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Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model
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A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numeri-
cal techniques. The model is one in the class ofdynamic Hubbard modelsthat describe the relaxation of an
atomic orbital upon double-electron occupancy due to electron-electron interactions. We study the parameter
regime where pairing occurs in this model by exact diagonalization of small clusters. World-line quantum
Monte Carlo simulations support the results of exact diagonalization for larger systems and show that the
kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class,
obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing
even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results
confirm the expected qualitative behavior and show that pairing will occur in a substantially larger parameter
regime than predicted by the approximate low-energy effective Hamiltonian.
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I. INTRODUCTION

Dynamic Hubbard models have been recently introdu
as a new class of model Hamiltonians to describe the re
ation of atomic orbitals when electrons are added to orbi
already occupied by other electrons.1–3 This process, origi-
nating in the strong on-site repulsion between electrons
the same atomic orbital, is not described by the conventio
Hubbard model.4 In dynamic Hubbard models this physics
represented either by introducing auxiliary spin5 or
oscillator6 degrees of freedom, or by adding a second el
tronic orbital to the site Hilbert space,7 with suitable interac-
tion parameters. As a consequence, the on-site Hubbar
pulsion becomes a dynamical variable and can take a ra
of values rather than a single fixed value as in the st
~conventional! Hubbard model. It has been proposed that t
physics is ubiquitous to electrons in atoms, molecules,
solids1–3,8 and that it is relevant to the understanding of s
perconductivity in nature.9

While a vast amount of work has been performed over
years on the conventional Hubbard model,10,11 very little
work has been done so far on dynamic Hubbard models.
known12,6,7 that in the strong-coupling antiadiabatic lim
these models map onto the Hubbard model with correla
hopping, i.e., a Hubbard model where the electronic hopp
amplitude depends on the occupation of the two sites
volved in the hopping process. This model is known to e
hibit superconductivity when the Fermi level is close to t
top of the band, both from mean-field calculations,13–15exact
diagonalization,16–18and other exact techniques.19,20Further-
more, a variety of observable properties have been calcul
in this limit such as thermodynamics,13,21tunneling,22 optical
properties,23 pressure dependence,21 etc. Because supercon
ductivity occurs in the dilute carrier concentration regime
is believed that these BCS mean-field calculations
reliable.24

The antiadiabatic limit of these models occurs when
frequency of the associated boson degree of freedom,v0, is
much larger than the effective hopping amplitude for t
electrons~small-polaron regime25!, where the boson follows
0163-1829/2002/65~21!/214510~16!/$20.00 65 2145
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the electronic motion. In that limit the parameter regim
where pairing occurs can be calculated exactly for a dil
concentration of hole carriers.24 Furthermore, numerical cal
culations on finite clusters show that the doping regi
where pairing occurs is accurately estimated by B
theory.18 For finite frequencyv0, some numerical results
have been reported.5,12 However, it is generally not
known whether finitev0 enhances or reduces the tendency
pairing.

Furthermore, in the antiadiabatic limit the single carrie
have large effective mass, and the effective mass is lowe
when carriers pair.26,27 The resulting gain in kinetic energ
drives superconductivity.28 It is not known whether this
physics exists beyond the antiadiabatic limit.

In this paper we study a particular realization of a d
namic Hubbard model, with an auxiliary spin degree of fre
dom, by exact diagonalization of small clusters and a qu
tum Monte Carlo method, to shed light on the properties
the model away from the antiadiabatic limit. We believe th
similar qualitative behavior may be found in the entire cla
of dynamic Hubbard models. Briefly, our results show th
the qualitative physics of the antiadiabatic limit persists
finite v0 and that the parameter regime where pairing occ
can be substantially larger. Even though our results are f
one-dimensional system, we believe it is likely that the sa
occurs in higher dimensions.

The model studied here bears some superficial res
blance to electron-boson models that have been extens
studied in the past such as the Holstein model.25 However, its
physics is qualitatively different. To illustrate this point w
present some numerical results for an electron-hole symm
ric model with an auxiliary spin degree of freedom coupl
to the electronic site density. This model is expected to
similar to the Holstein model and exhibits qualitatively d
ferent physics to the dynamic Hubbard model.

The paper is organized as follows. Section II defines
model and discusses its properties in the antiadiabatic li
In Sec. III we present results for the effective interaction a
kinetic energy from diagonalization of small clusters, a
Sec. IV discusses results of world-line quantum Monte Ca
©2002 The American Physical Society10-1
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
simulations. In Sec. V we present and discuss results for
electron-hole symmetric Holstein-like model. Section VI d
cusses the relation between the dynamic Hubbard m
studied here for a site and a real atom. We conclude in S
VII with a summary of our results and a discussion of t
many open questions in this area.

II. DYNAMIC HUBBARD MODEL WITH SPIN-1 Õ2
DEGREE OF FREEDOM

The essence of dynamic Hubbard models is electron-h
symmetry breaking at the local~one-site! level, so that the
dressing of a hole is larger than the dressing of an electr3

This physics originates in the dynamic lowering of the o
site repulsionU when a second electron is added to
atomic orbital, due to rearrangement of the first electron,
is a ubiquitous phenomenon in atoms.2 There are a variety o
dynamic Hubbard models that can be constructed with
auxiliary spin-1/2 degree of freedom.1,3 Here we consider the
site Hamiltonianfor electrons

Hi5v0sx
i 1gv0sz

i 1@U22gv0sz
i #ni↑ni↓ . ~1a!

Hence, for zero and one electrons~one and two holes! at the
site, the site Hamiltonian is

Hi~ni,2!5v0sx
i 1gv0sz

i ~1b!

and for two electrons~zero holes! at the site it is~spin part
only!

Hi~ni52!5v0sx
i 2gv0sz

i . ~1c!

Equation~1a! can be written in hole representation as

Hi5v0sx
i 1gv0@2~ni↑1ni↓!21#sz

i 1@U22gv0sz
i #ni↑ni↓

~2!

~omitting a chemical potential term!, and the lattice Hamil-
tonian is

H5(
i

Hi2t(
i ,s

@cis
† ci 11,s1H.c.# ~3!

in either electron or hole representation. The electron-h
transformation iscis

† →(21)icis .

A. Site Hamiltonian

We will use the Hamiltonian in the hole representatio
Eq. ~2!. The site eigenstates when there aren holes at the site
are, in terms of the spin-1/2sz eigenstatesu1&, u2&,

un&5u~n!u1&1v~n!u2&, ~4a!

un̄&5v~n!u1&2u~n!u2&, ~4b!

with eigenvalues~excluding thes-independent term inHi)

e~n!52e~ n̄!52v0A11g2 ~5!

and
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u2~0!5
1

2 S 11
g

A11g2D , ~6a!

v2~0!5
1

2 S 12
g

A11g2D , ~6b!

u~0!v~0!52
1

2A11g2
, ~6c!

u~0!

v~0!
5g2A11g2 ~6d!

and

u~1!5u~2!5v~0!, ~7a!

v~1!5v~2!5u~0!. ~7b!

Hence the ground-state energy is independent of the e
tronic site occupation in this model. The site eigenfunctio
depend ong, but not onv0, and are the same for site occu
pationn51 andn52, and different forn50. For largeg the
ground-state wave functions are almost eigenstates ofsz ,
with sz;21 for one-hole and two-hole occupation, ve
different from the one for zero hole occupation for whic
sz;11, while for smallg the ground-state wave function i
almost an eigenstate ofsx (sx;21) and similar for the
different hole occupations. The site eigenvalues depend
both g andv0.

The on-site repulsion between two holes~or two elec-
trons! at the same site depends on the state of the spin de
of freedom and can range betweenU12gv0 and U
22gv0. The effective on-site repulsion, however, since t
ground-state energy, Eq.~5!, is independent of occupation, i
simply U. Note that our notation here is different from that
Ref. 2, whereU denoted thebareon-site repulsion; here, the
bare on-site repulsion, which is the on-site repulsion if t
background degree of freedom is not allowed to relax up
double occupancy, is

Ubare5U1
2g2v0

A11g2
~8!

or Ubare;U12gv0 for largeg. Finally, the overlap matrix
elements between the ground-state wave functions for
various hole occupations are

^0u1&52u~0!v~0!5
1

A11g2
[S, ~9a!

^1u2&51. ~9b!

B. Effective low-energy Hamiltonian

The effective hopping amplitude for a hole betwe
neighboring sites if the spin degree of freedom make
ground-state to ground-state~diagonal! transition is
0-2
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QUANTUM MONTE CARLO AND EXACT . . . PHYSICAL REVIEW B65 214510
t25u^0u1&u2t5S2t5
t

11g2
~10a!

if there are no other holes in the two sites involved in t
hopping process. Instead, if there are either one or two o
holes of opposite spins, the hopping amplitudes are

t15u^0u1&^1u2&u5St, ~10b!

t05u^1u2&u2t5t, ~10c!

respectively. The low-energy effective Hamiltonian for hol
in the small-polaron regime is then

He f f52(
i ,s

t i ,i 11
s ~cis

† ci 11,s1H.c.!1U(
i

ni↑ni↓ ,

~11a!

t i j
s 5t@S21S~12S!~ni ,2s1nj ,2s!1~12S!2ni ,2snj ,2s#.

~11b!

In the regime of low hole concentration the hopping p
cesses where more than two holes are in the sites invo
can be neglected, and the effective Hamiltonian is the H
bard model with correlated hopping:13

He f f52(
i ,s

@ t21Dt~ni ,2s1ni 11,2s!#

3~cis
† ci 11s1H.c.!1U(

i
ni↑ni↓ , ~12a!

Dt5t12t25tS~12S!. ~12b!

The binding energy of the polaron is obtained from the d
ference ofe(0) and the expectation value ofHi if the spin
does not adjust to the presence of a carrier and yields

ep5
2v0g2

A11g2
. ~13!

The criterion for small-polaron formation is that the ener
of the polaron be smaller than that of a carrier that mo
without changing the spin background:

z~ t2t2!,ep , ~14!

with z the number of nearest neighbors to a site (z52 in one
dimension!. Equation~14! yields

t,
2v0

z
A11g2 ~15!

as the condition for polaron formation. For the hopping o
single polaron, the antiadiabatic limit is valid if the polaro
hopping amplitudet2 is smaller than the spacing betwee
site energy levels; hence,

t,v0~11g2!3/2, ~16!

which is always satisfied if the condition, Eq.~15!, is
satisfied.
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The condition, Eq.~15!, indicates that the small-polaro
regime will occur wheneither v0 is largeor the couplingg
is large. However, the condition, Eq.~15!, is not sufficient
for the effective Hamiltonian, Eq.~11! or ~12!, to be accurate
in the presence of more than one carrier. Virtual transitio
of a hole to a nearest-neighbor site occupied by another
yield a contribution to the effective interaction between ho
with an amplitude of the form

u^1u0̄&u2

e~ 0̄!1e~2!22e~1!1U
5

g2

11g2

1

U12v0A11g2

~17!

from ‘‘vertical’’ transitions, which can be much larger tha
the second-order contribution from the effective Ham
tonian, Eq.~11!, that describes only diagonal transitions:

u^1u0&u2

e~0!1e~2!22e~1!1U
5

1

~11g2!U
. ~18!

These contributions from vertical transitions can be n
glected if Eq.~17! is smaller than Eq.~18!, which yields the
condition

v0A11g2.U
~g221!

2
~19a!

or, for largeg,

v0.
Ug

2
. ~19b!

Only whenboth conditions, Eqs.~15! and~19!, hold can the
effective low-energy Hamiltonian, Eq.~11! or ~12!, be ex-
pected to be accurate. In particular, for largeg and smallv0
Eq. ~15! may hold and Eq.~19! may not. In that case, the
effective Hamiltonian, Eq.~11!, can be expected tounderes-
timate the tendency to pairing due to its complete neglect
the site excited states. The antiadiabatic limit where the
fective Hamiltonian, Eq.~11!, is valid hence occurs forv0
→` for fixed g but not for g→` for fixed v0. As g in-
creases it is seen from the condition, Eq.~19!, that the antia-
diabatic limit will be attained for largerv0.

C. Pairing condition and effective mass in antiadiabatic limit

The condition on the parameters of the Hamiltonian, E
~12!, to yield pairing of two holes in a full band is~in one
and two dimensions! ~Ref. 24!

Dt

t2
.A11

U

Dh
21, ~20!

with Dh52zt2 the single-carrier renormalized bandwidt
This is also the condition for superconductivity within BC
theory in the dilute limit in any dimension.13 Using Eqs.
~12b! and ~10a! it translates into

U

Dh
<g2, ~21!
0-3
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
which shows that forg.1 pairing will occur even if the
on-site repulsion is larger than the effective bandwid
Equation~21! can also be written as

U

D
<

g2

11g2
, ~22!

with D52zt the unrenormalized bandwidth.
The polaron hopping amplitude increases as the hole

ing of the band increases, according to

t~nh!5t21nhDt, ~23!

with nh the average number of holes per site (0<nh<2),
and correspondingly the bandwidth increases,

D~nh!5DhS 11nh

Dt

t2
D , ~24!

from D(nh50)5Dh to D(nh52)5D. The polaron effective
mass correspondingly decreases as the number of hole
creases,

m* ~nh!5
\2

2t~nh!a2
, ~25!

with a the lattice spacing.
When two holes bind in a pair, the pair hopping amplitu

tp in the dilute hole concentration regime is found to
always larger than 1/2 the single-particle hopping amplitu

tp.t2/2; ~26!

i.e., the pair effective mass is smaller than the sum of
effective masses of its constituents.27 This is opposite to wha
happens in other models such as the attractive Hubb
model. Expressions for the pair mobilitytp are given in Refs.
26 and 27. The pair mobility is defined in terms of the ene
dispersion relation for a pair of center-of-mass momentumq,

E~q!5E01tpq2, ~27!

and can be obtained by calculating the London penetra
depth in the dilute limit. The kinetic energy per two holes
the dilute limit when there is no pairing is

^Ts&524t2 , ~28a!

and when there is pairing the kinetic energy per pair is

^Tp&528tp ~28b!

for a one-dimensional chain.

III. EXACT DIAGONALIZATION RESULTS

The Hamiltonian of interest has eight states per site,
that clusters of up to eight sites could be studied with curr
computer capabilities. In this initial study we restrict ou
selves to two and four sites only. The results are qualitativ
similar and we expect similar qualitative results for larg
clusters, although quantititative differences may be expec
for weak coupling. We compute the effective interaction
21451
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two holes in a cluster from the usual formula

Ue f f52E0~1!2E0~0!2E0~2!, ~29!

with E0(nh) the ground-state energy fornh holes;Ue f f,0
signals a tendency to pairing and superconductivity. For
N52 cluster the effective interaction in the antiadiaba
limit is

Ue f f5
U

2
2AS U

2 D 2

14t1
222t2 , ~30a!

t15t21Dt5tS, ~30b!

and the condition for pairing (Ue f f,0) is

U

2t
<

g2

11g2
, ~31!

so that in the antiadiabatic limit pairing cannot occur forU
.2t for any value of the coupling parameterg. Throughout
this and the following section we will use units so thatt
51. For theN54 system and in fact for anyN>4, the
condition for pairing in the antiadiabatic limit is

U

4t
<

g2

11g2
, ~32!

so that pairing will not occur forU.4 for anyg in the limit
v0→`.

A. Results for effective interaction

Figure 1 shows the effective interaction for theN54
cluster as function of coupling constantg, for various values
of the on-site repulsionU and two values of the frequenc
v0, together with the results in the antiadiabatic limit. No
that for smallv0 @Fig. 1~a!# the effective interaction is sub
stantially more attractive than in the antiadiabatic limit. A
v0 increases@Fig. 1~b!# the results approach those of th
antiadiabatic limit, as expected. The behavior ofUe f f versus
g is nonmonotonic particularly for small values ofU.

In Fig. 2 we show the dependence of the effective int
action onv0 for theN54 cluster for fixedU54 and various
values ofg ~a! and for fixedg for various values ofU ~b!.
The limiting values forv0→` are also shown~dashed
lines!. ForU54 there is no pairing in the antiadiabatic limi
while Fig. 2~a! shows that for finite frequency pairing wil
occur forg>2. Similarly, Fig. 2~b! shows that forg53 ~cor-
responding to an effective mass enhancementm* /m51
1g2510) pairing will occur up to at leastU56 at finitev0,
while in the antiadiabatic limitU53.6 is the maximum on-
site repulsion that allows pairing forg53 according to Eq.
~32!. Note that for largerg the antiadiabatic limit is ap-
proached for largerv0, in accordance with the discussio
following Eq. ~19!.

Even a cluster as small asN52 shows behavior represen
tative of larger clusters and of~we believe! the thermody-
namic limit. The reader can easily verify that the effecti
interaction for theN52 cluster obtained by exact diagona
ization closely resembles the behavior of the four-site clus
0-4
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FIG. 1. Effective interactionUe f f for N54 cluster vs coupling
constantg and various values of the on-site repulsionU for ~a!
v050.5 and~b! v052 ~solid lines!. The dashed lines and dotte
lines give the results in thev0→` limit for the N54 cluster and
for the infinite chain, respectively. For fixedg, increasingU corre-
sponds to increasing value ofUe f f .

FIG. 2. Dependence ofUe f f on v0 for N54 cluster. The dashed
lines give the limiting valuesv0→`.
21451
shown in Figs. 1 and 2. In the antiadiabatic limit the effecti
interaction as function ofg is monotononically decreasin
with g if the condition for pairing, Eq.~31! or ~32!, is not
satisfied, while if it is satisified it has a~negative! minimum
for a finite g that decreases asU decreases below the limit
given by Eqs.~31! and ~32!.

For an infinite chain, the pair binding energy can be c
culated exactly in the antiadiabatic limit.27 The appendix of
Ref. 27 gives an analytic expression for the pair bindi
energyeb in one dimension. The quantityUe f f defined by
Eq. ~29! calculated here should go to2eb as the cluster size
increases. Figure 1 also shows results for2eb ~dotted lines!,
which go to zero when the parameters satisfy the equalit
condition, Eq.~32!. The difference between the dotted an
dashed lines gives the magnitude of finite size effects for
N54 cluster. It can be seen that the qualitative behavior
2eb for the infinite chain andUe f f for the four-site chain is
the same. The effect of finite size is to give a somew
larger attraction; however, the condition for pair formatio
(Ue f f,0) is the same for theN54 cluster and the infinite
chain in the antiadiabatic limit~the dashed and dotted line
in Fig. 1 go to zero at the same value ofg).

In Fig. 3 we show the phase diagrams for theN52 and
N54 clusters indicating the region where pairing will occ
for some finite frequency in this model. The solid lines sho
the results in the antiadiabatic limit, Eqs.~31! and ~32!. It
can be seen that the region of parameter space where pa
occurs is substantially enlarged for finite frequency. Figur
shows the optimal frequency for pairing at the phase bou

FIG. 3. Phase diagram for~a! N52 and~b! N54 clusters. In
the region labeled NON-SC,Ue f f.0 for all values ofv0; in the
region labeled SC, a range ofv0 exists whereUe f f,0. Below the
solid line,Ue f f,0 in the antiadiabatic limitv0→`.
0-5
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
ary for pairing, for theN52 andN54 clusters. For largeg,
v0 increases slowly withg and is between 1 and 2~in units
of t). For decreasingg, v0 goes through a minimum an
then diverges, in accordance with the fact that the ph
boundary lines in Fig. 3 merge with the ones in the antiad
batic limit asg→0. It should also be noted that for poin
away from the phase boundary the optimal frequency
gives maximum attraction can be considerably smaller t
those shown in Fig. 4@see, e.g., Fig. 2~a! for U54,g54 or
Fig. 2~b! for g53,U52 where the optimal frequency isv0
;0.5].

B. Results for kinetic energy

The condensation energy in this model is known to
provided by lowering of kinetic energy in the antiadiaba
limit. Exact expressions for the pair kinetic energy for tw
bound holes in a one-dimensional chain are given in Ref.
Figure 5~a! shows exact results for the pair kinetic ener
versus coupling constantg for the effective Hamiltonian, Eq
~12!, for various values ofU. Pairing occurs for couplings
obeying the condition, Eq.~32!, which forU50.8, 2, and 3.2
corresponds tog50.5, 1, and 2, respectively. Forg larger
than those values the kinetic energy is given by the das
line, lower than the solid line which would be the kinet
energy in the absence of pairing. Note that even though
kinetic energy of a pair is lower than that of the unbou
holes, it still decreasesin magnitude as the coupingg in-
creases. Instead, the kinetic energylowering, i.e., the differ-
ence between the kinetic energy of the pair and of the
bound holes, is nonmonotonic, peaking at an intermediatg,
similarly to the pair binding energy given by2Ue f f . Figure
5~b! shows the kinetic energy lowering per pair,

DT5^Tp&2^Ts&, ~33!

andUe f f for the infinite chain, which is the negative of th
pair binding energyeb calculated in Ref. 27. It can be see
that the two quantities follow similar behavior with couplin
In fact, their ratio is essentially constant as function ofg for
largeg, as shown in Fig. 5~c!. As the pair binding decrease

FIG. 4. Optimal frequencyv0 that gives rise to pairing at the
phase boundaries~dashed lines! of Fig. 3. As g decreasesv0 in-
creases and the phase boundary approaches the one in the an
batic limit.
21451
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either becauseU increases org decreases, bothUe f f and the
kinetic energy lowering go to zero. However,Ue f f ap-
proaches zero quadratically24 while the kinetic energy low-
ering approaches zero linearly, hence their ratio diverge
the pair binding energy goes to zero.

Note that the kinetic energy lowering upon pairing is a
ways lower than2eb . This indicates that the potential en
ergy change is positive; that is, there is a potential ene
cost upon pairing, given by

DUpot5~^Ts&2^Tp&!2eb , ~34!

dia-

FIG. 5. Results for kinetic energy in the infinite chain in th
antiadiabatic limit.~a! Kinetic energy of two unbound holes~solid
line! and of a hole pair~dashed lines! vs g for various values ofU.
As g decreases, the dashed line joins the solid line~as indicated by
the symbols! when pairs unbind, atg5gc . Heregc is 0.5, 1, and 2
for U50.8, 2, and 3.2, respectively.~b! Pair binding energy~solid
lines! and kinetic energy lowering~dashed lines! for the infinite
chain vsg for variousU. At gc , both quantities go to zero.~c! Ratio
of kinetic energy lowering to pair binding energy vsg.
0-6
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QUANTUM MONTE CARLO AND EXACT . . . PHYSICAL REVIEW B65 214510
and the pair binding energy is smaller than would be
pected from the magnitude of kinetic energy lowering. T
potential energy cost arises from the increased effect of
on-site repulsion between members of a pair since the
wave function has higher probability for site double occ
pancy.

In the infinite chain there is a sharp phase transition
tween the state where the pair is bound and where it is
bound, indicated by the points in Fig. 5~a! where the dashed
lines join the solid line. In the finite chain of course there
no sharp transition but rather a smooth crossover. Figure~a!
shows results for the kinetic energy for a pair of holes in
four-site chain in the antiadiabatic limit compared to the
sults for the infinite chain. As the coupling constant increa
the four-site results cross over from the kinetic energy
unbound holes to the kinetic energy of the paired ho
Wheng goes to zero the kinetic energy of two holes in t
four-site chain is slightly higher than the one for two u
bound holes because of the effect of the on-site repulsionU;
this is of course a finite-size effect, and for larger clust
and a fixed number of holes it will become negligible in t
regime where the holes are not bound. Figure 6~b! compares
the kinetic energy lowering and the pair binding energy
the four-site chain in the antiadiabatic limit and the infin
chain for one case; it can be seen that both quantities fo
similar behavior, and both are larger in magnitude than
the infinite chain. Note that in the finite chain kinetic ener
lowering goes to zero for a smallerg than whereUe f f goes to

FIG. 6. Comparison of results for kinetic energy ofN54 chain
and infinite chain in the antiadiabatic limit. In~a!, the kinetic energy
of two holes in theN54 cluster~dash-dotted line! joins the infinite
chain kinetic energy of the bound pair for largeg ~dashed line!, and
the kinetic energy of unbound holes for smallg ~solid line!. ~b!
shows that finite-size effects similarly enhance the magnitude
pair binding energy and of kinetic energy lowering.
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zero; this would also occur in the infinite chain for finite ho
density. We conclude from these results that the four-
cluster is appropriate to learn about the qualitative beha
of the kinetic energy for the infinite chain just as well as it
for the pair binding energy.

Hence we can now learn about the effect of finite fr
quency on kinetic energy lowering by studying the four-s
chain. Figure 7~a! shows results for a finite small frequenc
v050.5, compared to the antiadiabatic limitv05`. Just as
for the effective interaction@Fig. 1~a!#, the kinetic energy

of

FIG. 7. Difference between kinetic energy of a pair and kine
energy of two holes in the four-site chain~a! vs g for fixed v0 and
~b! vs v0 for fixed g. The dashed and dotted lines in~a! give the
results in thev0→` limit for the N54 cluster and the infinite
chain, respectively; the dashed lines in~b! give the results in the
v0→` limit for the N54 cluster.~c! Ratio of kinetic energy low-
ering to pair binding energy in four-site chain vsg for U52 and
various values ofv0. The dashed line gives the results forv05`.
Note that the kinetic energy lowering upon pairing for small fr
quency is considerably larger for finitev0 than in thev05` limit.
0-7
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
lowering can be substantially larger for finite frequency th
for infinite frequency, and the largest kinetic energy loweri
occurs for largerg for small frequency. Similarly Fig. 7~b!
shows kinetic energy lowering as function of frequency
fixed g. Similarly as the corresponding results for the effe
tive interaction, Fig. 2~b!, the kinetic energy lowering is larg
est in magnitude at a fairly low frequency and is consid
ably larger than in the antiadiabatic limit. The ratio of kine
energy lowering to effective interaction for finite frequenci
behaves similarly as in the antiadiabatic limit; this is sho
for one case in Fig. 7~c!.

In addition to kinetic energy lowering it is of interest t
consider the effect of finitev0 on kinetic energy itself. Fig-
ure 8 shows results for single-hole and pair kinetic energy
finite v0 as function of the on-site repulsionU, compared
with the limiting casev05`. The difference between th
dashed and solid lines is the kinetic energy lowering. It c
be seen that relatively speaking the kinetic energy lower
is largest in the antiadiabatic limit, even though it is larger
magnitude for finitev0.

In summary, we have seen that the effect of finite f
quency is to enhance the pair binding energy and the kin
energy lowering found in the antiadiabatic limit. From the
results we conclude that the pair condensation energy in
dynamic Hubbard model also originates in kinetic ene
lowering, i.e., ‘‘undressing.’’ As implied by the conductivit
sum rule,29,30 lowering of kinetic energy should be accomp
nied by transfer of optical spectral weight from high to lo

FIG. 8. Single particle~solid lines! and pair~dashed lines! ki-
netic energy vsU for g53 andg54 for ~a! v050.5 and~b! v0

52. The results forv0→` are also shown. Both the single-partic
and the pair kinetic energies are substantially lower for smallv0

than forv05`. The transition points whereUe f f changes sign for
g53 andg54 are, respectively,U53.6 andU53.77 for v05`,
U56.91 andU510.1 for v052, andU55.57 andU57.77 for
v050.5.
21451
n

r
-

-

r

n
g

-
tic

is
y

frequencies, as well as by transfer of spectral weight in
single-particle spectral function from high to low
frequencies.31 The one and two-particle spectral functions f
the model, Eq.~3!, will be discussed in a separate paper.

IV. QUANTUM MONTE CARLO SIMULATIONS

With quantum Monte Carlo~QMC! methods one can
study much larger systems than with exact diagonalizat
We use the basis ofsz eigenstates for the spin degrees
freedom, so that at every time slicei there are classical spin
s j ( i ) at every lattice sitej. The partition function is

Z5Tr e2bH

5Tr )
i 51

L

e2DtH5Tr )
i 51

L

(
s j ( i )51/21

e2DtH„s j ( i )…, ~35!

with Dt5b/L, L the number of time slices. There are tw
basic approaches to quantum Monte Carlo simulatio
determinantal32 and world-line algorithms.33

A. Determinantal Monte Carlo algorithm

For the determinantal algorithm one separates kinetic
potential energy terms in the Hamiltonian into the product
two exponentials and decouples the interaction term b
discrete Hubbard-Stratonovich transformation introduc
auxiliary Ising variables which we callm j ( i ) here:34

e2DtU j ( i )nj↑nj↓5
1

2 (
m j ( i )51/21

expS l„s j~ i !…m j~ i !~nj↑2nj↓!

2
DtU j~ i !

2
~nj↑1nj↓! D , ~36a!

coshl„s j~ i !…5eDtU j ( i ), ~36b!

U j~ i ![U„s j~ i !…5U22gv0s j~ i !. ~36c!

In contrast to the ordinary Hubbard model, the parametel
here is not constant but depends on the locals variable. For
the transformation, Eq.~36!, to be valid it is necessary tha
U j ( i ) be positive for all values ofs j ( i ), i.e.,U>2gv0. Next
one takes the trace over fermion degrees of freedom ana
cally to obtain the fermion determinant, and the Monte Ca
simulation proceeds by sampling the Ising spin degrees
freedoms andm at each space-time site. Even though ne
tive weights may occur in this formulation, we do not expe
that they will be very significant in the dilute regime of in
terest for this model.

The path integral formulation provided by Eqs.~35! and
~36! makes the nature of this dynamic Hubbard model p
ticularly apparent. The HubbardU here has space-time fluc
tuations, with possible valuesU j ( i )5U22gv0 and U j ( i )
5U12gv0. This fluctuatingU corresponds to the differen
values that the on-site Coulomb repulsion between two e
trons will take depending on the relative state of these e
trons and embodies the physics of intra-atomic electro
correlation~at least for nondegenerate atomic orbitals!. In a
more realistic dynamic Hubbard model the HubbardU will
0-8
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QUANTUM MONTE CARLO AND EXACT . . . PHYSICAL REVIEW B65 214510
take a continuum of different values. The energy scale
determines the fluctuations inU, v0 in this case, is a one
electron energy scale that reflects the cost in one-elec
energy as the electrons sample the various atomic state
reduce the magnitude of their intra-atomic Coulomb rep
sion.

The determinantal algorithm can be used for the latt
problem as well as for impurity problems and as part of
dynamical mean-field theory solution of the model. This w
be deferred to future work. Here we will instead use t
world-line QMC algorithm.

B. World-line Monte Carlo algorithm

The world-line Monte Carlo algorithm can be used if t
system is one dimensional so that no negative-weight p
lems arise. The partition function is written as

Z5Tr )
i 51

L

e2Dt( jH je2DtHkin
e

e2DtHkin
o

, ~37!

where the kinetic energy part of the Hamiltonian was dec
pled in terms involving even and odd sublattices. The tr
in Eq. ~37! is performed by introducing intermediate states
the spinsz representation and the fermion occupation nu
ber representation in the usual way. In addition to mov
fermion world lines and flipping individuals spins we also
use composite moves consisting in moving a fermion wo
line and flipping the spins at the sites where the ferm
occupation is changing. These moves are necessar
achieve equilibration in the strong-coupling regime.

Figure 9 shows typical world-line configurations for tw
holes and the associated boson field in a strong-coup
regime, withg53 andv052. We start the holes far from
each other, in the first snapshot shown~a! after several hun-
dred sweeps they are still far apart and the world lines
rather straight, corresponding to large hole effective ma
After several more hundred sweeps the holes bind in a b
laron, as seen in Fig. 9~b!. The bipolaron has a smaller e
fective mass, as indicated by the larger transverse motio
the world lines in the timelike direction. These pictur
clearly show that upon pairing the carriers become more
bile in this model.

The relation between pair formation and increase in p
mobility is shown even more clearly in Fig. 10. Figure 10~a!
shows the kinetic energy of a pair as a function of Mon
Carlo sweeps. Each Monte Carlo ‘‘step’’ in this figure giv
an average over 30 consecutive sweeps. It can be seen
after approximately 100 steps the kinetic energy becom
lower. At the same time, as Fig. 10~b! shows, the average
distance between the holes decreases dramatically as the
is formed.

When the number of holes is increased in the system
found in the BCS solution in the antiadiabatic limit that t
tendency to pairing decreases and the coherence length o
pairs increases until they eventually dissociate at a crit
hole concentration. Similar behavior is found in exact diag
nalization of finite systems in the antiadiabatic limit. We fin
here that similar behavior is seen qualitatively in Mon
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FIG. 9. Snapshots of Monte Carlo configurations for anN520
site lattice withL540 time slices.Dt50.25, g53, andv052.
The left-side panel show the hole world lines; the right-hand pa
indicates the boson~spin! configuration. At the sites where the ho
occupation is 1~2!, the boson configuration is denoted byp (b) if
the boson state isu2&, which is the low-energy configuration, an
by n if it is u1&. In ~a!, after a few hundred sweeps, the holes a
separate and heavy; in~b!, after several more hundred sweeps, t
holes are bound and lighter~world lines fluctuate more in time
direction!.
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
Carlo simulations for finite frequency. As an example, F
11 shows snapshots of configurations for 6 holes in a 20-
system, i.e., hole concentrationnh50.15. The system is
started in a disordered configuration, after several thous
sweeps it could be seen in snapshots such as Fig. 11~a! that
three well-defined pairs are formed; however, continuing
run, configurations like Fig. 11~b! appear, where pairs ove
lap and the distance between members of a pair~i.e., the
coherence length! increases. Continuing this run the pai
dissociate completely, later they form again. These snaps
suggest that for these parameters the system is close t
pair unbinding transition~it is not clear on which side!. The
dependence of critical hole concentration on frequencyv0 is
unknown and an interesting subject for further study. T
fact that the effective attraction increases for finite freque
in the exact diagonalization study suggests that the crit
hole concentration may be larger for finite frequency than
the v0→` limit.

To detect a superconducting transition in Monte Ca
simulations it is considerably simpler to use a grand cano
cal ensemble formulation as in the determinantal Mo
Carlo methods; in world-line Monte Carlo simulations, me
surement of pairing correlation functions would involv
breaking world lines which leads to large fluctations.33 We
can, however, get some information on pair binding with
world-line method by consideration of the kinetic energy.
seen in Fig. 8, the kinetic energy increases gradually in
four-site system as the on-site repulsion increases. Figur
shows the behavior of kinetic energy from Monte Ca
simulations on lattices of sizeN58 andN512, as well as

FIG. 10. Kinetic energy of two holes~a! and hole-hole distance
~b! as function of ‘‘Monte Carlo time.’’ The unit of time is 30
Monte Carlo sweeps.N520, L540, Dt50.25, g53, andv051.
After about 100 steps the hole-hole distance decreases drastica
the holes become bound~b!, and at the same time the kinetic ener
becomes lower~a!.
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for the static~conventional! Hubbard model (g50). For the
static Hubbard model there is a small dependence of kin
energy onU, which is due to finite-size effects. Instead, f
the dynamic Hubbard model there is a large increase in
netic energy asU increases from small values, due to th
progressive unbinding of the pair. For sufficiently largeU the
pair unbinds and the dependence of kinetic energy onU is
weak as in the static Hubbbard model. For theN512 cases a
fairly sharp kink in the kinetic energy indicates the transiti
point.

as

FIG. 11. Snapshots for 6 holes in a 20-site chain.L540, Dt
50.25, g53, andv052. In the first picture~a! three well-defined
pairs are seen; in~b! the pairs overlap and the distance betwe
members of a pair~‘‘coherence length’’! increases.
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QUANTUM MONTE CARLO AND EXACT . . . PHYSICAL REVIEW B65 214510
Similarly the existence of pairing can be seen in dens
density correlation functions. Figures 13~a! and 13~b! show
on-site and nearest-neighbor hole-hole density correlat
for the static Hubbard model and the dynamic cases of
12. The on-site correlation is much larger in the dynam
case, and approaches the static case values only for largU.
The nearest-neighbor correlation in the dynamic case
much larger than in the static case and first increases aU
increases, due to the rapid decrease of the on-site correla
Note also that for largeU the nearest-neighbor correlation
still considerably larger than in the static model, indicati
that when the on-site double occupation is essentially s
pressed, retardation gives rise to an effective near
neighbor attraction. This can be easily understood fr
second-order strong-coupling perturbation theory.

Electrons behave very different from holes in this mod
In Fig. 14 we show snapshots of hole world-line configu
tions when the band is almost full with holes, i.e., almo
empty with electrons. This is the mirror image of the ca
shown in Fig. 9. Here we start the simulation with two ele

FIG. 12. Kinetic energy vs on-site repulsionU from Monte
Carlo simulations of dynamic Hubbard model~a!, ~b!, and of static
~conventional! Hubbard model (g50) ~c!.
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trons on the same site, and after some sweeps the elec
separate. Furthermore, in contrast to Fig. 9, the quasipar
world lines show much larger fluctations in the time dire
tion, indicating a smaller electron effective mass. The c
trast between Figs. 14 and 9 clearly displays the intrin
electron-hole asymmetry of this dynamic Hubbard mod
The kinetic energy in this case shows almost no depende
on U, as expected, in contrast to the case shown in Fig.

In summary, the results of these Monte Carlo simulatio
support the picture obtained from exact diagonalization
small systems: the dynamic Hubbard model is an effec
way to obtain hole pairing driven by kinetic energy lowerin
in repulsive fermion systems.

V. COMPARISON WITH RESULTS
FOR A HOLSTEIN-LIKE MODEL

The conventional electron-boson models studied in
past involve coupling of a boson degree of freedom to
electronic charge density rather than to the double oc
pancy. Even though it does not necessarily follow, in th
simplest form these models are electron-hole symmetric.
consider here one such model with site Hamiltonian

Hi5v0sx
i 1gv0sz

i @ni↑1ni↓21#1Uni↑ni↓ ~38!

as a generic model in that class. This model should be sim
to the Holstein model,25 where the spin-1/2 degree of free
dom is replaced by a harmonic oscillator. Diagonalization
the site Hamiltonian yields eigenvalues

e~0!5e~2!52e~ 0̄!52e~ 2̄!52v0A11g2, ~39a!

FIG. 13. ~a! On-site and~b! nearest-neighbor density-densi
correlations for dynamic and static Hubbard model,N512 sites.
0-11
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FIG. 14. Snapshots of Monte Carlo configurations when
band is almost full with holes, with only two electrons. The co
vention and parameters are the same as in Fig. 9. The simulati
started with the two electrons on the same site~top panel!; after a
few sweeps~bottom panel! the electrons separate and are light,
illustrated by the large fluctuations of the world lines in the tim
direction.
21451
e~1!52e~ 1̄!52v0 ~39b!

and eigenvectors of the form Eq.~4!, with

u~0!5v~2!5
1

A2
A11

g

A11g2
, ~40a!

v~0!5u~2!52
1

A2
A12

g

A11g2
, ~40b!

u~1!52v~1!5
1

A2
~40c!

and effective on-site interaction

Ue f f5U22v0~A11g221!. ~41!

The overlap matrix element between ground-state w
functions is

S5^0u1&5^1u2&5A1

2S 11
1

A11g2D ~42!

and ranges between 1 forg50 to 1/A2 for g→`, so that it
never becomes small as in the previous case.

Figure 15 shows results of exact diagonalization for
N54 cluster. As a function of frequency, the effective inte
action becomes less attractive asv0 decreases, in contrast t
the behavior found for the dynamic Hubbard model. Furth

e

is

FIG. 15. Exact diagonalization results for Holstein-like mod
Eq. ~39!. ~a! Effective interaction and~b! difference between kinetic
energy of a pair and kinetic energy of two holes in the four-s
chain vs frequencyv0 for U54 and various values ofg. The ki-
netic energy increases rapidly as the effective interaction beco
more attractive, in contrast to the behavior found in the dynam
Hubbard model.
0-12
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QUANTUM MONTE CARLO AND EXACT . . . PHYSICAL REVIEW B65 214510
more, the kinetic energy increases asv0 increases and the
effective attraction increases, as shown in Fig. 15~b!. Hence
in this model pairing gives rise to kinetic energyincrease
and the pair condensation energy originates in the larger

FIG. 16. Snapshots of Monte Carlo configurations for t
Holstein-like model for anN520 site lattice withL540 time
slices.Dt50.25, g53, v052, andU54. Same conventions as i
Fig. 9. After a few initial sweeps the holes are still separate
light ~upper panels!; after several more sweeps~lower panels! the
holes are bound and heavier~world lines fluctuate less in the tim
direction!, in contrast to the behavior seen in Fig. 9.
21451
o-

tential energy decrease, which is precisely opposite to
behavior in the dynamic Hubbard model.

Figure 16 shows typical world-line configurations for tw
holes in this model. Similarly to Fig. 9, we start the holes
from each other; in the first snapshot they are still sepa
and after several sweeps a pair is formed. Here the w
lines for the pair are rather straight, corresponding to la
effective mass, while the single holes exhibit larger tra
verse motion of the world lines, indicating lighter quasipa
ticles. This is qualitatively different to the behavior in th
dynamic Hubbard model~Fig. 9!, where the carriers becam
lighter when they paired.

The relation between pair formation and pair mobility
also shown in Fig. 17, to be compared with Fig. 10 for t
dynamic Hubbard model. Initially the hole-hole distance
large and the kinetic energy is low. When the pairs form af
approximately 100 Monte Carlo ‘‘steps’’ the hole-hole di
tance decreases drastically and the kinetic energy increa
again in qualitative contrast with the behavior found in t
dynamic Hubbard model.

Finally, Fig. 18 shows the behavior of the average kine
energy and of density-density correlations versus on-site
pulsion U for the Holstein-like model. As indicated by Fig
15, the effective interaction becomes attractive forg53 and
v051 whenU;4. This is confirmed by the results of Fig
18. The on-site density-density correlation increases sha
asU is decreased below 4, indicating pair formation. At t
same time, the kinetic energy increases sharply when the

d

FIG. 17. Kinetic energy of two holes~a! and hole-hole distance
~b! as function of ‘‘Monte Carlo time’’ for the Holstein-like model
The unit of time is 15 Monte Carlo sweeps.N520, L540, Dt
50.25, g53, v051, andU53. After about 100 steps the hole
hole distance decreases drastically as the holes become boun~b!,
and at the same time the kinetic energy increases~a!, in contrast to
the behavior seen in Fig. 10.
0-13
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J. E. HIRSCH PHYSICAL REVIEW B 65 214510
forms, again in stark contrast to the behavior of the dyna
Hubbard model seen in Figs. 12 and 13. The near
neighbor density-density correlation first increases asU in-
creases from 0, indicating that the pair wave functi
evolves from describing on-site pairing to more extend
pairing and then decreases for largerU as the pair dissoci-
ates.

In summary, these results suggest that the conventi
electron-hole symmetric models and dynamic Hubbard m
els define two rather different ‘‘universality classes.’’ Bo
types of models can describe pairing, with qualitatively d
ferent features.

VI. RELATION TO REAL ATOMS

In the dynamic Hubbard model considered in this pap
the on-site repulsion takes the valuesU22gv0 and U
12gv0 when the auxiliary spin at the site points up a
down, respectively, in asz representation. More generall
for the spin in a superposition of these states the on-
repulsion will take values intermediate between these
tremes. The ‘‘effective’’ on-site repulsion defined by

Ue f f~site!5E~2!1E~0!22E~1!, ~43!

with E(n) the site energy withn electrons~or holes!, is sim-
ply U. The reason a fluctuatingU is needed to represent
real atom is that the wave function of two electrons in

FIG. 18. ~a! Kinetic energy and~b! on-site and nearest-neighbo
density-density correlation vs on-site repulsionU from Monte Carlo
simulations of the Holstein-like model withN512. In ~a! results for
N58 are also shown; for~b! the size dependence is negligible. A
U decreases and pairs form, the on-site correlations increase an
kinetic energy increases, in contrast to the behavior seen in Fig
and 13 for the dynamic Hubbard model.
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orbital is not simply the product of the single-electron wa
functions in the singly occupied atom,3 but rather a superpo
sition

C~r 1 ,r 2!5(
n,m

Cnmwn~r 1!wm~r 2!, ~44!

where $wn(r )% is a complete set of single-electron wav
functions. The fluctuating values ofU can be thought of as
the different values that the electron-electron repulsion w
take for one electron inwn(r ) and the other electron in
wm(r ), for all n, m for which Cnm is not zero. The frequency
v0 represents the energy scale of electronic excitations in
atom, i.e., the eigenenergies of the wave functions$wn(r )%.

More specifically, for the particular case of 1s orbitals in
a hydrogenic atom of ionic chargeZ, the ‘‘bare’’ on-site re-
pulsion for two electrons in the 1s orbital is

U1517Z eV. ~45!

This corresponds in our model to the on-site repulsion wh
the boson is not allowed to relax, Eq.~8!, or approximately
U12gv0. In the Hartree approximation, the orbital expan
to Z̄5Z25/16 upon double occupation, and the repulsi
between two electrons in these expanded orbitals is Eq.~45!

with Z replaced byZ̄, i.e.,

U2517S Z2
5

16D eV5U125.31 eV. ~46!

This would roughly correspond to the ‘‘minimum’’ on-sit
repulsion in our model,U22gv0. Finally, the effective on-
site repulsion in the Hartree approximation, taking into a
count the cost in single-particle energy upon orbital exp
sion, is

U3517S Z2
5

32D eV5U122.66 eV ~47!

precisely halfway between the values, Eqs.~45! and ~46!,
and this would correspond to the effective siteU in our
model, which is justU, also precisely halfway between th
minimum and maximum values. Summarizing,

U1517Z eV5U12gv0 , ~48a!

U25U125.31 eV5U22gv0 , ~48b!

U35U122.66 eV5U, ~48c!

so that for this case we have simply

gv051.33 eV ~49!

independent ofZ.
The frequencyv0 is related to excitation energies of th

atom; hence, we expect the dependence on ionic charge

v05cZ2, ~50!

which implies from Eq.~49! that g increases as the ioni
chargeZ decreases. This is in accordance with the fact t
the overlap

the
12
0-14
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S5^0u1&5
1

A11g2
~51!

decreases asg increases; in the Hartree approximation, th
overlap corresponds to the overlap of the expanded sin
electron orbital with the nonexpanded one and is given b

S5

S 12
5

16ZD 3/2

S 12
5

32ZD 3 , ~52!

which decreases to zero asZ→0.3125.
Strictly speaking our dynamic Hubbard model will be

valid representation of the real atom only in the parame
regime where

U22gv0.0, ~53!

because the atomic Coulomb integral for any two orbit
wn , wm has to be positive. Even with the constraint, Eq.~53!,
a wide range of parameters in the model exists where pai
will occur, as can be inferred from the numerical results
the previous sections. For example, from Fig. 1~a! we see
that for v050.5,U58, pairing occurs forg.4; the condi-
tion, Eq. ~53!, is satisfied in this case up tog58, and forg
;4 the fluctuations in the on-siteU are about 50%. As the
frequency gets smaller, the relative fluctuations inU needed
to obtain pairing decrease. For example, from Fig. 2~a! we
find that forU54, g54, pairing occurs forv0.0.12, which
corresponds to fluctuations inU of only 25% ~betweenU
53 andU55). If the U was not fluctuating but fixed, no
pairing occurs in the model unlessU,0. In other words, the
‘‘equivalent U ’’ in a model with fixedU is not only smaller
than the averageU in the fluctuating case but it is smalle
than the smallest value that the fluctuatingU attains in these
cases.

Note that asZ in the atom decreases, the on-site bareU
decreases@Eq. ~45!#; the parameterv0 should decrease ac
cording to Eq.~50!, and correspondinglyg should increase
@Eq. ~49!#. As seen in Fig. 2~b!, asU decreases a smallerv0
is required to give pairing, and as seen in Fig. 2~a! as g
increases also a smallerv0 is needed for pairing. We con
clude from our results for the model system and the relati
ship with the real atom that smaller values ofZ yield the
most favorable conditions for pairing in this dynamic Hu
bard model.

VII. DISCUSSION

We have studied numerically some properties of a
namic Hubbard model, where the value of the on-site rep
sion U depends on the state of an auxiliary boson degre
freedom. In the model studied in this paper the boson
spin-1/2 degree of freedom, with excitation energyv0. It will
be of interest to study other similar models with other bos
degrees of freedom such as other versions of the spin
model,1 higher spin variables or harmonic oscillators,
purely electronic models with more than one orbital per si3
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we believe the qualitative physics will be similar. Furthe
more, ‘‘extended’’ dynamic Hubbard models, with more th
on-site interactions, should be interesting to study.

These dynamic Hubbard models map onto the Hubb
model with correlated hopping in the antiadiabatic limitv0
→`, which is known to lead to pairing of holes and supe
conductivity for sufficiently large coupling constantg; the
purpose of this paper was to determine whether pairing
exists for finitev0. Furthermore, in the antiadiabatic lim
pairing is known to occur through kinetic energy lowe
ing, and we examined whether the same physics occurs
finite v0.

From both the exact diagonalization and the quant
Monte Carlo results we concluded that the same physic
the antiadiabatic limit persists for finite, and even small,v0.
Furthermore, the parameter regime where pairing occur
larger for smallv0 than for v0→`. Whenv0 is small the
kinetic energy is much lower than in the antiadiabatic lim
yet the magnitude of kinetic energy lowering upon pairing
similar to that in the antiadiabatic limit.

Thev0→` limit of the model~Hubbard model with cor-
related hopping! is useful because its physics is rather tran
parent and because it allows for much simpler analytic a
numerical treatments. However, strictly speaking the
namic Hubbard model considered here is only a realistic r
resentation of a real system for parameters whereU
22gv0.0, which certainly does not hold in the antiadi
batic limit. Hence it is essential to establish that the prop
ties of the model for smallv0 and forv0→` are similar if
one is to use the results obtained from thev0→` limit to
understand the properties of a real system. We found tha
model can give rise to pairing even in parameter ran
where the fluctuatingU attains only positive values, which
implies that an ‘‘equivalent’’ fixedU in those cases would b
smaller than the lower bound of the range within whichU
fluctuates.

We contrasted the behavior found in the dynamic Hu
bard model with that of an electron-hole symmetric Holste
like model. In the latter model, which we suggest is rep
sentative of a wide range of model Hamiltonians that ha
been considered in the past to describe superconductivity
physics found is qualitatively different: pairing is associat
with lowering of potential energy and increase in kinetic e
ergy, opposite to the behavior found in the dynamic Hubb
model. We suggest that these two models, each repres
tive of an entire class of model Hamiltonians, are two diffe
ent paradigms by which superconductivity can be achieve36

Whether either or both occur in nature is an unsettled qu
tion. The theory of hole superconductivity proposes that o
the paradigm represented by the dynamic Hubbard mo
occurs in real materials.8,9

We also discussed briefly the relation between the
namic Hubbard model considered here and a real hydrog
like atom for 1s electrons in the Hartree approximatio
Clearly such relation should be qualitatively similar for mo
accurate representations of the two-electron wave func
such as the Hylleraas wave function,3 as well as for electrons
in other atomic orbitals. We found that a smaller value of t
ionic chargeZ yields more favorable conditions for pairin
0-15
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for several different reasons:~1! it leads to smaller on-site
repulsionU, ~2! it leads to larger couplingg, which leads to
larger ‘‘dressing’’ of quasiparticles in the normal state and
larger ‘‘undressing,’’ hence larger energy lowering, as qua
particles pair, and~3! it leads to smaller frequency scalev0,
which according to the results of this paper is favorable
pairing asU becomes smaller andg becomes larger. In ad
dition, smallerZ is also favorable because it leads to larg
orbital overlap between atoms, hence larger bare hoppint,
which increases the overall scale of the pairing interact
calculated in this paper.21 It will be interesting to perform
detailed analysis of the connection between this and o
dynamic Hubbard models and electrons in various orbital
real atoms.

The results presented here are only a first step in the
derstanding of this and other dynamic Hubbard models. A
lytically, both strong- and weak-coupling expansions sho
e

p
1

.

e
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be feasible and of interest. Powerful numerical techniq
that have been extensively used for the static Hubbard m
and other related models such as the Holstein model can
should be brought to bear on this class of models. In part
lar, density matrix renormalization group35 and determinanta
Monte Carlo methods should allow for the study of larg
systems as a function of model parameters and hole con
tration to determine the range of parameters where hole p
ing occurs. The dynamical mean-field method combined w
a Monte Carlo ‘‘impurity’’ method should be a very fruitfu
approach to deal with this class of models.37 In particular, it
will be of great interest to understand quantitatively the p
cesses of spectral weight transfer in one- and two-part
Green’s functions that are expected to occur in this clas
models upon transition to the superconducting state,30,31

which are of interest in connection with photoemission38 and
optical experiments39 in superconducting materials.
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