctromagnetlc response of a G_B blase_d by a dc
case the coefficients voltageV superimposed on ac voltayg coswt, is described

by Egs. (31)—(33) with u(t)=u+u,coswt, where u
w (7o =VIRJ,, andu,=V,/RJ,. To calculate the dd-V charac-
V2n+1=—f dtV(B,coswt)cog2n+1)wt (70)  teristic averaged over the ac oscillations with the account of
TJo the phase locking ofy(t) onto the ac field, we use an ap-

are independent ab, andV[ 8(t)] is given by Eq(35). For ~ Proach similar to that for Shapigo current stepslevi curves
! " . . . 5 .

instance, the amplitude of the third harmonitsfor a small  ©f small Josephson junctiofi** n this case

ac currentB,=J,/J,<<1 is obtained by expanding E(5)

up to cubic terms inB. This yields V(t)~R;J, coswt

+V;cos 3t, where

y=y+not+gsinet+35y, q=u,/Q, (72

wherey is a constant phase shift, aagg(t) is a nongrowing
oscillating correction. Likewisey= ay+ da(t), whereay is

a constant to be determined, afid(t) is an oscillating cor-
rection. We consider here the high-frequency signals of large
amplitude @w7>1, u,>1), for which both da~1/lwr<1
The amplitude of the third harmonits(h) has a maximum and §y~ l/or<1 can be neglected. This situation differs
ath=1/4, as shown in Fig. 8. This field dependence reflectsrom the nonlocked staten0) considered in the preceding
the increase o= +h at smallh proportional to the AJ section, for which the contribution ofe and 8y entirely
vortex density, followed by the decrease\bf(h) at higher  determine the effect of the ac field on the \deJ curves.
fields, for which the AJ cores start overlapping, and\ti8) Equation(72) and Eqgs.(31)—(33) yield the following av-
curve becomes Ohmic. This trend is characteristic of otheeraged dc equations:

higher order harmonics as well, whose amplitudes

Von s 1(h) o 2" strongly decrease with andh for h>1. (cosy)sinhay= h, (73

_RE b
837 (1+h)%

3 (7D
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FIG. 9. Quasistep on the averagéd/ characteristic av~V,,
forq=3,n=1,V,/RJ,=1, and different magnetic field4/Hy: O
(1), 0.01(2), and 0.1(3).

(siny)sinhag=u—nqQ, (74

Bo=u+(sinyye o, (75

Here the averagégsiny) and(cosvy) were calculated in Ap-
pendix E,

(sinyy=(—1)"J,(q)siny, (76)

(cosy)=(—1)"Jx(q)cosy, (77)
whereJ, (q) is the Bessel function. From Eq&.3)—(77), it
follows that

tanyg=(u—nQ)/\/h, (78)

sinfPag=[h+(u—nQ)?]/3%(q). (79

Equations(75), (78), and (79) give the following dcJ-V
characteristics at~nV,,:

2(q) vz

h+(V—nV,)?/V3

RJ=nV,+(V—nV,)| 1+
(80)

The behavior ofJ(V) near the resonant voltagé~nV,, is

shown in Fig. 9. ForH—H,, the J(V) dependence ap-
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The evolution of the AJ core length=1a/\/h as the dc
voltageV sweeps through the resonanceVat is described
by Eqg.(79) as follows:

I Vh+(u—nQ)?
L= gipp-af YR W nE)T)

Jh |Jn(Q)]

The core lengthL(V) passes through minima at the reso-
nance voltages# w/2e. Notice that there are specific values
of the ac parametay,=u, /), which correspond to zeros of
the Bessel functiod,,(q). In this case the core length di-
verges logarithmically, so the above approximation, which
neglects the ac correctiony~ da > 1/(), becomes invalid.
The blowing up of the AJ core length aboxeat q— q,,, may
indicate a conversion of the AJ into tllevortex under the
action of an ac field.

(82

VIl. DISCUSSION

In this paper solutions that describe dc and ac driven
mixed Abrikosov vortices with Josephson cores on high-
grain boundaries in a magnetic field are obtained. These so-
lutions give self-consistent distributions of currents circulat-
ing around moving AJ vortex structure in an exactly solvable
model of the overdamped AJ vortex dynamics that describes
both nonlinear dissipative processes in the vortex cores and
magnetic interaction between AJ vortices along a GB. Unlike
Josephson vortices whose overdamped nonlinear dynamics
in the long junctions can be described only numerically, the
dynamics of AJ vortices turned out to be integrable just in
the overdamped limit that is most relevant to low-angle GBs.
The analytic theory of the ac response developed in this pa-
per could be used to describe highflux flow oscillators
based on HTS bicrystal$.

Based on the exact AJ dynamic solutions, both the dc flux
flow resistivity and thev-J characteristics are obtained. The
field dependence of the flux flow resistivigs(H) shows the
characteristic/H behavior at lowH, but then it approaches
the quasipatrticle limiR for H>H, as the AJ cores overlap.
The simplicity of Eq.(37) for R{(H) gives a direct way of
extracting the AJ core lengthand thus the intrinsic depair-
ing current densityl, and the quasiparticle resistanReav-
eraged over few current channels from transport measure-
ments. Such measurements have indeed proven the existence
of AJ vortices on 7° irradiated and unirradiated YBCO bic-
rystals for which the AJ core lengths100—-200 A at 55-77
K is considerably greater thaf{T), but smaller tham (T).53

proaches that of the Shapiro step for a small Josephson jung; addition, the extracted temperature dependenca,F)
tion at zero field. For finited, the contribution from the AJ  exhibited a clear SNS behavidg=Jo(1— T/T¢)?, indicat-

vortex motion broadens the kink ii(V), whose widthAV

ing a significant order parameter suppression between dislo-

=V-V,, can be estimated from the condition that two termscation cores, even on a rather low-angle 7° GB, in accor-
in the denominator of Eq(80) become comparable. This gance with the model of Ref. 12.

yields

Rcy¢oH
av= RSP (81)
82
The valueAV is independent ofl,, and goes to zero &k,

—TatT..

The fact that moving AJ vortex core can effectively probe
local GB properties at the nanoscale of few GB dislocation
spacings, makes standard transport measurements a very use-
ful tool to clarify the structure of vortex core on GBs, mecha-
nisms of current transport through GBs and the effect of
local overdoping o, andR. This method implies measure-
ments of flux flow resistancB;(H) for bicrystals with the
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same misorientation anglé), but different local doping ACKNOWLEDGMENTS

level. In this way, the intrinsic depairing current density of a This work was supported by the NSF MRSEOMR

GB, Jy, can be obtained as a function of the dopant CONCeNy» 14707, AFOSR MURI (F49620-01-1-0464
tration. Pinning of AJ vortices strongly affects thfeJ curve '

near 'Fhe deplnmng_ Cl_Jr_rent densidy=Jgp, but for J>Jg, APPENDIX A: DERIVATION OF EQ. (7)
the differential resistivitydV/dJ approaches the free flux
flow resistivity’® Thus, measurind;(H) in the flux flow To calculate the 2D current distribution around a planar

region atJ>(2-3)J,;, enables one to avoid the analysis of Josephson contact in thez plane aty=0, it is convenient
multiple pinning mechanisms on real grain boundaries iffo use the scalar stream functigf(x,y) so thatJ,=d,y,
HTS?2 using instead an exact flux flow theory for the inter- Jy= — dxi, whence

pretation of the experimental data in the regid® Jgp,,

where pinning is a weak perturbation. This conclusion is 9 _ L(ﬁﬁ_‘:"_ ) (A1)
consistent with the experimental fact thdtJ curves ob- Ay AmN?\2m X X

served on HTS bicrystals are rather straight abdygin a

wide range of current¥:22-2":53Thys, the intrinsic properties oy ¢ | o dg

of grain boundaries can be extracted from the analysis of the > m(ﬂ W_ y), (A2)

differential resistanceébut not V-J curves measured af]
>Jgp Using our solution forR; which neglects pinning. A whereA is the vector potential, ang is the phase of the
similar approach was used to measure the flux flow resistiverder parameter. From E@¢A1), it follows that the parallel
ity of pinned A vortices driven by strong current pulses well componentJ,(x,+0)—J,(x,—0)= (cdo/8m\2) 0" is dis-
abovelJ,." Since Jyy, is by two to three orders of magni- continuous for any nonuniform distribution of the phase dif-
tudes below the intrinsid,, the pinning region is much ferenced(x)=(x,+0)—¢(x,—0) along GB. This results
smaller than the scale of Fig. 2, so the lin€arcan be used in the following boundary condition for the stream function
to fit the data. at a GB:
Measuring the local ac response of a GB can bring addi- _ 20 2\
tional advantages over the dc measurements in which the dc IyPpX,+0) = dyp(x, —0)=(Cho/BmAT) 0", (A3)
current acts both on AJ on GB ardvortices in the grains. Excluding ¢ from Egs.(Al) and (A2), we obtain
Indeed, using a scanning localized microwave sotitde,
would be possible to probe the ac dynamics of AJ on GB, V2 cH _C¢00'
minimizing the effect of pinned\ vortices. For instance, the AmN2  872\2
AJ core size and thus the loca} can be extracted from ac
measurements of higher voltage harmonics, as described Where thes function 5(y) in the right-hand side provides the
the preceding section. boundary con_ditipr(A3), andH =V, XA is thez component
The behavior of AJ vortices in a strong dc fietts>H,, of the magnetic field, related to the stream functipby the

considered in this paper is most relevant for bulk HTS. How-Biot-Savart law,

ever, of much interest for superconducting electronics is also , , 3,

the electromagnetic response of HTS polycrystaline films in H(r)= 1 [(X=X)dx g+ (y =y )dy p1dr . (A5)
comparatively weak rf fields for which vortices mostly pen- CIV[(x—X")?+(y—y" )2+ (z—2")?]%?
etrate the network of GBs. In equilibrium, this regime corre-

sponds to the field rangeH  ,<<H<H.;, where H : :
i) (LN 03 s the lower el g ) "1 0.0 sohed by e e o,
for intragrain A vortices®® and Hgqp=(do/4mA2)(1—N) W(x.y) =CcH(x.y)/4m holds, thus Eq.(Ad) becomes the
X[In(\M1)+0.423 is the lower critical field of AJ vortice¥’ London equatior(15) for H(x,y). For a thin film of thick-
andN is the demagnetizing factor. For a film in a perpen-pessg<\, one can puz=z'=0 in Eq. (A5), then the inte-
dicular field, the AJ vortex spacing=(¢o/B)"? can now  gration overz’ gives the factord, and Eq.(A5) gives the
significantly vary along GB, since the normal component offollowing relation between the Fourier components-oénd
the local magnetic inductioB(Xx,y) is now determined by
highly nonuniform distribution of the Meissner surface cur-
rents and a domelike vortex distribution due to the geometri- Hq=(2mqd/c) iy, (AB)
cal barried?"3In this case the results of this paper based on s 2 _ _
the solution(9) with constantk=27/a(B) may be used if Whereq“=a;+qy. The Fourier transform of E4A4) yields
B(x) varies slowly over the intervortex spacirgx), thus
the parameteh in the above formulas should be replaced by __ Chob'(9x) (A7)
its local valueh(x) =B(x)/Hg. T 8aAAgi+ag/N)’

Note addedAfter this manuscript was submitted, | be-
came aware of the papers by Sififi in which equations wherek=2\%/d. Making the inverse Fourier transform of
analogous to Eqg10)—(12) had also been obtained. Eq. (A7) and using the boundary conditions’(x,0)

a(y), (A4)

EquationgA4) and(A5) give an integrodifferential equation

214531-13



A. GUREVICH

=J,sin6+%6/2eR, we arrive at the nonlocal Eq4) for
6(x,t) in which Ky(|x—ul|/\) should be replaced by the

kernel K (|x—ul/X), wherd”*8

oce_spdp

0 \1+p?’

Despite different behaviors oKq(|x—ul|/\) and K(|x

K(s)= (A8)

- u|/7\), at large distances, they both have the same logarith-

mic singularity atx=u, because at short distancgs— x|
<\, screening is inessential so the vector potemtia Egs.
(A1) and(A2) and the fieldH in Eq. (A4) can be neglected.

Then Eq.(A4) becomes a 2D Poisson equation whose solu-

tion is

Coho
3273\ 2

s =5 [ ity (- wPdu, (A9)

both for thin films and bulk samples.

APPENDIX B: EXACT SOLUTION

To show that Eq(9) is indeed an exact solution of E(),
we substitute Eq21)—(23) into Eq.(7) in which the integral
is evaluated using the Hilbert transfotin?

fx sinhady _ 7 Sinkx
_.(x—Yy)(cosha—cosky) cosha—coskx’

(B1)

Equation (7) then reduces to the algebraic for@y cos¢

+C,sin{+C3=0, where the coefficient€; depend only on
time via a(t), y(t), andX,(t). Equating allC; to zero, we
arrive at Eqs(10)—(12).

Useful relations for the steady-state vortex propagation

can be obtained from Eqé10)—(12) with y=a=0,

sinha cosy=h, (B2)
siny cosha = By(t), (B3)
svh=—sinysinha. (B4)
Adding squared EqgB2) and (B4) yields
sinfPa=(1+s?)h. (B5)
Subtracting squared Egé33) and (B4) yields
sirfy=B3—sh, (B6)

Substituting Eqs(B5) and (B6) back to Eq.(B4) gives the
following equation fors:

2

Bi=hs’+ (B7)

1+

The use of the relatioayh= V/J,R reduces Eq(B7) to Eq.
(36). Substituting Eq(B7) into Eq. (B6) yields

PHYSICAL REVIEW B 65 214531

S 1
Siny= ——, Co0Sy=—. B8)
4 J1+s? 7 J1+¢s? (

These results can also be obtained from the complex rep-
resentation of the dc equatiofi&4),

SinZOZ Bo+ i \/ﬁ (Bg)
The vortex velocity is given by the second Ed4),
svh=Im[1—(Bo+ih)]*2 (B10)

from which Eq.(34) readily follows.

APPENDIX C: R FOR JVORTICES

The sine-Gordon equation for a periodigortex structure
moving with a constant velocity has the form

(CD

where thel/=x—wvt. Multiplying Eq. (C1) by d,6 and then

integrating from{=0 to {=a, using the flux quantization
condition#({+a) — 6({) =2, and the periodicity condition
d.0({+a)=0d,0({) for H({), we arrive at the following
equation forv:

)\3(?§§0+UT(9§6_ Sin 0+ IBZO,

277,8=—v7'foa((9(0)2d§. (C2

Expressing the vortex velocity(J) in Eq. (C2) via the dc
voltageV from Eq. (30) yields the flux flow resistivityR;
=V/J in the form

Ri=4m?R/ (C3)

afo (age)zdg}.

For the linear flux flow state g8<1, 0({) in Eqg. (C3) can
be replaced with statiéy(x) for which

\36;—sin6,=0, (C4
The first integral of Eq(C4) has the form
(N;600)°=4[p ?—cog6,/2]. (C5)

The periodic solutions of EGC5) can be expressed in terms
of the Jacobi elliptic function,fy(x)=+2am(x/p\;),
where 0<p<1 is a parameter that is related to the applied
magnetic fieldH and the magnetic inductio® by Egs.
(39).%8 The perioda of the J structure is given by

(Co)

a=2\;pK(p), 2raB= gy,

whereK (p) andE(p) are the complete elliptic integrafs,

w2
K(p):fo (1—p?sirtg) Y, (C7)

2
E(p)=J (1—p?sin6?)Y2d . (C9

0
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Substituting Eq(C5) into Eq.(C3) and changing integration R

. , : sinha cosha— Q2+iQe® cosy
Jodx— [5™d 6/ 6, we obtain

w

—= . (D7)
R sinffa+cogy— Q2%+ 2iQ cosha cosy

2
Rf:ﬂ_ (c9  Equation(D7) reduces to Eq40), using Eqs(B5)—(B8).
2aE(p)
Equations(C6), (C9), and(39) give Eq.(38). APPENDIX E: SEPARATION OF FAST AND SLOW
VARIABLES
APPENDIX D: LINEAR RESPONSE The time averages of

Linearized Eqs(10)~(12) have the form (siny)={((siny cosnwt+ cosy sinnwt)cog g sinwt)

78a+ da cosha cosy— dysinhasiny=0,  (D1) + (cosy cosnwt —siny sinnwt)sin(q sinwt)),

78y+ 8y cosy cosha+ Sa sinysinha=pB,e'*,,  (D2) (ED

krdv = — 5y cosy sinha— da sinycosha.  (D3) (cosy)={(cosy cosnwt—siny sinnwt)cog g sinwt)

These equations give the following Fourier components of —(siny cosnwt +cosy sinnwt)sin(g sinwt)),

da, Oy, and és: (E2
sinha sinysg can be calculated, using the identifies
Sar, = - , (D4
(iQ+ cosha cosy)?+ sintfa sirty (b4 >
cogqsinwt)=Jo(q)+2>, J(q)cog 2kwt), (EJ)
(iQ+ cosha cosy) 68, K=t
5Y0=- ooz (09 }
(i1Q+cosha cosy)“+sintra sinfy . _ _
sin(q smwt)=22 Jok1(q)sin(2k+1)wt], (ED)
k=0
sinha(i{) cosy+ cosha) 88,
Vhas, = . (D6)  whereJ,(q) is the Bessel function. Averaging E¢&1) and

- —— :
(iQ+cosha cosy)? + sinffa sir'y (E2) yields Eqgs.(76) and (77) because only one resonant

where ) = w7. Substitutingds and 8y into Eq. (30) gives  term with 2k=n or 2k+1=n in the sums(E3) and (E4)

the complex ac resistané®, =V, /J,, gives a nonzero dc contribution {gsiny) and(cosy).
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