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Particle-hole symmetry and transport properties of the flux state in underdoped cuprates
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Transport properties, i.e., conductivitiessmn , Hall constantRH , and thermopowerSare studied for the flux
state with the gauge fluxf per plaquette, which may model the underdoped cuprates, with the emphasis on the
particle-hole and parity/chiral symmetries. This model is reduced to the Dirac fermions in~211!D, ~where D
means dimensional! with a mass gap introduced by the antiferromagnetic~AF! long-range order and/or the
stripe formation. Without the mass gap, the Hall constantRH and the thermopowerS obey the two-parameter
scaling laws,RH>a2/ueux fRH

(tAx/kBT,\/tkBT) andS>kB /ueu f S(tAx/kBT,\/tkBT), with a being the lattice
constant,x the hole concentration, andt the transport lifetime. TheRH and S show the strong temperature
dependence due to the recovery of the particle-hole symmetry at high temperatures. Thex dependences of
sxx(}Ax) andsxy ~independent ofx) are in a sharp contradiction with the experiments. Therefore, there is no
signature of the particle-hole symmetry or the massless Dirac fermions in the underdoped cuprates even above
the Neel temperatureTN . With the mass gap introduced by the AF order, there occurs the parity anomaly for
each of the Dirac fermions. However the contributions from different valleys and spins cancel each other to
result in no spontaneous Hall effect even if the time-reversal symmetry is broken withfÞp. The effects of the
stripes are also studied. The diagonal and vertical~horizontal! stripes have quite different influence on the
transport properties. The suppression ofRH occurs at low temperature only when~i! both the AF order and the
vertical ~horizontal! stripe coexist, and~ii ! the average over the in-plane direction is taken. Discussions on the
recent experiments are given from the viewpoint of these theoretical results.

DOI: 10.1103/PhysRevB.65.214502 PACS number~s!: 74.25.Fy, 74.72.2h, 71.10.Fd, 72.15.Eb
s

2
te

av
ta
it
s

ph
-
s
ic-
ve

th

n
e

g
th

the
ts

x-

he
nd
-
ped
state
e

e
flux
or-
the

Hall

ole
-

elf-
nds
An-
I. INTRODUCTION

Since the discovery of high-Tc cuprates, intensive studie
have been done on the two-dimensional~2D! antiferromag-
nets. It is now established that the ground state of the
Heisenberg antiferromagnet with the nearest-neighbor in
action on the square lattice shows an antiferromagnetic~AF!
long-range ordering at zero temperature,1 and the low energy
spin excitation can be described in terms of the spin-w
theory. However this does not mean that the electronic s
in the antiferromagnets is fully understood. Compared w
the triplet channel of the two-particle correlation function
the single particle properties such as the angle-resolved
toemission spectra~ARPES!,2 and the singlet channel corre
lation functions such as the charge transport propertie3–8

still remain controversial. In fact, there are two different p
tures for it. One is the conventional spin-density-wa

~SDW! picture9 with the wave numberQW 5(p,p), where
both the weak- and strong-coupling regions can be smoo
connected. The other picture is thep-flux state10 originated
from the resonating valence bond~RVB! idea.11 At half fill-
ing, thep-flux state is equivalent to thed-wave singlet par-
ing state12,13 due to the particle-hole SU~2! symmetry.14 The
Gutzwiller projected wave function with thed-wave paring
and AF orders gives a better energy compared with that o
with the AF order.15 Also the higher-energy continuum of th
neutron-scattering spectra and Raman-scattering spectra
been analyzed in terms of thisp-flux state.15

The dispersion of a single hole put into this antiferroma
net is an important issue studied intensively in terms of
0163-1829/2002/65~21!/214502~12!/$20.00 65 2145
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self-consistent Born approximation,16 exact
diagonalization,17 spinon-holon bound-state picture,18 and
variational method19. Using thet-J model, all the analyses

give the maximum of the hole dispersion atkW5(6p/2,
6p/2). This dispersion can be understood in terms of
p-flux picture,18,19 which introduces the nodal Fermi poin

of the spinons atkW5(6p/2,6p/2) with the dispersion simi-
lar to thed-wave superconductors. This fits the ARPES e
periments in the undoped cuprates.2

At finite doping, the slave-boson mean-field theory of t
t-J model predicts the state with both the singlet RVB a
AF orders for smallx.20 The SU~2! symmetry has been em
ployed to represent the constraint and the underdo
pseudogap region is characterized as the staggered flux
with spin-charge separation,21 which can be regarded as th
fluctuating state between thed-wave pairing state and th
current order state. On the other hand, the staggered
state with the electron coordinates with the real current
dering and periodicity doubling has been proposed for
underdoped cuprates.22

Recently there appeared several experiments on the
coefficientRH and the thermopowerS in the heavily under-
doped cuprates, which raised the issue of particle-h
symmetry.6–8 TheRH as well as theSshow a strong suppres
sion below the Neel temperatureTN in some YBCO
samples,6 while this is not the case for other samples.7 This
strongly suggests that the transport properties belowTN are
sensitive to the oxygen chain ordering and/or the s
organization of electrons such as the stripes, which depe
on the annealing procedure in the sample preparation.
©2002 The American Physical Society02-1
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MASARU ONODA AND NAOTO NAGAOSA PHYSICAL REVIEW B65 214502
other interesting clue is that in LSCO the suppression of
Hall effect is observed only in the vertical~horizontal! stripe
state and not in the diagonal stripe state forx,0.05.23,24

Above TN , RH is a decreasing function of temperatur
which remains one of the most puzzling features in
normal-state properties.3,5,25,6

In the SDW picture, a large metallic Fermi surface encl
ing the area of 12x (x: hole concentration! is recovered
aboveTN . Therefore we expect the drastic change of
Hall constant fromRH52a2/(12x) to RH5a2/x when the
temperatureT is lowered acrossTN . ~Here a is the lattice
constant.! Correspondingly the resistivity should be affect
by the onset of the AF order. This is in sharp contradict
with the experiments. Even aboveTN , the system behaves a
the doped Mott insulator with the small number of holes,3,5,6

and even a slight change of the resistivity is not observe
TN .7

Considering all these clues, it is worthwhile to study t
transport properties of the slightly dopedp-flux state both
above and belowTN , which we undertake in this paper. W
will neglect the interactions between electrons and the di
der potentials. The former is justified because the quasi
ticle number is small at low temperature due to the redu
density of states and thee-e interaction is irrelevant. The
latter becomes important at low temperature for smalx
where the resistivity shows an upturn, but is irrelevant for
temperature andx range of our interest. We also study th
effect of the stripe formation on the Hall constant and
thermopower, and show that oxygen chain ordering is cru
for these quantities. The deviation of the flux fromp, which
breaks the time-reversal symmetry and produces curren
dering, is also studied. This issue is closely related to
parity anomaly26 in ~211!D because the two species of th
Dirac fermions acquire a mass gap due to the AF order
Therefore the undoped and underdoped cuprates offer a
teresting laboratory to study the transport properties of
Dirac fermions with nontrivial topological nature influence
by the AF order and/or the stripe formation. The Dirac f
mion has been studied also in the context of the nodal q
siparticle in thed-wave supercouductors.27 In this case the
Fermi energy is always atE50 and the particle-hole sym
metry remains. Under the external magnetic fieldH, the for-
mation of the vortex lattice is crucial, which introduces t
I
d
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magnetic length scalel H;H21/2. In the present case, on th
other hand, there occurs no Meissner effect, and one can
the response of the Dirac fermions in the uniform state, wh
the particle-hole symmetry is broken due to the shift of t
Fermi energy fromE50. This introduces the length sca
l x;x21/2 , i.e., the interhole distance, and we can have
new kind of scaling when neither AF ordering nor the stri
formation occur.

The plan of this paper follows. In Sec. II, our mod
Hamiltonian is introduced and its spectrum under the ex
nal magnetic field is reviewed. In Sec. III, the electroma
netic and thermal responses are studied for the Dirac fe
ons without stripes. The effects of the stripes are studied
Sec. IV, and Sec. V is devoted to discussions in compari
with experiments.

II. HAMILTONIAN

We start with the most generic Hamiltonian in the sta
gered flux state with anti-ferromagnetic and stripe~quasi-
!order, which are treated as on-site potentials in the me
field theory. Hereafter, we take the units in which\5c51.

H52 (
^rW,rW8&,s

t rW,rW8crWs
†

crW8s2(
rW,s

@m1us cos~QW •rW !

1v cos~QW v•rW !#crWs
†

crWs . ~1!

The transfer integralt rW6 x̂,rW5t rW6 ŷ,rW
* 5teif/4 ~with r x1r y

5even) represents the staggered fluxf for each plaquette.
In the RVB picture,f is generated by the superexchan
interactionJ and equalsp in the undoped case. Therefore,
our representation, the transfer integralt is estimated ast
>0.8J, and should not be confused witht in the t-J model.18

In the second term,us is the mean-field potential for thes
spin electrons with the wave numberQW 5(p,p), which
originates from the AF ordermAF and/or the diagonal stripe
formation mdiag as us5smAF1mdiag, while v is that from
the vertical stripe formation withQW v5(p,0). This is the re-
sult of the higher-order process in the stripe potential w
the wave numberQW stripe5(p/M ,p/M ) ~diagonal case! or
QW stripe5(p/M ,0) ~vertical case!. The chemical potentialm is
zero at the half-filling. The eigenvalues for eachkW are
es~kW !56F4t2~cos2kx1cos2ky!1us
21v262AS 4t2 cos

f

2
coskx coskyD 2

1v2~4t2 cos2ky1us
2 !G1/2

. ~2!
First, we consider the case without the vertical stripe.
this case, the low-energy electronic states are describe
terms of the two Dirac fermions atkW15(p/2,p/2) and kW2
5(p/2,2p/2), which we call sector 1 and 2, respective
Measuring the momenta from thesekW1,2 points, and in the
continuum approximation the Hamiltonian is given as
n
in Heff5(

i ,s
E d2rc is

† ~rW !Ĥisc is~rW !, ~3!

wherec is
(†)(rW) is the annihilation~creation! operator ofi sec-

tor (i 51,2) with s spin,
2-2
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PARTICLE-HOLE SYMMETRY AND TRANSPORT . . . PHYSICAL REVIEW B 65 214502
Ĥ1s5F us2m 2ta~ p̂x1e2 i f/2p̂y!

2ta~ p̂x1eif/2p̂y! 2us2m
G , ~4!

andĤ2s5Ĥ1su us→2us
f→2p2f

. Here p̂m52 i ]m anda is the lattice

constant. As is evident from the above Hamiltonian, ea
Dirac fermion has a mass term with positive or negative si
and shows the parity anomaly.26 When the external electro
magnetic fieldAm is coupled to each Dirac fermion, th
Chern-Simons term«mnlAm]nAl is generated. Therefore th
Dirac fermion with positive~negative! us has the right~left!
chirality. Because there are two right~R! and left ~L! Dirac
fermions, there occurs the cancellation of the Chern-Sim
terms, and no spontaneous Hall effect results. This rem
true even when the fluxf is different fromp and the time-
reversal symmetry is broken to produce the current orde
is because the current pattern is staggered, and does n
fect the uniform response in an essential way.

Now we briefly review the Dirac fermions in the presen
of the external uniform magnetic fieldB, which can be ana-
lytically solved.28,29 In the effective theory represented b
Eq. ~3!, the first-quantized Hamiltonian Eq.~4! is rewritten
by the replacement,p̂m→p̂m5 p̂m2eAm(rW), where @¹W

3AW (rW)z5B. Then we define the following bosonic operato
as

âf5
1

A2ueBfu
@p̂x1ei sgn(eBf)f/2p̂y#, ~5!

âf
† 5

1

A2ueBfu
@p̂x1e2 i sgn(eBf)f/2p̂y#. ~6!

These operators satisfy the commutation relation@ âf ,âf
† #

51. Using these operators and the Pauli matricest i , (i
51,2,3), Eq.~4! is rewritten as

Ĥ1s5
KeBf

2
@~ âf1âf

† !t12 i sgn~eBf!~ âf2âf
† !t2#

1ust32mI . ~7!

The eigenvector (n>1) is

uns6&5
1

A2en

@Aen6sgn~eBf!usun& ^ u↑̃&

6Aen7sgn~eBf!usun21& ^ u↓̃&] ^ us&, ~8!

with the eigenvalue6ens being given by

ens5AKeBf

2 n1us
2, ~9!

KeBf
5A8t2a2ueBfu, Bf5B sin

f

2
. ~10!
21450
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Here un& is the eigenvector ofâf
† âf with the eigenvaluen,

u↑̃( ↓̃)& is the eigenvector of sgn(eBf)t3 with the eigenvalue
11(21), and the quantum index for the intralevel orbitals
omitted. u↑̃( ↓̃)& should not be confused with a real-spin e
genvectorus&, but it comes from the two-component natu
of a Dirac fermion. Especially, the zero mode is given by

u0s6&5 1
2 @16sgn~useBf!#u0& ^ u↑̃& ^ us&. ~11!

Therefore, there exists only one zero modeu0s1& or u0s2&
for each sector and its energy ise0s5uusu or 2uusu depend-
ing on the direction of the external magnetic fieldB and the
chirality of Dirac fermions. We can also define effective cu
rent operators as follows:ĵ x52tat1 and ĵ y52ta(cosf/2t1
1sinf/2t2).

III. ELECTROMAGNETIC AND THERMAL RESPONSES

The electromagnetic and thermal linear response fu
tions are obtained by the Kubo formula. We put the abo
solutions into the Kubo formula forsmn(v) and approximate
the effect of the relaxation by replacingv by v1 i /t with
the lifetimet. This approximation reproduces the Drude fo
mula forsmn(v) in the simplest case. The contribution fro
sector 1 withs spin is presented in Appendix A. The tota
conductivity is given by summing up the contribution fro
all sectors. This procedure makes anomalous terms, w
come from the interband effect, cancel out with each oth
and lead to the consistent result in the AF ordered state,
no parity symmetry breaking in the limitB→0.

Equations~A5! and ~A6! are valid for general cases in
cluding both the quantum limit (t→` with finite B) and the
semiclassical limit (KeBf

t!1!umut). In the former case,
Eqs. ~A5! and ~A6! represent the integer quantum Hall e
fect, while in the latter case they correspond to the usual H
effect. In the latter case, we obtain the same formula w
that given by the Boltzmann equation. For example, w
only the AF order and at low temperature, Eqs.~A5! and
~A6! lead to

sxx>
e2

2p

8pxt2t

A4pxt2Usin
f

2
U1mAF

2

, ~12!

sxy>
e2

2p

~8pxt2t!2

4pxt2Usin
f

2U1mAF
2

a2ueuB
2px

sin2
f

2
, ~13!

and the Hall coefficientRH is given by

RH>
sxy

Bsxx
2

>
a2

ueux
sin2

f

2
~14!

independent of the presence/absence of the AF order. Th
2-3
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MASARU ONODA AND NAOTO NAGAOSA PHYSICAL REVIEW B65 214502
reduced to the conventional resultRH5a2/(ueux) for the
hole system with concentrationx when we putf5p. How-
ever thex dependences ofsxx and sxy are peculiar in the
absence of the AF order, namely,sxx}Ax and sxy being
independent ofx when we neglect thex dependence oft.
These are understood as follows. Thesxx is proportional to
the density of states at the Fermi energy, which is prop
tional to Ax for the massless Dirac fermion. As forsxy , on
the other hand, the geometric interpretation is useful.30 The
Hall conductivity is determined by the scattering path leng
lW(kW )5t¹W e(kW ), which is independent of the magnitudeukW u
for linear dispersion and hencesxy is independent ofx. In
Eq. ~A6!, this behavior is the consequence of the domin
contribution from the zero mode of the Dirac fermions
sxy . On the other hand, whenA4pxt!umAFu, the usual dis-
persione(kW )}kW2 is relevant and the usualx dependences
sxx}x and sxy}x result. The thermopowerS at a
sufficiently low temperature is also obtained in a similar w
as

S>
kB

ueu
p2

3
kBT

4pxt2Usin
f

2U12mAF
2

4pxt2Usin
f

2UF4pxt2Usin
f

2U1mAF
2 G1/2.

~15!

The x dependence ofS is also peculiar in the absence of th
AF order, i.e.,S}1/Ax.

Next we consider the temperature dependence ofRH and
S, which originates from the Fermi distribution functio
f F„T,e,m(T)…. Here the energy is averaged over;kBT, and
both the particle and hole branches contribute with the
posite signs toRH and S when kBT.um(T)u. Furthermore,
um(T)u is a decreasing function of temperature as presen
in Appendix B. For example, whenmAF50, it behaves at
kBT!O(tAx)

um~T!u>A4pxt2Usin
f

2U2 p2

3
~kBT!2, ~16!

and atkBT@O(tAx)

um~T!u>
pxt2

ln 2 Usin
f

2U 1

kBT
. ~17!

Therefore, as long as the flux order is present, the parti
hole symmetry is approximately restored at high tempe
tures even in the doped system, and bothRH and S are re-
duced as shown in Figs. 1~a! and 1~b!, which are the results
of the original lattice model. The peak inRH occurs because
the suppression ofsxx as increasingT dominates at low tem-
perature. After all, a low carrier density and a narrow g
result in these features, i.e., having a peak at moderate
perature and decreasing at high temperature. It is worthw
to note that the temperature dependence ofS resembles those
of rare-earth compounds, such as YbCuAl, which have
carrier densities and narrow gaps.31
21450
r-

,

t

-

d

e-
-

p
m-
ile

In the case ofmAF50 and the limitB→0, the following
scaling laws are expected by the continuum model

RH5
a2

ueux
f RH

S tAx

kBT
,

1

tkBTD , ~18!

S5
kB

ueu
f SS tAx

kBT
,

1

tkBTD , ~19!

where f RH
and f S are dimensionless functions.~The details

are given in Appendix C.! The dependence ontAx/(kBT) is
because ofm/(kBT) being a dimensionless function o
tAx/(kBT), and the dependence ontkBT comes from the
transition between the highest valence band and the low
conduction band. The latter is neglected in the Boltzma
transport theory. In a physical sense, the contribution fr
transitions between two bands would be very small when
condition 1!umut is satisfied, i.e., in the semiclassical limi
In this case, we get the one-parameter scaling laws

RH>
a2

ueux
f RH

S tAx

kBTD , S>
kB

ueu
f SS tAx

kBTD . ~20!

Therefore, bothxRH andSare expected to scale as functio
of tAx/(kBT). Figures 2~a! and 2~b! show the scaling behav

FIG. 1. Temperature dependences of~a! the Hall coefficientRH

in the unita2/ueu, and~b! the thermopowerS in the unitkB /ueu for
mAF5v50.

FIG. 2. Scaling of temperature dependences of~a! the Hall co-
efficientRH divided byRH05a2/(ueux), and~b! the thermopowerS
in the unit kB /ueu for mAF5v50. The open circles are scalin
functions calculated in the continuum model.
2-4
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iors of RH andSgiven in Figs. 1~a! and 1~b!. We can see tha
the single-parameter scaling law ofRH works fairly well in a
broad temperature range. On the other hand, forS, it works
only at low temperatures. This is becauseS contains the en-
ergy integral that has one more energy dimension than
integral forRH , andS is more sensitive to the higher-energ
region where the lattice structure is relevant.

In Figs. 3~a! and 3~b!, the temperature dependences ofRH
and S are shown in the presence of the AF order and
vertical ~horizontal! stripe. These results are obtained for t
lattice model in terms of the Boltzmann transport theo
where the interband effect is neglected. We can observe
the AF order~without the stripe formation! results in the
enhancement ofRH andS. One reason of this enhancement
that the AF order suppresses the recovery of the particle-
symmetry at high temperatures.~The details are given in
Appendix B.! Another reason is that the heavier massmAF
makes the conductivity smaller as seen in Eqs.~12! and~13!.
The former reason is crucial both forRH andS. On the other
hand, the latter would be crucial only forSas expected from
the comparison of Eqs.~14! and ~15!. This is because the
explicit dependence ofsxx and sxy on mAF nearly cancel
each other inRH . Therefore, the enhancement ofS is more
drastic than that ofRH . As for the effect of the stripe, we
will consider it closely in the following section.

IV. EFFECT OF STRIPE FORMATION

The quasi-one-dimensional spin/charge ordering occur
some cuprates,32 and consequently affects the transp
properties.7,8,23Therefore it is worthwhile to study the effec
of the stripe formation on the flux state. Some works ha
been done assuming the one dimensionality, which co
sponds the limit of strong stripe potential.33 In this section,
we give an alternative and complementary study star
from the 2D flux state. It is easy to see that the effects of
stripes are essentially different between the diagonal and
tical ~horizontal! ones, because the vertical~horizontal! stripe
introduces the off-diagonal matrix elements between the
Dirac fermions aroundkW1 and kW2, while the diagonal one
does not. Therefore the effect of the diagonal stripe is sim
to that of the AF order and we do not expect any dras
change ofRH in the case of the diagonal stripe, although

FIG. 3. Temperature dependences of~a! the Hall coefficientRH

in the unita2/ueu, and~b! the thermopowerS in the unitmV/K for
(mAF ,v)5(0,0), (t,0), and (t,t).
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makes the mass gaps of different spins unbalanced and l
to the modification ofS. It is noted that the change of th
mass gap modifiesS as in Eq.~15!. ~The unbalance of the
mass gaps of different spins also leads to the ferrim
netism.! After all, the drastic modifications of bothRH andS
are expected only when the vertical~horizontal! stripe for-
mation occurs. We will focus on this case below.

In the presence of the stripe, there appears the anisot
in the plane. A naive expectation is that the 1D nature of
transport along the stripe reducesRH . However, this is not
the case, because the stripe does suppress not onlysxy but
also one ofsxx and syy with RH>sxy /(Bsxxsyy) being
unchanged. This is the case also in our explicit calculat
showing thatRH5a2/(ueux) is a robust feature at a low tem
perature. At this point, we must consider the configuration
the stripe in cuprates. When there are stripes, their direc
would be different in each CuO2 layer as in LSCO, or there
are domains of stripes with different directions in a layer
in twined YBCO. In the former system, we simply assum
that the vertical and horizontal types occur alternately. Th
it is reasonable to average the contributions from differ
layers, because they can be regarded as aparallel circuit, i.e.
we should take an average of conductivity tensor not of
sistivity tensor. Also in the latter system, more conduct
regions percolate and hence dominate the conductivity of
system. Therefore it is reasonable to take average ofsxx and
syy . Then the observedRH is suppressed because onlysxy
is reduced considerably whiles5(sxx1syy)/2 is not, and
RH>sxy /(Bs2) is suppressed.

Before discussing general cases, we consider some sp
cases whereRH andScan be analytically evaluated at a lo
temperature by the Boltzmann equation. The first limiti
condition is thatumAFu is sufficiently larger than the kinetic
energy O(tAx). The second condition isuvu!umAFu or
A4t21mAF

2 !uvu. With these conditions, the low-energ
physics would be approximately described by quasipartic
of linear dispersions atkW5(p/2,p/2) and (p/2,0), respec-
tively. It is noted here that these quasiparticles are not sim
two-component Dirac fermions, because the vertical str
formation mixes the two-component Dirac fermions with d
ferent chiralities as mentioned above. For the caseuvu
,uvcu;2pxt2/mAF , the analysis is complicated because w
should consider two bands doped in different ways. It
noted here that there are two upper bands and two lo
bands for each spin degree of freedom whenmAFÞ0 and
vÞ0. The analysis ofRH in this case is given in Appendix E
When uvu is larger than the critical valueuvcu, only the sec-
ond band is doped. Therefore, foruvcu,uvu!umAFu or
A4t21mAF

2 !uvu, the result is expressed as

RH.
a2

ueux
4t2 t̃ 2

~ t21 t̃ 2!2
, ~21!

where t̃ 5tA12uv/mAFu for uvcu,uvu!umAFu, or t̃

5tAuvu/A4t21mAF
2 21 for A4t21mAF

2 !uvu.
2-5
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MASARU ONODA AND NAOTO NAGAOSA PHYSICAL REVIEW B65 214502
On the other hand, the thermopowerSm

;b^Jm
e Jm

e &21^Jm
e Jm

Q&, whereJWe is the electric current density

and JWQ is the heat current density, along the directionm
5x,y remains almost isotropic because the anisotropy of
correlation functionŝJm

e Jm
e & and ^Jm

e Jm
Q& cancels each other

in the numerator and denominator, respectively. HoweverS
is rather sensitive to the change of the gap and the electro
dispersion, becausêJm

e Jm
Q& contains additional dimension of

energy and is suppressed by the coexistence of the AF o
and vertical ~horizontal! stripe. For the caseuvcu,uvu
!umAFu or A4t21mAF

2 !uvu, it is given at a low temperature
by

S.
kB

ueu
p2

3
kBT

8pxt t̃12m̃2

8pxt t̃@8pxt t̃1m̃2#1/2
, ~22!

where t̃ 5tA12uv/mAFu and m̃5umAFu2uvu for uvcu,uvu

!umAFu, or t̃ 5tAuvu/A4t21mAF
2 21 and m̃5uvu

2A4t21mAF
2 for A4t21mAF

2 !uvu. Comparing Eq.~15! in
the casef5p and Eq.~22!, we can see that the weak stripe
i.e., uvu;uvcu, strongly suppresses the thermopower with su
ficiently strong AF order, i.e., largeumAFu. Therefore a cru-
cial test of this scenario is to measure the thermopowerS in
the untwined sample whereRH is not suppressed.

Now let us turn to the results forRH and S in general
cases. Although the analytic results forRH @Eq. ~21!# andS
@Eq. ~22!# are valid only in the limiting cases, they show
what are crucial for each quantity. As forRH , the anisotropy
of the transfer integral, i.e., the anisotropy of the velocity,
crucial with the help of the averaging of the conductivit

FIG. 4. ~a! Hall coefficientRH divided byRH05a2/(ueux), and
~b! thermopowerS in the unit kB /ueu. Symbols~I!, ~II !, and ~III !
correspond to Figs. 5~a!, 5~b!, and 5~c!.
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tensor. On the other hand, as forS, the mass reduction, i.e.
the reduction of the band gap, is also crucial as is the ani
ropy of the transfer integral. Therefore, interesting results
expected in the nontrivial caseumAFu&uvu&A4t21mAF

2 , be-
cause the energy dispersion is highly anisotropic and the
no band gap between the two middle bands. We employ
Boltzmann transport theory and numerically evaluate
correlation functions. Figures 4~a! and 4~b! showsRH andS
as a function of the strength of the AF ordermAF and the
vertical stripev, respectively. The temperature is fixed
0.02t/kB . As mentioned above, the region near the left a
in Fig. 4~b! shows thatS is once suppressed by the wea
stripe, i.e.,uvu;uvcu. Then both are remarkably suppress
when mAF and v are comparable with each other, i.e., ne
the diagonal line. Figures 5~a!–5~c! show the equal-energy
contours and Fermi surfaces for the three points in Figs. 4~a!
and 4~b!. Especially, Fig. 5~b! belongs to the nontrivial cas
and shows the peculiar shape of the Fermi surface. Acc
ing to Ref. 30,sxy could be reduced in the nontrivial Ferm
surface compared to that of the circular Fermi surface s
rounding the same size of area inkW space. Especially when
the Fermi surface has both parts of positive convexity a
negative one, this reduction would be very effective as s
in the regionuvu;umAFu.

Finally, the effects of the AF order and the vertical~hori-
zontal! stripe on the temperature dependences ofRH and S
are shown in Figs. 3~a! and 3~b!. The AF order enhance
both the quantities almost over the whole temperature ra
except for the region near the peak ofRH , and shift the
peaks to a higher temperature. This is because the AF o
introduces the additional energy scale, i.e., the band g
Then the vertical~horizontal! stripe remarkably suppresse
both RH and S in the whole temperature range whenv is
comparable withmAF . These results are parallel to the abo
results where the temperature is fixed.

V. DISCUSSION

Now we discuss the above results in comparison with
experiments. The most important issue is whether the h
temperature phase aboveTN and the pseudogap region ca
be described in terms of the massless Dirac fermions by
ting mAF50. The temperature andx dependences ofRH and
S appear to be qualitatively consistent with the experimen
However, when one looks at thex dependence of the con
ductivity sxx at T5300 K aboveTN , it fits better with}x3/2

rather than}x due to thex dependence of the hole mobility.7

On the other hand,sxx}Ax andsxy}x0 in our model, which
-
e

rs
FIG. 5. Schematic view of the
energy contours for three param
eter sets. Thick lines in each figur
represent the Fermi surface forx
50.02. The reduced Brillouin
zone is the square with the corne
@6p/2,6p/2#. Copies are also
drawn over the original Brillouin
zone forf5mAF5v50.
2-6
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is contradicting the above experiments. Furthermore, the
set of the AF order atTN does not affect the conductivitysxx

in the experiment,7 which is more difficult to understand
from any mean-field picture. This is related to the interp
tation of the insulating gap atx50. In the mean-field picture
it is due to the AF ordering while there remains a large g
even without the AF order in the Mott insulator picture.
the large gap disappears and crossing of the two bands
curs aboveTN , the upper band becomes relevant at arou
Tx>JAx and particle-hole symmetry will be recovere
aboveTx . This massless Dirac spectrum also gives thx
dependence as described above. Therefore it seems thatx
dependence observed in experiments suggests that the
insulating picture is more appropriate for the hig
temperature phase. In other words, the Dirac fermion with
the AF gap is never relevant to the underdoped cuprates.
is also consistent with the asymmetry of ARPES betwe
hole-doped2 and electron-doped34 cuprates. Recent exper
ments on NCCO34 strongly suggest that the minima of th

electron dispersion are atkW5(p,0) and (0,p), and the
particle-hole symmetry is broken. This appears to be con
tent with the SDW picture with appropriate longer-ran
hopping integralst8 andt9. However, the sign oft8 andt9 is
reversed when one consider thet-t8-t9-J model for the
electron-doped case, and the minimum at (p,0) is recovered
by self-consistent Born approximation,16 and its results can
be interpreted as the flux state with the AF order.35 There-
fore, it makes sense to consider the flux state together
the AF order, but not without it.

The AF ordered state, on the other hand, can be w
described in terms of the mean-field state with the flux ord
In this AF state, the conventional behavior of the doped c
riers is expected without the stripe formation. Therefore
effects of the stripes are the most interesting issue. It is fo
thatRH5a2/(ueux) is a rather robust feature at low temper
tures. The suppression occurs only when the AF order
the vertical ~horizontal! stripe coexist, and the directiona
average is taken within the plane. The thermopower is a
suppressed by the stripe formation, and does not need
directional average. The difference between Ref. 6 and R
7 seems to be due to the sample preparation. A longer
annealing has been done for the former case, while
sample is quenched in the latter case. Therefore it is expe
that the chain is more ordered in the former case, wh
might help the stripe formation. The fourfold symmetry o
served in the magnetoresistance36 is interpreted to be due to
the induced stripe in terms of the in-plane external magn
field.

In conclusions, we have studied the transport propertie
the flux state as a model for underdoped cuprates. T
model shows several remarkable features such as p
anomaly, scaling laws forRH andS, the recovery of particle-
hole symmetry at high temperatures. Compared with the
isting experimental data, in particular, thex dependence o
sxx , it is unlikely that this model describes the underdop
cuprates without the AF order. However, the flux state w
the AF order, which gives the mass gap to the Dirac fer
ons, describes well the ordered state. In this case, the s
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order affects the transport properties in a nontrivial way, a
we have discussed the experiments from this view point.
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APPENDIX A: CONDUCTIVITY IN THE CONTINUUM
MODEL

This appendix is devoted to present the uniform cond
tivity smn(v) of the continuum effective theory constructe
in Sec. II. When the effect of the relaxation is approximat
by replacingv by V5v1 i /t with the lifetimet and we can
diagonalize a given Hamiltonian, the linear-response the
generally gives the following representation for the unifo
conductivity:

smn~V!5 ie2(
a,b

f F~eb2m!2 f F~ea2m!

ea2eb

3
^auJnub&^buJmua&

V1eb2ea
, ~A1!

wherea and b are the quantum indices of eigen states,Jm
representsm component of the current density, andf F(e
2m) is the Fermi distribution function. We apply the abov
formula to the effective theory in Sec. II, i.e.~211!D Dirac
fermions in the external magnetic field. For example, in
case of the contribution from sector 1 withs spin, the fol-
lowing replacements are sufficient:

(
a,b

→ueBu
2p (

n,n850

`

(
s,s856

, ua&→uns6&, ea→6ens ,

Jx→ ĵ x52tat1 , ~A2!

Jy→ ĵ y52taS cos
f

2
t11sin

f

2
t2D .

Here uns6& anden are defined by Eqs.~8!–~11! in Sec. II.
t i are the Pauli matrices in the space ofu↑̃( ↓̃)&. @See Eq.~8!.#
Then the contribution from sector 1 withs spin is repre-
sented by
2-7
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smn
1s~V!5 ie2

ueBu
2p (

n,n850

`

(
s,s856

f F~s8en8s2m!2 f F~sens2m!

sens2s8en8s

^nssu ĵ nun8ss8&^n8ss8u ĵ munss&

V1s8en8s2sens

5 ie2
ueBu
2p (

n,n850

`

(
s56

F 1

en8s1ens

^nssu ĵ nun8s2s&^n8s2su ĵ munss&

V2s~en8s1ens!

1
f F~en8s2sm!2 f F~ens2sm!

ens2en8s

^nssu ĵ nun8ss&^n8ssu ĵ munss&

V1s~en8s2ens!

2
f F~en8s1sm!2 f F~ens2sm!

ens1en8s

^nssu ĵ nun8s2s&^n8s2su ĵ munss&

V2s~en8s1ens!
G

5 ie2
ueBu
2p (

n,n850

`

(
s56

F 2 f F~ens2sm!21

V22~en8s1ens!2 H ~2 iV!Re@^nssu ĵ nun8s2s&^n8s2su ĵ munss&#

en8s1ens

1s Im@^nssu ĵ nun8s2s&^n8s2su ĵ munss&#J 1
2 f F~ens2sm!

V22~en8s2ens!2

3H ~2 iV!Re@^nssu ĵ nun8ss&^n8ssu ĵ munss&#

ens2en8s

1s Im@^nssu ĵ nun8ss&^n8ssu ĵ munss&#J G . ~A3!

It is noted that all distribution functions in the first equality represent those of electrons. In the second equality, w
done the transformationf F(2e2m)→12 f F(e1m) for negative-energy modes in order to change the distribution functio
the valence band to that of the quasihole. In the third equality, the difference of distribution functions is pulled apart
distribution function. This procedure is justified because^nssu ĵ mun8ss8&Þ0 only for n85n61 as we will see below and th
distribution functionf F(ens6m) decreases sufficiently fast asn increases.

The final procedure is to substitute the matrix elements by the following explicit forms:

^ns6ut1un8s6&56
1

2 FAEns6En11s7

ensen11s
dn11,n81AEn811s7En8s6

en811sen8s

dn,n811G ,

^ns6ut1un8s7&57
1

2 FAEns6En11s6

ensen11s
dn11,n82AEn811s7En8s7

en811sen8s

dn,n811G ,

^ns6ut2un8s6&57 i sgn~eBf!
1

2 FAEns6En11s7

ensen11s
dn11,n82AEn811s7En8s6

en811sen8s

dn,n811G ,

^ns6ut2un8s7&56 i sgn~eBf!
1

2 FAEns6En11s6

ensen11s
dn11,n81AEn811s7En8s7

en811sen8s

dn,n811G , ~A4!

whereEns65ens6sgn(eBf)us . ~The absence of one of zero modes is appropriately represented byEns6 .! As for the dc
conductivity, the contribution from sector 1 withs spin is given by

sxx
1s5

e2

2p
t21KeB

2 (
s56 H f F~ uusu2sm!

uusu@11sgn~suseBf!#

~KeBf

2 1t22!214t22us
2

1 (
n51

f F~en2sm!

3@~KeBf

4 2t24!218~KeBf

4 1t24!t22en
21~4t22en

2!2#21@t22~t2214en
2!~en1us

2en
21!

1KeBf

4 ~3en2us
2en

21!24KeBf

2 t22uususgn~suseBf!#J 1
e2

2p

t21KeB
2

2

3 (
n50

`
1

~en1en11!@t221~en1en11!2#
S 11

us
2

enen11
D , ~A5!
214502-8
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sxy
1s5

e2

2p
sgn~eB!KeBf

2 (
s56

H s

2
f F~ uusu2sm!

~KeBf

2 1t22!@11sgn~suseBf!#

~KeBf

2 1t22!214t22us
2

1 (
n51

s fF~en2sm!@~KeBf

4 2t24!218~KeBf

4 1t24!t22en
21~4t22en

2!2#21@KeBf

2 ~KeBf

4 2t2414t22us
2 !

1t22~KeBf

4 2t2414t22en
2!uusuen

21 sgn~suseBf!#J
2

e2

2p
sgnS sin

f

2 D KeBf

2

2 (
n50

`
us~en1en11!

enen11@t221~en1en11!2#
1sxx

1s cos
f

2
, ~A6!
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The terms without the distribution function represent t
parts of the interband effect, which remain even in the c
m50 and kBT50. As for sxx

1s , the contribution from the
interband effect is negligible in the semiclassical lim
(KeBf

!1!umut) compared to the contribution from th
Fermi level. In this case, the Boltzmann theory is a go
approximation. ~The interband effect is neglected in th
Boltzmann theory.! On the other hand, as forsxy

1s , the last
two terms, which include the interband effect remaining
the casem50 andkBT50, cancel out after summing up th
contribution from all sectors. In other words, when the par
symmetry is breaking, i.e., the numbers of right and l
Dirac fermions are unbalanced, we cannot neglect the
maining interband effect. Especially in the caset5` and
B→0, the last line but one insxy

1s gives a contribution61/2
in the unite2/h as long asusÞ0, where the sign depends o
us and f, andh is Planck’s constant. However, it is note
that the totalsxy should take a integer value in the unite2/h
when it is quantized. Therefore, in the case where this in
band effect is crucial, we must seriously consider the con
bution from the bottom of valence bands and the top of c
duction bonds, which are beyond the range of the continu
model.

APPENDIX B: TEMPERATURE DEPENDENCE OF THE
CHEMICAL POTENTIAL

Here we consider the temperature dependence of
chemical potentialm in the limit B→0. When there is no
stripe formation, the doping parameter of the continu
model is given by

2x5ds (
c56

(
s56

E d2p

~2p!2
s fF~ec~pW !2sm!

5
df

8pt2Usin
f

2U
(

s56
E

umAFu

`

dees fF~e2sm!. ~B1!

Here ds is the number of spin degrees of freedom, i.e.,ds
52, df is the total number of inner degrees of freedom, i
df5(left1right)3ds54, and
21450
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e6~pW !5A~2ta!2S p262 cos
f

2
pxpyD1mAF

2 . ~B2!

The sign ofx is taken as it is positive whenm,0.
In the low-temperature approximation,kBT!(umu

2umAFu), we can estimate the right-hand side of Eq.~B1! by
using the sharpness of the Fermi distribution function as
lows:

2x5
df

16pt2
sgn~m!u~ umu2umAFu!

3Fm22mAF
2 1

p2

3
~kBT!21•••G . ~B3!

Then, in the hole-doping case, i.e.m,2umAFu, the tempera-
ture dependence ofm is given by

umu>A4pxt2Usin
f

2U1mAF
2 2

p2

3
~kBT!2, ~B4!

where we have useddf54.
On the other hand, in the high-temperature approxim

tion, kBT@umu, we can estimate the right-hand side of E
~B1! as follows:

2x5
df

8pt2Usin
f

2U
(

s56

1

b2EbumAFu

`

dy
sy

11ey2sbm
,

5
df

4pt2Usin
f

2U
m

b F bumAFu

11ebumAFu
1 ln~11e2bumAFu!1•••G ,

~B5!

whereb51/(kBT) and we have expanded the integrand
bm. Finally, in the hole-doping case, i.e.,m,0, the tempera-
ture dependence ofm is given by
2-9
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umu>
pxt2bUsin

f

2U
bumAFu

11ebumAFu
1 ln~11e2bumAFu!

, ~B6!

wheredf54 is substituted. It is noted that, fixing the dopin
parameter and the temperature, the above formula is a
creasing function ofumAFu. Therefore, the AF ordermAF
suppresses the recovery of the particle-hole symmetry.

APPENDIX C: SCALING LAWS OF RH AND S

In this appendix, we present the derivation of the scal
laws ofRH andS in the case ofmAF5mdiag5v50 and in the
limit B→0. In order to see the temperature dependence
the Fermi distribution functionf F(j), we introduce the func-
tion f (bj)5 f F(j) whereb51/(kBT). Then, from Eq.~B1!
with mAF50, the doping parameterx is given by the follow-
ing equation:

2x5
1

2pt2Usin
f

2U
(

s56
E

0

`

dees f„b~e2sm!…

5
1

2pt2Usin
f

2U
(

s56

1

b2E0

`

dyys f„y2sbm…, ~C1!

It is easy to see thattAx/(kBT) is represented by a functio
of m/(kBT). Therefore, when we can consider the inverse
the function, m/(kBT) is represented by a function o
tAx/(kBT).

In the same way, by making the energy integral dime
sionless, the response functions are represented as

sxx>
e2

2pUsin
f

2U
S 2t

b D

3 (
s56

E
0

`

dyF 2y
d f

dy
~y2sbm!

1S 1

2
2 f ~y2sbm! D 1

11S 2t

b
yD 2G , ~C2!

sxy>
e2

2p Usin
f

2U2a2eB

x
~btAx!2S 2t

b D 2

3 (
s56

E
0

`

dysF2
d f

dy
~y2sbm!GF 11

1

11S 2t

b
yD 2G ,

~C3!
21450
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bsxx
Q >

e

2pUsin
f

2U
S 2t

b D

3 (
s56

E
0

`

dyF 2sy~y2sbm!
d f

dy
~y2sbm!

2S 1

2
2 f ~y2sbm! D bm

11S 2t

b
yD 2G , ~C4!

wheresmn
Q is the response function given by the correlati

function of the electric current densityeJW and the heat cur-
rent densityJWQ. In the first-quantized representation, the he
current density for sector 1 withs spin is given by

ĵ x
Q5~2ta!2S p̂x1cos

f

2
p̂yD2m ĵ x , ~C5!

ĵ y
Q5~2ta!2S p̂y1cos

f

2
p̂xD2m ĵ y . ~C6!

This is the continuum version of the heat current dens
derived in the lattice model, which is presented in Appen
D. The right-hand side of each response function is a fu
tion of tAx/(kBT) andtkBT, becausem/(kBT) is a function
of tAx/(kBT). Therefore, xRH>xsxy /(Bsxx

2 ) and S
>sxx

Q /(Tsxx) are functions oftAx/(kBT) and tkBT. In the
semiclassical limit, the dependence oftkBT is negligible,
andxRH andS scale as functions oftAx/(kBT).

APPENDIX D: HEAT CURRENT DENSITY IN THE
LATTICE MODEL

The definition of the heat current density is not straig
forward as against that of the electric current density. H
we present the heat current density of the system represe
by Eq.~1!. The Hamiltonian is rewritten asH5( rWhrW , where

hrW5
1

2 (
d̂,s

@2t rW1 d̂,rWcrW1 d̂,s
†

crWs2t rW1 d̂,rW
* crWs

†
crW1 d̂,s#

1(
s

~VrWs2m!crWs
†

crWs , ~D1!

VrWs52@us cos~QW •rW !1v cos~QW v•rW !#, ~D2!

and the sum of the unit vectord̂ runs6 x̂ and6 ŷ. It is clear
thathrW is interpreted as a local heat density. The heat curr
density would be conceptually defined by averaging
product of the local velocity andhrW . However, it is difficult
to define the local velocity, especially in the secon
quantized formalism. Here we define the heat current den
from the analogy with the conceptual definition. First, usi
hrW , we introduce the quantityRW as follows,RW 5V21( rWrWhrW ,
whereV is the volume~area! of the system. This quantity ha
2-10
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the dimension of heat density multiplied by length. Then,
define the heat current density as a time derivative ofRW , i.e.,
JWQ5 i @H,RW #. From the dimension ofRW , JWQ correctly has the
dimension of heat current density. Finally, the explicit for
of JWQ is given by

JWQ5JWE2mJW , ~D3!

JWE5
1

V (
rW

F2
i

2 (
d̂,d̂8,s

~ d̂1 d̂8!t rW1 d̂,rWt rW1 d̂,rW
* crW1 d̂1 d̂8,s

†
crWs

1
i

2 (
d̂,s

d̂~VrW1 d̂1VrW!t rW1 d̂,rWcrW1 d̂,s
†

crWsG ,

5
1

V (
kW ,s

F (
m̂5 x̂,ŷ

~24t2!m̂ sinkmH coskm

1cos
f

2
cos~emnkn!J ckWs

†
ckWs12vt ŷ sinky

3H 2cos
f

4
ckWs

†
ckW1QW x ,s1 i sin

f

4
ckWs

†
ckW1QW y ,sJ G , ~D4!

JW5
i

V (
rW

(
d̂,s

d̂t rW1 d̂,rWcrW1 d̂,s
†

crWs

5
1

V (
kW ,s

(
m̂5 x̂,ŷ

2tm̂ sinkmFcos
f

4
ckWs

†
ckWs

1~21!mi sin
f

4
ckWs

†
ckW1QW ,sG , ~D5!

whereQW 5(p,p), QW x5(p,0), andQW y5(0,p). The symbol
(21)m means that (21)x51 and (21)y521. In a physical
sense,JWE is the energy current density, andJW is the current
density.

As for the continuum limit, the following transformatio
of bases is performed before taking the limit.

F ckWs

ckW1QW ,s

ckW1QW x ,s

ckW1QW y ,s

G5FU1 O

O U2
GFckW ,1s

ckW ,2s
G , ~D6!

whereckW ,is ( i 51,2) is a two-component operator, and

U65
1

A2
~t36t1!S cos

f

8
t16sin

f

8
t2D . ~D7!
tt

Y
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eWhen there is no stripe,ckW ,is with kW;(p/2,p/2) corre-
sponds to the Dirac fermion ofi sector (i 51,2) with s spin.

APPENDIX E: RH IN THE CASE zvzËzvCz

Here we present the analysis ofRH when two lower bands
are doped. Around the tops of these two bands, their dis
sions are approximated as

e6~pW !52A~2ta!2px
21~2 t̃ 6a!2py

21m̃6, ~E1!

wheret̃ 65tA16uv/mAFu andm̃65umAFu6uvu. In this case,
by considering the two bands separately and then adding
contributions at the stage of conductivity, we can get the H
coefficientRH>a2/(ueux) at a low temperature, wherex is
the total doping parameter. However, when there are
mains of stripes with different directions, we should take
average of conductivity tensor. Then, we obtain the follo
ing result:

RH>
a2

ueu

4Fx2U v
mAF

U~x22x1!G
F2x2U v

mAF
U~x22x1!G2 , ~E2!

where x1 and x2 are doping parameters for the first an
second bands, respectively. Then, from the conservatio
the total dopingx and the commonness of the chemical p
tential m, x1 and x2 are determined using the followin
equations:

x21x15x, ~E3!

x2A12U v
mAF

U2x1A11U v
mAF

U5 uvmAFu

2pt2
. ~E4!

It is noted here thatx6 includes the contribution of both spi
degrees of freedom. Whenuvu is larger than the critical value
uvcu, i.e.,

uvu.uvcu5umAFuS A2pxt

mAF
D 2FA11

1

4
S A2pxt

mAF
D 4

2
1

2
S A2pxt

mAF
D 2G , ~E5!

only the second band is doped, i.e.,x150 andx25x.
We can also analyze the thermopowerS in a similar way.

However, its expression is more complicated than that ofRH
and is not suggestive. Therefore, we do not give the exp
analysis, but point out that, in the region 0,uvu,uvcu, S is
highly reduced whenuvu increases as shown in Fig. 4~b!.
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