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A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numeri-
cal technigues. The model is one in the classlgiamic Hubbard modelthat describe the relaxation of an
atomic orbital upon double-electron occupancy due to electron-electron interactions. We study the parameter
regime where pairing occurs in this model by exact diagonalization of small clusters. World-line quantum
Monte Carlo simulations support the results of exact diagonalization for larger systems and show that the
kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class,
obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing
even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results
confirm the expected qualitative behavior and show that pairing will occur in a substantially larger parameter
regime than predicted by the approximate low-energy effective Hamiltonian.
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[. INTRODUCTION the electronic motion. In that limit the parameter regime
where pairing occurs can be calculated exactly for a dilute
Dynamic Hubbard models have been recently introducedoncentration of hole carrief8.Furthermore, numerical cal-
as a new class of model Hamiltonians to describe the relaxculations on finite clusters show that the doping regime
ation of atomic orbitals when electrons are added to orbitalsvhere pairing occurs is accurately estimated by BCS
already occupied by other electrois. This process, origi- theory!® For finite frequencyw, some numerical results
nating in the strong on-site repulsion between electrons imave been reportetf? However, it is generally not
the same atomic orbital, is not described by the convention&énown whether finiteoy enhances or reduces the tendency to
Hubbard modef.In dynamic Hubbard models this physics is pairing.
represented either by introducing auxiliary Spiror Furthermore, in the antiadiabatic limit the single carriers
oscillatoP degrees of freedom, or by adding a second elechave large effective mass, and the effective mass is lowered
tronic orbital to the site Hilbert spacayith suitable interac- when carriers paft®?’ The resulting gain in kinetic energy
tion parameters. As a consequence, the on-site Hubbard rdrives superconductivit§® It is not known whether this
pulsion becomes a dynamical variable and can take a rangghysics exists beyond the antiadiabatic limit.
of values rather than a single fixed value as in the static In this paper we study a particular realization of a dy-
(conventional Hubbard model. It has been proposed that thisnamic Hubbard model, with an auxiliary spin degree of free-
physics is ubiquitous to electrons in atoms, molecules, andom, by exact diagonalization of small clusters and a quan-
solidg—®and that it is relevant to the understanding of su-tum Monte Carlo method, to shed light on the properties of
perconductivity in naturé. the model away from the antiadiabatic limit. We believe that
While a vast amount of work has been performed over theimilar qualitative behavior may be found in the entire class
years on the conventional Hubbard motfet! very litle  of dynamic Hubbard models. Briefly, our results show that
work has been done so far on dynamic Hubbard models. It ithe qualitative physics of the antiadiabatic limit persists for
known>®7 that in the strong-coupling antiadiabatic limit finite w, and that the parameter regime where pairing occurs
these models map onto the Hubbard model with correlatedan be substantially larger. Even though our results are for a
hopping, i.e., a Hubbard model where the electronic hoppin@ne-dimensional system, we believe it is likely that the same
amplitude depends on the occupation of the two sites ineccurs in higher dimensions.
volved in the hopping process. This model is known to ex- The model studied here bears some superficial resem-
hibit superconductivity when the Fermi level is close to theblance to electron-boson models that have been extensively
top of the band, both from mean-field calculatidis'®exact  studied in the past such as the Holstein mddélowever, its
diagonalizatiort®~*8and other exact techniqu&&?’Further-  physics is qualitatively different. To illustrate this point we
more, a variety of observable properties have been calculatgstesent some numerical results for an electron-hole symmet-
in this limit such as thermodynami¢$?*tunneling®? optical  ric model with an auxiliary spin degree of freedom coupled
properties pressure dependenteetc. Because supercon- to the electronic site density. This model is expected to be
ductivity occurs in the dilute carrier concentration regime, itsimilar to the Holstein model and exhibits qualitatively dif-
is believed that these BCS mean-field calculations arderent physics to the dynamic Hubbard model.
reliable* The paper is organized as follows. Section Il defines the
The antiadiabatic limit of these models occurs when themodel and discusses its properties in the antiadiabatic limit.
frequency of the associated boson degree of freedgynis  In Sec. Il we present results for the effective interaction and
much larger than the effective hopping amplitude for thekinetic energy from diagonalization of small clusters, and
electrons(small-polaron reginté), where the boson follows Sec. IV discusses results of world-line quantum Monte Carlo
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simulations. In Sec. V we present and discuss results for the 1 g
electron-hole symmetric Holstein-like model. Section VI dis- u?(0)= —( 1+ —) , (68
cusses the relation between the dynamic Hubbard model 2 Vi+g?
studied here for a site and a real atom. We conclude in Sec.
VII with a summary of our results and a discussion of the ) 1 g
many open questions in this area. vi(0)= 5 1- itd?) (6b)
Il. DYNAMIC HUBBARD MODEL WITH SPIN-1 /2 1
DEGREE OF FREEDOM =
| | u(0)v(0) N (60)
The essence of dynamic Hubbard models is electron-hole
symmetry breaking at the locébne-site level, so that the u(0)
dressing of a hole is larger than the dressing of an eleétron. ——=g—1+¢? (6d)
This physics originates in the dynamic lowering of the on- v(0)
site repulsionU when a second electron is added to angng
atomic orbital, due to rearrangement of the first electron, and
is a ubiquitous phenomenon in atoAiEhere are a variety of u(l)=u(2)=v(0), (7a)
dynamic Hubbard models that can be constructed with an
auxiliary spin-1/2 degree of freedohiHere we consider the v(1)=v(2)=u(0). (7b)
site Hamiltonianfor electrons
Hence the ground-state energy is independent of the elec-
H = w0+ goniz+[U—29oniz]nmnu . (la  tronic site occupation in this model. The site eigenfunctions

depend org, but not onw,, and are the same for site occu-
Hence, for zero and one electrofme and two holgsat the  pationn=1 andn=2, and different fon=0. For largeg the
site, the site Hamiltonian is ground-state wave functions are almost eigenstates,of
with o,~—1 for one-hole and two-hole occupation, very
different from the one for zero hole occupation for which
o,~ +1, while for smallg the ground-state wave function is
almost an eigenstate af, (o4~ —1) and similar for the
different hole occupations. The site eigenvalues depend on

Hi(n=2)= w0y~ gwoo. (19  bothgandw. .
The on-site repulsion between two holés two elec-
Equation(1a) can be written in hole representation as trong at the same site depends on the state of the spin degree
_ _ _ of freedom and can range betwedh+2gw, and U
Hi=wooy+gwo[ 2(nj; +n;)) — 1]oy,+[U—2gweo,Ini Ny —2gw,. The effective on-site repulsion, however, since the
2 ground-state energy, E(p), is independent of occupation, is

simply U. Note that our notation here is different from that of
Ref. 2, wherdJ denoted thdare on-site repulsion; here, the
bare on-site repulsion, which is the on-site repulsion if the
background degree of freedom is not allowed to relax upon

Hi(nj<2) = wooy+ gwoor, (1b)

and for two electrongzero holeg at the site it is(spin part
only)

(omitting a chemical potential tepmand the lattice Hamil-
tonian is

HZE Hi—tz [cl,Cii10+H.C] (3)  double occupancy, is
i I,o
in either electron or hole representation. The electron-hole U —U4+ 2g%wg ®)
transformation ! —(—1)'c;, . bare J1+g?

or Up,e~U+ 29w for largeg. Finally, the overlap matrix

_ o ~elements between the ground-state wave functions for the
We will use the Hamiltonian in the hole representation,yvarious hole occupations are

Eq.(2). The site eigenstates when there mt®les at the site

A. Site Hamiltonian

are, in terms of the spin-1/2, eigenstate$+), |—), 1
0/1)=2u(0)v(0)= =S, (93
[m=u(n)|+)+v(n)[-), (48 ol ’ Ji+g?
[m=v(m+)=u(m]|-), (4b) (112)=1. (9b)

with eigenvaluegexcluding thes-independent term ii;) B. Effective low-energy Hamiltonian

e(n)=—e(_)=—w0\/mz (5) _The e_ffecti\_/e h_opping a_\mplitude for a hole between
neighboring sites if the spin degree of freedom makes a
and ground-state to ground-statdiagona) transition is
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The condition, Eq(15), indicates that the small-polaron
(104 regime will occur whereither w is largeor the couplingg
is large. However, the condition, E¢L5), is not sufficient

if there are no other holes in the two sites involved in thefor the effective Hamiltonian, Eq11) or (12), to be accurate

hopping process. Instead, if there are either one or two othdP the presence of more.than one carrier._ Virtual transitions
holes of opposite spins, the hopping amplitudes are of a hole to a nearest-neighbor site occupied by another hole
' yield a contribution to the effective interaction between holes

t
t,=[(0|1)|%t=S*t=

t,=[(0|1)(1]2)|=St, (10b) with an amplitude of the form
to=[(1[2)[’t=t, (109 (1[0)[? _ ¢ 1
respectively. The low-energy effective Hamiltonian for holes ~ €(0)+€(2)—2e(1)+U  1+g? U+2woV1+g
in the small-polaron regime is then 17
from “vertical” transitions, which can be much larger than
Hofr=— >, 7 (cl Ciiq ot H.c)+UY, NNy, the second-order contribution from the effective Hamil-
Lo ’ [ (113 tonian, Eq.(11), that describes only diagonal transitions:
tF=t[S+S(1=S)(N; _,+Nj o) +(1=9)%n; _,n; _,]. [(1]0))" __ 1 . (18)
' ’ ’ ' (11 €(0)+e€(2)—2€(1)+U (1+gHU

In the regime of low hole concentration the hopping pro-These contributions from vertical transitions can be ne-
cesses where more than two holes are in the sites involveglected if Eq.(17) is smaller than Eq(18), which yields the
can be neglected, and the effective Hamiltonian is the Hubeondition

bard model with correlated hoppirtd:

(g°—1)
woV1+g?>U 5 (193
Heff=—2 [to+ At o+ Nigq )]
b or, for largeg,
x(cl cii1prH.C)HUD nipny, (12 U
( io“vi+1 ) EI it ( a) wo>79- (lgb)
At=t;—t,=tS(1-S). (I12b  only whenboth conditions, Eqs(15) and(19), hold can the

The binding energy of the polaron is obtained from the dif-effective low-energy Hamiltonian, Eq11) or (12), be ex-
ference ofe(0) and the expectation value &, if the spin pected to be accurate. In particular, for laggeand smallwg

does not adjust to the presence of a carrier and yields Eq. (15) may hold and Eq(19) may not. In that case, the
effective Hamiltonian, Eq(11), can be expected tonderes-

2102 timatethe tendency to pairing due to its complete neglect of
€= 5 (13 the site excited states. The antiadiabatic limit where the ef-
Vvitg fective Hamiltonian, Eq(11), is valid hence occurs fog

The criterion for small-polaron formation is that the energy— for fixed g but not forg—ce for fixed w,. As g in-
of the polaron be smaller than that of a carrier that move&§reases itis seen from the condition, EfP), that the antia-

Z(t_tz)<€p, (14 C. Pairing condition and effective mass in antiadiabatic limit
with zthe number of nearest neighbors to a site @ in one The condition on the parameters of the Hamiltonian, Eq.
dimension. Equation(14) yields (12), to yield pairing of two holes in a full band i8n one

and two dimensions(Ref. 29
2w

t<70 1+g° (15 At [ U
—>\/1+=—-1, (20
t; Dp

as the condition for polaron formation. For the hopping of a
single polaron, the antiadiabatic limit is valid if the polaron with D,,=2zt, the single-carrier renormalized bandwidth.
hopping amplitudet, is smaller than the spacing between This is also the condition for superconductivity within BCS
site energy levels; hence, theory in the dilute limit in any dimensiofi. Using Egs.
(12b) and (109 it translates into
t<wo(1+g>)°%? (16)

which is always satisfied if the condition, E@15), is £$gz, 21)

satisfied. Dy
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which shows that fog>1 pairing will occur even if the two holes in a cluster from the usual formula
on-site repulsion is larger than the effective bandwidth.

Equation(21) can also be written as Uet=2Eq(1) —Eo(0) —Eo(2), (29
) with Eq(n;) the ground-state energy for, holes; Ug4<0
Eg g 22) signals a tendency to pairing and superconductivity. For the
D 1+92’ N=2 cluster the effective interaction in the antiadiabatic
limit is
with D=2zt the unrenormalized bandwidth.
The polaron hopping amplitude increases as the hole fill- U uU\?2 5
ing of the band increases, according to Uetr=5 —\ | 7| T4ti—2t, (303
t(np) =to+ NRAL, (23) ty=t,+At=tS, (30b

with ny, the average number of holes per site(i§,<2),

and correspondingly the bandwidth increases, and the condition for pairingUe=0) is
U g2

At U_
1+nhg , (24) 2t 1+92’

D(ny) =Dy, (31)

from D(n,=0)=D}, to D(n,=2)=D. The polaron effective SO that in the antiadiabatic limit pairing cannot occur tbr
mass correspondingly decreases as the number of holes if-2t for any value of the coupling parametgr Throughout

creases, this and the following section we will use units so that
=1. For theN=4 system and in fact for anji=4, the
#2 condition for pairing in the antiadiabatic limit is
m*(np)= ~———, (25
2t(nh)a U gz
: . . —<—, (32
with a the lattice spacing. 4 1492

When two holes bind in a pair, the pair hopping amplitude

t, in the dilute hole concentration regime is found to beS°® that pairing will not occur fot) >4 for anyg in the limit

always larger than 1/2 the single-particle hopping amplitude®o—

tp>1,/2; (26) A. Results for effective interaction

i.e., the pair effective mass is smaller than the sum of the Figure 1 shows the effective interaction for the=4
effective masses of its constitueRtThis is opposite to what  ¢luster as function of coupling constagytfor various values
happens in other models such as the attractive Hubbar@f the on-site repulsiotJ and two values of the frequency
model. Expressions for the pair mobility are given in Refs. ~ ©o: together with the results in the antiadiabatic limit. Note
26 and 27. The pair mobility is defined in terms of the energythat for smallwg [Fig. 1(@)] the effective interaction is sub-

dispersion relation for a pair of center-of-mass moment,im stantially more attractive than in the antiadiabatic limit. As
wq increasegFig. 1(b)] the results approach those of the

E(q)= E0+tpq2, (27) antiadiabatic limit, as expected. The behaviothgf; versus
s nonmonotonic particularly for small values 0f
In Fig. 2 we show the dependence of the effective inter-
action onwg for theN=4 cluster for fixedJ =4 and various
values ofg (a) and for fixedg for various values ofJ (b).
_ The limiting values forwy—o are also shown(dashed
(Tg)=—4ty, (28a ; o o TaSTE
lines). ForU =4 there is no pairing in the antiadiabatic limit,
and when there is pairing the kinetic energy per pair is while Fig. 2a) shows that for finite frequency pairing will
occur forg=2. Similarly, Fig. Zb) shows that fog= 3 (cor-
(Tp)=—8t, (28b) responding to an effective mass enhancemeitm=1
for a one-dimensional chain. +g?=10) pairing will occur up to at leasl =6 at finite w,
while in the antiadiabatic limitJ =3.6 is the maximum on-
site repulsion that allows pairing fagy=3 according to Eq.
(32). Note that for largerg the antiadiabatic limit is ap-
The Hamiltonian of interest has eight states per site, sproached for largekw,, in accordance with the discussion
that clusters of up to eight sites could be studied with currenfollowing Eq. (19).
computer capabilities. In this initial study we restrict our- Even a cluster as small &= 2 shows behavior represen-
selves to two and four sites only. The results are qualitativelyative of larger clusters and dfve believe the thermody-
similar and we expect similar qualitative results for largernamic limit. The reader can easily verify that the effective
clusters, although quantititative differences may be expectethteraction for theN=2 cluster obtained by exact diagonal-
for weak coupling. We compute the effective interaction forization closely resembles the behavior of the four-site cluster

and can be obtained by calculating the London penetratioﬂ I
depth in the dilute limit. The kinetic energy per two holes in
the dilute limit when there is no pairing is

Ill. EXACT DIAGONALIZATION RESULTS
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FIG. 1. Effective interactiord¢; for N=4 cluster vs coupling 9

constantg and various values of the on-site repulsionfor (a) FIG. 3. Phase diagram fae) N=2 and(b) N=4 clusters. In
wo=0.5 and(b) wy=2 (solid line. The dashed lines and dotted the region labeled NON-SQJ.¢>0 for all values ofwy; in the
lines give the results in the— oo limit for the N=4 cluster and  regjon labeled SC, a range of, exists whereU.(<0. Below the

for the infinite chain, respectively. For fixeyj increasingU corre-  solid line, Uo;<0 in the antiadiabatic limitog— .
sponds to increasing value bf,¢.
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shown in Figs. 1 and 2. In the antiadiabatic limit the effective
interaction as function of is monotononically decreasing
with g if the condition for pairing, Eq(31) or (32), is not
satisfied, while if it is satisified it has @egative minimum

for a finite g that decreases d$ decreases below the limits
given by Egs(31) and(32).

For an infinite chain, the pair binding energy can be cal-
culated exactly in the antiadiabatic limit The appendix of
Ref. 27 gives an analytic expression for the pair binding
energye, in one dimension. The quantity.¢; defined by
Eq. (29 calculated here should go tee, as the cluster size
increases. Figure 1 also shows results-far;, (dotted lineg,
which go to zero when the parameters satisfy the equality in
condition, Eq.(32). The difference between the dotted and
dashed lines gives the magnitude of finite size effects for the
N=4 cluster. It can be seen that the qualitative behavior of
— €, for the infinite chain andJ ¢ for the four-site chain is
the same. The effect of finite size is to give a somewhat
larger attraction; however, the condition for pair formation
(Ue$s<<0) is the same for th&l=4 cluster and the infinite
chain in the antiadiabatic limitthe dashed and dotted lines
in Fig. 1 go to zero at the same value gjf.

In Fig. 3 we show the phase diagrams for the-2 and
N=4 clusters indicating the region where pairing will occur
for some finite frequency in this model. The solid lines show
the results in the antiadiabatic limit, Eq®1) and (32). It
can be seen that the region of parameter space where pairing
occurs is substantially enlarged for finite frequency. Figure 4
shows the optimal frequency for pairing at the phase bound-
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then diverges, in accordance with the fact that the phase .05 ELius < T A
boundary lines in Fig. 3 merge with the ones in the antiadia- - 2 4 6 8
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batic limit asg—0. It should also be noted that for points
away from the phase boundary the optimal frequency that

gives maximum attraction can be considerably smaller than 20y R
those shown in Fig. {see, e.g., Fig.@) for U=4g=4 or - (©) J
Fig. 2(b) for g=3,U=2 where the optimal frequency is, 15 —]
~0.5]. & - 3
X C .

o e 101 —]

B. Results for kinetic energy l\? - :

The condensation energy in this model is known to be :n 5 i~
provided by lowering of kinetic energy in the antiadiabatic A C \U-0.8 3
limit. Exact expressions for the pair kinetic energy for two C T, .1 [ 3
. . . . . . o 1111 1111 L1l L1111

bound holes in a one-dimensional chain are given in Ref. 27. 0 5 4 5 g

Figure 5a) shows exact results for the pair kinetic energy 9

versus coupling constagtfor the effective Hamiltonian, Eq.

(12), for various values ofJ. Pairing occurs for couplings FIG. 5. Results for kinetic energy in the infinite chain in the

obeying the condition, Eq32), which forU=0.8, 2, and 3.2  antiadiabatic limit.(a) Kinetic energy of two unbound holésolid

corresponds t@=0.5, 1, and 2, respectively. Fay larger  line) and of a hole paifdashed linesvs g for various values ob.

than those values the kinetic energy is given by the dasheffS 9 decreases, the dashed line joins the solid (aindicated by

line, lower than the solid line which would be the kinetic e symbolswhen pairs unbind, aj=g. . Hereg. is 0.5, 1, and 2

energy in the absence of pairing. Note that even though th{e" Y=0.8. 2, and 3.2, respectivelfh) Pair binding energysolid

kinetic energy of a pair is lower than that of the unbound“ne.s) and kmet'? energy Iowenngdashe_q lingsfor the |nf|n|_te

holes, it still decreasesn magnitude as the couping in- cha!n vVsg for vanousU.At e, bo.th guantities go to zer(c) Ratio

creases. Instead, the kinetic enetgwyering, i.e., the differ- of kinetic energy lowering to pair binding energy gs

ence between the kinetic energy of the pair and of the un-. _

bound holes, is nonmonotonic, peaking at an intermedjate either becaustl increases og decreases, bokl. and the

similarly to the pair binding energy given byU¢;. Figure Kinetic energy lowering go to zero. Howevedey; ap-

5(b) shows the kinetic energy lowering per pair, pr_oaches Zero quadratheﬂﬁ/whne the kmegc energy low-
ering approaches zero linearly, hence their ratio diverges as

AT=(T,)—(Ty), (33) the pair binding energy goes to zero. -

Note that the kinetic energy lowering upon pairing is al-
and U ¢ for the infinite chain, which is the negative of the ways lower than— €, . This indicates that the potential en-
pair binding energy, calculated in Ref. 27. It can be seen ergy change is positive; that is, there is a potential energy
that the two quantities follow similar behavior with coupling. cost upon pairing, given by
In fact, their ratio is essentially constant as functiorgdbr
largeg, as shown in Fig. &). As the pair binding decreases, AUpo=(Te)—(Tp)) —€p, (34
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FIG. 6. Comparison of results for kinetic energyMdf4 chain ) w; )
and infinite chain in the antiadiabatic limit. (a), the kinetic energy
of two holes in theN=4 cluster(dash-dotted lingjoins the infinite 5 TTTT T T T TTTT
chain kinetic energy of the bound pair for largédashed ling and l l | (c)
the kinetic energy of unbound holes for smgll(solid line). (b) 4
shows that finite-size effects similarly enhance the magnitude of -
pair binding energy and of kinetic energy lowering. § 3 - =
A =
»
and the pair binding energy is smaller than would be ex- 'U 2 =
pected from the magnitude of kinetic energy lowering. The A 3
potential energy cost arises from the increased effect of the 'g 1 —
on-site repulsion between members of a pair since the pair 3

wave function has higher probability for site double occu-
pancy.

In the infinite chain there is a sharp phase transition be-
tween the state where the pair is bound and where it is un- FIG. 7. Difference between kinetic energy of a pair and kinetic
bound, indicated by the points in Fig(eh where the dashed energy of two holes in the four-site chaia vs g for fixed w, and
lines join the solid line. In the finite chain of course there is(b) vs w, for fixed g. The dashed and dotted lines (i@ give the
no sharp transition but rather a smooth crossover. Fig{@e 6 results in thewy— limit for the N=4 cluster and the infinite
shows results for the kinetic energy for a pair of holes in thechain, respectively; the dashed lines(b) give the results in the
four-site chain in the antiadiabatic limit compared to the re-wo—< limit for the N=4 cluster.(c) Ratio of kinetic energy low-
sults for the infinite chain. As the coupling constant increase&ring to pair binding energy in four-site chain gsfor U=2 and
the four-site results cross over from the kinetic energy ofvarious values ofo. The dashed line gives the results tog=.
unbound holes to the kinetic energy of the paired holesNote that the kinetic energy lowering upon pairing for small fre-
Wheng goes to zero the kinetic energy of two holes in theduency is considerably larger for finitey than in thewy= limit.
four-site chain is slightly higher than the one for two un-
bound holes because of the effect of the on-site repuldion zero; this would also occur in the infinite chain for finite hole
this is of course a finite-size effect, and for larger clustersdensity. We conclude from these results that the four-site
and a fixed number of holes it will become negligible in the cluster is appropriate to learn about the qualitative behavior
regime where the holes are not bound. Figuil® 6ompares of the kinetic energy for the infinite chain just as well as it is
the kinetic energy lowering and the pair binding energy forfor the pair binding energy.
the four-site chain in the antiadiabatic limit and the infinite Hence we can now learn about the effect of finite fre-
chain for one case; it can be seen that both quantities followuency on kinetic energy lowering by studying the four-site
similar behavior, and both are larger in magnitude than forchain. Figure 7a) shows results for a finite small frequency,
the infinite chain. Note that in the finite chain kinetic energy w,= 0.5, compared to the antiadiabatic linaiy=. Just as
lowering goes to zero for a smallgithan whereJ .¢; goesto  for the effective interactioiFig. 1(a)], the kinetic energy

0 |||||||||||||||||||‘
0 2 4 6 8

q
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0.0

T T T frequencies, as well as by transfer of spectral weight in the

E'g=4 ]
05 EFE———= — single-particle spectral function from high to low
T Bant1ad. 3 frequencies! The one and two-particle spectral functions for
S (@) we=0.5 4 the model, Eq(3), will be discussed in a separate paper.
- - -
X- -1.5 E_ q=4’ _ =4
= 5.0 E -7 3 IV. QUANTUM MONTE CARLO SIMULATIONS
v -2.0 = —
s BT 938-77 With quantum Monte CarldQMC) methods one can
E - /I/ ___Flf‘;jfrlp"”'g study much larger systems than with exact diagonalization.
BT s s We use the basis of, eigenstates for the spin degrees of
U freedom, so that at every time slicéhere are classical spins
oi(i) at every lattice sitg¢. The partition function is
O-O TTTT | TTTT | TTTT LI TTT J
r q=4 (b) ‘A)_(—) 2 7 Z:Tr e,ﬁH
- F g=3 _ — — —antiad. o
v -0.5 = —— - q_4—_ L L
o - -7 =Tr[] e M=Tr[] > e 4ME (35
v 1.0 :,_ - - - E-;_,: =1 =1 oj(i)=+/-1
=7 Z sinale oart. 1 with A7= /L, L the number of time slices. There are two
T 2 qalrp " basic approaches to quantum Monte Carlo simulations,
-15 — P — ; ) . 3
- | e determinantaf and world-line algorithmss
0 2 4 6 8
u A. Determinantal Monte Carlo algorithm
FIG. 8. Single particlesolid line9 and pair(dashed lineski- For the determinantal algorithm one separates kinetic and

netic energy vdJ for g=3 andg=4 for (a) wy=0.5 and(b) w, potential energy terms in the Hamiltonian into the product of
=2. The results fow,— are also shown. Both the single-particle two exponentials and decouples the interaction term by a
and the pair kinetic energies are substantially lower for smgll  discrete Hubbard-Stratonovich transformation introducing
than for wp=cc. The transition points wherd; changes sign for auxiliary Ising variables which we calk;(i) here3*

g=3 andg=4 are, respectively) =3.6 andU = 3.77 for wy=»,

= = = = = 4 1
u —66951 andU=10.1 for wg=2, andU=5.57 andU=7.77 for e AU (N = 2 ex;{)\(a]-(i))u]-(i)(nn—njl)
wo=0.5. i ==+/-1
lowering can be substantially larger for finite frequency than AU (i)
for infinite frequency, and the largest kinetic energy lowering - T’(n” + njl)) . (369
occurs for largerg for small frequency. Similarly Fig. (B)
shows kinetic energy lowering as function of frequency for cosh)\(aj(i))=e“ui(i), (36b)

fixed g. Similarly as the corresponding results for the effec-
tive interaction, Fig. &), the kinetic energy lowering is larg- iy — VY — 1] — (i
est in magnitude at a fairly low frequency and is consider- Uj(1)=U(o;(1)=U=2gweo(i). (369
ably larger than in the antiadiabatic limit. The ratio of kinetic In contrast to the ordinary Hubbard model, the paramgter
energy lowering to effective interaction for finite frequencieshere is not constant but depends on the lecahriable. For
behaves similarly as in the antiadiabatic limit; this is shownthe transformation, E¢(36), to be valid it is necessary that
for one case in Fig. (). U;(i) be positive for all values of (i), i.e.,U=2gw,. Next

In addition to kinetic energy lowering it is of interest to one takes the trace over fermion degrees of freedom analyti-
consider the effect of finitay, on kinetic energy itself. Fig- cally to obtain the fermion determinant, and the Monte Carlo
ure 8 shows results for single-hole and pair kinetic energy fosimulation proceeds by sampling the Ising spin degrees of
finite wy as function of the on-site repulsidd, compared freedomo andu at each space-time site. Even though nega-
with the limiting casewo==. The difference between the tive weights may occur in this formulation, we do not expect
dashed and solid lines is the kinetic energy lowering. It carthat they will be very significant in the dilute regime of in-
be seen that relatively speaking the kinetic energy loweringerest for this model.
is largest in the antiadiabatic limit, even though it is larger in ~ The path integral formulation provided by Ed85) and
magnitude for finitew. (36) makes the nature of this dynamic Hubbard model par-

In summary, we have seen that the effect of finite fre-ticularly apparent. The Hubbatd here has space-time fluc-
quency is to enhance the pair binding energy and the kinetituations, with possible valued;(i)=U—2gw, and U;(i)
energy lowering found in the antiadiabatic limit. From these=U + 2gw,. This fluctuatingU corresponds to the different
results we conclude that the pair condensation energy in thigalues that the on-site Coulomb repulsion between two elec-
dynamic Hubbard model also originates in kinetic energytrons will take depending on the relative state of these elec-
lowering, i.e., “undressing.” As implied by the conductivity trons and embodies the physics of intra-atomic electronic
sum rule?®* Jowering of kinetic energy should be accompa- correlation(at least for nondegenerate atomic orbitals a
nied by transfer of optical spectral weight from high to low more realistic dynamic Hubbard model the Hubb&kdvill
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. . L : + - * * *
determines the fluctuations d, wg in this case, is a one- . _ * TR,
electron energy scale that reflects the cost in one-electrox + - * * *
energy as the electrons sample the various atomic states : I - . :*P"***“”*‘fp*******:
reduce the magnitude of their intra-atomic Coulomb repul-, - . A Db
sion. * 4 - * * *
The determinantal algorithm can be used for the lattice* + - * s A ey L R
problem as well as for impurity problems and as part of the] 7 ; ; :+p++++++++++p++++_++:
dynamical mean-field theory solution of the model. This will , - * * *
be deferred to future work. Here we will instead use thex + - * *+pttttttttttpttttbbbr
world-line QMC algorithm. * o+ - * * *
* 4+ - * *4+pH+++tHt+HpHHt b+
* 4 - * * *
B. World-line Monte Carlo algorithm o - * AR
* 4 - * * *
The world-line Monte Carlo algorithm can be used if the = + - * *pHHE bbbt p bbb
system is one dimensional so that no negative-weight prob* * - * * *
. - . . . * + - * R = S e
lems arise. The partition function is written as .+ _ . . .
L * 4+ - * R R R R
% 4 - * * *
Z=:TrII e_ATzﬁﬂe_ATH%ne_ATH%n, (37) * + - * *ptttbbbbbptt bbb
i=1 * 4 - * * *
* 4+ - * LR R A R R
where the kinetic energy part of the Hamiltonian was decou* + - * * *
. . . . % - * * *
pled in terms involving even and odd sublattices. The trace, } ; N L AL A
in Eq.(37) is performed by introducing intermediate states in
the spino, representation and the fermion occupation num-
ber representation in the usual way. In addition to moving:****************:***: e
fermion world lines and flipping individuat spins we also o+ % bbb bbb bbb A Db
use composite moves consisting in moving a fermion worlds -+ * *
line and flipping the spins at the sites where the fermion* -+ * *Hbbbb bbb bbb ptp b x
. . . * - 4+ * %* *
occupation is ch.angllng. These moves are necessary {, D SR pop
achieve equilibration in the strong-coupling regime. * -+ * > *
Figure 9 shows typical world-line configurations for two * += * R aanay ) A
holes and the associated boson field in a strong-couplin{® += > * *
: . * -+ * *4+++++++++++++Hppttttk
regime, withg=3 and wy=2. We start the holes far from PN * *
each other, in the first snapshot sho(an after several hun- = - o+ % * bR D DR
dred sweeps they are still far apart and the world lines ar¢ -+ > * *
. . . * - * % - *
rather straight, corresponding to large hole effective mass, o DARAARAMARARRAAN AL Al
After several more hundred sweeps the holes bind in a bipo« # » U A
laron, as seen in Fig.(B). The bipolaron has a smaller ef- * # * * *
fective mass, as indicated by the larger transverse motion ¢, #+ ; THHHERRRE e b
the world lines in the tl_mellke dlrec_t|on. These pictures , o 4 Kb bbbt bbb DD
clearly show that upon pairing the carriers become more mo= -+ * *
b||e in th|s modeL : -+ : :+++++++++++++++++pn+:
. . . . . . -t
Thg rglatlon between pair formatl_on and increase in pair, N S bbb p S
mobility is shown even more clearly in Fig. 10. Figure(@0  « . * *
shows the kinetic energy of a pair as a function of Monte* -+ *httttttt bbbttt b tprpts
Carlo sweeps. Each Monte Carlo “step” in this figure gives * -+ 7 ¥ *
* # L e R S S R RS R PR

an average over 30 consecutive sweeps. It can be seen that
after approximately 100 steps the kinetic energy becomes

'O,WGf- At the same time, as Fig. @ shows, t.he average . FIG. 9. Snapshots of Monte Carlo configurations forNen 20
distance between the holes decreases dramatically as the pgig |attice withL =40 time slices.A7=0.25, g=3, and wy=2.

is formed. o _ __The left-side panel show the hole world lines; the right-hand panel
When the number of holes is increased in the system it iygicates the bosofspin) configuration. At the sites where the hole

found in the BCS solution in the antiadiabatic limit that the occupation is ](2)' the boson Configuration is denoted py(b) if
tendency to pairing decreases and the coherence length of th boson state is-), which is the low-energy configuration, and
pairs increases until they eventually dissociate at a criticaby nif it is |+). In (), after a few hundred sweeps, the holes are
hole concentration. Similar behavior is found in exact diago-separate and heavy; ib), after several more hundred sweeps, the
nalization of finite systems in the antiadiabatic limit. We find holes are bound and lightéworld lines fluctuate more in time
here that similar behavior is seen qualitatively in Montedirection.
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_1 O [TTrrT | TT 11 | TT 11 | TT T 1] EREE RS RS R EEEE RS L SR LRSS EEEEE RS RS E L EEREE LSRR EEE]
= (@)Kinetic * #o- o+ # * * *
L5 [ enerqy ] * # - + # * Fdt+++ b+ p+pr++++b
-1. —] * # - + # * * *
N 7 * # - + # * *ttt4++tb++prprtt+tbh
I; -2.0 r * = = + # *x * *
T r * +- - + # * *+++++++pp+p+p+++++b+*
r % - - + # * * *
-2.5 — 1 * -+ - + # * *_dt++++pp+ptpttt++bt
E . * - =+ # *x * *
3.0 B | | | ] * -+ # # * *4+++++pptb++btb
. 1111 1111 1111 1111 % -+ # # * * %
0 50 100 150 200 * -+ # -+ * * 444+ +++ppHHbH+HtppHi*
MC time * —4 4= — % * *
5.0 * -+ + = -+ * *4++++++ppHn+pHH+pp++*
. :|||||||||||||||||||: * - + - - * * *
o ] * -+ +- -+ * * 4ttt +++ppr+pptH+pptt*
12.5 (b)hole-hole —

E distance 3 * -+ # * *
10.0 3 * -+ # #o* *h++t+Hpp—+btttb+k
T E 7 * -+ # # * * *
Q/:f 7.5 B 7 * -+ 4+ —+ % *+++++H+ppt+tppttpptt*
] * -+ - =+ % * *
5.0 — * -+ # -+ * *+++++++pp+++b++pp++*
3 * # # -+ * * *
2.5 = * # # -+ x 4ttt tttbtt++btttpp++*
- * # # -+ * * *
0.0 * -+ # -+ * 4ttt HtppHtttbttpp b

0 50 100 150 200

MC time
FIG. 10. Kinetic energy of two hole@) and hole-hole diStanCe  suissssssassssx sz ok ko Rk ok ok ok Rk
(b) as function of “Monte Carlo time.” The unit of time is 30 = # -+ # * * *
Monte Carlo sweepN=20, L=40, A7=0.25,g=3, andwy=1. * # -+ # * *++++b+pp++++++++++b+:
. . * - * *

After about 100 steps the hole-hole distance decreases drastically a, ﬁ +‘: ﬁ . b DD+
the holes become bourtt), and at the same time the kinetic energy « # 4o _ x * *
becomes lowe(a). * — PR 4+ Hpppp -+ttt tbtnpt*
* R . -+ * * *
. . . . # -+ - +* *++++b+pp+++++++++ptp*
Carlo simulations for finite frequency. As an example, Fig. = # —+ - % * %
11 shows snapshots of configurations for 6 holes in a 20-site* ot - +* *++++pppp+++++tttipip*
. . _ . * ot - +%* * *
system, i.e., _hole concentr_atldnh_—0.15. The system is | — N M+ DDPP DD
started in a disordered configuration, after several thousanc ——t # * *
sweeps it could be seen in snapshots such as Fig) ttiat * # -+ -k *4+++btppH+tbbtppt
. . . . - * # -+ +- * * *
three well-defined pairs are formed; however, continuing the %~/ = DDA
run, configurations like Fig. 1b) appear, where pairs over- »  _4_ + # % * *
lap and the distance between members of a fiar, the L #* *4+4+p+pp+pH+tbttbitr
coherence lengihincreases. Continuing this run the pairs * - *- * e * *
. . . * - -+ + +- * *+4+p+ppHp++++++Hnp+
dissociate completely, later they form again. These snapshot. _ _. + - * *
suggest that for these parameters the system is close to thx - # + +o % *4+p+httpttttbttnp+s
pair unbinding transitiorit is not clear on which side The Foots ot #ox * *
L . . *  t-- o+ # * *++ppp++pt+t+t+ttttbtx
dependence of critical hole concentration on frequangys * 4o 4+ # N *
unknown and an interesting subject for further study. The* +-- + # o *++pPD++D++++++ttibtx

fact that the effective attraction increases for finite frequency
in the exact diagonalization study suggests that the critical FIG. 11. Snapshots for 6 holes in a 20-site chair=40, A7
hole concentration may be larger for finite frequency than in=0.25,g=3, andwy=2. In the first picturga) three well-defined
the wg—e limit. pairs are seen; iifb) the pairs overlap and the distance between
To detect a superconducting transition in Monte Carlomembers of a paif‘coherence lengthj increases.
simulations it is considerably simpler to use a grand canoni-
cal ensemble formulation as in the determinantal Montdor the static(conventional Hubbard model §=0). For the
Carlo methods; in world-line Monte Carlo simulations, mea-static Hubbard model there is a small dependence of kinetic
surement of pairing correlation functions would involve energy onU, which is due to finite-size effects. Instead, for
breaking world lines which leads to large fluctatididie  the dynamic Hubbard model there is a large increase in ki-
can, however, get some information on pair binding with thenetic energy adJ increases from small values, due to the
world-line method by consideration of the kinetic energy. Asprogressive unbinding of the pair. For sufficiently lakdi¢he
seen in Fig. 8, the kinetic energy increases gradually in th@air unbinds and the dependence of kinetic energyJos
four-site system as the on-site repulsion increases. Figure h&#eak as in the static Hubbbard model. For e 12 cases a
shows the behavior of kinetic energy from Monte Carlofairly sharp kink in the kinetic energy indicates the transition
simulations on lattices of siz&d=8 andN=12, as well as point.
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| | | FIG. 13. (a) On-site and(b) nearest-neighbor density-density
-3.4 (c) g=0 correlations for dynamic and static Hubbard modis 12 sites.
N=12
A -36 — — N=8 trons on the same site, and after some sweeps the electrons
fad p
v separate. Furthermore, in contrast to.Fig. 9 the q_uasipgrticle
-3.8 world lines show much larger fluctations in the time direc-
-4.0 tion, indicating a smaller electron effective mass. The con-
) trast between Figs. 14 and 9 clearly displays the intrinsic
-4.2 electron-hole asymmetry of this dynamic Hubbard model.
0 2 4 6 8 The kinetic energy in this case shows almost no dependence
aqy p
U on U, as expected, in contrast to the case shown in Fig. 12.
FIG. 12. Kinetic energy vs on-site repulsids from Monte In summary, the results of these Monte Carlo simulations
Carlo simulations of dynamic Hubbard modal, (b), and of static ~ SUPPOrt the picture obtaln(?d from exact d|ag_0na||za“0n 'Of
(conventional Hubbard model ¢=0) (c). small systems: the dynamic Hubbard model is an effective

way to obtain hole pairing driven by kinetic energy lowering

Similarly the existence of pairing can be seen in density4in repulsive fermion systems.
density correlation functions. Figures(dBand 13b) show
on-site anq nearest-neighbor hole-hole den;ity correlatiqns V. COMPARISON WITH RESULTS
for the static Hubbard mlode! and the dynamlc cases of Fig. FOR A HOLSTEIN-LIKE MODEL
12. The on-site correlation is much larger in the dynamic
case, and approaches the static case values only forlarge  The conventional electron-boson models studied in the
The nearest-neighbor correlation in the dynamic case ipast involve coupling of a boson degree of freedom to the
much larger than in the static case and first increasead as electronic charge density rather than to the double occu-
increases, due to the rapid decrease of the on-site correlatiopancy. Even though it does not necessarily follow, in their
Note also that for larg&) the nearest-neighbor correlation is simplest form these models are electron-hole symmetric. We
still considerably larger than in the static model, indicatingconsider here one such model with site Hamiltonian
that when the on-site double occupation is essentially sup-

pressed, retardation gives rise to an effective nearest- Hi= wooLJr gwooiz[niﬁ- ni;—1]+Unjn;; (38
neighbor attraction. This can be easily understood from ] . . o

Electrons behave very different from holes in this model.to the Holstein model? where the spin-1/2 degree of free-
In Fig. 14 we show snapshots of hole world-line configura-dom is replaced by a harmonic oscillator. Diagonalization of
tions when the band is almost full with holes, i.e., aimostthe site Hamiltonian yields eigenvalues
empty with electrons. This is the mirror image of the case o o
shown in Fig. 9. Here we start the simulation with two elec- e(0)=€(2)=—€(0)=—€(2)=—woVy1+g?, (393
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FIG. 15. Exact diagonalization results for Holstein-like model,
Eq. (39). (a) Effective interaction angb) difference between kinetic
energy of a pair and kinetic energy of two holes in the four-site
chain vs frequency, for U=4 and various values d. The ki-
netic energy increases rapidly as the effective interaction becomes
more attractive, in contrast to the behavior found in the dynamic
Hubbard model.

e(1)=—e(1)=—wg (39b)
and eigenvectors of the form E@}), with

0)= 2—1\/1+g (409

u(0)=u( )_ﬁ NG
0)=u(2 ——1\/1—g (40b)

v(0)=u2)=-—7 e

1

u(l)=-v(l)=—7= (400

V2
and effective on-site interaction
Uetr=U—2awo(V1+g%-1). (42)

The overlap matrix element between ground-state wave
functions is

1
S=(01)=(112)= /5| 1+ (42)

1
Vi+g?

FIG. 14. Snapshots of Monte Carlo configurations when the .
band is almost full with holes, with only two electrons. The con- @nd ranges between 1 fgr=0 to 1N2 for g—e0, so that it

vention and parameters are the same as in Fig. 9. The simulation Rever becomes small as in the previous case.

started with the two electrons on the same #itg panel; after a

Figure 15 shows results of exact diagonalization for an

few sweepgbottom panel the electrons separate and are light, asN=4 cluster. As a function of frequency, the effective inter-
illustrated by the large fluctuations of the world lines in the time action becomes less attractive @g decreases, in contrast to

direction.

the behavior found for the dynamic Hubbard model. Further-
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FIG. 17. Kinetic energy of two hole®) and hole-hole distance
(b) as function of “Monte Carlo time” for the Holstein-like model.
The unit of time is 15 Monte Carlo sweepd=20, L=40, A7
=0.25,9g=3, wg=1, andU=3. After about 100 steps the hole-
hole distance decreases drastically as the holes become found
and at the same time the kinetic energy incredagsn contrast to
the behavior seen in Fig. 10.

tential energy decrease, which is precisely opposite to the
behavior in the dynamic Hubbard model.

Figure 16 shows typical world-line configurations for two
holes in this model. Similarly to Fig. 9, we start the holes far
from each other; in the first snapshot they are still separate
and after several sweeps a pair is formed. Here the world
lines for the pair are rather straight, corresponding to large
effective mass, while the single holes exhibit larger trans-
verse motion of the world lines, indicating lighter quasipar-
ticles. This is qualitatively different to the behavior in the
dynamic Hubbard moddFig. 9), where the carriers became
lighter when they paired.

The relation between pair formation and pair mobility is
also shown in Fig. 17, to be compared with Fig. 10 for the
dynamic Hubbard model. Initially the hole-hole distance is
large and the kinetic energy is low. When the pairs form after

FIG. 16. Snapshots of Monte Carlo configurations for theapproximately 100 Monte Carlo “steps” the hole-hole dis-

Holstein-like model for anN=20 site lattice withL=40 time

tance decreases drastically and the kinetic energy increases,

slices.A7=0.25,g=3, wy=2, andU=4. Same conventions as in again in qualitative contrast with the behavior found in the
Fig. 9. After a few initial sweeps the holes are still separate ancddynamic Hubbard model.

light (upper panels after several more sweeg®wer panels the
holes are bound and heavigvorld lines fluctuate less in the time

direction), in contrast to the behavior seen in Fig. 9.

more, the kinetic energy increases @g increases and the
effective attraction increases, as shown in FigbL5Hence
in this model pairing gives rise to kinetic energycrease

Finally, Fig. 18 shows the behavior of the average kinetic
energy and of density-density correlations versus on-site re-
pulsionU for the Holstein-like model. As indicated by Fig.
15, the effective interaction becomes attractiveger3 and
wo=1 whenU~4. This is confirmed by the results of Fig.
18. The on-site density-density correlation increases sharply
asU is decreased below 4, indicating pair formation. At the

and the pair condensation energy originates in the larger psame time, the kinetic energy increases sharply when the pair
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=
al

orbital is not simply the product of the single-electron wave
functions in the singly occupied atofrput rather a superpo-

(a)

-2.0 . N=12 i sition
u — — N-8 ]
2 -2.5 — —
A - W(ryr2)= 2 Comgn(ry)em(r2), (44)
35 - 3 where {¢,(r)} is a complete set of single-electron wave
- functions. The fluctuating values &f can be thought of as
N < NI B N the different values that the electron-electron repulsion will
0 2 4 6 8 take for one electron inp,(r) and the other electron in
v ¢em(r), for all n, mfor which C,,, is not zero. The frequency
T wg represents the energy scale of electronic excitations in the
0.3% ! ! [b]| ] atom, i.e., thg gigenenergies of _the wave functi{zg,$(r)}'.
T g . More specifically, for the particular case o$ brbitals in
C N . a hydrogenic atom of ionic chargg the “bare” on-site re-
AL 021 N — pulsion for two electrons in theslorbital is
& C :‘; X X - X
v C v ] U,=17Z eV. (45)
o C ] This corresponds in our model to the on-site repulsion when
. o’; XX PNy ] the boson is not allowed to relax, E@), or approximately

U+ 2gw,. In the Hartree approximation, the orbital expands

to Z=Z—5/16 upon double occupation, and the repulsion
between two electrons in these expanded orbitals ig45).

Q
n
c s
Q)
@

FIG. 18. (a) Kinetic energy andb) on-site and nearest-neighbor | —
density-density correlation vs on-site repulsiafirom Monte Carlo ~ With Z replaced byZ, i.e.,
simulations of the Holstein-like model witk=12. In(a) results for

N=8 are also shown; fofb) the size dependence is negligible. As U,= 17( 7— i) eV=U,—5.31 eV. (46)
U decreases and pairs form, the on-site correlations increase and the 16

kinetic energy increases, in contrast to the behavior seen in Figs. 1'Fhis would roughly correspond to the “minimum” on-site
and 13 for the dynamic Hubbard model. repulsion in our modelJ —2gw,. Finally, the effective on-

forms, again in stark contrast to the behavior of the dynami%ite repulsion in the Hartree approximation, taking into ac-
’ . . t th t in single-particl bital -
Hubbard model seen in Figs. 12 and 13. The nearesté%;]n is € costin single-particie energy upon orbital expan

neighbor density-density correlation first increasesJas-

creases from O, indicating that the pair wave function

evolves from describing on-site pairing to more extended U3=17(Z—3—2 evV=U;—2.66 eV (47)
pairing and then decreases for larg¢ras the pair dissoci-

ates. precisely halfway between the values, E¢5) and (46),

In summary, these results suggest that the conventionaind this would correspond to the effective sitein our
electron-hole symmetric models and dynamic Hubbard modmodel, which is justU, also precisely halfway between the
els define two rather different “universality classes.” Both minimum and maximum values. Summarizing,

types of models can describe pairing, with qualitatively dif-
ferent features. U;=17Z eV=U+2gwy, (483

U2:U1_531 e\/:U_Zg(,l)o, (48b)
VI. RELATION TO REAL ATOMS
In the dynamic Hubbard model considered in this paper, Us=U,-2.66 eV=U, (480
the on-site repulsion takes the values-2gw, and U so that for this case we have simply
+2gwg when the auxiliary spin at the site points up and
down, respectively, in ar, representation. More generally, gwe=1.33 eV (49

for the spin in a superposition of these states the On's't?ndependent oF.

repulsion will take values intermediate between these ex- . o .
u o . . ' The frequencyw, is related to excitation energies of the
tremes. The “effective” on-site repulsion defined by . LS
atom; hence, we expect the dependence on ionic charge

Uct(site)=E(2)+E(0) —2E(1), (43 wo=C22, (50)
with E(n) the site energy witlm electrongor holes, is sim-  which implies from Eq.(49) that g increases as the ionic

ply U. The reason a fluctuating is needed to represent a chargeZ decreases. This is in accordance with the fact that
real atom is that the wave function of two electrons in anthe overlap
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we believe the qualitative physics will be similar. Further-
> (51 more, “extended” dynamic Hubbard models, with more than
vitg on-site interactions, should be interesting to study.

decreases ag increases; in the Hartree approximation, this 1hese dynamic Hubbard models map onto the Hubbard

overlap corresponds to the overlap of the expanded singléhodel with correlated hopping in the antiadiabatic linaj

electron orbital with the nonexpanded one and is given by —, Which is known to lead to pairing of holes and super-
conductivity for sufficiently large coupling constagt the

s=(0|1)=

5 |82 purpose of this paper was to determine whether pairing still
(1_ 167 exists for finite wy. Furthermore, in the antiadiabatic limit
S= 7, (52 pairing is known to occur through kinetic energy lower-
(1_ i) ing, and we examined whether the same physics occurs for
32Z finite w.

From both the exact diagonalization and the quantum
Monte Carlo results we concluded that the same physics of
the antiadiabatic limit persists for finite, and even smaj,
r:urthermore, the parameter regime where pairing occurs is
larger for smallw than for wy— . When wg is small the

U—2gwy>0, (53) kinetic energy is much Iovyer than in the _antiadiabati(_: _Iimi_t,

yet the magnitude of kinetic energy lowering upon pairing is

because the atomic Coulomb integral for any two orbitalssimilar to that in the antiadiabatic limit.
¢n, ©m has to be positive. Even with the constraint, Exp), The wy— <0 limit of the model(Hubbard model with cor-
a wide range of parameters in the model exists where pairingelated hoppingis useful because its physics is rather trans-
will occur, as can be inferred from the numerical results inparent and because it allows for much simpler analytic and
the previous sections. For example, from Figa)lwe see numerical treatments. However, strictly speaking the dy-
that for wy=0.5U =8, pairing occurs fog>4; the condi- namic Hubbard model considered here is only a realistic rep-
tion, Eq.(53), is satisfied in this case up =8, and forg resentation of a real system for parameters where
~4 the fluctuations in the on-sitd are about 50%. As the —2gwy>0, which certainly does not hold in the antiadia-
frequency gets smaller, the relative fluctuationdJimeeded batic limit. Hence it is essential to establish that the proper-
to obtain pairing decrease. For example, from Fi@) 2ve  ties of the model for smalby and forwg— oo are similar if
find that forU =4, g=4, pairing occurs fowy>0.12, which  one is to use the results obtained from thg—« limit to
corresponds to fluctuations id of only 25% (betweenU understand the properties of a real system. We found that the
=3 andU=5). If the U was not fluctuating but fixed, no model can give rise to pairing even in parameter ranges
pairing occurs in the model unles<0. In other words, the where the fluctuating) attains only positive values, which
“equivalentU” in a model with fixedU is not only smaller implies that an “equivalent” fixedJ in those cases would be
than the averag® in the fluctuating case but it is smaller smaller than the lower bound of the range within whigh
than the smallest value that the fluctuatidgttains in these fluctuates.
cases. We contrasted the behavior found in the dynamic Hub-

Note that asZ in the atom decreases, the on-site bdre bard model with that of an electron-hole symmetric Holstein-
decrease$Eq. (45)]; the parametet, should decrease ac- like model. In the latter model, which we suggest is repre-
cording to Eq.(50), and correspondinglg should increase sentative of a wide range of model Hamiltonians that have
[Eqg. (49)]. As seen in Fig. @), asU decreases a smaller, been considered in the past to describe superconductivity, the
is required to give pairing, and as seen in Figa)2asg  physics found is qualitatively different: pairing is associated
increases also a smaller, is needed for pairing. We con- Wwith lowering of potential energy and increase in kinetic en-
clude from our results for the model system and the relationergy, opposite to the behavior found in the dynamic Hubbard
ship with the real atom that smaller values Dfyield the = model. We suggest that these two models, each representa-
most favorable conditions for pairing in this dynamic Hub- tive of an entire class of model Hamiltonians, are two differ-
bard model. ent paradigms by which superconductivity can be achié®ed.

Whether either or both occur in nature is an unsettled ques-
VIl. DISCUSSION tion. The t_heory of hole superconductivity proposes that only
the paradigm represented by the dynamic Hubbard model

We have studied numerically some properties of a dy-occurs in real materiafs®
namic Hubbard model, where the value of the on-site repul- We also discussed briefly the relation between the dy-
sion U depends on the state of an auxiliary boson degree afiamic Hubbard model considered here and a real hydrogen-
freedom. In the model studied in this paper the boson is #ike atom for Is electrons in the Hartree approximation.
spin-1/2 degree of freedom, with excitation enesgy It will Clearly such relation should be qualitatively similar for more
be of interest to study other similar models with other bosoraccurate representations of the two-electron wave function
degrees of freedom such as other versions of the spin-1/&uch as the Hylleraas wave functidas well as for electrons
model! higher spin variables or harmonic oscillators, orin other atomic orbitals. We found that a smaller value of the
purely electronic models with more than one orbital per $ite; ionic chargeZ yields more favorable conditions for pairing

which decreases to zero ds-0.3125.

Strictly speaking our dynamic Hubbard model will be a
valid representation of the real atom only in the paramete
regime where
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for several different reason$l) it leads to smaller on-site be feasible and of interest. Powerful numerical techniques
repulsionU, (2) it leads to larger coupling, which leads to  that have been extensively used for the static Hubbard model
larger “dressing” of quasiparticles in the normal state and toand other related models such as the Holstein model can and
larger “undressing,” hence larger energy lowering, as quasishould be brought to bear on this class of models. In particu-
particles pair, and3) it leads to smaller frequency scalg), lar, density matrix renormalization grotimnd determinantal
which according to the results of this paper is favorable toMonte Carlo methods should allow for the study of larger
pairing asU becomes smaller angl becomes larger. In ad- systems as a function of model parameters and hole concen-
dition, smallerZ is also favorable because it leads to largertration to determine the range of parameters where hole pair-
orbital overlap between atoms, hence larger bare hoplping ing occurs. The dynamical mean-field method combined with
which increases the overall scale of the pairing interactiora Monte Carlo “impurity” method should be a very fruitful
calculated in this papét. It will be interesting to perform approach to deal with this class of mod&lsn particular, it
detailed analysis of the connection between this and othewill be of great interest to understand quantitatively the pro-
dynamic Hubbard models and electrons in various orbitals itesses of spectral weight transfer in one- and two-particle

real atoms.

Green'’s functions that are expected to occur in this class of

The results presented here are only a first step in the urmodels upon transition to the superconducting staté,
derstanding of this and other dynamic Hubbard models. Anawhich are of interest in connection with photoemissfand
lytically, both strong- and weak-coupling expansions shouldbptical experimentS in superconducting materials.
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