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Transport properties, i.e., conductivitieg, , Hall constanR,;, and thermopowes are studied for the flux
state with the gauge flu® per plaquette, which may model the underdoped cuprates, with the emphasis on the
particle-hole and parity/chiral symmetries. This model is reduced to the Dirac fermid@s-inD, (where D
means dimensionalwith a mass gap introduced by the antiferromagnéAE) long-range order and/or the
stripe formation. Without the mass gap, the Hall consRptand the thermopowes obey the two-parameter
scaling IawsRHEa2/|e|foH(t&/kBT,ﬁ/TkBT) andS=kg/|e|f<(t\x/kgT,%/7kgT), with a being the lattice
constantx the hole concentration, antdthe transport lifetime. Th&,, and S show the strong temperature
dependence due to the recovery of the particle-hole symmetry at high temperaturesd@pendences of
T X) andoy, (independent ok) are in a sharp contradiction with the experiments. Therefore, there is no
signature of the particle-hole symmetry or the massless Dirac fermions in the underdoped cuprates even above
the Neel temperaturg€ . With the mass gap introduced by the AF order, there occurs the parity anomaly for
each of the Dirac fermions. However the contributions from different valleys and spins cancel each other to
result in no spontaneous Hall effect even if the time-reversal symmetry is brokegpwith. The effects of the
stripes are also studied. The diagonal and vertihalizonta) stripes have quite different influence on the
transport properties. The suppressiorRgfoccurs at low temperature only whén both the AF order and the
vertical (horizonta) stripe coexist, andii) the average over the in-plane direction is taken. Discussions on the
recent experiments are given from the viewpoint of these theoretical results.
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I. INTRODUCTION self-consistent Born approximatidf, exact
diagonalizatior!, spinon-holon bound-state pictut®,and
Since the discovery of higfi; cuprates, intensive studies variational methotf. Using thet-J model, all the analyses
have been done on the two-dimensiof2D) antiferromag-  give the maximum of the hole dispersion Rt (= /2,
nets. It is now established that the ground state of the 2D- 7/2). This dispersion can be understood in terms of the
Heisenberg antiferromagnet with the nearest-neighbor interz_flux picture®1° which introduces the nodal Fermi points
action on the square lattice shows an antiferromagna#g of the spinons alEz(i 7/2,% m/2) with the dispersion simi-
long-range ordering at zero temperatbieed the low energy lar to thed-wave supercohductors. This fits the ARPES ex-
spin excitation can be described in terms of the spin-wav?)eriments in the undoped cuprafes.
theory. However this does not mean that the electronic state

) . . ) At finite doping, the slave-boson mean-field theory of the
in the antiferromagnets is fully understood. Compared Wltht_J model predicts the state with both the singlet RVB and
the triplet channel of the two-particle correlation functions

: _ _ ' AF orders for smalk.?° The SU2) symmetry has been em-
the s!ng_le particle propertlezs such as t_he angle-resolved |Oh?)'loyed to represent the constraint and the underdoped
togm|55|on _spectréARPES, and the singlet channel ‘é‘ige‘ pseudogap region is characterized as the staggered flux state
Iapon fuqctlons such as the charge transport PTOPETHES -\ ithy spin-charge separatidhwhich can be regarded as the
still remain controvgr3|al. In fact, thgre are tvyo d|ﬁerent p'c'fluctuating state between thtwave pairing state and the
tures for it. One is the conventlonaJ spin-density-waveq rent order state. On the other hand, the staggered flux
(SDW) pictur€ with the wave numbeQ=(m, ), where state with the electron coordinates with the real current or-
both the weak- and strong-coupling regions can be smoothlgering and periodicity doubling has been proposed for the
connected. The other picture is theflux staté® originated  underdoped cupratés.
from the resonating valence bo@VB) ideal! At half fill- Recently there appeared several experiments on the Hall
ing, the 7-flux state is equivalent to thé-wave singlet par- coefficientRy and the thermopowe® in the heavily under-
ing staté®'3due to the particle-hole S@) symmetry** The  doped cuprates, which raised the issue of particle-hole
Gutzwiller projected wave function with the-wave paring symmetry®~® TheR,; as well as th& show a strong suppres-
and AF orders gives a better energy compared with that onlgion below the Neel temperatur&éy in some YBCO
with the AF ordert® Also the higher-energy continuum of the sample$, while this is not the case for other sampleBhis
neutron-scattering spectra and Raman-scattering spectra hstsongly suggests that the transport properties bdlgvare
been analyzed in terms of this-flux state!® sensitive to the oxygen chain ordering and/or the self-
The dispersion of a single hole put into this antiferromag-organization of electrons such as the stripes, which depends
net is an important issue studied intensively in terms of theon the annealing procedure in the sample preparation. An-
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other interesting clue is that in LSCO the suppression of thenagnetic length scaLéH~H‘1’2. In the present case, on the
Hall effect is observed only in the verticéiorizonta) stripe  other hand, there occurs no Meissner effect, and one can see
state and not in the diagonal stripe state f5£0.05°>>*  the response of the Dirac fermions in the uniform state, while
Above Ty, Ry is a decreasing function of temperature, the particle-hole symmetry is broken due to the shift of the
which remains one of the most puzzling features in the=ermi energy fromE=0. This introduces the length scale
normal-state propertie’s2>° /~x"Y2 "je., the interhole distance, and we can have a
In the SDW picture, a large metallic Fermi surface enclos-new kind of scaling when neither AF ordering nor the stripe
ing the area of +x (x: hole concentrationis recovered formation occur.
aboveTy. Therefore we expect the drastic change of the The plan of this paper follows. In Sec. I, our model
Hall constant fromR,= —a?/(1—x) to Ry=a?/x when the  Hamiltonian is introduced and its spectrum under the exter-
temperatureT is lowered acros§y. (Herea is the lattice nal magnetic field is reviewed. In Sec. I, the electromag-
constand. Correspondingly the resistivity should be affected netic and thermal responses are studied for the Dirac fermi-
by the onset of the AF order. This is in sharp contradictionons without stripes. The effects of the stripes are studied in
with the experiments. Even aboVg, the system behaves as Sec. IV, and Sec. V is devoted to discussions in comparison
the doped Mott insulator with the small number of halé$,  with experiments.

and even a slight change of the resistivity is not observed at
Ty Il. HAMILTONIAN

Considering all these clues, it is worthwhile to study the  \ve start with the most generic Hamiltonian in the stag-
transport properties of the slightly doperiflux state both  gered flux state with anti-ferromagnetic and strigpiasi-
above and belowy, which we undertake in this paper. We )order, which are treated as on-site potentials in the mean-
will neglect the interactions between electrons and the disofjg|q theory. Hereafter, we take the units in whitkc=1.
der potentials. The former is justified because the quasipar-
ticle number is small at low temperature due to the reduced Hee S
density of states and the-e interaction is irrelevant. The N
latter becomes important at low temperature for small
where the resistivity shows an upturn, but is irrelevant for the +v cos(@v-F)]c}gc;U. 1)
temperature ana range of our interest. We also study the ) . o
effect of the stripe formation on the Hall constant and theThe transfer integralt;.; ;=t7.; -=te'?" (with r,+r,
thermopower, and show that oxygen chain ordering is cruciai even) represents the staggered flhixor each plaquette.
for these quantities. The deviation of the flux framwhich  In the RVB picture, ¢ is generated by the superexchange
breaks the time-reversal symmetry and produces current ointeractionJ and equalsr in the undoped case. Therefore, in
dering, is also studied. This issue is closely related to th@ur representation, the transfer integtab estimated as
parity anomal§® in (2+1)D because the two species of the =0.8J, and should not be confused witin thet-J model®
Dirac fermions acquire a mass gap due to the AF orderingln the second termy, is the mean-field potential for the
Therefore the undoped and underdoped cuprates offer an igpin electrons with the wave numb&= (), which
teresting laboratory to study the transport properties of thgriginates from the AF ordem,r and/or the diagonal stripe
Dirac fermions with nontrivial topological nature influenced formation Mgiag @S U, = 0Map+ Mgiag, While v is that from
by the AF order and/or the stripe formation. The Dirac fer-

mion _has _been studied also in the context of _the nodal U3yt of the higher-order process in the stripe potential with
siparticle in thed-wave supercouductofé.In this case the

Fermi energy is always &=0 and the particle-hole sym- € Wave numbeQgyipe=(7/M,7/M) (diagonal caseor

metry remains. Under the external magnetic figlthe for-  Qsuipe= (7/M,0) (vertical casg The chemical potentigl is
mation of the vortex lattice is crucial, which introduces thezero at the half-filling. The eigenvalues for edclare

.. T . - -
t77Ch Cirg— 2 [+U,c08Q-T)
r,o

(rr'yo

the vertical stripe formation Wit|®v=(77,0). This is the re-

2 1/2

€,(K)=*| 4t%(cogk,+ cogky) + uZ+ inZ\/(4t2 cosfcoskx cosk, | +v?(4t?cogk,+ud)| . 2)

2

First, we consider the case without the vertical stripe. In . R
this case, the low-energy electronic states are described in Heff:iE AT ¢ (N Higthiolr), 3
N

terms of the two Dirac fermions &= (m/2,7/2) andk,
=(ml2,— wl2), which we call sector 1 and 2, respectively.

Measuring the momenta from theE(i:’2 points, and in the Wherewi(g)(F) is the annihilatior(creation operator ofi sec-
continuum approximation the Hamiltonian is given as tor (i=1,2) with o spin,
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Here|n) is the eigenvector of,a, with the eigenvaluen,

IT(T)) is the eigenvector of sga@,) 75 with the eigenvalue
+1(—1), and the quantum index for the intralevel orbitals is

andlp,=H1,|u,~-u, . Herep,=—id, andais the lattice omitted.|T(])) should not be confused with a real-spin ei-
$p—2m= genvectorja), but it comes from the two-component nature

constant. As is evident from the above Hamiltonian, eactys 5 pirac fermion. Especially, the zero mode is given by
Dirac fermion has a mass term with positive or negative sign,

and shows the parity anomaf/When the external electro-
magnetic fieldA, is coupled to each Dirac fermion, the
Chern-Simons tel‘m””}‘AM&,,A)\ is generated. Therefore the ,
Dirac fermion with positivenegativé u, has the rightlefty | nerefore, there exists only one zero made+) or [0o—)
chirality. Because there are two rigtR) and left(L) Dirac  fof €ach sector and its energydg,=|u,| or —|u,| depend-
fermions, there occurs the cancellation of the Chern-Simonid on the direction of the external magnetic fi#@cand the
terms, and no spontaneous Hall effect results. This remairgirality of Dirac fermions. We can also define effective cur-
true even when the fluy is different froms and the time-  rent operators as followg;=2tar; and],=2ta(cos¢/2n
reversal symmetry is broken to produce the current order. It-Sin¢/27;).
is because the current pattern is staggered, and does not af-
fect the uniform response in an essential way. IIl. ELECTROMAGNETIC AND THERMAL RESPONSES

Now we briefly review the Dirac fermions in the presence
of the external uniform magnetic fiel, which can be ana- The electromagnetic and thermal linear response func-
lytically solved?®?° In the effective theory represented by tions are obtained by the Kubo formula. We put the above
Eq. (3), the first-quantized Hamiltonian E¢4) is rewritten  solutions into the Kubo formula far , () and approximate

by the replacement,faﬂ—> %#:E,#_eA#(F), where [V the effect of the relaxation by replacing by w+i/7 with
X’E‘(F)Z: B. Then we define the following bosonic operatorsthe lifetime 7. This approximation reproduces the Drude for-

. Uy— 2ta(p,+e ' ¥2p,)

1o ~ ; ~ ’ (4)
2ta(py+e's/2py)

—Us— M

|00+)=3[1+sgn(u,eBy)]|0)o[T)®la). (11

as

1
ay=——
* J2eB,]

[%x+ ei sgn(eB(/,)</>/27‘Ty], (5)

R 1 R : ~
a‘r — [7Tx+ el sgneBy) ¢/27Ty]- (6)

¢ J2eB,|

These operators satisfy the commutation relafiap ,a,]
=1. Using these operators and the Pauli matriegs (i
=1,2,3), Eq.(4) is rewritten as

N KeB¢ - ~t . - ot
HlozT[(a¢+ ay) 1~ isgrieBy)(ay—ay) ]
+u 73— uml. ()

The eigenvectorn(=1) is

1

@[Venisgr(e%)uglm@m
+JenrsgneByu,n-1)e|[)]els), ©

with the eigenvaluet €, being given by

€ne= "Ke25¢n+uzav 9
2 2 . ¢
Kep,= V8t°a leByl, B,=Bsin.

Ino+)=

(10

mula foro,,(w) in the simplest case. The contribution from
sector 1 witho spin is presented in Appendix A. The total
conductivity is given by summing up the contribution from
all sectors. This procedure makes anomalous terms, which
come from the interband effect, cancel out with each other,
and lead to the consistent result in the AF ordered state, i.e.,
no parity symmetry breaking in the limg—0.

Equations(A5) and (A6) are valid for general cases in-
cluding both the quantum limitd{— o with finite B) and the
semiclassical limit KeB¢T< 1<|u|7). In the former case,

Egs. (A5) and (A6) represent the integer quantum Hall ef-
fect, while in the latter case they correspond to the usual Hall
effect. In the latter case, we obtain the same formula with
that given by the Boltzmann equation. For example, with
only the AF order and at low temperature, E¢a5) and
(A6) lead to

e? 8mxt’r
Oxx=5_ ) (12
2 )
\/47rxt2 sinE +maic
e? (8mxt?r)? a’lelB ¢
UXY:E N b , 27X SIHZE, (13
4rxt smE +Mie
and the Hall coefficienRy is given by
2
o a
Ry= —2= —sinZf (14)

B Ba’ix= |efx 2

independent of the presence/absence of the AF order. This is
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reduced to the conventional resu®,=a?/(|e|x) for the () Hall coefficient . (b) Thermopower
hole system with concentrationwhen we put¢= 7. How- s
ever thex dependences af,, and o, are peculiar in the
absence of the AF order, namely,,>yx and o, being 5
independent ok when we neglect the dependence of-. O
These are understood as follows. Tdg, is proportional to <
the density of states at the Fermi energy, which is propor- 2" \,
tional to \/x for the massless Dirac fermion. As fot,,, on
the other hand, the geometric interpretation is uséefllhe

O=T, myp=v=0

=001t

b=m myp=v=0
=001t

x=002 x =002

———- x=003

Hall conductivity is determined by the scattering path length, 0 03 1 0 03 —
[ (k)= 7V e(k), which is independent of the magnitudid bl 1 kT 11
for linear dispersion and heneg,, is independent ok. In FIG. 1. Temperature dependencegafthe Hall coefficientR,

Eq. (A6), this behavior is the consequence of the dominantn the unita?/|e|, and(b) the thermopowe8 in the unitkg/|e| for
contribution from the zero mode of the Dirac fermions to my-=v=0.

04y- On the other hand, whegd mxt<|myg|, the usual dis-

persion e(k)=<k? is relevant and the usua dependences,  In the case ofn,-=0 and the limitB—0, the following
ow*X and oy,cx result. The thermopowerS at a scaling laws are expected by the continuum model
sufficiently low temperature is also obtained in a similar way

as AP LT 6
¢ H_|e|X RH kBT,TkBT ’ ( )
2| qin 2
. K Wzk . 4mxt sin3 +2my e
=|e| 38 ol . ol . ¢ 2 vz S:E S(%,L), (19
4axt sinz 4mxt sinz + My le] S\ kgT' 7kgT

(15 wherefRH and fg are dimensionless function€The details

The x dependence o is also peculiar in the absence of the are given in Appendix G.The dependence dn/x/(kgT) is
AF order, i.e.,Sx1/{x. because ofu/(kgT) being a dimensionless function of

Next we consider the temperature dependencg,pind  tVX/(ksT), and the dependence arksT comes from the
S which originates from the Fermi distribution function transition between the highest valence band and the lowest
f(T,e,u(T)). Here the energy is averaged ovekgT, and ~ conduction band. The latter is neglected in the Boltzmann
both the particle and hole branches contribute with the optransport theory. In a physical sense, the contribution from
posite signs taRy and S whenkgT>|x(T)|. Furthermore, ~transitions between two bands would be very small when the
|£(T)| is a decreasing function of temperature as presentegondition 1<|u|7 is satisfied, i.e., in the semiclassical limit.
in Appendix B. For example, whem,e=0, it behaves at In this case, we get the one-parameter scaling laws

kg T<O(tVx)
e i) il e
2 = — — = — F—
s H R ’ S .
| w(T)|= \/477')('[2 Sing - ?(kBT)Z, (16) le[x TuikeT le] “\keT
Therefore, bothxR, andS are expected to scale as functions
and atkgT>O(tVX) of t\x/(kgT). Figures 2a) and 2b) show the scaling behav-
™ tz ¢) 1 . (a) Hall coefficient . . (.b) "Ih'ennovpowef
|w(M)|=——% sin—’—. 17 ¢=m myp=v=0
In2 2| kgT PAY o0l
1
Therefore, as long as the flux order is present, the particle- ¢ il s
hole symmetry is approximately restored at high tempera-S | V- xjgfo); )
tures even in the doped system, and bBthand S are re- D L S = “
duced as shown in Figs(d) and Xb), which are the results
of the original lattice model. The peak Ry occurs because
the suppression af,, as increasing dominates at low tem- O 7o rm e —— , 3
perature. After all, a low carrier density and a narrow gap 0 2k e ‘,‘,2) 6 0 2”/(”‘,‘,2) 6

result in these features, i.e., having a peak at moderate tem-
perature and decreasing at high temperature. It is worthwhile F|G. 2. Scaling of temperature dependences¢apthe Hall co-
to note that the temperature dependencs i@lsembles those efficientRy, divided byRy,=a%(|e|x), and(b) the thermopowes
of rare-earth compounds, such as YbCuAl, which have lowin the unitkg/|e| for mye=v=0. The open circles are scaling
carrier densities and narrow gaps. functions calculated in the continuum model.
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(a) Hall coefficient . . (b) Thermoporwer makes the mass gaps of different spins unbalanced and leads
o=, x=002 | N o=m, x=002 to the modification ofS. It is noted that the change of the

60F"

200 // Vo Tleoon mass gap modifie§ as in Eq.(15). (The unbalance of the
5 a0t g / Nyt v=0 mass gaps of different spins also leads to the ferrimag-
s Z /’ \ =0, v=0 netism) After all, the drastic modifications of bofR, andS
< “ 100 /\/ are expected only when the verticdorizonta) stripe for-

mation occurs. We will focus on this case below.

In the presence of the stripe, there appears the anisotropy
: : y in the plane. A naive expectation is that the 1D nature of the
0 05 1 0 05 1 transport along the stripe reducBg . However, this is not

bl 11 kel 1t the case, because the stripe does suppress notogplput

FIG. 3. Temperature dependencesafthe Hall coefficienr,, ~ @S0 one ofoy, and oy, with Ry=0y,/(Boyoy,) being
in the unita?/|e|, and(b) the thermopoweBin the unitwV/K for unchanged. This is the case also in our explicit calculation
(mar,v)=(0,0), (t,0), and ¢,t). showing thaRy,=a?/(|e|x) is a robust feature at a low tem-
perature. At this point, we must consider the configuration of
the stripe in cuprates. When there are stripes, their direction
would be different in each CuQayer as in LSCO, or there
are domains of stripes with different directions in a layer as
in twined YBCO. In the former system, we simply assume

at the vertical and horizontal types occur alternately. Then
It is reasonable to average the contributions from different
layers, because they can be regarded parallel circuit, i.e.

1
/ \ omyp=t v=¢
i
!
!

~_

iors of Ry andSgiven in Figs. 1a) and 1b). We can see that
the single-parameter scaling lawRf; works fairly well in a
broad temperature range. On the other handSfat works
only at low temperatures. This is becaueontains the en-
ergy integral that has one more energy dimension than th
integral forRy , andSis more sensitive to the higher-energy

reg:t])r;iwge:;(;tgﬁ ﬁ;g)cethsgl::rt#reerI:u;?ée(\jlsngn denceaf V€ should take an average of conductivity tensor not of re-
gs-. ' P b 9 sistivity tensor. Also in the latter system, more conductive

and S are shown in the presence of the AF order and there ions percolate and hence dominate the conductivity of the
vertical (horizonta) stripe. These results are obtained for the 9 P Y

lattice model in terms of the Boltzmann transport theorysyStem' Therefore it is reasonable to take averagepand

where the interband effect is neglected. We can observe th&t/Y " Then the opserveRH 'S su_ppressed becquse Ontyy
the AF order(without the stripe formationresults in the ';’ rEdUC(/adBcc;ns_|derably Wh"g_(‘TXXJF ayy)/2 is not, and
enhancement d®; andS One reason of this enhancement is Hg(]fxy (d'a ) IS suppresse; j id ial
that the AF order suppresses the recovery of the particle-hole eloré diSCussing generaj cases, we consider Ssome specia
symmetry at high temperatureéThe details are given in Cases wher&y andScan be analytlcally evaluate'd at a l.O.W
Appendix B) Another reason is that the heavier masg: temp.e_ratu.re by the Boltzmgnn equation. The first ."m't.'”g
makes the conductivity smaller as seen in E48) and(13). condition is thaim,g| is sufficiently -Ialtrger. than the kinetic
The former reason is crucial both f&, andS On the other ~ €1<79Y O(tX). The second condition igv|<|mug| or
hand, the latter would be crucial only féras expected from  VAt"+mag<<[v|. With these conditions, the low-energy
the comparison of Eqg14) and (15). This is because the Physics would be approximately described by quasiparticles
explicit dependence ofr,, and oy, on mag nearly cancel of linear dispersions ak=(/2,7/2) and (m/2,0), respec-
each other irRy, . Therefore, the enhancement®fs more tively. It is noted here that these quasiparticles are not simple
drastic than that oRy . As for the effect of the stripe, we two-component Dirac fermions, because the vertical stripe
will consider it closely in the following section. formation mixes the two-component Dirac fermions with dif-
ferent chiralizties as mentioned above. For the cése
<|v¢|~2mxt?/m,g, the analysis is complicated because we
IV. EFFECT OF STRIPE FORMATION should consider two bands doped in different ways. It is

The quasi-one-dimensional spin/charge ordering occurs ifoted here that there are two upper bands and two lower
some cuprate¥ and consequently affects the transportbands for each spin degree of freedom wimeg-#0 and
properties-®23 Therefore it is worthwhile to study the effect v#0. The analysis oRy in this case is given in Appendix E.
of the stripe formation on the flux state. Some works havéVhen|v| is larger than the critical valug |, only the sec-
been done assuming the one dimensionality, which correend band is doped. Therefore, fduv /<|v|<|mag| or
sponds the limit of strong stripe potentfdlin this section,  \/4t?+ mA2F<|v|, the result is expressed as
we give an alternative and complementary study starting
from the 2D flux state. It is easy to see that the effects of the
stripes are essentially different between the diagonal and ver- a2  at%2
tical (horizonta) ones, because the verti¢hbrizonta) stripe
introduces the off-diagonal matrix elements between the two

Dirac fermions arounc; and k,, while the diagonal one

does not. Therefore the effect of the diagonal stripe is similar I e v ~
to that of the AF order and we do not expect any drasticVhere t=t 1-Jv/mag| for Juc/<[o]<[mae], or t

change ofRy in the case of the diagonal stripe, although it =t\/|v|/ M2+ ma—1 for AP+ mac<|v|.

RH:WW. (22)
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(@) Ry /Ry, at kT =0.021 (b) S[ky/lel] at k,T=0.02¢  tensor. On the other hand, as f§rthe mass reduction, i.e.,
3 o= 1 the reduction of the band gap, is also crucial as is the anisot-
= ) = , : -
| x=002 ) ropy of the transfer integral. Therefore, interesting results are

expected in the nontrivial casmag|<|v|< 4t?+m2., be-
cause the energy dispersion is highly anisotropic and there is
no band gap between the two middle bands. We employ the
Boltzmann transport theory and numerically evaluate the
correlation functions. Figuredd and 4b) showsR, andS
as a function of the strength of the AF ordenr and the
vertical stripev, respectively. The temperature is fixed at
0.02/kg . As mentioned above, the region near the left axis
in Fig. 4(b) shows thatS is once suppressed by the weak
FIG. 4. (a) Hall coefficientRy, divided byR,,=a%/(|e|x), and  stripe, i.e.,|v|~]|v¢|. Then both are remarkably suppressed
(b) thermopowerS in the unitkg/|e|. Symbols(l), (1), and (lll) whenmy,e andv are comparable with each other, i.e., near
correspond to Figs.(8), 5(b), and Fc). the diagonal line. Figures(8-5(c) show the equal-energy
contours and Fermi surfaces for the three points in Figs. 4
On the other hand, the thermopowerS, and 4b). Especially, Fig. 8) belongs to the nontrivial case
~B<JZJZ>*1<JTLJS>, whereJ€ is the electric current density and shows the peculiar shape of the Fermi surface. Accord-

and J is the heat current density, along the directjan ing to Ref. 30,0y, could be reduced in the nontrivial Fermi

=x,y remains almost isotropic because the anisotropy of théurfac.e compared to. that of the?cwcular Fermi .surface sur-
correlation functiongJ;J7) and(JiJS) cancels each other rounding the same size of areakrspace. Especially when

in the numerator and denominator, respectively. Howeser, the Fermi surface has both parts of positive convexity and
is rather sensitive to the change of the gap and the electron[¢€gative one, this reduction would be very effective as seen
dispersion, becausd®J%) contains additional dimension of " the regionfv|~|Mag. o
energy and is suppressed by the coexistence of the AF order Finally, the effects of the AF order and the verti¢hori-

and vertical (horizonta) stripe. For the casdv | <|v| zonta) stripe on the temperature dependence®gfand S

L are shown in Figs. @) and 3b). The AF order enhances
< a2+ m2 < .
|Mag| or Vat*+mye <[], itis given at a low temperature both the quantities almost over the whole temperature range

by except for the region near the peak Rf;, and shift the
) S peaks to a higher temperature. This is because the AF order
WEW_ 8mxtt+2m 22) introduces the additional energy scale, i.e., the band gap.
“le] 37 8mxtt[8mxtt+m2]Y2’ Then the verticalhorizonta) stripe remarkably suppresses
both Ry and S in the whole temperature range whenis

wheret=t\1—[v/mae| and m=|mag|—|v]| for |v|<|v] comparable withm, . These results are parallel to the above
results where the temperature is fixed.

S

<|mag|, or ~t=t\/|v|/ 4t2+mic—1 and m=|v|
— J4t2+ map for 4t?>+m3-<|v|. Comparing Eq(15) in
the casep= 7 and Eq.(22), we can see that the weak stripe,
i.e.,|v|~|v¢|, strongly suppresses the thermopower with suf- Now we discuss the above results in comparison with the
ficiently strong AF order, i.e., largem,g|. Therefore a cru- experiments. The most important issue is whether the high-
cial test of this scenario is to measure the thermopdsier  temperature phase aboVWg and the pseudogap region can
the untwined sample wheiRy is not suppressed. be described in terms of the massless Dirac fermions by put-
Now let us turn to the results foRy and S in general ting myg=0. The temperature anddependences d&}, and
cases. Although the analytic results Ry [Eq. (21)] andS  Sappear to be qualitatively consistent with the experiments.
[Eq. (22)] are valid only in the limiting cases, they show However, when one looks at thedependence of the con-
what are crucial for each quantity. As By, , the anisotropy  ductivity oy, at T=300 K aboveTy, it fits better withocx3?
of the transfer integral, i.e., the anisotropy of the velocity, israther tharex due to thex dependence of the hole mobility.
crucial with the help of the averaging of the conductivity On the other handr,,o \x andaxyocx0 in our model, which

V. DISCUSSION

a =n, m,, =25t v=0351 b =m, m,,=25t, v=27t = = = L.
@ ¢ AF (b) 0 A (© ¢=m my=05tv=30¢ FIG. 5. Schematic view of the

(0, m] [, @] [0, 7] [, 7] [0, ] [, ] energy contours for three param-
\ W eter sets. Thick lines in each figure

8 8 W represent the Fermi surface far

=0.02. The reduced Brillouin
[x, 0] [, 0] [, 0] zone is the square with the corners

[£m/2,=m/2]. Copies are also

8 8 drawn over the original Brillouin

‘ zone for¢g=mur=v=0.
H
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is contradicting the above experiments. Furthermore, the ororder affects the transport properties in a nontrivial way, and
set of the AF order af, does not affect the conductivity,, =~ we have discussed the experiments from this view point.

in the experiment, which is more difficult to understand

from any mean-field picture. This is related to the interpre-

tation of the insulating gap at=0. In the mean-field picture, ACKNOWLEDGMENTS

it is due to the AF ordering while there remains a large gap The authors would like to acknowledge fruitful discus-
even without the AF order in the Mott insulator picture. If gijns with Y. Ando, C. M. Ho, T. K. Lee, S. Miyasaka, T.
the large gap disappears and crossing of the two bands ogyida, N. P. Ong, Y. Tokura, and S. Uchida. N.N. was sup-
curs abovery, the upper band becomes relevant at aroungyorted by Priority Areas Grants and Grant-in-Aid for COE
T,=JVx and particle-hole symmetry will be recovered research from the Ministry of Education, Science, Culture
aboveT,. This massless Dirac spectrum also gives xhe and Sports of Japan.

dependence as described above. Therefore it seems that the

dependence observed in experiments suggests that the Mott

insulating picture is more appropriate for the high- APPENDIX A: CONDUCTIVITY IN THE CONTINUUM
temperature phase. In other words, the Dirac fermion without MODEL

the AF gap is never relevant to the underdoped cuprates. This
is also consistent with the asymmetry of ARPES betweer%ivi

hoIe:{dope?li\lzca:rgédeIetctror}-dopéﬁ CLiptrhatfih Reqe_nt ex;f)e;;:- in Sec. Il. When the effect of the relaxation is approximated
ments on strongly suggest that the minima ot the by replacingw by () = w+i/7 with the lifetimer and we can

electron dispersion are &= (w,0) and (Orr), and the diagonalize a given Hamiltonian, the linear-response theory

particle-hole symmetry is broken. This appears to be consisgenerally gives the following representation for the uniform

tent with the SDW picture with appropriate longer-rangeconductivity:

hopping integrals’ andt”. However, the sign of andt” is

reversed when one consider the’-t"-J model for the

electron-doped case, and the minimum &{Q) is recovered

by self-consistent Born approximatidhand its results can UW(Q):ieZE
a.p

This appendix is devoted to present the uniform conduc-
ty o,,(w) of the continuum effective theory constructed

fF(fﬁ_M)_fF(fa_,U«)

be interpreted as the flux state with the AF ortfeFhere- €, €p

fore, it makes sense to consider the flux state together with (]3,18)(B13, ] a)

the AF order, but not without it. % d pl (A1)
The AF ordered state, on the other hand, can be well O+eg—e,

described in terms of the mean-field state with the flux order.

In this AF state, the conventional behavior of the doped cary  o1a and 8 are the quantum indices of eigen stat

riers is expected without the stripe formation. Therefore ther presentsy component of the current density ama(f’
effects of the stripes are the most interesting issue. It is foun_#) is the Fermi distribution function. We appl); the above
thatRy, =a’/(Je[x) is a rather robust feature at low tempera- ¢, 1a to the effective theory in Sec. Il, i.2+1)D Dirac
tures. The suppression occurs only when the AF order an rmions in the external magnetic field. For example, in the

the vertical (horizonta) stripe coexist, and the directional case of the contribution from sector 1 withspin, the fol-
average is taken within the plane. The thermopower is als?owing replacements are sufficient: ’

suppressed by the stripe formation, and does not need the
directional average. The difference between Ref. 6 and Ref.

7 seems to be due to the sample preparation. A longer time
annealing has been done for the former case, while the |eB|
sample is quenched in the latter case. Therefore it is expectei o 2 E ,la)—=Inox), e~ e,

that the chain is more ordered in the former case, which nn'=0ss’=x

might help the stripe formation. The fourfold symmetry ob-

served in the magnetoresistarftis interpreted to be due to

;heldinduced stripe in terms of the in-plane external magnetic J,—]=2tar, (A2)
ield.

In conclusions, we have studied the transport properties of
the flux state as a model for underdoped cuprates. This
model shows several remarkable features such as parity
anomaly, scaling laws fdry andS, the recovery of particle-
hole symmetry at high temperatures. Compared with the ex-
isting experimental data, in particular, tihedependence of
oyx, it is unlikely that this model describes the underdopedHere|no=) ande, are defined by Eq¢8)—(11) in Sec. Il.
cuprates without the AF order. However, the flux state withr; are the Pauli matrices in the spacd bf|)). [See Eq(8).]
the AF order, which gives the mass gap to the Dirac fermi-Then the contribution from sector 1 wittx spin is repre-
ons, describes well the ordered state. In this case, the strigented by

e}

J,—]y=2ta cosg T1+Sin§7'2 .
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o1 ie? 28l 2 5 TeS o m) = felSen,— 1) (nos|j,|n"os')(n’ os'[j,Inos)
y7a

27 nn'=0ss == Seno_—S/Enro. Q"’S/En’g_seno
eB < 1 nos|j,/n’o—syn’o—s|j /nos

_ie2leBl 2{ (noslj,In o= s)(no—slj,[nos)
2@ nn' =0 S=* Gnro.+ €ng Q_S(en’a'+ EnO')

 felewo=su) ~felen,—su) (nosli,In’os)(n’oslj,Inos)

€nc ™ €n'o Q+S(€n'0'_ 6_nzr)

fr(enotsu) —felen,—sp) <naslivln'o—s><n’cr—sliﬂlnos>1
En0.+ €n/(r Q_S(En’(r+ En()')

,le8 (—i1Q)RE(nos|j,|n"c—s)(n'o—s|] [nos)]

—ie"5— > 2

nn'=0S=*

2fF(En0'_S/'L) -1
QZ_(en’UJ’_ fno')z

€noT €ne

2fF(En0'—SILL)
0% (€nrg— Gna)z

+sIm[(nos|J°V|n’a—s)(n’a—s|fﬂ|nos>]} +

><|<—imRe[<nos|JVln’os><n’08|iﬂln03>] . (A3)

+s Im[(nas|1°v|n’as)<n’os|]#|nas)]]
€nc ™ €n'o

It is noted that all distribution functions in the first equality represent those of electrons. In the second equality, we have
done the transformatiofy(— e— u) —1—fr(e+ ) for negative-energy modes in order to change the distribution function of
the valence band to that of the quasihole. In the third equality, the difference of distribution functions is pulled apart to each

distribution function. This procedure is justified beca(JBers|j°M|n’crs’)¢O only forn’=n=1 as we will see below and the

distribution functionf(e,,* n) decreases sufficiently fast asncreases.
The final procedure is to substitute the matrix elements by the following explicit forms:

En<r+En+1<rI En’+1(rIEn’o+
(o |rln’ o) = 22| \J TS [T S e,
L €nc€n+lo €n'+10€n' o ]
+ - _1 En(riEnJrl(ri En’+l(rIEn’(rI
<nU—|Tl|n 0'+>:+§ —5n+1,n’_ —5n,n’+l '
L €nc€n+lo €n'+10€n' o ]
1 En0'+En+la'I En’Jrlo'IEn’o'Jr
(nox|mln’ox)=FisgneBy)s| \\ = dwan— \ = Onnria .
I €nc€n+lo €n'+10€n' o ]
1 En¢7+En+10'+ En’+la'IEn’0'1
(nox|mn"oF)=*i sgreBy)s| V= - Oneint \ 7 Onnreaf, (A4)
L €nc€n+lo €n'+16€n'a ]

whereE,,. = ey, *sgnEBy)u, . (The absence of one of zero modes is appropriately representgg,by.) As for the dc
conductivity, the contribution from sector 1 with spin is given by

lus/[1+sgr(su,eBy)]
(KgBd)-i- 772)2+4772u(27

e2
o =57 Kee 2 | fr(lug|—su) + 2 fr(en—sp)
s=+ n=1

X[(Kgs,~ 7 2+ 8(Kgg,+ 7 )7 et (47 %)) 7 (7 *+den) (en+ User V)

4 2 -1 2 -2 e 7 'Kep
+KeB¢(36n_uo’€n )_4KeB¢T |uo'|sgr(su0'eB¢)] +E 2
- 1 u
X > — . (1+ ) (A5)
n=0 (enten+)[7 "+ (€t €n11)7] €n€n+1
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e , s (K§B¢+ 7 H)[1+sgr(su,eBy)]
Oy =57 SINEBKEe, 2, | 5 (U] —sp)

(K§B¢+ 7'72)2+47'72u(2,

+ 2 sfe(en—su)[(Kgg, =724+ 8(Kgg, + 7 )7 2+ (477 2e) 2 MK (KEp, =7 447 2u))

- T*Z(K;‘ng— 74+ 412€0)|u,| e, tsgr(su,eBy)]

2 K2, =
e eB U,(€nt€nrt)
- —sgr( sinf) 2 (72" ntl —+ o cosf, (A6)
2m 2 2 7o €n€nt1l 7 “t(€ent€ni1)”] 2
|
The terms without the distribution function represent the . b
parts of the interband effect, which remain even in the case e-(p)=\/(2ta)?| p?+2 COS5 PxPy +mie. (B2

w=0 andkgT=0. As for o7, the contribution from the
interband effect is negligible in the semiclassical limit The sign ofx is taken as it is positive whep<0.

(KeB¢<l<|,u,|7') compared to the contribution from the In the low-temperature approximationksT<(| |

Fermi level. In this case, the Boltzmann theory is a 9°°d—|mAF|), we can estimate the right-hand side of E8{) by

approximation. (The interband effect is neglected in the \iging the sharpness of the Fermi distribution function as fol-
Boltzmann theory. On the other hand, as fm‘ig, the last  |gws:

two terms, which include the interband effect remaining in

the caseu=0 andkgT=0, cancel out after summing up the

contribution from all sectors. In other words, when the parity v ds
symmetry is breaking, i.e., the numbers of right and left 167t?
Dirac fermions are unbalanced, we cannot neglect the re-
maining interband effect. Especially in the case~ and
B—0, the last line but one in')l(;’ gives a contributiont 1/2

in the unite?/h as long asi,+# 0, where the sign depends on
u, and ¢, andh is Planck’s constant. However, it is noted Then, in the hole-doping case, i< —|m,g|, the tempera-
that the totalr,, should take a integer value in the uefth  ture dependence qf is given by

when it is quantized. Therefore, in the case where this inter-

sgri ) O(] m| —|mag|)

2

X| ul2—mig+ W—(kBT)2+~-} (B3)

3

2

band effect is crucial, we must seriously consider the contri- & -
bution from the bottom of valence bands and the top of con- | | = \/477Xt2 sino| +mag— - (kgT)?, (B4)
duction bonds, which are beyond the range of the continuum 2 3

model.
where we have used;=4.

APPENDIX B: TEMPERATURE DEPENDENCE OF THE On the other hand, in the high-temperature approxima-
CHEMICAL POTENTIAL tion, kgT>|u|, we can estimate the right-hand side of Eq.

_ (B1) as follows:
Here we consider the temperature dependence of the

chemical potentialu in the limit B—0. When there is no
stripe formation, the doping parameter of the continuum_X: dy 1 (= Sy

. . 2 d oL y—sBu’
model is given by 8mt2 siné s== B2) plmagl y1+ ey~ shu
) 2
=% 3 [ S stied®)-sw
—X= s Ly Ld 5> Fl & - d m
c==s=x J (2m) = f 3 % 1'8| B\Ar:| |+|n(1+e*/3|mAF\)+... ,
AF
d; o Amt?|sin— e
SEE— f deesfe(e—su). (Bl) 2
gmt? sin> s= Imard (B5)

Here d is the number of spin degrees of freedom, id., where8=1/(kgT) and we have expanded the integrand in
=2, d; is the total number of inner degrees of freedom, i.e.,Bu. Finally, in the hole-doping case, i.g.<0, the tempera-
d; = (left+right) X ds=4, and ture dependence qf is given by
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e 27
mxt*B sing‘ Bod= —(F)
|u|= , (B6) 2 SiﬂE

IB|mAF| — Blmag]
———— +In(1+e FIMar)
1 + eBImarl

* df
_ , _ N , X 2 f dy| —sY(y—sBpu) g, (y—sBu)
whered;=4 is substituted. It is noted that, fixing the doping s=* JO y
parameter and the temperature, the above formula is a in-
creasing function of mag|. Therefore, the AF ordemag

inla. 1
suppresses the recovery of the particle-hole symmetry. _ <§—f(y—3,3,u) 32:‘; 51, (Ca)
1+|—vy
APPENDIX C: SCALING LAWS OF Ry AND S B

In this appendix, we present the derivation of the scalingvherecy, is the response function given by the correlation
laws ofRy; andSin the case oMar=mMmyag=v=0 andinthe  function of the electric current densigd and the heat cur-
limit B—0. In order to see the temperature dependence qfant densityd?. In the first-quantized representation, the heat

the Fermi distribution functiofig(£), we introduce the func- o\ rrent density for sector 1 withr spin is given by
tion f(B&)=fr(&) where=1/(kgT). Then, from Eq.(B1)

with mye=0, the doping parameteris given by the follow- . of = & .
ing equation: Jx=(2ta) px+ COSEDy) — Mix; (CH
v — 1 “ _ *Q_ 20 o (f)'\ ~
X= deesf(B(e—su)) Iy =(2ta)?| py+cos5py| —uly- (Co)
20 . ¢ sS==* 0 2
2t smE

This is the continuum version of the heat current density

- derived in the lattice model, which is presented in Appendix

1 1 . i ol

= _2f dyysfly—sBu), (C1) D. The right-hand side of each response function is a func-
27t2|sin—| = BJo tion of t\/x/(kgT) and 7kgT, becausgu/(kgT) is a function

2 of (g\/i/(kBT). Therefore, xl?/,iEXny/(Bafx) and S

. . ) =o./(Toy, are functions ot yx/(kgT) and 7kgT. In the

Itis easy to see that/x/(ksT) is represented by a function emiclassical limit, the dependence ;T is negligible,

of u/(kgT). Therefore, when we can consider the inverse ofs .
the function, u/(kgT) is represented by a function of andxRy andSscale as functions afyx/ (ksT).

I+

tx/(kgT).
In the same way, by making the energy integral dimen- APPENDIX D: HEAT CURRENT DENSITY IN THE
LATTICE MODEL

sionless, the response functions are represented as
The definition of the heat current density is not straight-
_ e 27 forward as against that of the electric current density. Here

Txx= we present the heat current density of the system represented

P\ B
2 sin by Eq.(1). The Hamiltonian is rewritten ad =>:h;, where
- df h*=lz [—tri5:Ch « Cro—tX «-Cl crisol
X 2 dy| —y=—(y—sBu) o 4 0,1 45,0710 ‘1451 rg r+o,0
s=+ Jo dy 6,0
+ 2 (Vig— el ciy, (DY)
1 o
+ E—f(y—sﬁﬂ) 5, 12| (C2 L o
1+ EV) Vi,=—[U,co8Q-r)+vcogQ, r)], (D2
and the sum of the unit vectd@runs =X and *y. It is clear
e’ |  ¢|2a%eB (27 2 thath; is interpreted as a local heat density. The heat current
Txy= 5 |SIN51— (Btx) B density would be conceptually defined by averaging the

product of the local velocity antl;. However, it is difficult

% df to define the local velocity, especially in the second-
X f dys — - (y—spu)|| 1+ 2| quantized formalism. Here we define the heat current density
s=+ Jo dy 27 . . . .
1+ Fy from the analogy with the conceptual definition. First, using

h;, we introduce the quantitR as follows,R=V~1S:rh;,
(C3)  whereV is the volume(area of the system. This quantity has
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the dimension of heat density multiplied by length. Then, wewhen there is no stripeys i, with k~(w/2,7/2) corre-

define the heat current density as a time derivativR dfe.,
JO=i [H,R]. From the dimension oR, J° correctly has the

dimension of heat current density. Finally, the explicit form

of J? is given by

JR=JE— 4], (D3)
For S5 S ettt sty
V; = 55, r+art r+6,rr+6+48,0°T0
i . T
+§3 5(VE+25+VF)tF+Es,FC;+;gYUCFa}'
1 pn
:VZ 2 (—4t>)usink,i cosk,
K,o | p=xy
¢ k L . k
+cosEcos{eW v) { C,Ckot 20ty sink,
x[—cos%c&ach@x,gﬂsin%c%gchéyyg] , (D4)
L
JZV? > B4 5:Cr 1 5 oCro
=£ 2 2tz sink | cos—c! cp
\V IZ,o- ;ALZ;()A/ e 123 4 ko ko
+(—1)H sin%c}ac@@,o , (DY)

where(j=(7r,7r), @x=(7r,0), andéy=(0,w). The symbol
(=1)* means that{ 1)*=1 and (- 1)Y= —1. In a physical
senseJF is the energy current density, addis the current
density.

As for the continuum limit, the following transformation
of bases is performed before taking the limit.

Ckor
o | [Ue Olfika] o
Ck+Qx'U O U_ lzblz,Zo
Ck+Qy .0
where g i, (i=1,2) is a two-component operator, and
1 ¢ P
UiZE(TsiTl)(COSngiSII’]gTZ . (D7)

sponds to the Dirac fermion aéfsector {=1,2) with o spin.

APPENDIX E: Ry IN THE CASE |v|<|v(|

Here we present the analysisiRf, when two lower bands
are doped. Around the tops of these two bands, their disper-
sions are approximated as

€.(p)=—(2ta)? (ED)

wheret . =t\1*[v/mug| andm. =|myg| + |v|. In this case,

by considering the two bands separately and then adding the
contributions at the stage of conductivity, we can get the Hall
coefficientRy=a?/(|e|x) at a low temperature, wheseis

the total doping parameter. However, when there are do-
mains of stripes with different directions, we should take an
average of conductivity tensor. Then, we obtain the follow-
ing result:

pi+(2t.a)%p;+m.,

1%
- a2 4 X_‘m_AF(X‘_X*) .
H:|e| ) v 2 ( )
X m_AF(X7 X4)

where x, and x_ are doping parameters for the first and
second bands, respectively. Then, from the conservation of
the total dopingx and the commonness of the chemical po-
tential x, x, and x_ are determined using the following
equations:

X_+X, =X, (E3

v

Mar

lomag|

1+ >

X_\/1— — Xy (E4)

Mar 2t

It is noted here that.. includes the contribution of both spin
degrees of freedom. Whén| is larger than the critical value
lvg, i.e.,

ol lod | |(\/2th>2 1 \2mxt)*
v|>ve=|Mm 1+ —
¢ o AF 4\ mar
1 \2mxt)?
- , (E9
2\ map /|

only the second band is doped, i®,=0 andx_=x.

We can also analyze the thermopovi&in a similar way.
However, its expression is more complicated than tha&pf
and is not suggestive. Therefore, we do not give the explicit
analysis, but point out that, in the regiorc(u|<|v|, Sis
highly reduced whetw| increases as shown in Fig(b4.
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