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Longitudinal spin dynamics in the Heisenberg ferromagnet: Diagrammatic approach
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Based on the diagrammatic technique for spin operators, the ferromagnetic Heisenberg model is studied with
an emphasis on the longitudinal spin dynamics. The diagram rules are, to our knowledge, newly formulated by
using equations in terms of variational derivatives of a generating functional describing interactions of the spin
system with auxiliary fluctuating fields. This approach provides us with an efficient procedure to derive
graphical representations for perturbation expansion series for different spin Green functions. Since fluctua-
tions of the longitudinal spin components are generated by processes of virtual creation and annihilation of
transverse spin component modesnormalized spin wavgsthe infinite series involving all distinct loops
built from spin-wave propagators are summed up. This results in an expression for the longitudinal spin
susceptibilityy*¥q, ) taking a generalized RPA-type form with a strongly renormalized denominator includ-
ing all the terms~1/z (z is the first coordination lattice numbeiThe corresponding longitudinal component
of the dynamic structure factor exhibits a three-peak structure with two wide maxima at frequéncies
~+J(S"q and a sufficiently narrow central peak that grows fast when approaching the Curie temperature.
With growing temperature, the intensity of ti&, peaks increases, and they merge with the central peak
whereas the width of the entire spectral distribution decreases. At fixed temperature, the distribution width
changes linearly with wave vectgr The observed picture is applicable beyond the hydrodynamic regime that
is valid at smaliq and higher temperatures. Study of the evolution of the spectral distribution from a three-peak
structure to a single-peaked one, valid beyond the hydrodynamic regime, with increasing temperature can help
to explain conflicting results of neutron studies of longitudinal fluctuations in different ferromagnets.
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[. INTRODUCTION and, hence, these elementary spin excitations survive up to
the critical vicinity of T . These theoretical predictions were
One of the basic models of the theory of magnetism is theonfirmed in many inelastic neutron scattering measurements
Heisenberg lattice model with the Hamiltonian of ferromagnetic materialgsee, for instance, Ref. 5 and ref-
erences therejn
1 Study of the dynamics of longitudinal spin components
H=-3 > Ji(SS). (1.)  implies a different physical picture and poses new theoretical
! problems. Both the theoretical predictions and experimental
Here S is the spin operator on aith lattice site,J;; is the results .avallable in this area are .rat.her scarce and
exchange integral. Despite its simple definition even in theontradictory’ According to VLP, a longitudinal spin mode
case of ferromagnetic coupling;; >0, the statistical me- arisesasa result (_)f a V|rtu_al process of coherer_1t creation and
chanics of the model in a wide range of temperatures is fagnnihilation of ordinary spin waves. By developing a regular
from being trivial. Within this context, several basic notions Peérturbative approach and further using some simplifying ap-
and theoretical approaches to the problem are worth merRfoximations, VLP evaluated the spectral density of the lon-
tioning. As it is well known! the concept of spin waves as gitudinal spin correlation f_ur_1_ct|on, i.e., the imaginary part of
low-energy collective excitations describing the dynamics ofthe longitudinal susceptibilityx*(q,w). The calculated
transverse spin components provides a good approximatiohzz(qaw) has shown two weak resonances at frequeneies
at low temperatures. Effects of spin-wave interactions were= *&(0), wheree(q) is the energy of a spin wave at the
highlighted by Dysorf. Bogoliubov and Tyablikov gave Same momenturq. Consequently, the measurements of the
rather a simple extrapolation thedrgnd extended the spin- longitudinal spin fluctuations af<T. in inelastic neutron
wave concept to higher temperatufies T¢ (T is the Curie scattering experiments should reveal two symmetric reso-
temperature They showed that the temperature- Nance peaks.
renormalized spin-wave energy spectrum is described by a At the same time it was predicted that &t>Tc, but
standard expression for the spin-wave dispersion if the maxibeyond the critical region, the spectral density of spin fluc-
mum spin projectiorSis replaced by its average valgg?).  tuations in the hydrodynamic regime where the transverse
However, the spin-wave decay processes were not consid@nd longitudinal spin fluctuations are indistinguishable is de-
ered in Ref. 3. Vaks, Larkin, and PiKii\VLP) examined this ~Scfibed by the van Hove formula
problem and argued that in the long-wave limit, the decay 1 A2
rate of the renormalized spin waves remains to be compara- Y(qyw)~ = 9 _ 1.2
tively small even in the high-temperature regimeTat T ' T w?+(Ag?)?
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Here A is proportional to the coefficient of spin diffusion. some limitations contained in Ref. 4 and to reveal a unique
Motivated by this observation, VLP suggested that in an orphysical picture common to numerous experimental observa-
dered stateT<T., the longitudinal dynamics of spin fluc- tions mentioned above. Relying on the diagrammatic tech-
tuations at smaltj andw acquires a diffusive feature to give nique in terms of spin operators proposed and elaborated by
a three-peaked structure §f4q,w): there are two inelastic VLP in the late sixtie$,we use below a convenient version
peaks atw==*¢(q) and a narrow quasielastic peak @t of this technique developed later by one of the present
=0 of the width~ A g?. This suggestion was not confirmed, authors*~1°A detailed account of this version is given in the
however, in subsequent theoretical studies. For inStanCﬁnonograpﬁs available to Russian readers, and a strongly
Villan” obtained a two-peak structure, whereas Maz&nkocompressed description is presented also in Ref. 16. Up to
predicted a broad quasielastic peakyiff(q,w). now, when the diagrammatic techni§dé'® was con-
Experimental investigations of the longitudinal spin fluc- styrycted the Wick theorem for the spin operators was used. In
tuations in ferromagnetic_ materigls led tq contradictory repe present paper, we follow a new way and develop an
sults as well. The studies carried out in pure ?_rczmd approach based on a generating functional describing inter-
nickef® close to b“tz belowT¢ revealed an inelastic tWwo- 4ntions of the spin system with auxiliary fluctuating fields.
peaked structure of*q,«) without any S'g'f‘at_“re of the Spin Green function§GF9g are determined as variational
geinr:-r\?vla?/ia:. :ijor;]psg;e?ofﬂgglesﬁq'n“(;)mi'ggﬁirct?;ng_ derivatives with respect to these fields. The procedure can be
P b considered as a generalization of the famous Baym-Kadanoff

magnets EuO and EuS considered to be a prototype of thaepproacW in the theory of usual BoséFerm) systems.

Heisenberg model. On the contrary, a quasielastic single- . . .
g Y. ad g In Secs. lI-IV, we show that the diagrammatic series for

peak behavior without evidences of the resonant scattering in GFs ari It of the Tavl . : ¢
was observeitlby the neutron scattering technique in the fer-SPIN GFs arise as a result of the Taylor series expansion of a
specially defined generating functional. As compared to the

romagnetic Pd-Fe alloy. In this experiment, a spin polariza ) :
tion analysis was performed to distinguish contributionsStandard perturbative scheme based on the Wick theorem, the

from longitudinal and transverse spin fluctuations. A similarPresent approach gives more efficient and straightforward
picture was observed also in the stifdgf the longitudinal ~ Prescriptions to handle the spin GFs. Another advantage of
spin dynamics in the antiferromagnetic RuMnF the generating functional method is that it provides a way to
In view of the unsettled situation, both in the theory andeasily derive exact equations in terms of functional deriva-
experiment, new theoretical approaches to the problem of thives for different spin GFs, which enables one to test differ-
longitudinal spin dynamics are strongly required. In the re-ent approximate solutions of these exact equations. A more
cent study by Bunker and Land&tspin dynamics simula- detailed discussion comparing the generating functional
tions with finite clusters were used to calculate the longitu-method with the standard one is presented in Secs. II-IV.
dinal component of the dynamic structure factor that, in fact, In Sec. V, a diagrammatic representation for the longitu-
is the imaginary part of the longitudinal spin susceptibility dinal spin GF is formulated. Since the quantum dynamics of
X*49,w). Only the classical limitS—«, of the Heisenberg longitudinal spin components is generated by virtual pro-
model at high temperatures was considered both for ferrosesses of creation and annihilation of spin waves, the math-
magnetic(FM) and antiferromagnetitAFM) cases. For the ematical problem amounts to summing up all the loop dia-
FM case, the excitation peaks are found at frequenciegrams describing these processes. A complexity of the
o (q)=|e(k)—e(k=q)| and interpreted in terms of pro- problem arises from the fact that a commutator of two spin
cesses of creation and annihilation of two spin waves withoperators, for instanc&™ andS;” , is not ac number. There-
energiess (k) ande(k*q). For the AFM case, there is also fore, the series of the loop diagrams turns out to be rather
a second channel of two-spin-wave excitations with the eneomplicated and contains four different types of loops. To
ergy o' (q)=|e(k)+e(k*=q)|. In both expressions for sum up these series, we use a method called GRBAer-
»~(q), the wave vectok is a variable. The excitation pro- alized random-phase approximatjoelaborated earlier by
cesses are controlled, however, by the occupation fader  one of the present authdfs?in the study of thet-J model
termined through the momentum Bose distribution functionformulated in terms of Hubbar¥ operators. When an appro-
n(k)], which makes the spin waves with~0 to be domi- priate diagrammatic technique is applied to thé model
nant ones. Therefore, the positions of excitation peaks meand collective Bose-type modes are calculated, also series
sured by Imy*4q,w) are close to spin-wave energieég).  are obtained for loop diagrams with four types of distin-
Thus, the numerical stud of the classical limit of the guishable loops. Though the loop diagrams for the Heisen-
Heisenberg model has confirmed the multiple spin-wave naberg model and theJ model are defined in terms of bosonic
ture of the propagating longitudinal spin excitation in accor-spin-wave GFs and fermioniclike propagators, respectively,
dance with the basic idea elaborated in the quantum case ize diagrammatic series for both the models are very similar.
VLP in their pioneering work.We note, however, that sim- The isomorphic character of diagrammatic series for these
plifying and uncontrolled approximations used in Ref. 4 im-two different models originates from the fact that permuta-
pose strong restrictions on the validity of the expression fotion relations between a pair of the Bose-like operarfs
the longitudinal spin susceptibility derived there. andX~ " within thet-J model is of the same structure as that
In the present paper, we study the longitudinal spin dyfor spin operatorsS* andS~ for the spin model. By sum-
namics of the ferromagnetic quantum Heisenberg model. Wening up all the loop diagrams, we arrive, at the end of Sec.
develop a general theoretical treatment aiming to overcom¥, at the final expression for the longitudinal GF the denomi-
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nator of which includes all the terms 1/z (z is the first .

coordination number of a relevant magnetic lattice §=-[S HI=S'> %S -2 %S . (26
Analytic continuation of the Matsubara-type spin GFs ' !

onto the reak axis determines the longitudinal susceptibil- 14 ~5iculate spin GFs, we first define a generating func-

ity x*(q, ) of the Heisenberg model. In Secs. VI, VII, the yi5n4) 71 in the following form of a generalized partition
susceptibility is examined as a function of frequereyand  ¢,nction z

wave vectoig. This analysis shows that fluctuational dynam-

ics of longitudinal spin components corresponds to two Z[V]=Tr(e AHTEY), 2.7
strongly damped oscillators coexisting with a relatively nar-

row central peak or a broad diffusive peak in the relevanwhere the operator variabM contains fluctuating fields act-
spectral distribution. Respectively, either a three-peaked dng on the spin system. For our purposes, the following ap-
an entire single-peaked shape of the longitudinal componerropriate form ofV is chosen:

of the dynamic structure factor is expected, which is con- N B

trolled by temperature and a relevant set of parameters of the V=v1S],+S,U1»S,, . (2.8

magnetic system under consideration. We believe that thiE| th ical suffi i d h
property of the calculated longitudinal spin susceptibility ere the numerical Suflixes aré composite ones, and eac

provides an explanation of the apparently conflicting resuitdesignates a lattice site and a time variable like, for instance,

obtained in different inelastic neutron scattering measurel = (11,71). Each pair of repeating suffixes implies the sum-
ments of ferromagnetic materials. mation over the sites and the time integration over the inter-

val 0<7< . Hereafter such suffixes are primed.

The time-ordered products of spin operators can now be
defined as variational derivatives @f V]. In particular, the
derivatives

Il. GENERATING FUNCTIONAL AND SPIN GREEN
FUNCTIONS

We start with a more general anisotropic spin model by

oL
introducing the Hamiltonian oo =Tr(e”PATSeY)=Z[V(TS)y,
1

1
H=-h>, -2, SJ;S — = ZJZSE (2. 52
TG NS T 5 S S0~ Tr(e TS S, eY)=Z[VKTS S, )y,
12
where the circular spin operators are defined as foll§vs
=(S'+i9Y)//2. In the limitJf; =J;; and at the zero external 5%z o v
field, h=0, the isotropic Heisenberg modél.1) is restored. 50160, =Tr(e 1SS =Z[VKTSS;)v, (2.9
This is supplemented by the commutation relations

. . being taken awvq,u;,=0, give the expectation valugs;)
[S.S71=%6;S ., [S .S 1=6;S. (22 and the spin GF2.3), (2.4). In Eq. (2.9 the notation

Let us now introduce a partition functiat= Tr(e™#") with {-+-)v means
B being the inverse temperature, and define spin Green func- P v
tions ( _Tre ™ ...e")

Y Tr(eFHeY) (210
K(ir,jr)=(TS (NS (7)), (2.3

With the definitionZ=e® giving another functionab, an
K#(ir,jr")=(TS(7)S{(7")). (2.4 analog of the free energy, we rewrite the expressiarg in

Here S{(7) are componentsa=x,y,z) of the spin operator the following form:

in the Heisenberg representation with imaginary time 5P

R — Z
Sia( T):eH’TSae—HT’ 501 <Sl>Vv
and the “time” varies in the region € 7<p. In Egs.(2.3), 5P
(2.9, T is the time-ordering operator, add- -) denotes the S0 =(TS[S) )y,
Gibbs ensemble averaging 12
<...>:Tr(efﬁH...)/Tre*ﬁH_ 52CI)

| o | | s (TS (SIS () =(TSSHS
With the Hamiltonian(2.1), the equations of motion for spin 1772 (2,11
operators can be straightforwardly written as '
In Eq. (2.1, the notation(- - - ), denotes a connected GF.
& _ _ra- _ho _ oo Lz Evolution of spin GFs in fluctuating fields is obtained by
S [S.HI=hS S'; S S 2 IS using the equations of motion for spin operators. Let us first
(2.5 consider the transverse GF]'SISQ’)V. According to the
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prescriptions presented in the Appenda new notation is 5P
introduced there as wellthe evolution of this GF is gov- Shoah. (TSI (2.21)
erned by the equation 172
5 Thus, with a given solutionb[ h,J,J?], the actual GFs are
a_((TSIS;eV))Z((T[SI,S;]ev))'f'((T{SI,V}S;ev)) found by taklng der|Vat|YeS O:[) atJ12= 5(7?1_7-2)‘Ji1,i2' -
71 A sequence of equations in terms of higher-order deriva-
otV tives of ® is generated by differentiating the main equation
(TS $;€Y). (212 (2.17 with respect toh. Along this way, approximate solu-
To bring Eq.(2.12 closer to our main notation we first tions of Eq.(2.17) can be found. This procedure will be

present Eq(2.5) for S in the form with composite numeri- helpful at some stage of our derivatigSec. V). At the
cal arguments, present stage, we are dealing directly with EB.17) by

rewriting it first as follows:
Sy =hS; —ag(11';3')S;,S,, (2.13
"y 0D 6P

where Ky ——=081—=—, (2.22
1 5‘11’2 125h2

ap(12;3)= 81315~ 51073, (2.14

andJq,=8(11— TZ)Jiliz- By using also the definitiofsee the

Appendiy REE k(lcgf 1

where the differential operator

I

[ | X0 an .
oh/ ., ohj .,

] o . is introduced. We are looking for a solution of EG.22) in
one obtains, from Eq(2.12, the explicit equation for the e following factorized form:

transverse GF as follows:

{S; .\V}=0v1S; —Sju1r'S,,, (2.19

odb
J  ~ _ ~ ., ——=ky1/Pyrs. (2.29
_((9_7_1_01)((1-31 S;eY))=01A(TS[eY)) +ap(11';3") 81y, 2
By inserting Eq.(2.29 into the original Eq.(2.22, one ar-

X((TSI,SQS@,eV)). (2.1 rives at a couple of equations f&k, andP4,:

Here51=v1+ h, and Zzo is given by Eq.(2.14 after the ) o1 5D

replacemeng;,— J1,=J1,+ U;». Following the main line of kiz =k~ _(aoﬁ

the generating functional method, all the averages pfod- 12

ucts can be expressed here through the corresponding varia-

tional derivatives either with respect#q andu,, or, equally 5b 5

We”, tO hl and\]lz due tO the addItIVIty O’El andjlz. From Plzz 512_ + k4/3/ ao_ P3/2 . (226)
. sh, o6h) .

now on,h; andJ,, are treated as some general fluctuating 14

fields. Finally, the equation for the transverse GF reads

+ k4r3r

g -1
“0sh 1 kslz’(z -

By applying an iteration procedure, we derive below the se-
ries for the quantityP,, that we call the terminal part, and for

k(02‘1—<a0@> _(aoi) oP — 12& k1, that should be referred to as the Dyson propagator. The
1 oh/ ., oh/ 118311, ohy latter is reasoned by the fact that the quankiy entering
(2.17 into Eq.(2.29 is the propagator of the transverse GF for the
where noninteracting case. If interaction is switched on, a self-
energy paria mass operatpis defined in a standard way,
_ d _ _
k(l(i)’ 1:_<3_7'1_h1) o1y - (2.18 ki =k{Y ™ =My,. (2.2

[Here and below we adopt a compact notation like, for in—Then it follows from Eq.(2.29 that M should satisfy the

stance, @oX) 1= ap(12;3") X3/ ]. More generally, Eq(2.17) following equation:
should be considered as a differential equation for the gen-

erating functional®=®[h,J,J*] in arbitrary fluctuating M12=(ao— —ap(11';2)Ky 0+ k4,3,(aoi) Mais.
fields h,J,J% and the relation$2.11) should be rewritten as oh 12 oh 140
(2.28
6P o
5T=<S§>V, (2.19  As the next step of our derivatio(Sec. Ill), we apply a
1 properly defined iteration procedure and develop the mass
5D operatorM and the terminal paf® of the transverse spin GF
—=(TS,S} )y, (2.20 into perturbative series, which is equivalent to a regular dia-
6J12 grammatic expansion in terms of spin operafbt§The it-
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eration procedure appears to be rather complicated and i®n of these expansions into the iterative terms of Egs.
based on a successive differentiatingf P, andk with  (2.25 and (2.26 the corresponding perturbative expansion

respect tah. of the transverse GF is obtained as well.
Such a rather sophisticated procedure is inevitable when
Ill. SERIES EXPANSION OF GENERATING FUNCTIONAL searching for a desirable perturbative series expansion for
AND DIAGRAMMATIC TECHNIQUE FOR SPIN quantities defined in Eq$2.19—(2.21) that are connected
GREEN FUNCTIONS with each other in a nonlinear way. Below we apply this

Equations(2.25 and (2.2 are the basic ones for devel- procedure to obtain the perturbative series for the above-
oping a perturbation theory for spin GFs. This will be ac-Mentioned quantities up to the second ordedimll the
complished in a few steps. main ingredients of our perturbation theory arise already at

(1) First, we obtain a formal series expansion of the transthis stage. Going further, we will show that there is a perfect
verse spin GF in powers of exchange paramelensdJ? To correspondence between the series resulting from our ap-
this end, Eqs(2.25 and(2.26) are treated iteratively, which Proach and the one appearing in the standard diagrammatic
gives certain intermediate formal expressions containingéchnique based on the Wick theorem for spin operators. At
variational derivatives ofb with respect toh of different  the same time, the present approach provides a more fast-
orders. acting procedure allowing us to formulate the corresponding

(2) To calculate these derivatives, a Taylor series expanrules of the diagrammatic technique. Moreover, our approach
sion of ® with J and J* varying in the neighborhood of = handles variational derivatives and thus operates with “ex-
=J?=0 is derived. The coefficients of this series taken atact” GFs. Therefore, the coefficients of different perturbative
J=J*=0 are found by differentiating Eq2.24) with respect series resulting from our analysis involve exact GFs. In the

to J and J? sequentially. context of the standard diagrammatic technique, this means
(3) By differentiating the above Taylor series with respectthat some of the infinite series are already summed up.
to a fieldh and using Eqs(2.19 and(2.21), one is able now After these preliminaries, we proceed to considering the

to find perturbative expansions both for an average spin prdollowing Taylor expansion of the generating functional with
jection and the longitudinal GF. With a subsequent substiturespect to fluctuating field$ and J%

(D[h,J,JZ]:(I)O[h]+J2717(ﬂ)o“r‘\]z,l,(i +£ J2/11J4r3r(52—q) O+JZ; ’JZ, 1(52—(1) O
12! 5\]1,2, 2I 5\]1/2/5\]3/4' 21 43 5Ji/275\]§/4/
+2‘]2’1’J421’3’(L¢)Z 0 +i . (31)
8d112163%,,, 3!

Here the notation using parantheses means that for thenly in the form of variational derivatives @b with respect
resulting variational derivatives both argumemtandJ?, are  to J andh. These derivatives are calculated by differentiating

regarded to be equal to zero. either Eq. (2.24 or the Taylor serieq3.1), respectively.

Functional differentiation of> with respect to field* can  \hile making this derivation, one has to use E¢&25),
be replaced by the one with respect to another fleldy (2.26 and the following identities
using the following coupling equations

5P 1( PP 5P 5c1>> -1 )
== +— ], (3.2 oK1 Ky /o0 okiz 0),(0) .
53, 2\ohiah,  shy oh, Bhy =K ap, Koz = KK (34
o 1 & +5<I> 5+5q> 5
535,03, 4\ ohiah; ' ohy ah, ' ah, o, 5
——ag(12;5)= 81581453>. 3.
. 520 +5q) 5P s 5J34a0( ) 15014932 (3.5
Shgdh, ~ Shg ohy)’ @3

Let us apply this procedure and calculég),, up to the
etc., which arise from subsequent differentiation of &7). ~ second order i) and J*. Substituting the Taylor expansion
As a result, the coefficients of the Taylor seri@sl) appear (3.1 into Eqg.(2.19 one writes, up to the second order,
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N YL OHZ 5 [ o |° I . °
! §h1 6h1 2 6hl 5\]112/ 21y 5h1 5\];,2, 2! Zmars 6h1 5\]1!2!5\]3r4r
+235/1:0% 0 (—52@ O+JZ J? 0 (—52(1) 0 + (3.6)
2/1'94131 o 2119413 ol .
N1\ 6311563%,, o\ 637,835,

Here the second, third, and the fifth terms equal zero due to the space locality of the zero-orldé}ﬁﬁ_,z, which is seen
from Eq. (2.18, while the exchange integrals; and Jizj do not possess that property. Further, the second derivative with
respect tal is found by differentiating Eq(2.24),

2 0 0 0 0 0
i =0 @ k() @ — k(0K (0),(0) & — k(0K (0)(0) @
S5J 125J34 14 5h4 32 5h2 14 ™34 ™42 5h2 12 ™32 ™24 5h4

5P \°
+ (KK + KK (—ahzgm) .
(3.7

In its turn, the remaining second derivative ®fwith respect tal* can be expressed with the help of Eg.3) in terms of
different derivatives ofb with respect tch having the space locality as well. Finally, one obtains

820 \°sm, 5D, 5D, 2o \° PR
Sy=—2+7%, —k9 3,k 35, KO | ——— | (IK®)yy — (IKO),
(S0=5n, 2 shyshy | shy  shy 1228 shg, 2T shyshy, (K 5h2,( )
Ly 1( 5D 0( 52 °+ 52D >°5q>0 52D )°+1 5D, 5@0( s \°
243N 21\ shyshy shar |\ Shyshy, shyshy, | sha |\ Shydhy | 2 Shys Shai\ Shysh,, shy
e (3.8

Hereafter the zero-order first derivative ®f with respect to  graphs containing single-tail parts can be dropped with the
h is written 355®0/5h1, Whereq)o(h) is the first term of the replacemenh_,ﬁ being madé The graphical series fan

Taylor serie(3.1). . _—h thus reduced is given in Fig. 3.
The correspondence between particular elements contrib- A series expansion for the longitudinal GF determined by

uting to perturbation series and their graphical representatio 0. (2.21) can be found by taking thé derivative of the

is shown in Fig. 1. Graphical representation for the series " . o ©)
(3.8 is shown in Fig. 2. First of all, note that particular series(3.9). Differentiation ofkj,’ with respect toh should

graphs contain one or more identical single-tail parts. It caP€ performed with the help of E¢3.4), while differentiation

be argued that summation of infinite series of these graph@f ® merely raises up a derivative order. This results in the
results merely in renormalization of the argumentlig(h). ~ following series expansion where the single-tail parts are
More precisely, the external field has to be replaced by an omitted,

effective fieldh. Therefore, in the series fqiS?), all the
=0 + DO+ G - > +
1 1 1

k?ZN —_— J12 ~AAANAN Jig~  ceeeeoo

1 2 1 2 1 2
e _@. e _ ;8% _ e s W = S —
=0 =t Ghm=C— . 4 }C b D ED :i)+.

FIG. 1. Graphical representation of the basic elements of the FIG. 2. Graphical representation of the perturbation expansion
diagrammatic technique for spin operators. of the average spifS;).
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2 2 0 2 0
(TSiSE)Cza—(DO-i-JZ, ,( o ( o +(k(0)&.]k(o)) (k(o)&\]kw))
5h1(5h2 2'1 5h15h1! 5h25h2! 5h 12 5h 21
5P 5P 5P 5P
(0] 1(0) 20 51.(0) 220 41 (0) 0) 270 1100 220 51(0) | 1(0)
+k| k h JK h JK )21+(k h JK h JK )12k21
2 0 2 0
SR LY T B B L)
oh 11\ 8h,shy, shyshy oh i
2 0 2 0
_k(O),( o )(Jk(o)&‘]k(o)) _( o )(Jk(o)&‘]k(o)) K©
W\ shyohy, oh 11\ ohyshy, oh 1o
2 0 2 0
RO
+ Jk(o) ror Jk(o) ! r+— Jk(o) ror| T \]k(O) 11
(5h15h1,)( vz sh,sh,, (k)22 5h15h25h1,( vz 5h2,( 21
o 2o \° 2o \°f o \° 1 PR °f 2o \°
+35030 3 + =
hydhy ) \ 8hydhs ) \ 8hy Shy 2\ shy6h,6h, 6hsi ) | Shy shy,
1 PR ol 53d\°
+= + (3.9
2\ shyshy hs )\ shy

The graphical representation for this series is shown in (3) The sign of a particular diagram is determined by the
Fig. 4. parity (even/oddl of the total number of all “anomalous”

By acting in a very similar manner, one can find the cor-vertices the diagram contains. TIg-type vertices of the
responding analytic series expansion for the transverse G&ort(b) and theS™-type vertices of the sofe) are regarded
and its graphical representation, which we omit for the sakes anomalous ones. A fractional factor is determined by the
of brevity. Comparative analysis of the derived graphical sepermutation of the graph elements that do not change the
ries shows that eachth order term contains 2 internal  giagram. This factor takes on the forma{n,! - - -) where

vertices joined by propagato(Green lines, cumulants , "y " 4re the numbers of these permutations of sorts
(which correspond to variational derivatives @f with re- ab

spect toh) and lines of interactions. External verticé=., I .
tr?e ones \)/vithout attached lines of interactijposrrespond to One can see that the rulé$)—(3) coincide with those
spin operatorss;, S; , andS; entering into the definitions
of GFs. General rules for constructing particular diagrams
are summarized below.

(1) There are two sorts of th&*-type verticesia), with-
out attached Green’s lines artd), with one incoming and
one outgoing Green'’s lines. There is one sort of $hetype
vertices(c), with one outgoing Green's line, while two sorts
of the S*-type vertices are present: eith@l), with one in-
coming Green’s line ofe), with two incoming and one out-
going Green lines(see Fig. 5.

(2) Internal vertices are joined by lines of interaction in
such a way that the vertices of ti% type are connected by
dashed lines, whereas vertices of @ie type are connected

C o A
1 2 1 2
with vertices of theS" type by wavy lines; see Fig. 6. There
are no other joined vertices. //Li

+ 9 A D+ C W+
1 —‘-._\/ 2 1 2
@ @ @ -
y . P B -
(S;>=(? * G - a 5;@% + OO E o O+ G+

1
2
1 2 12 1 2

(TSiS).= O+ C_ - 9+

1 2 1 2
1 2 1 2 1 2

+

FIG. 3. Graphical representation of the resulting perturbation
series of(SZ) after introducing the self-consistent fiefd

FIG. 4. Graphical representation of the longitudinal spin Green
function.
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g+ g% g- + g+ ~
*
a /b_-’_ c d : e %-

FIG. 5. The types of vertices in the Heisenberg model. /\ /\

introduced many years atfo®on the basis of the Wick theo- FIG. 6. Bare vertex parts in the Heisenberg model.
rem, which handles the contractions of th@rdered opera-

tor products. In the present approach, instead, we exploit a . . ., ) i
set of equations in terms of variational derivatives of theEVidently, the park;; is “uncuttable” across a line of inter-
generating functionab[h,J,J%]. Here, different contribu- act|(_)n and, hen(_:e, Ed4.2) is the Larkin equation derived
tions to the quantity under consideration are generated vi farher(see,.for instance, Ref. 16”. the framevyork of the

the procedure of functional differentiation. Thus, if the stan-diagrammatic technique for the spin operafbwith the use
dard approach takes account of a particular contribution b)(?f the equation of motion for the Iong|tqd|nal GF it can be
exhaustion of all possible operator pair contractions, the"OWn that this GF obeys also the Larkin equation

present approach deals with differentiation of products of the

zero-order GFs. Within this automatic procedure, any term , , . ,

could be hardly lost. Moreover, when applying the present D1,=30+ 2113120515, 4.3
method, the topologically equivalent diagrams do not arise;

their total contribution is taken into account automatically. , .

Note, since we consider an anisotropic Heisenberg modéthere > 1, denotes the set of diagrams that cannot be cut
(2.1), two distinct lines of interaction are introduced to dis- 2Cross a line of interactiod?,. Consequently, we have a
tinguish longitudinal and transverse spin components. Such @mplete coincidence of the generating functional formalism
specification being a formal one permits us to better underand the standard diagrammatic technique.
stand the structure of the perturbation series. By disregarding L€t us now turn back to Eq$2.26), (2.28 to calculate the
the difference between the dashed and wavy lines of interadfansverse GF. These equations being iterated lead to power
tion, one restores precisely the same graphical series th&eries in interaction. Up to the second ordedofve obtain
occur in the standard approach. the following series expansions

IV. LARKIN EQUATION. DIAGRAM SUMMATION

ob
In the previous sections, the series expansions for the av- M= ag(12;4") . ao(12';2)ky15

erage spinS;) and the longitudinal GRTS[S;), were de- 4!
rived together with their graphical representations. To calcu- 52D
late the transverse GETS; S, ), we derived Eqs(2.25), +ag(12';4" Ky 300(3'2;6" ) ————
(2.26 or the equivalent pair of equatiori2.28, (2.26) for ohy ohes
the self-energy part and the terminal part, respectively. By T an(12 4 VKo araen(3' 1" 2VKe s arKpr ot - - -
combining Egs(2.28), (2.26), one can check that the self- @o(1254 ) kargrag( 315 2)kurarkar ’
energy pariM can be written as (4.4
Mo=mMiot Pyydyrs. (4.7) 5 (1121 5D .
= ; [ Y ’
12 0 5h2r5h2 1’2

In terms of the diagrammatic technique, the quantity, 5
should be called the part “uncuttable” across a line of inter- K (13:2")ag(1'4':6") o Koo k
actionJy,. All the “cuttable” parts are compressed into the 41 ol < ) o " shysh, S0
second term of the right-hand side of E4.1).

A close inspection of Eq.2.24 shows that this equation

can be also rewritten in the form +Kyqr1rap(14';6") ag(1'3";2") 312

— K
hy: Shg: h,

T 4.5
Kio=2 15+ 210312 Koz, (4.2)

] ] The terms of these series expansions contain exact propaga-
where the notatiori2.3) for the transverse GF is used, and tor functionsk and many-particle GFs of the longitudinal

the quantityX.,, is defined as spin components. Each of them has to be calculated sepa-
rately by using some appropriate approximations.
. . B After writing the expressiori2.14) for «q explicitly, the
S1=(K'P)p, (KN =k —my,. series take on the following forms:
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o 815(JK) 11+ I3k
oh 120JK) 11T J1 K12

od
M= 5_hl J1p= 1)1
2!

+J o Kpia:d JiokoinJ2 G
12 shyohy 213793727 Y127 K212Y 53 shyohy,
J% k G KyaJaro+ 3%, Kk G
121 125h2/5h3/ 13/vY3'2 12/™12 5h2/5h3/

X‘]ESI _‘]12’k2’2‘]23’k3'lk12_ ‘]12’k2’1"]5_12k1’1k12
_Jiz,k12J23rk3/27 k2/2+Jiz,k2/2k13r\]§/2k312/ +--
(4.9
5P 8P

50 .
Pio= 5125—h2 +(JK) 1250 5h, K12J7 o M +

(4.7

(where the last expression is shortened for the sake of brev-
ity), and their graphical representations are depicted in Fig.

7. We adopt a convention that the exact &f,, is given by
a thick line, whereak!, is presented by a thin line. A direct
inspection shows that the graphs representihgnd P (Fig.

PHYSICAL REVIEW B 65 214425

k(q)=Kkq(iw,) = wp=2mnT. 4.9

ionteq’
This GF describes propagation of a spin wave with the mo-
mentumq and energy

£q=(S)(Jo—Jg)- (4.10

In the series for the longitudinal GHig. 4) one has to
thicken up the elementary Green line within the Hartree-
Fock approximation. Then the graphs in Fig. 4 are trans-
formed to those shown in Fig. 8 which contains the thick
Green lines of spin waves. The zero-order expressiobfor
(however, with the dressed transverse) @-given by the
following form of 2%(q) that is a sum of two contributions

34 q)=2g(iwn)=b"3, o+11(q), (4.11

where

H(q)z% k(k)k(k—q) (4.12

is the expression for the loop graph describing a contribution
of spin waves to longitudinal spin components fluctuations;

7) satisfy all the rules of the diagrammatic technique basedh’ being the first derivative of the Brillouin function corre-

on the Wick theorem.
Let us now write down the Fourier transformed,
={q,iw,}, second-order correction to the self-energy part,

Mgz):% (g, — Ik ) (Jq— I Dk(a+ky)D(ky)

z z
—klEkz (RSN A T A DR

Xk(kp)k(ko)k(ky+ko,—q). (4.9

Herek(k) andD(k) are the Fourier transforms of the trans-
verse GF(TS; S; ), and the longitudinal GRTS[S3), re-

sponds to the first graph in Fig. 8.

First and second terms in E¢.11) describe static and
dynamic fluctuations, respectively. Taking into account only
the dynamic contributio (q)~2g=1II, after its substitu-
tion into Eq.(4.8), one sees that both terms in the right-hand
side of Eq.(4.11) acquire the same structure. Combining
both the terms into one and summing up over frequencies,
we obtain the self-energy correction to spin wavag°

M{P (i wp)

1
_ z z _ _
ST k%z (NFREPE N N Y

spectively. The transverse GF is calculated in the Hartree-

Fock approximation that gives

Po=0p® + &)— ng
2 102 ro2

X (Jﬁl—q+Ji2—q_Jkl+k2—q_ Jq)

N(ek,+k,~g)[ 1+ N(ek ) +Nn(ek,) ]—n(ek )n(ek,)

X -
lon =&k, ~ &k, T &k +k,—q

(4.13

_ 1<:‘o D- G ()\>2+

+ (e
1

==

DG D+ O
2 1

¢ )+ ...
2

FIG. 7. The self-energy and terminal parts of the transverse spin FIG. 8. The longitudinal spin Green function with spin-wave

Green function.

Green function lines shown by thick solid lines.
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Mo d K I'(k;—q,ky;ko+0,k2)
Dk —q, ki ke +q, ko) = - B 1
ki k2 +q =Jigrat oty kZ 3 k(ks—a)K(ks)

% - + XT'(k3—0q,ks;ka+0,kp)

1
3,y 2 K(ka= @)k(ka)T'(ka— ks kot 0 k).
3

_ 7Z + 34 52

FIG. 9. The effective four-point part with the equation it obeys. Here k(q) is the propagatof4.9) of a spin wave with the
momentumqg and Matsubara frequenay,,=2n=T, and we

, o ) ) use the notatiomg={q,iw,}. Since the integral equation
Here each linear combination of fody is an amplitude of a (5.2 has a degenerate kernel, it can be transformed to an

two-spin-wave interaction. Analysis of this expression foralgebraic form. To this end, let us first multiply E&.2) by
the spin-wave self-energy correction allows us to CO”dUdGF((kl—q)k(kl) and sum up both sides of it ov&s. In addi-

that in accordance with VLP spin waves are weakly dampeqion’ Eq. (5.2 is multiplied by J, k(k,—q)k(k,) and, con-
in the long-wavelength limit for allf<T.. For antiferro- !

magnets similar results were obtained in the fundament
paper!

equently, summed up ov&y. This results in a set of two
Inear equations with the solution

I'(k;—q,kq:ko+0q,k
V. GREEN FUNCTION FOR LONGITUDINAL SPIN (ki=q.kiskota.ko)

COMPONENTS

1
= {D(q) + I _J1- ki 1-A
The longitudinal GF, d(q) (@ + Ik -al 1= QAT Jie, o[ 1= A()]

+ Ik, - gk, + L1 (A}, (5.3
D 1,=(T(SI=(S)(S;—(SH)), (5.1

where

could be calculated by deriving and solving new equations in
terms of variational derivatives as was done previously for
the transverse GF. Instead, in this section we carry out cal-
culations by relying on the diagrammatic technique devel-
oped in Secs. lll and IV. For instance, the diagrammatic seThe last two expressions involve four quantities defined as
ries for the longitudinal GF is presented in Fig. 4. There the

thickening of spin-wave lines that results from the Hartree-

d(o)=[1-A()][1-Q(e)]-(q)®(a). (5.4

Fock approximation leads to a simpler graphical series, Fig. 1(q) 1

8. Only the graphs of zero, first, and second order in inter- q

action are shown. Already an analysis of these low-order Q(a) 1 i,

terms shows thab ;, includes four distinct loops with anti- A |™N kzl e —q k(ki—aq)k(ky), (5.9
parallel Green lines, namely, a simple loop, a loop with two !

inserted wavy lines, and two different loops with one in- ®(a) Ji, Ik, —q

serted wavy line. By using the rules of the diagrammatic
technique, Sec. lll, one can continue constructing the series o o
and find that these four sorts of loops appear in arbitraryVhich correspond to four distinct loops appearing in the ex-
combinations in higher-order series terms. pansion series for the longitudinal GFig. 8).

Summation of this kind of diagrams can be made by using "€ 100p approximation is further applied to calculate
a method proposed earli&®in the framework of the dia- three-point verticesy, andyg, shown graphically in Fig. 10
grammatic technique elaborated for thé model. The cen- that correspond to the interaction of spin waves with longi-
tral point of this method is a calculation of the four-point tudinal fluctuations. In accordance with the equations pre-
vertexT" presented graphically in Fig. 9, which satisfies theSented graphically in Fig. 10, and by taking into account the
Bethe-Salpeter equatiofsee Fig. 9. By applying an itera- expressior(5.3) for the four-point vertex, one obtains
tion procedure to this equation, one finds an infinite series of
chainlike diagrams built out of four distinct loops described

above. The graphical equation from Fig. 9 is expressed ana- ,, o) — 1 _
|yt|Ca”y as follows 7L(kl q:klvq) d(q){q)(Q)+Jk17q[l Q(q)]}r (56)
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ki—q
Yolkr — g, ks q) = %q ;

-3 s G

FIG. 12. The equation for the “dressed” second-order cumulant.

2= CO+ CRIED:

one obtains from the graphical equatidtig. 12), the follow-

ko ing analytic expression for the “propagator”
Yr(G ke +q, ko) = ¢ , ()= b’ 3,0 59
ks +q 1-b'm¥(q)’ '
where

_ g . P(q)
% + m (Q)—rq)- (5.10

FIG. 10. Relation between three-point and four-point parts.  Returning to Fig. 11, note that, for instance, the total contri-
bution of the second and third graphs there are given by

1
«m(q,k2+k,q)=W{¢(q)+Jk2+q[1—A(q>]}- (5.7 mq“%;@* (ks — k(K0T (Ks— ks Ko+ .o

The resulting expressions for the vertex pditsy, , andyg 1(q)
are necessary to calculate the longitudinal GF;. X k(ky) k(Ko +q)= _q, (5.11)
We proceed considering the irreducible par, of D, d(a)

defined graphically in Fig. 11. Here the irreducibility is un- and the other contributions can be found and expressed in the

derstood in the sense th&f, is represented by the collection same way. By summing up all the contributions we obtain
of all diagrams from the series fd,, that cannot be cut

across a line of interactiod?. In Fig. 11, the first thickened . w(q)+11(q)
element in the row denotes a “dressed” cumulant obeying Q)= [1-AQI[1-Q(q)]—[m(aq)+I1(q)]P(q)
the Dyson equation with an irreducible self-energy paft (5.12

1 H “ ",z
(Seli IFZIi%.. 11):2LV;1/ﬁ tiia” go?s?blgr%%i)gﬁ?g;raﬁws contributing 0" the_ final step one _haszto take ir_1to account all _the graphs
the longitudinal GF are depicted. There two external vertice//th 1ines ZOf interactionJ” connecting the irreducible ele-
of the GF labeled as 1 and 2 are represented both by wB'€nts iN>1,, Fig. 11. The problem is reduced to searching
sorts of vertices: one is given by a thickened dot, and thdOr @ solution of the Larkin equatiof#.3) where.i, s given
second is a simple point with an incoming and an outgoingPy Ed. (5.12. That leads us to the final expression for the
Green lines. Other arrangements of external vertices do né@ngitudinal GF,
exist.

By using the notationr(k) for the zero-order cumulant D(a)

(the first term in the right-hand side of the Dyson equation

represented graphically in Fig. 1and recalling th4t?? _ m(q)+I1(q) .
[1-A()][1-Q(q)]—[7(a)+IL(@)][P(a)+I¢]
m(q)=b"6, 0, (5.9 (5.13
Thus, the inclusion of all the graphs with lines of interaction
. g J? amounts to the replacemenb(q)—®(q)+Jy, in Eq.
e = + 102 N % + (5.12 if one compares this expression with the complete

result, Eq.(5.13.
% CW A similarity between the present result and that obtained
+ %Jr + in the study of the-J model®!°has been briefly mentioned
1 2 1 2 1 2 . . .
in Introduction. Some more comments are worth making.

FIG. 11. The complete self-energy part of the longitudinal spinActually, the expressiori5.12) derived for the longitudinal
Green function. GF has the same structure as that for the spin Gffgitu-
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dinal and transverse onesbtained for the-J model*®*°A Note that the expressiof5.13 contains a singular dis-
formal difference is that instead df, the Fourier transform ~ crete frequency parb,, o coming from the quantityr(q)

ty for the intersite electron hopping integral occurs in the=b’5wn0. This quantity corresponds to a single-site zero-
case of thé-J model. What is more, if the bosoniclike loops order cumulant and, thus, does not depend on the thermody_
II,A, Q, and® enter into Eq(5.13), then analogous fermi- namic time. This singular contribution to the temperature
oniclike ones appear in the corresponding expression olgreen function arises due to the distinction between the iso-
tained in thet-J model. Beyond these formal differences, alated and isothermal susceptibilities of the system. This prob-
remarkable similarity among two groups of results, first, islem was studied in the general form in Refs. 23 and 24 and
caused by the close resemblance of corresponding diagrarfor a particular model with interaction of lattice vibrations
matic series arising in both the models and, second, is due 1gjth two-level defect£® First, we separate the singular con-
a common character of the approximati@summation of  tripution in the general expressids.13 writing it in the

all loop-type diagramsused. Therefore, like in the case of form

thet-J model, the approximation employed here in the deri-

vation of the longitudinal GF is of the GRPA type. In con- D(q,iw,)=D"(q,iw,)+ 35, o[D'(q,00—D'(q,0)],

trast to this, GRPA is useless, however, while treating in the n (5.14)
framework of the Heisenberg model the transverse spin GF,

since a summation, for instance, of the ladder diagrams ig/here

required in this case. We note also that GRPA is the first-

order approximation with respect to the parameter(¥/is D'(g,iw,)=D'(q)

the first coordination number of a lattichat enters through

I, A, Q, and® into the denominator of Eq5.13 and, I1(q)

thus, determines the poles and other singular properties of T _ _ 79’

this GF. In this respect, these three loops are equally impor- [1= AL Qa)]-T(Q)[P(a)+Jq]

tant, and none of them can be ignored. (5.15

b’ +1I(q,0)

D'(q,0)= , —.
[1-A(0,0)][1-Q(q,0)]—~[b"+1I(q,0)J[P(q,0) + Jg]

(5.1

The intensity of the singular contribution coincides with thewheren(ey) is the Bose distribution function for spin waves.
distinction between the isothermBl™ and isolatedD' sus- Due to the property
ceptibilities at the zeroth frequency. In accordance with the
general analysis of different susceptibilitEs’* the distinc-
tion between them points to the nonergodicity of the system. A(—q)=Q(q), II(—q)=II(q), P(—q)=>(q),

We will be interested in the isolatg&ubo) susceptibility (6.2
of the system derived from the quant®/(q,i w,) (5.15 by
analytic continuation from the Matsubara frequencies ontq N .
the real axisio,—Q+i68. To calculate the dependence of the Iongltu_dmal GH5.13 is an even oneD(—q)_=D(q)_, as
the spin susceptibility?%(q,i »,,) with the relation(5.15), it well. Hereinafter we suppose that the analytic continuation

is necessary to calculate the four quantitid$q),A(q), i“’"_.’Q+i.5iS made in Eq(6.1). . .
Q(q), and‘I’)(IQ) given by formulas(5.5()q_ ta).A(@) With a simple algebra, the quantities on the left-hand side

of Eq. (6.1) can be expressed in terms of an universal func-

tion\,, («=0,1,2) and an additional functiaf, defined as
VI. CALCULATION OF THE LOOP DIAGRAMS

To calculate the loop diagramd(q),A(q), Q(q), and

®(q), whereq={q,i w,}, let us substitute the spin-wave GF 1 D e | ° n(ey)
(4.9) into Eq. (5.5 and sum up over the discrete Matsubara No(@. Q)= 2 (] OFer q-ortis’ (6.3
frequencies, which gives a
11(q) 1 11 N
Q(q) _ 1 3 &(k) N(&k+q) —N(&k) Vo= N > 8'; ) n(ey)- (6.4
Aa) | NF| ek-0) |Toreqter’ (897 % (S)
@ (q) e(k)e(k—q)

(6.2) Then one can write
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II=X\g+\g,

Q. oy - -
Q=—thot —Ng +Jo(Ng TAg)—(N{ TXp),

(S
O=—2)yho+ 2y +J o (Ag—Ng) o (AN{ —\7)
o%o 1 o<SZ> 0 0 () 1 1
+J3(Ng 2g)—2Jo(A ] +AD)+ (N +A5),

where a shorthand notation, =\ ,(q, =) is used. Then
the real part\/(g,Q) is defined by Eq(6.3) implying that

its principal value has to be taken for this case. Hence, th

imaginary part\”(q,Q) reads

1
Ne(q Q) =—mg >

(i) N(e) SO+ ey _q— 1)
K \(SH

The main physics can be captured by using the quadratic

spin-wave dispersion
g=(SHJIK?, (6.6

when evaluating the quantities defined by E@3—(6.5).
Integration over the angl®, formed of the momentunk
with g, leads us to an intermediate result

1

r+

ar
N== f(a”), (6.7
8 Jlfa <Sz>q (
where
f’ _<Sz> 1 X2a+1 I x+a‘ 6.8
o(B)=5 0 Xe(<SZ>/t)x2_1 : x—a| ©3

and, analogously for the imaginary p&6t5), we obtain

PHYSICAL REVIEW B 65 214425
(6.7—(6.10 is defined as

izﬂ—t— @

2 AsHa’

a

(6.17

thus being a function off and w, (w=1(/J). One sees that
the (w,q) dependence of the longitudinal GF is described by
two integrals,f/(a) and f’(a), which show even and odd
symmetry ina, respectively.

Below we estimate both integral§,(a) and f’(a), for
the high-temperature regime where the magnetizdt®3pis
small, and, hencéS?)/t<1 holds. Under this condition, one
gets, from Eq(6.4), an estimate,

T 1
- 2 <Sz>2'

When|a|<1, the required asymptotic expansions are found
to be

(6.12

o

2
fo(a)= S sgna—at--,

1
fi(a)=a+~", fé(a)zga-f—... (613)
for f!(a), and
f!/ _1| 1
Ba=gingr
1 1
fita)=5(1-a%+---, fa)=g(1-ah+--.
(6.19
for f7(a).

Thus, if |a|]<1 holds, fi(a) and fi(a) are the leading
terms in the expansion.13 and (6.14) and, hence, the
terms witha=1,2 can be dropped when estimating loop con-

2 1 tributions A, Q, and®. Then once the analytic continuation
N =F— - f’(a®), (6.9 in Eq. (5.19 is made, the longitudinal spin susceptibility
8 3 (s)q reads
e 4(S)? N'(q,0) +iN"(q,0)
g,0)+iN"(q,w
z = 15
<z 1 X2a+l X Z(q!w) T , S ’ (6
f,‘;(a):<2t> X (SHx*_q (6.10 T4 D'(g@)+iD"(g,w)
&l e - where
if |]aj<1, andf”(a)=0 if |a|>1. Heret=T/J is the dimen- T . oy e
sionless temperature, and the argunein the expressions N'=f;"+f,", N'=-m(f;"-1,"), (6.1
|
o  ASH? w  ASH? 12z (S92 ?
D'=|fl'—— 1+ fo'! + 1+ b (Y 2 ,
0 (Sz>q ot ( o) 0 (Sz>q ot ( o) T tq (fo o) o 'o (Sz>q
(6.17)
g (S w  4(s)? L, o 4(s)?
D/l:_(f+/1_f //)122 —f + o 1+ ) _7Tf+” for + — 1+ ) .
ol TG T g (syg 1 YT e O g
(6.18
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VIl. SPECTRAL DENSITY OF LONGITUDINAL SPIN i q=0.05 s= 0.2
FLUCTUATIONS 04
It is instructive first to calculate the spectral density start- 0.08
ing with the approximate solution for the longitudinal GF of 0.1 o 004
Ref. 4, i.e., withDgw(q)~11(q). In this approximation, the 01 1 2 3 ®
spectral density ) 5 4 6 8 10
7z =), ZZ =
IM Dy, ) <M T1(q0) = 27— ———In| 25 ozS < 008 =
s ’ J(s)?q lo~eq 0.15
0.1 0.04
exhibits weak resonances at spin-wave energies as it Wa0'05\ ®
noted in Ref. 4. Since beyond the critical regi¢s?)? Vi 2 3 4 5 7 12"
~(Tc—T), formula (7.1 shows an increase in the spectral g= - —03
density asT— T andq—0. However, the complete expres- 0.15 q4=0.15 S Ny
C
sion (5.13 with the denominator involved describes a strong 0.06
renormalization of the longitudinal spin fluctuations due to 0.1
processes of virtual creation and annihilation of spin waves.g.05 0.02
Let us examine E¢(6.15 more closely. First of all, let us ® ®

investigate whether the equati@i (g, ) has solutions that 2 4 6 8 5 [T
g?;[:gndsetﬁ_[)mtlﬁii tgr? ddli\t):rrsr:gﬂelal\f;gfé??ﬁgugéﬁu t\ll\c/: a\éi eai(r;- FIG. 13. The longitudinal part of the dynamic structure factor
. 6'1 d(6.1 ! . h 10t y diffi P S4qg,w) as a function of dimensionless frequenaymeasured in
sions(6.13 and (6.14 a,ssum'”g t ata|<. - Itis not arfti- units 10 2) at 7=0.8 and different wave vectors

cult to show that there indeed is a solution of that sort,

wq~0.43S%q, (7.2  tegral(6.10. On the other hand, when—1, we get into the
) critical region where the physics of spin fluctuations is com-
and the expansion parametedoes not go beyond the ana- pietely different. Analysis shows thaS?(g,») is not

lytic region (6.13. The quantitywq should be considered as changed qualitatively if the parameteramounts to several
the frequency of collective vibrations of longitudinal compo- ypits, therefore, we took=3 for the numerical calculations.
nents of the spin. It lies energetically above the spin-wave |, Fig. 13, we plot an example of numerical calculations
frequencyeq/J=(S%)q” at the same temperature and waveof the frequency dependen@(q,») at various values of
vector. ) the wave vector and fixed temperature. In all the calcula-
The shape of the spectral density Inq, ») can be stud-  tjons, we accepted the values of paramegrsl andz=6.
ied only numerically. We have two parameters dependent ofye observe a three-peak structure with two wide maxima at
temperaturet and(S’). We take the temperature dependencefrequenciest w, and a sufficiently narrow central peak of a
of magnetization in the mean-field approximation, lower intensity. With growingg, the height of the central
peak approaches the height of thg peak, and they tend to
(§)=Syl-r7, r=T/Tc, (7.3 merge and form a broad distributﬁ)n in the spectrum.
whereT_ is the Curie point. To be not attached to a particu- ~ 1he width of thew, peak grows with increasing When
lar ferromagnetic model, we defing. in the form Tc f[he temperature cha_ng_es, the form of the _spectr_a_l distribution
=ySJwherev is a dimensionless parameter of an order oflS not changed gualitatively, and only the_lntensmes of.peaks
unity that should be calculated for a chosen model. Thus, afnd their widths are changed. The behavior of the position of
the temperature factors in the expressiéhd?) and(6.18  the resonance peal; and its half-widthA v as a function
are written in terms of the relative temperaturand model ~ Of g at differentr is shown in Fig. 14. A practically linear

parameten, behavior ofwq as a function ofq is observed that corre-
sponds to the approximate analytic res(it2). Also, the

(S 1V1-7 (SH? Si1-7 half-width Aw c_hanges Ii_nearly withg, and ata fix_ed tem-

T "o 7 t o perature, the ratid o,/ wq is smaller than unity. This allows

us to assume that in the system, there do exist wave vibra-

The (9, ) dependence of the dynamic structure factor tions of longitudinal components of spins, though with a
strong attenuation. At the same time, in the system of longi-

J tudinal fluctuations, there is also the relaxation mode con-
$4q,0)=—ImD(q,») (7.4 nected with the central peak, but, as it is seen from Fig. 13,
it strongly interacts with the wave mode at large
was numerically calculated at different valuesrofrom the The intensity of thew, peak depends on the temperature

range 0.6<7<<0.95. At lower7, we come into the spin-wave and wave vector. It sharply increases when approaghes
region, andS*4(q,w) becomes exponentially small due to the the stronger, the smalleq (Fig. 15. The tendency of
factor expTc/T) in the low-temperature asymptotics of in- S?4q,w) whengq—0 andT— T to a singular behavior tes-
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0) ZZ
4 @) 0.7 max § 005 0.1
o1 12 @
0.08 0.8 0.8 0.15
0.06 035
0.04 09 0.4 03
0.95
0.02 / .
q 07 075 08 085 09 095
005 0.1 015 02 025 03
max S%
0.95
Ao, 0.7 L3 ®
0.07 (b) 0.9
0.8 1.0
0.05
0.5 0.8
0.03 09 07\
0.95 \_,_ q
0.01 / 005 0.1 015 02 025 03
q FIG. 15. The dependence of the-peak intensity inS*(q, »)
005 0.1 0.5 02 025 03 on temperature at differentq (a) and on wave vectoq for differ-

FIG. 14. Theq dependences of the position of ti#q,w) ent7 (b).

maximum (@) and the half-width Awq (b) for different  ijs is an artifact caused by inaccurate calculations of loops

temperatures. II(a), A(9), Q(a), and®(q) that determine the dynamic
susceptibility.

tifies to the proximity of the hydrodynamic regime. Our  Thus, we conclude that in the region of investigated tem-

GRPA results hold valid beyond the limits of the hydrody- Peratures 0.8 7<0.95, the three-peak structure arises with

namic regime determined by the condition two neighboring broad peaks that draw together when ap-
proachingT. and form a continuous distribution that can be

observed in a neutron experiment as a unique broad peak

. P centered at the zeroth frequency. The distribution width
g w=Ug=yl=7  (r=1), (7.9 changes linearly withy. Appar?antly, ¥he contradictory results
of neutron studies of longitudinal fluctuations in ferromag-
dets(when some researchers observe two peaks; whereas the
others, one broad maximynare caused by a particular re-
gime controlled by the temperature and parameters of the
model(quantitiesS,z,v and dispersion relations for the spin-
wave spectrum

signifying that the wave vector is far smaller than the invers
correlation lengthé. The physics of fluctuations in the hy-
drodynamic region is known to be determif®dy the con-
servation laws(magnetizatiojy therefore the behavior of
fluctuations with largeg, we describe within the framework

of GRPA, qannot follow from the GRPA Nevertheless, we VIII. CONCLUSIONS
see from Fig. 15 that both these regions are sewn together. ) ) ) )
Let us note that the spectral distributidRig. 13 for In the present paper, a diagrammatic technique for spin

operators has been newly formulated and used to study the
longitudinal spin dynamics in the Heisenberg ferromagnet.
Our results describe a region in thg,¢) space beyond both
the hydrodynamical and the critical regimes o< T . The
should fail in this reaion. At lower temperatures. dro longitudinal spin dynamic_s that is (_jue to vir_tual multi—sp!n—
=glon. AL lower peratures,grows, ——ayve processes was studied and discussed in great detail, and
therefore the negative regions of the spectrum are set in @ 1 5in physics here was captured already within a simple
larger values of. It follows from numerical calculations that approximation based on a quadratic spin-wave dispersion
the negative regions appear in the spectral distribution at |5y, As the central result, we have shown that the dynamic
~(3-4)«. Consequently, at thespand 7, the GRPAfails to  structure factor for longitudinal spin components exhibits
work, and fluctuations should be described by the hydrodygenerally a three-peak structure including, first, two wide
namic theory. maxima at frequencies),~+J(S*)q corresponding to
Notice also that the dynamic structure factor at lasge damped wave modes and, second, a sufficiently narrow and
beyond thew, maximum takes for a moment negative valuesless intensive central peak. When approaching the Curie tem-
and then again comes back to positive values. We think thgserature, the intensity of the latter grows, and all three peaks

smallq=0,1 has a negative region at low frequencies. How
ever, in this casex~0.45. So, it turns out that the condition

of hydrodynamic approximation holds valid for this case,
therefore any other approximatidim the given case, GRBA
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form a broad distribution with the linearly-dependent supported in part by the Russian Foundation for Basic Re-
width. In some experiments this distribution is interpreted asearch, project 00-15-95544.
an entire diffusive peak. This observation provides a natural
explanation for the seemingly conflicting experimental ob- APPENDIX
servations of two-peaked and single-peaked behavior, found )
in numerous inelastic neutron scattering studies of ferromag- Consider a thermal average offeordered operator prod-
netic materials. uct A(ry), B(7), C(73), ..., wherer;, 7, 73, ... are

We recall that the critical dynamics of the longitudinal thermodynamic “times:
spin components in the isotropic antiferromagnet below the v
critical temperaturd <Ty (Ty is the Neel temperaturg has (TA(71)B(r2)C(73) ... .€7))
been investigated thoroughly both theoreticdllgnd with =Trle PHTA(7)B(7,)C(73)---€v],
the inelastic neutron scattering measuremé&sin particu- , o o
lar, the dynamic renormalization-group analysis showed thafi€r€ H is the Hamiltonian and the operaturdescribes in-
for w#0, the peaks in the spin spectral densityTat Ty, teracﬂon; of the .system.urllder 90n5|derat|on vv_|th fluctuating
develop smoothly with decreasing temperatdre, Ty, into external fields. Differentiation with respect tg yields
standard spin waves describing transverse spin fluctuations P
in_ the hydrodynamic_ regime. At the same time, it was pre- a_((TA(Tl)B(TZ)C(Ts)' —.eY))
dicted that the longitudinal spin components behave rather 971
differently, and while crossing over from the hydrodynamical P v
to the critical regime, the coefficient of a spin diffusion be- (1 A(T1)B(72)C(73)---€ )+ ((T{A(71),B(72)}
comes djvergent. The authors of Rgf. 27 suppqseq that such X C(73)---e¥))+((T{A(71),C(73)}B(7y)- - -€Y))
a behavior forT<Ty could be described by taking into ac- v
count all the loop diagrams built from transverse spin Green + -+ ((T{A(71),V}B(72)C(73)- - - €7)). (A1)
functions. Regarding the ferromagnetic case, in the prese?_‘ereA is aiven b
paper, we have shown that summation of just this kind o 9 y
diagrams is of vital importance to properly describe the lon-

gitudinal spin dynamics. A= n__ [AH]., A(n)=e™Ae ™,
Study of the longitudinal spin dynamics in the isotropic T
Heisenberg antiferromagnet is in progress. At the preserind the notatiod . . ., ...} denotes
stage, our investigation confirms the multi-spin-wave nature
of longitudinal spin dynamics in the ferromagnet suggested {A(m), X(7")}=6(r—1")[AX]- . (A2)

in the early studies of the quantdnand the classical
Heisenberg models fof<T.. It should be emphasized
once more that the present analysis involves strongly renor- {A(7),X(T")}==8(r—7")[AX]., (A3)
malized spin-wave excitations existing at high temperature _ . . ) )
rather than the linear spin waves describing a transverse sprr anticommuting ones. The sign in E@3) is determined,

component motion near the magnetic ground state. as usual, by a parity of the number of that permutations
within the sequenceABC...X...) oneneeds to remove

the operatoiX to the first position.

The identity(Al) can be proved by expanding the expo-
The authorgYu. I. and V. Yu) are grateful to Professor P. nential functione¥ in a power series and applying, at the
Fulde for hospitality during their stay at MPI PKS where thisfinal stage, the inverse operation. This identity should be
work was finished. We thank Nic Shannon for critical read-regarded as the equation of motion for the Green functions of

ing of the manuscript and useful remarks. This work wasthe system in fluctuational fields.
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