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Longitudinal spin dynamics in the Heisenberg ferromagnet: Diagrammatic approach
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Based on the diagrammatic technique for spin operators, the ferromagnetic Heisenberg model is studied with
an emphasis on the longitudinal spin dynamics. The diagram rules are, to our knowledge, newly formulated by
using equations in terms of variational derivatives of a generating functional describing interactions of the spin
system with auxiliary fluctuating fields. This approach provides us with an efficient procedure to derive
graphical representations for perturbation expansion series for different spin Green functions. Since fluctua-
tions of the longitudinal spin components are generated by processes of virtual creation and annihilation of
transverse spin component modes~renormalized spin waves!, the infinite series involving all distinct loops
built from spin-wave propagators are summed up. This results in an expression for the longitudinal spin
susceptibilityxzz(q,v) taking a generalized RPA-type form with a strongly renormalized denominator includ-
ing all the terms;1/z (z is the first coordination lattice number!. The corresponding longitudinal component
of the dynamic structure factor exhibits a three-peak structure with two wide maxima at frequenciesVq

;6J^Sz&q and a sufficiently narrow central peak that grows fast when approaching the Curie temperature.
With growing temperature, the intensity of theVq peaks increases, and they merge with the central peak
whereas the width of the entire spectral distribution decreases. At fixed temperature, the distribution width
changes linearly with wave vectorq. The observed picture is applicable beyond the hydrodynamic regime that
is valid at smallq and higher temperatures. Study of the evolution of the spectral distribution from a three-peak
structure to a single-peaked one, valid beyond the hydrodynamic regime, with increasing temperature can help
to explain conflicting results of neutron studies of longitudinal fluctuations in different ferromagnets.

DOI: 10.1103/PhysRevB.65.214425 PACS number~s!: 75.10.Jm, 75.10.2b, 78.70.Nx
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I. INTRODUCTION

One of the basic models of the theory of magnetism is
Heisenberg lattice model with the Hamiltonian

H52
1

2 (
i j

Ji j ~SiSj !. ~1.1!

Here Si is the spin operator on ani th lattice site,Ji j is the
exchange integral. Despite its simple definition even in
case of ferromagnetic coupling,Ji j .0, the statistical me-
chanics of the model in a wide range of temperatures is
from being trivial. Within this context, several basic notio
and theoretical approaches to the problem are worth m
tioning. As it is well known,1 the concept of spin waves a
low-energy collective excitations describing the dynamics
transverse spin components provides a good approxima
at low temperatures. Effects of spin-wave interactions w
highlighted by Dyson.2 Bogoliubov and Tyablikov gave
rather a simple extrapolation theory3 and extended the spin
wave concept to higher temperaturesT,TC (TC is the Curie
temperature!. They showed that the temperatur
renormalized spin-wave energy spectrum is described b
standard expression for the spin-wave dispersion if the m
mum spin projectionS is replaced by its average value^Sz&.
However, the spin-wave decay processes were not con
ered in Ref. 3. Vaks, Larkin, and Pikin4 ~VLP! examined this
problem and argued that in the long-wave limit, the dec
rate of the renormalized spin waves remains to be comp
tively small even in the high-temperature regime atT,TC
0163-1829/2002/65~21!/214425~17!/$20.00 65 2144
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and, hence, these elementary spin excitations survive u
the critical vicinity ofTC . These theoretical predictions wer
confirmed in many inelastic neutron scattering measurem
of ferromagnetic materials~see, for instance, Ref. 5 and re
erences therein!.

Study of the dynamics of longitudinal spin componen
implies a different physical picture and poses new theoret
problems. Both the theoretical predictions and experime
results available in this area are rather scarce
contradictory.6 According to VLP, a longitudinal spin mode
arises as a result of a virtual process of coherent creation
annihilation of ordinary spin waves. By developing a regu
perturbative approach and further using some simplifying
proximations, VLP evaluated the spectral density of the lo
gitudinal spin correlation function, i.e., the imaginary part
the longitudinal susceptibilityxzz(q,v). The calculated
xzz(q,v) has shown two weak resonances at frequenciev
56«(q), where«(q) is the energy of a spin wave at th
same momentumq. Consequently, the measurements of t
longitudinal spin fluctuations atT,TC in inelastic neutron
scattering experiments should reveal two symmetric re
nance peaks.

At the same time it was predicted that atT.TC , but
beyond the critical region, the spectral density of spin flu
tuations in the hydrodynamic regime where the transve
and longitudinal spin fluctuations are indistinguishable is
scribed by the van Hove formula

x~q,v!;
1

p

Lq2

v21~Lq2!2
. ~1.2!
©2002 The American Physical Society25-1
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Here L is proportional to the coefficient of spin diffusion
Motivated by this observation, VLP suggested that in an
dered state,T,TC , the longitudinal dynamics of spin fluc
tuations at smallq andv acquires a diffusive feature to giv
a three-peaked structure ofxzz(q,v): there are two inelastic
peaks atv56«(q) and a narrow quasielastic peak atv
50 of the width;Lq2. This suggestion was not confirme
however, in subsequent theoretical studies. For insta
Villan7 obtained a two-peak structure, whereas Mazen8

predicted a broad quasielastic peak inxzz(q,v).
Experimental investigations of the longitudinal spin flu

tuations in ferromagnetic materials led to contradictory
sults as well. The studies carried out in pure iron9 and
nickel10 close to but belowTC revealed an inelastic two
peaked structure ofxzz(q,v) without any signature of the
central peak. A two-peaked shape ofxzz(q,v) similar to the
spin-wave spectrum was found11 also in nonmetallic ferro-
magnets EuO and EuS considered to be a prototype of
Heisenberg model. On the contrary, a quasielastic sin
peak behavior without evidences of the resonant scatte
was observed6 by the neutron scattering technique in the fe
romagnetic Pd-Fe alloy. In this experiment, a spin polari
tion analysis was performed to distinguish contributio
from longitudinal and transverse spin fluctuations. A simi
picture was observed also in the study12 of the longitudinal
spin dynamics in the antiferromagnetic RuMnF3.

In view of the unsettled situation, both in the theory a
experiment, new theoretical approaches to the problem o
longitudinal spin dynamics are strongly required. In the
cent study by Bunker and Landau,13 spin dynamics simula-
tions with finite clusters were used to calculate the long
dinal component of the dynamic structure factor that, in fa
is the imaginary part of the longitudinal spin susceptibil
xzz(q,v). Only the classical limit,S→`, of the Heisenberg
model at high temperatures was considered both for fe
magnetic~FM! and antiferromagnetic~AFM! cases. For the
FM case, the excitation peaks are found at frequen
v2(q)5u«(k)2«(k6q)u and interpreted in terms of pro
cesses of creation and annihilation of two spin waves w
energies«(k) and«(k6q). For the AFM case, there is als
a second channel of two-spin-wave excitations with the
ergy v1(q)5u«(k)1«(k6q)u. In both expressions fo
v6(q), the wave vectork is a variable. The excitation pro
cesses are controlled, however, by the occupation factor@de-
termined through the momentum Bose distribution funct
n(k)#, which makes the spin waves withk;0 to be domi-
nant ones. Therefore, the positions of excitation peaks m
sured by Imxzz(q,v) are close to spin-wave energies«(q).
Thus, the numerical study13 of the classical limit of the
Heisenberg model has confirmed the multiple spin-wave
ture of the propagating longitudinal spin excitation in acc
dance with the basic idea elaborated in the quantum cas
VLP in their pioneering work.4 We note, however, that sim
plifying and uncontrolled approximations used in Ref. 4 im
pose strong restrictions on the validity of the expression
the longitudinal spin susceptibility derived there.

In the present paper, we study the longitudinal spin
namics of the ferromagnetic quantum Heisenberg model.
develop a general theoretical treatment aiming to overco
21442
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some limitations contained in Ref. 4 and to reveal a uniq
physical picture common to numerous experimental obse
tions mentioned above. Relying on the diagrammatic te
nique in terms of spin operators proposed and elaborate
VLP in the late sixties,4 we use below a convenient versio
of this technique developed later by one of the pres
authors.14–16A detailed account of this version is given in th
monograph15 available to Russian readers, and a stron
compressed description is presented also in Ref. 16. U
now, when the diagrammatic technique4,14–16 was con-
structed the Wick theorem for the spin operators was used
the present paper, we follow a new way and develop
approach based on a generating functional describing in
actions of the spin system with auxiliary fluctuating field
Spin Green functions~GFs! are determined as variationa
derivatives with respect to these fields. The procedure ca
considered as a generalization of the famous Baym-Kada
approach17 in the theory of usual Bose~Fermi! systems.

In Secs. II–IV, we show that the diagrammatic series
spin GFs arise as a result of the Taylor series expansion
specially defined generating functional. As compared to
standard perturbative scheme based on the Wick theorem
present approach gives more efficient and straightforw
prescriptions to handle the spin GFs. Another advantage
the generating functional method is that it provides a way
easily derive exact equations in terms of functional deri
tives for different spin GFs, which enables one to test diff
ent approximate solutions of these exact equations. A m
detailed discussion comparing the generating functio
method with the standard one is presented in Secs. II–IV

In Sec. V, a diagrammatic representation for the longi
dinal spin GF is formulated. Since the quantum dynamics
longitudinal spin components is generated by virtual p
cesses of creation and annihilation of spin waves, the m
ematical problem amounts to summing up all the loop d
grams describing these processes. A complexity of
problem arises from the fact that a commutator of two s
operators, for instance,Si

1 andSi
2 , is not ac number. There-

fore, the series of the loop diagrams turns out to be rat
complicated and contains four different types of loops.
sum up these series, we use a method called GRPA~gener-
alized random-phase approximation! elaborated earlier by
one of the present authors18,19 in the study of thet-J model
formulated in terms of HubbardX operators. When an appro
priate diagrammatic technique is applied to thet-J model
and collective Bose-type modes are calculated, also se
are obtained for loop diagrams with four types of disti
guishable loops. Though the loop diagrams for the Heis
berg model and thet-J model are defined in terms of boson
spin-wave GFs and fermioniclike propagators, respectiv
the diagrammatic series for both the models are very sim
The isomorphic character of diagrammatic series for th
two different models originates from the fact that permu
tion relations between a pair of the Bose-like operatorsX12

andX21 within the t-J model is of the same structure as th
for spin operatorsS1 and S2 for the spin model. By sum-
ming up all the loop diagrams, we arrive, at the end of S
V, at the final expression for the longitudinal GF the denom
5-2
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LONGITUDINAL SPIN DYNAMICS IN THE . . . PHYSICAL REVIEW B 65 214425
nator of which includes all the terms;1/z (z is the first
coordination number of a relevant magnetic lattice!.

Analytic continuation of the Matsubara-type spin G
onto the realv axis determines the longitudinal susceptib
ity xzz(q,v) of the Heisenberg model. In Secs. VI, VII, th
susceptibility is examined as a function of frequencyv and
wave vectorq. This analysis shows that fluctuational dynam
ics of longitudinal spin components corresponds to t
strongly damped oscillators coexisting with a relatively n
row central peak or a broad diffusive peak in the relev
spectral distribution. Respectively, either a three-peaked
an entire single-peaked shape of the longitudinal compon
of the dynamic structure factor is expected, which is co
trolled by temperature and a relevant set of parameters o
magnetic system under consideration. We believe that
property of the calculated longitudinal spin susceptibil
provides an explanation of the apparently conflicting res
obtained in different inelastic neutron scattering measu
ments of ferromagnetic materials.

II. GENERATING FUNCTIONAL AND SPIN GREEN
FUNCTIONS

We start with a more general anisotropic spin model
introducing the Hamiltonian

H52h(
i

Si
z2(

i j
Si

1Ji j Sj
22

1

2 (
i j

Si
zJi j

z Sj
z , ~2.1!

where the circular spin operators are defined as followsSi
6

5(Si
x6 iSi

y)/A2. In the limitJi j
z 5Ji j and at the zero externa

field, h50, the isotropic Heisenberg model~1.1! is restored.
This is supplemented by the commutation relations

@Si
z ,Sj

6#56d i j Si
6 , @Si

1 ,Sj
2#5d i j Si

z . ~2.2!

Let us now introduce a partition functionZ5Tr(e2bH) with
b being the inverse temperature, and define spin Green f
tions

K~ i t, j t8!5^TSi
2~t!Sj

1~t8!&, ~2.3!

Kzz~ i t, j t8!5^TSi
z~t!Sj

z~t8!&. ~2.4!

HereSi
a(t) are components (a5x,y,z) of the spin operator

in the Heisenberg representation with imaginary timet:

Si
a~t!5eHtSi

ae2Ht,

and the ‘‘time’’ varies in the region 0,t,b. In Eqs.~2.3!,
~2.4!, T is the time-ordering operator, and^•••& denotes the
Gibbs ensemble averaging

^•••&5Tr~e2bH
••• !/Tr e2bH.

With the Hamiltonian~2.1!, the equations of motion for spin
operators can be straightforwardly written as

Ṡi
252@Si

2 ,H#5hSi
22Si

z(
j

Ji j Sj
21Si

2(
j

Ji j Sj
z ,

~2.5!
21442
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Ṡi
z52@Si

z ,H#5Si
1(

j
Ji j Sj

22(
j

Sj
1Jji Si

2 . ~2.6!

To calculate spin GFs, we first define a generating fu
tional Z@V# in the following form of a generalized partition
function Z,

Z@V#5Tr~e2bHTeV!, ~2.7!

where the operator variableV contains fluctuating fields act
ing on the spin system. For our purposes, the following
propriate form ofV is chosen:

V5v18S18
z

1S18
1 u1828S28

2 . ~2.8!

Here the numerical suffixes are composite ones, and e
designates a lattice site and a time variable like, for instan
15( i 1 ,t1). Each pair of repeating suffixes implies the sum
mation over the sites and the time integration over the in
val 0,t,b. Hereafter such suffixes are primed.

The time-ordered products of spin operators can now
defined as variational derivatives ofZ@V#. In particular, the
derivatives

dZ

dv1
5Tr~e2bHTS1

zeV![Z@V#^TS1
z&V ,

dZ

du12
5Tr~e2bHTS1

2S2
1eV![Z@V#^TS1

2S2
1&V ,

d2Z

dv1dv2
5Tr~e2bHTS1

zS2
zeV![Z@V#^TS1

zS2
z&V , ~2.9!

being taken atv1 ,u1250, give the expectation valuêS1
z&

and the spin GFs~2.3!, ~2.4!. In Eq. ~2.9! the notation
^•••&V means

^•••&V5
Tr~e2bH . . . eV!

Tr~e2bHeV!
. ~2.10!

With the definitionZ5eF giving another functionalF, an
analog of the free energy, we rewrite the expressions~2.9! in
the following form:

dF

dv1
5^S1

z&V ,

dF

du12
5^TS1

2S2
1&V ,

d2F

dv1dv2
5^T~S1

z2^S1
z&!~S2

z2^S2
z&!&[^TS1

zS2
z&V

c .

~2.11!

In Eq. ~2.11!, the notation̂ •••&V
c denotes a connected GF.

Evolution of spin GFs in fluctuating fields is obtained b
using the equations of motion for spin operators. Let us fi
consider the transverse GF,^TS1

2S2
1&V . According to the
5-3
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prescriptions presented in the Appendix~a new notation is
introduced there as well!, the evolution of this GF is gov-
erned by the equation

]

]t1
~~TS1

2S2
1eV!!5~~T@S1

2 ,S2
1#eV!!1~~T$S1

2 ,V%S2
1eV!!

1~~TṠ1
2S2

1eV!!. ~2.12!

To bring Eq. ~2.12! closer to our main notation we firs
present Eq.~2.5! for S1

2 in the form with composite numeri
cal arguments,

Ṡ1
25hS1

22a0~118;38!S38
z S18

2 , ~2.13!

where

a0~12;3!5d13J122d12J13
z , ~2.14!

andJ125d(t12t2)Ji 1i 2
. By using also the definition~see the

Appendix!

$S1
2 ,V%5v1S1

22S1
zu118S18

2 , ~2.15!

one obtains, from Eq.~2.12!, the explicit equation for the
transverse GF as follows:

2S ]

]t1
2 ṽ1D ~~TS1

2S2
1eV!!5d12~~TS1

zeV!!1ã0~118;38!

3~~TS18
2 S2

1S38
z eV!!. ~2.16!

Here ṽ15v11h1 and ã0 is given by Eq.~2.14! after the
replacementJ12→ J̃125J121u12. Following the main line of
the generating functional method, all the averages ofT prod-
ucts can be expressed here through the corresponding v
tional derivatives either with respect tov1 andu12 or, equally
well, to h1 andJ12 due to the additivity ofṽ1 andJ̃12. From
now on,h1 and J12 are treated as some general fluctuat
fields. Finally, the equation for the transverse GF reads

Fk118
(0)21

2S a0

dF

dh D
118

2S a0

d

dhD
118

G dF

dJ182

5d12

dF

dh2
,

~2.17!

where

k118
(0)21

52S ]

]t1
2h1D d118 . ~2.18!

@Here and below we adopt a compact notation like, for
stance, (a0X)12[a0(12;38)X38#. More generally, Eq.~2.17!
should be considered as a differential equation for the g
erating functionalF5F@h,J,Jz# in arbitrary fluctuating
fields h,J,Jz, and the relations~2.11! should be rewritten as

dF

dh1
5^S1

z&V , ~2.19!

dF

dJ12
5^TS1

2S2
1&V , ~2.20!
21442
ria-
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n-

d2F

dh1dh2
5^TS1

zS2
z&V

c . ~2.21!

Thus, with a given solutionF@h,J,Jz#, the actual GFs are
found by taking derivatives ofF at J125d(t12t2)Ji 1 ,i 2

.
A sequence of equations in terms of higher-order deri

tives of F is generated by differentiating the main equati
~2.17! with respect toh. Along this way, approximate solu
tions of Eq. ~2.17! can be found. This procedure will b
helpful at some stage of our derivation~Sec. IV!. At the
present stage, we are dealing directly with Eq.~2.17! by
rewriting it first as follows:

k̂118
21 dF

dJ182

5d12

dF

dh2
, ~2.22!

where the differential operator

k̂118
21[k118

(0)21
2S a0

dF

dh D
118

2S a0

d

dhD
118

~2.23!

is introduced. We are looking for a solution of Eq.~2.22! in
the following factorized form:

dF

dJ12
5k118P182 . ~2.24!

By inserting Eq.~2.24! into the original Eq.~2.22!, one ar-
rives at a couple of equations fork12 andP12:

k12
215k12

(0)212S a0

dF

dh D
12

1k4838S a0

d

dhD
148

k382
21 ,

~2.25!

P125d12

dF

dh2
1k4838S a0

d

dhD
148

P382 . ~2.26!

By applying an iteration procedure, we derive below the
ries for the quantityP12 that we call the terminal part, and fo
k12 that should be referred to as the Dyson propagator.
latter is reasoned by the fact that the quantityk12

(0) entering
into Eq. ~2.25! is the propagator of the transverse GF for t
noninteracting case. If interaction is switched on, a se
energy part~a mass operator! is defined in a standard way,

k12
215k12

(0)212M12. ~2.27!

Then it follows from Eq.~2.25! that M should satisfy the
following equation:

M125S a0

dF

dh D
12

2a0~118;2!k1821k4838S a0

d

dhD
148

M382 .

~2.28!

As the next step of our derivation~Sec. III!, we apply a
properly defined iteration procedure and develop the m
operatorM and the terminal partP of the transverse spin GF
into perturbative series, which is equivalent to a regular d
grammatic expansion in terms of spin operators.4,14 The it-
5-4
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eration procedure appears to be rather complicated an
based on a successive differentiating ofM, P, and k with
respect toh.

III. SERIES EXPANSION OF GENERATING FUNCTIONAL
AND DIAGRAMMATIC TECHNIQUE FOR SPIN

GREEN FUNCTIONS

Equations~2.25! and ~2.26! are the basic ones for deve
oping a perturbation theory for spin GFs. This will be a
complished in a few steps.

~1! First, we obtain a formal series expansion of the tra
verse spin GF in powers of exchange parametersJ andJz. To
this end, Eqs.~2.25! and~2.26! are treated iteratively, which
gives certain intermediate formal expressions contain
variational derivatives ofF with respect toh of different
orders.

~2! To calculate these derivatives, a Taylor series exp
sion of F with J and Jz varying in the neighborhood ofJ
5Jz50 is derived. The coefficients of this series taken
J5Jz50 are found by differentiating Eq.~2.24! with respect
to J andJz sequentially.

~3! By differentiating the above Taylor series with respe
to a fieldh and using Eqs.~2.19! and~2.21!, one is able now
to find perturbative expansions both for an average spin
jection and the longitudinal GF. With a subsequent subst
t

21442
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tion of these expansions into the iterative terms of E
~2.25! and ~2.26! the corresponding perturbative expansi
of the transverse GF is obtained as well.

Such a rather sophisticated procedure is inevitable w
searching for a desirable perturbative series expansion
quantities defined in Eqs.~2.19!–~2.21! that are connected
with each other in a nonlinear way. Below we apply th
procedure to obtain the perturbative series for the abo
mentioned quantities up to the second order inJ. All the
main ingredients of our perturbation theory arise already
this stage. Going further, we will show that there is a perf
correspondence between the series resulting from our
proach and the one appearing in the standard diagramm
technique based on the Wick theorem for spin operators
the same time, the present approach provides a more
acting procedure allowing us to formulate the correspond
rules of the diagrammatic technique. Moreover, our appro
handles variational derivatives and thus operates with ‘‘
act’’ GFs. Therefore, the coefficients of different perturbati
series resulting from our analysis involve exact GFs. In
context of the standard diagrammatic technique, this me
that some of the infinite series are already summed up.

After these preliminaries, we proceed to considering
following Taylor expansion of the generating functional wi
respect to fluctuating fieldsJ andJz:
F@h,J,Jz#5F0@h#1J2818S dF

dJ1828
D 0

1J2818
z S dF

dJ1828
z D 1

1

2! F J2818J4838S d2F

dJ1828dJ3848
D 0

1J2818
z J4838

z S d2F

dJ1828
z dJ3848

z D 0

12J2818J4838
z S d2F

dJ1828dJ3848
z D 0G1

1

3!
••• . ~3.1!
ng

n

Here the notation using parantheses means that for
resulting variational derivatives both arguments,J andJz, are
regarded to be equal to zero.

Functional differentiation ofF with respect to fieldJz can
be replaced by the one with respect to another fieldh by
using the following coupling equations

dF

dJ12
z

5
1

2 S d2F

dh1dh2
1

dF

dh1

dF

dh2
D , ~3.2!

d2F

dJ12
z dJ34

z
5

1

4 S d2

dh1dh2
1

dF

dh1

d

dh2
1

dF

dh2

d

dh1
D

3S d2F

dh3dh4
1

dF

dh3

dF

dh4
D , ~3.3!

etc., which arise from subsequent differentiation of Eq.~2.7!.
As a result, the coefficients of the Taylor series~3.1! appear
heonly in the form of variational derivatives ofF with respect
to J andh. These derivatives are calculated by differentiati
either Eq. ~2.24! or the Taylor series~3.1!, respectively.
While making this derivation, one has to use Eqs.~2.25!,
~2.26! and the following identities

dk12

dh3
52k118

dk1828
21

dh3
k282 ,

dk12
(0)

dh3
52k13

(0)k32
(0) ; ~3.4!

d

dJ34
a0~12;5!5d15d14d32. ~3.5!

Let us apply this procedure and calculate^S1
z&V up to the

second order inJ andJz. Substituting the Taylor expansio
~3.1! into Eq. ~2.19! one writes, up to the second order,
5-5
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^S1
z&5

dF

dh1
5

dF0

dh1
1J2818

d

dh1
S dF

dJ1828
D 0

1J2818
z d

dh1
S dF

dJ1828
z D 0

1
1

2! F J2818J4838

d

dh1
S d2F

dJ1828dJ3848
D 0

12J2818J4838
z d

dh1
S d2F

dJ1828dJ3848
z D 0

1J2818
z J4838

z d

dh1
S d2F

dJ1828
z dJ3848

z D 0G1•••. ~3.6!

Here the second, third, and the fifth terms equal zero due to the space locality of the zero-order GF,k12
(0);d12, which is seen

from Eq. ~2.18!, while the exchange integralsJi j and Ji j
z do not possess that property. Further, the second derivative

respect toJ is found by differentiating Eq.~2.24!,

S d2F

dJ12dJ34
D 0

5k14
(0)S dF

dh4
D 0

k32
(0)S dF

dh2
D 0

2k14
(0)k34

(0)k42
(0)S dF

dh2
D 0

2k12
(0)k32

(0)k24
(0)S dF

dh4
D 0

1~k12
(0)k34

(0)1k14
(0)k32

(0)!S d2F

dh2dh4
D 0

.

~3.7!

In its turn, the remaining second derivative ofF with respect toJz can be expressed with the help of Eq.~3.3! in terms of
different derivatives ofF with respect toh having the space locality as well. Finally, one obtains

^S1
z&5

dF0

dh1
1J2818

z S d2F

dh1dh18
D 0

dF0

dh28

2k118
(0) dF0

dh18

J1828k283
(0) dF0

dh38

J3848k481
(0)

1S d2F

dh1dh18
D 0

~Jk(0)!1828

dF0

dh28

~Jk(0)!218

1J2818
z J4838

z F1

2 S d3F

dh1dh18dh38
D 0S d2F

dh28dh48
D 0

1S d2F

dh1dh18
D 0

dF0

dh38
S d2F

dh28dh48
D 0

1
1

2

dF0

dh18

dF0

dh38
S d3F

dh1dh28dh48
D 0G

1••• . ~3.8!
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Hereafter the zero-order first derivative ofF with respect to
h is written asdF0 /dh1, whereF0(h) is the first term of the
Taylor series~3.1!.

The correspondence between particular elements con
uting to perturbation series and their graphical representa
is shown in Fig. 1. Graphical representation for the se
~3.8! is shown in Fig. 2. First of all, note that particula
graphs contain one or more identical single-tail parts. It c
be argued that summation of infinite series of these gra
results merely in renormalization of the argument inF0(h).
More precisely, the external fieldh has to be replaced by a
effective field h̃. Therefore, in the series for̂S1

z&, all the

FIG. 1. Graphical representation of the basic elements of
diagrammatic technique for spin operators.
21442
ib-
n
s

n
hs

graphs containing single-tail parts can be dropped with

replacementh→h̃ being made.4 The graphical series forh

→h̃ thus reduced is given in Fig. 3.
A series expansion for the longitudinal GF determined

Eq. ~2.21! can be found by taking theh derivative of the
series~3.8!. Differentiation ofk12

(0) with respect toh should
be performed with the help of Eq.~3.4!, while differentiation
of F merely raises up a derivative order. This results in
following series expansion where the single-tail parts
omitted,

e FIG. 2. Graphical representation of the perturbation expans
of the average spin̂S1

z&.
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^TS1
zS2

z&c5
d2F0

dh1dh2
1J2818

z S d2F

dh1dh18
D 0S d2F

dh2dh28
D 0

1S k(0)
dF0

dh
Jk(0)D

12
S k(0)

dF0

dh
Jk(0)D

21

1k12
(0)S k(0)

dF0

dh
Jk(0)

dF0

dh
Jk(0)D

21

1S k(0)
dF0

dh
Jk(0)

dF0

dh
Jk(0)D

12

k21
(0)

2S k(0)
dF0

dh
Jk(0)D

118
S d2F

dh2dh18
D 0

~Jk(0)!1812S d2F

dh1dh18
D 0

~Jk(0)!182S k(0)
dF0

dh
Jk(0)D

218

2k118
(0)S d2F

dh2dh18
D 0S Jk(0)

dF0

dh
Jk(0)D

181

2S d2F

dh1dh18
D 0S Jk(0)

dF0

dh
Jk(0)D

182

k218
(0)

1S d2F

dh1dh18
D 0

~Jk(0)!1828S d2F

dh2dh28
D 0

~Jk(0)!28181
d3F

dh1dh2dh18

~Jk(0)!1828S dF0

dh28
D ~Jk(0)!2818

1J2818
z J4838

z F S d2F

dh1dh18
D 0S d2F

dh2dh38
D 0S d2F

dh28dh48
D 0

1
1

2 S d4F

dh1dh2dh48dh38
D 0S d2F

dh28dh48
D 0

1
1

2 S d3F

dh1dh18dh38
D 0S d3F

dh48
D 0G1••• . ~3.9!
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The graphical representation for this series is shown
Fig. 4.

By acting in a very similar manner, one can find the c
responding analytic series expansion for the transverse
and its graphical representation, which we omit for the s
of brevity. Comparative analysis of the derived graphical
ries shows that eachnth order term contains 2n internal
vertices joined by propagator~Green! lines, cumulants
~which correspond to variational derivatives ofF with re-
spect toh) and lines of interactions. External vertices~i.e.,
the ones without attached lines of interactions! correspond to
spin operatorsS1

z , S1
2 , andS1

1 entering into the definitions
of GFs. General rules for constructing particular diagra
are summarized below.

~1! There are two sorts of theSz-type vertices:~a!, with-
out attached Green’s lines and~b!, with one incoming and
one outgoing Green’s lines. There is one sort of theS2-type
vertices~c!, with one outgoing Green’s line, while two sor
of the S1-type vertices are present: either~d!, with one in-
coming Green’s line or~e!, with two incoming and one out
going Green lines,~see Fig. 5!.

~2! Internal vertices are joined by lines of interaction
such a way that the vertices of theSz type are connected b
dashed lines, whereas vertices of theS2 type are connected
with vertices of theS1 type by wavy lines; see Fig. 6. Ther
are no other joined vertices.

FIG. 3. Graphical representation of the resulting perturbat

series of̂ S1
z& after introducing the self-consistent fieldh̃.
21442
n

-
F
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~3! The sign of a particular diagram is determined by t
parity ~even/odd! of the total number of all ‘‘anomalous’
vertices the diagram contains. TheSz-type vertices of the
sort ~b! and theS1-type vertices of the sort~e! are regarded
as anomalous ones. A fractional factor is determined by
permutation of the graph elements that do not change
diagram. This factor takes on the form 1/(na!nb! •••) where
na , nb , . . . are the numbers of these permutations of so
a, b, . . . .

One can see that the rules~1!–~3! coincide with those

n FIG. 4. Graphical representation of the longitudinal spin Gre
function.
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introduced many years ago14,15on the basis of the Wick theo
rem, which handles the contractions of theT-ordered opera-
tor products. In the present approach, instead, we explo
set of equations in terms of variational derivatives of t
generating functionalF@h,J,Jz#. Here, different contribu-
tions to the quantity under consideration are generated
the procedure of functional differentiation. Thus, if the sta
dard approach takes account of a particular contribution
exhaustion of all possible operator pair contractions,
present approach deals with differentiation of products of
zero-order GFs. Within this automatic procedure, any te
could be hardly lost. Moreover, when applying the pres
method, the topologically equivalent diagrams do not ar
their total contribution is taken into account automatically

Note, since we consider an anisotropic Heisenberg mo
~2.1!, two distinct lines of interaction are introduced to di
tinguish longitudinal and transverse spin components. Su
specification being a formal one permits us to better und
stand the structure of the perturbation series. By disregar
the difference between the dashed and wavy lines of inte
tion, one restores precisely the same graphical series
occur in the standard approach.

IV. LARKIN EQUATION. DIAGRAM SUMMATION

In the previous sections, the series expansions for the
erage spin̂ S1

z& and the longitudinal GF,̂TS1
zS2

z&, were de-
rived together with their graphical representations. To cal
late the transverse GF,^TS1

2S2
1&, we derived Eqs.~2.25!,

~2.26! or the equivalent pair of equations~2.28!, ~2.26! for
the self-energy part and the terminal part, respectively.
combining Eqs.~2.28!, ~2.26!, one can check that the sel
energy partM can be written as

M125m121P118J182 . ~4.1!

In terms of the diagrammatic technique, the quantitym12
should be called the part ‘‘uncuttable’’ across a line of int
actionJ12. All the ‘‘cuttable’’ parts are compressed into th
second term of the right-hand side of Eq.~4.1!.

A close inspection of Eq.~2.24! shows that this equation
can be also rewritten in the form

K125S121S118J1828K282 , ~4.2!

where the notation~2.3! for the transverse GF is used, an
the quantityS12 is defined as

S125~kir P!12, ~kir !12
215k12

(0)212m12.

FIG. 5. The types of vertices in the Heisenberg model.
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Evidently, the partS12 is ‘‘uncuttable’’ across a line of inter-
action and, hence, Eq.~4.2! is the Larkin equation derived
earlier ~see, for instance, Ref. 16! in the framework of the
diagrammatic technique for the spin operators.4 With the use
of the equation of motion for the longitudinal GF it can b
shown that this GF obeys also the Larkin equation

D12
z 5S12

z 1S118
z J1828

z D282
z , ~4.3!

where S12
z denotes the set of diagrams that cannot be

across a line of interactionJ12
z . Consequently, we have

complete coincidence of the generating functional formali
and the standard diagrammatic technique.

Let us now turn back to Eqs.~2.26!, ~2.28! to calculate the
transverse GF. These equations being iterated lead to po
series in interaction. Up to the second order ofJ, we obtain
the following series expansions

M125a0~12;48!
dF

dh48

2a0~128;2!k282

1a0~128;48!k283a0~382;68!
d2F

dh48dh68

1a0~128;48!k2838a0~3818;2!k1848k4821•••,

~4.4!

P125a0~118;28!
d2F

dh28dh2

k182

2k4818a0~138;28!a0~1848;68!
d2F

dh28dh2

k3868k682

1k4818a0~148;68!a0~1838;28!
d3F

dh28dh68dh2

k382

1•••. ~4.5!

The terms of these series expansions contain exact prop
tor functionsk and many-particle GFs of the longitudina
spin components. Each of them has to be calculated s
rately by using some appropriate approximations.

After writing the expression~2.14! for a0 explicitly, the
series take on the following forms:

FIG. 6. Bare vertex parts in the Heisenberg model.
5-8



re
Fi

t

se

t,

s-

e

o-

e-
ns-
ck
r

ion
ns;
-

nly

nd
g
ies,

sp e

LONGITUDINAL SPIN DYNAMICS IN THE . . . PHYSICAL REVIEW B 65 214425
M125
dF

dh1
J122d12J128

dF

dh28

2d12~Jk!111J12
z k12

1J128

d2F

dh1dh38

k2838J3822J128k282J238
z d2F

dh1dh38

2J128
z k12

d2F

dh28dh38

k138J3821J128
z k12

d2F

dh28dh38

3J238
z 2J128k282J238k381k122J128k2818J182

z k181k12

2J128
z k12J238k3828k2821J128

z k282k138J382
z k38281¯

~4.6!

P125d12

dF

dh2
1~Jk!12

d2F

dh1dh2
2k12J128

z d2F

dh28dh2

1•••

~4.7!

~where the last expression is shortened for the sake of b
ity!, and their graphical representations are depicted in
7. We adopt a convention that the exact GF,k12, is given by
a thick line, whereask12

0 is presented by a thin line. A direc
inspection shows that the graphs representingM andP ~Fig.
7! satisfy all the rules of the diagrammatic technique ba
on the Wick theorem.

Let us now write down the Fourier transformed,q
5$q,ivn%, second-order correction to the self-energy par

Mq
(2)5(

k1

~Jq1k1
2Jk1

z !~Jq2Jk1

z !k~q1k1!D~k1!

2 (
k1k2

~Jk1
2Jk12q

z !~Jk22q
z 2Jk11k22q!

3k~k1!k~k2!k~k11k22q!. ~4.8!

Herek(k) andD(k) are the Fourier transforms of the tran
verse GF,̂ TS1

2S2
1&, and the longitudinal GF,̂TS1

zS2
z&, re-

spectively. The transverse GF is calculated in the Hartr
Fock approximation that gives

FIG. 7. The self-energy and terminal parts of the transverse
Green function.
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v-
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d
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k~q![kq~ ivn!5
1

ivn1«q
, vn52pnT. ~4.9!

This GF describes propagation of a spin wave with the m
mentumq and energy

«q5^Sz&~J02Jq!. ~4.10!

In the series for the longitudinal GF~Fig. 4! one has to
thicken up the elementary Green line within the Hartre
Fock approximation. Then the graphs in Fig. 4 are tra
formed to those shown in Fig. 8 which contains the thi
Green lines of spin waves. The zero-order expression foD
~however, with the dressed transverse GF! is given by the
following form of Sz(q) that is a sum of two contributions

Sz~q![Sq
z~ ivn!5b8dvn01P~q!, ~4.11!

where

P~q![(
k

k~k!k~k2q! ~4.12!

is the expression for the loop graph describing a contribut
of spin waves to longitudinal spin components fluctuatio
b8 being the first derivative of the Brillouin function corre
sponds to the first graph in Fig. 8.

First and second terms in Eq.~4.11! describe static and
dynamic fluctuations, respectively. Taking into account o
the dynamic contributionD(q)'Sq

z5Pq after its substitu-
tion into Eq.~4.8!, one sees that both terms in the right-ha
side of Eq. ~4.11! acquire the same structure. Combinin
both the terms into one and summing up over frequenc
we obtain the self-energy correction to spin waves4,15,20

Mq
(2)~ ivn!

5
1

2N2 (
k1k2

~Jk12q
z 1Jk22q

z 2Jk1
2Jk2

!

3~Jk12q
z 1Jk22q

z 2Jk11k22q2Jq!

3
n~«k11k22q!@11n~«k1

!1n~«k2
!#2n~«k1

!n~«k2
!

ivn2«k1
2«k2

1«k11k22q
.

~4.13!

in FIG. 8. The longitudinal spin Green function with spin-wav
Green function lines shown by thick solid lines.
5-9
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Here each linear combination of fourJq is an amplitude of a
two-spin-wave interaction. Analysis of this expression
the spin-wave self-energy correction allows us to conclu
that in accordance with VLP spin waves are weakly dam
in the long-wavelength limit for allT,TC . For antiferro-
magnets similar results were obtained in the fundame
paper.21

V. GREEN FUNCTION FOR LONGITUDINAL SPIN
COMPONENTS

The longitudinal GF,

D125ŠT~S1
z2^S1

z&!~S2
z2^S2

z&!‹, ~5.1!

could be calculated by deriving and solving new equation
terms of variational derivatives as was done previously
the transverse GF. Instead, in this section we carry out
culations by relying on the diagrammatic technique dev
oped in Secs. III and IV. For instance, the diagrammatic
ries for the longitudinal GF is presented in Fig. 4. There
thickening of spin-wave lines that results from the Hartre
Fock approximation leads to a simpler graphical series,
8. Only the graphs of zero, first, and second order in in
action are shown. Already an analysis of these low-or
terms shows thatD12 includes four distinct loops with anti
parallel Green lines, namely, a simple loop, a loop with t
inserted wavy lines, and two different loops with one i
serted wavy line. By using the rules of the diagramma
technique, Sec. III, one can continue constructing the se
and find that these four sorts of loops appear in arbitr
combinations in higher-order series terms.

Summation of this kind of diagrams can be made by us
a method proposed earlier18,19 in the framework of the dia-
grammatic technique elaborated for thet-J model. The cen-
tral point of this method is a calculation of the four-poi
vertexG presented graphically in Fig. 9, which satisfies t
Bethe-Salpeter equation~see Fig. 9!. By applying an itera-
tion procedure to this equation, one finds an infinite serie
chainlike diagrams built out of four distinct loops describ
above. The graphical equation from Fig. 9 is expressed a
lytically as follows

FIG. 9. The effective four-point part with the equation it obey
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G~k12q,k1 ;k21q,k2!

5Jk21q1Jk12q1
1

N (
k3

Jk3
k~k32q!k~k3!

3G~k32q,k3 ;k21q,k2!

1Jk12q

1

N (
k3

k~k32q!k~k3!G~k32q,k3 ;k21q,k2!.

~5.2!

Here k(q) is the propagator~4.9! of a spin wave with the
momentumq and Matsubara frequencyvn52npT, and we
use the notationq5$q,ivn%. Since the integral equation
~5.2! has a degenerate kernel, it can be transformed to
algebraic form. To this end, let us first multiply Eq.~5.2! by
k(k12q)k(k1) and sum up both sides of it overk1. In addi-
tion, Eq. ~5.2! is multiplied by Jk1

k(k12q)k(k1) and, con-

sequently, summed up overk1. This results in a set of two
linear equations with the solution

G~k12q,k1 ;k21q,k2!

5
1

d~q!
$F~q!1Jk12q@12Q~q!#1Jk21q@12L~q!#

1Jk12qJk21qP~q!%, ~5.3!

where

d~q!5@12L~q!#@12Q~q!#2P~q!F~q!. ~5.4!

The last two expressions involve four quantities defined

S P~q!

Q~q!

L~q!

F~q!

D 5
1

N (
k1 S 1

Jk1

Jk12q

Jk1
Jk12q

D k~k12q!k~k1!, ~5.5!

which correspond to four distinct loops appearing in the
pansion series for the longitudinal GF~Fig. 8!.

The loop approximation is further applied to calcula
three-point vertices,gL andgR , shown graphically in Fig. 10
that correspond to the interaction of spin waves with lon
tudinal fluctuations. In accordance with the equations p
sented graphically in Fig. 10, and by taking into account
expression~5.3! for the four-point vertex, one obtains

gL~k12q,k1 ;q!5
1

d~q!
$F~q!1Jk12q@12Q~q!#%, ~5.6!

.
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gR~q;k21k,q!5
1

d~q!
$F~q!1Jk21q@12L~q!#%. ~5.7!

The resulting expressions for the vertex partsG, gL , andgR
are necessary to calculate the longitudinal GF,D12.

We proceed considering the irreducible partS12
z of D12

defined graphically in Fig. 11. Here the irreducibility is u
derstood in the sense thatS12

z is represented by the collectio
of all diagrams from the series forD12 that cannot be cu
across a line of interactionJz. In Fig. 11, the first thickened
element in the row denotes a ‘‘dressed’’ cumulant obey
the Dyson equation with an irreducible self-energy partmz,
~see Fig. 12!. We call it the ‘‘propagator’’kz.

In Fig. 11, all the possible loop diagrams contributing
the longitudinal GF are depicted. There two external verti
of the GF labeled as 1 and 2 are represented both by
sorts of vertices: one is given by a thickened dot, and
second is a simple point with an incoming and an outgo
Green lines. Other arrangements of external vertices do
exist.

By using the notationp(k) for the zero-order cumulan
~the first term in the right-hand side of the Dyson equat
represented graphically in Fig. 12! and recalling that4,22

p~q!5b8dvn0 , ~5.8!

FIG. 11. The complete self-energy part of the longitudinal s
Green function.

FIG. 10. Relation between three-point and four-point parts.
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one obtains from the graphical equation~Fig. 12!, the follow-
ing analytic expression for the ‘‘propagator’’

kz~q!5
b8dvn0

12b8mz~q!
, ~5.9!

where

mz~q!5
F~q!

d~q!
. ~5.10!

Returning to Fig. 11, note that, for instance, the total con
bution of the second and third graphs there are given by

P~q!1
1

N2 (
k1k2

k~k12q!k~k1!G~k12q,k1 ;k21q,k2!

3k~k2!k~k21q!5
P~q!

d~q!
, ~5.11!

and the other contributions can be found and expressed in
same way. By summing up all the contributions we obtai

Sz~q!5
p~q!1P~q!

@12L~q!#@12Q~q!#2@p~q!1P~q!#F~q!
.

~5.12!

In the final step one has to take into account all the gra
with lines of interactionJz connecting the irreducible ele
ments inS12

z , Fig. 11. The problem is reduced to searchi
for a solution of the Larkin equation~4.3! whereS12

z is given
by Eq. ~5.12!. That leads us to the final expression for t
longitudinal GF,

D~q!

5
p~q!1P~q!

@12L~q!#@12Q~q!#2@p~q!1P~q!#@F~q!1Jq
z#

.

~5.13!

Thus, the inclusion of all the graphs with lines of interacti
Jz amounts to the replacement,F(q)→F(q)1Jq , in Eq.
~5.12! if one compares this expression with the comple
result, Eq.~5.13!.

A similarity between the present result and that obtain
in the study of thet-J model18,19 has been briefly mentione
in Introduction. Some more comments are worth maki
Actually, the expression~5.12! derived for the longitudinal
GF has the same structure as that for the spin GFs~longitu-

FIG. 12. The equation for the ‘‘dressed’’ second-order cumula
5-11
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dinal and transverse ones! obtained for thet-J model.18,19A
formal difference is that instead ofJq

z , the Fourier transform
tq for the intersite electron hopping integral occurs in t
case of thet-J model. What is more, if the bosoniclike loop
P,L, Q, andF enter into Eq.~5.13!, then analogous fermi
oniclike ones appear in the corresponding expression
tained in thet-J model. Beyond these formal differences,
remarkable similarity among two groups of results, first,
caused by the close resemblance of corresponding diag
matic series arising in both the models and, second, is du
a common character of the approximation~a summation of
all loop-type diagrams! used. Therefore, like in the case
the t-J model, the approximation employed here in the de
vation of the longitudinal GF is of the GRPA type. In co
trast to this, GRPA is useless, however, while treating in
framework of the Heisenberg model the transverse spin
since a summation, for instance, of the ladder diagram
required in this case. We note also that GRPA is the fi
order approximation with respect to the parameter 1/z (z is
the first coordination number of a lattice! that enters through
P, L, Q, and F into the denominator of Eq.~5.13! and,
thus, determines the poles and other singular propertie
this GF. In this respect, these three loops are equally im
tant, and none of them can be ignored.
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Note that the expression~5.13! contains a singular dis
crete frequency partdvn0 coming from the quantityp(q)

5b8dvn0. This quantity corresponds to a single-site ze
order cumulant and, thus, does not depend on the therm
namic time. This singular contribution to the temperatu
Green function arises due to the distinction between the
lated and isothermal susceptibilities of the system. This pr
lem was studied in the general form in Refs. 23 and 24 a
for a particular model with interaction of lattice vibration
with two-level defects.25 First, we separate the singular co
tribution in the general expression~5.13! writing it in the
form

D~q,ivn!5DI~q,ivn!1dvn ,0@DT~q,0!2DI~q,0!#,
~5.14!

where

DI~q,ivn![DI~q!

5
P~q!

@12L~q!#@12Q~q!#2P~q!@F~q!1Jq
z#

,

~5.15!
DT~q,0!5
b81P~q,0!

@12L~q,0!#@12Q~q,0!#2@b81P~q,0!#@F~q,0!1Jq
z#

. ~5.16!
s.

ion

ide
nc-
The intensity of the singular contribution coincides with t
distinction between the isothermalDT and isolatedDI sus-
ceptibilities at the zeroth frequency. In accordance with
general analysis of different susceptibilities,23,24 the distinc-
tion between them points to the nonergodicity of the syste

We will be interested in the isolated~Kubo! susceptibility
of the system derived from the quantityDI(q,ivn) ~5.15! by
analytic continuation from the Matsubara frequencies o
the real axisivn→V1 id. To calculate the dependence
the spin susceptibilityxzz(q,ivn) with the relation~5.15!, it
is necessary to calculate the four quantitiesP(q),L(q),
Q(q), andF(q) given by formulas~5.5!.

VI. CALCULATION OF THE LOOP DIAGRAMS

To calculate the loop diagramsP(q),L(q), Q(q), and
F(q), whereq5$q,ivn%, let us substitute the spin-wave G
~4.9! into Eq. ~5.5! and sum up over the discrete Matsuba
frequencies, which gives

S P~q!

Q~q!

L~q!

F~q!

D 52
1

N (
k S 1

«~k!

«~k2q!

«~k!«~k2q!

D n~«k1q!2n~«k!

ivn2«k1q1«k
,

~6.1!
e

.

o

wheren(«k) is the Bose distribution function for spin wave
Due to the property

L~2q!5Q~q!, P~2q!5P~q!, F~2q!5F~q!,
~6.2!

the longitudinal GF~5.13! is an even one,D(2q)5D(q), as
well. Hereinafter we suppose that the analytic continuat
ivn→V1 id is made in Eq.~6.1!.

With a simple algebra, the quantities on the left-hand s
of Eq. ~6.1! can be expressed in terms of an universal fu
tion la , (a50,1,2) and an additional functionca defined as

la~q,V!5
1

N (
k

S «k

^Sz&
D a

n~«k!

V1«k2q2«k1 id
, ~6.3!

ca5
1

^Sz&

1

N (
k

S «k

^Sz&
D a

n~«k!. ~6.4!

Then one can write
5-12



th

a

t
by

e

nd

n-
n
y

LONGITUDINAL SPIN DYNAMICS IN THE . . . PHYSICAL REVIEW B 65 214425
P5l0
11l0

2 ,

Q52c01
V

^Sz&
l0

11J0~l0
11l0

2!2~l1
11l1

2!,

F522J0c012c11J0

V

^Sz&
~l0

12l0
2!2

V

^Sz&
~l1

12l1
2!

1J0
2~l0

11l0
2!22J0~l1

11l1
2!1~l2

11l2
2!,

where a shorthand notationla
65la(q,6V) is used. Then

the real partla8 (q,V) is defined by Eq.~6.3! implying that
its principal value has to be taken for this case. Hence,
imaginary partla9 (q,V) reads

la9 ~q,V!52p
1

N (
k

S «k

^Sz&
D a

n~«k!d~V1«k2q2«k!.

~6.5!

The main physics can be captured by using the quadr
spin-wave dispersion

«k5^Sz&Jk2, ~6.6!

when evaluating the quantities defined by Eqs.~6.3!–~6.5!.
Integration over the angleu, formed of the momentumk
with q, leads us to an intermediate result

la8
65

p

8

1

J12a

1

^Sz&q
f a8 ~a6!, ~6.7!

where

f a8 ~a!5
^Sz&
2t E0

1

dx
x2a11

e(^Sz&/t)x2
21

lnUx1a

x2aU ~6.8!

and, analogously for the imaginary part~6.5!, we obtain

la9
657

p2

8

1

J12a

1

^Sz&q
f a9 ~a6!, ~6.9!

where

f a9 ~a!5
^Sz&
2t Euau

1

dx
x2a11

e(^Sz&/t)x2
21

~6.10!

if uau,1, andf a9 (a)50 if uau.1. Heret5T/J is the dimen-
sionless temperature, and the argumenta in the expressions
21442
e

tic

~6.7!–~6.10! is defined as

a65
q

2
6

v

2^Sz&q
, ~6.11!

thus being a function ofq andv, (v5V/J). One sees tha
the (v,q) dependence of the longitudinal GF is described
two integrals,f a8 (a) and f a9 (a), which show even and odd
symmetry ina, respectively.

Below we estimate both integrals,f a8 (a) and f a9 (a), for
the high-temperature regime where the magnetization^Sz& is
small, and, hence,^Sz&/t!1 holds. Under this condition, on
gets, from Eq.~6.4!, an estimate,

c0'
p

2

t

^Sz&2
. ~6.12!

When uau!1, the required asymptotic expansions are fou
to be

f 08~a!5
p2

4
sgna2a1•••,

f 18~a!5a1•••, f 28~a!5
1

3
a1••• ~6.13!

for f a8 (a), and

f 09~a!5
1

2
ln

1

uau
1•••,

f 19~a!5
1

2
~12a2!1•••, f 29~a!5

1

4
~12a4!1•••

~6.14!

for f a9 (a).
Thus, if uau!1 holds, f 08(a) and f 09(a) are the leading

terms in the expansions~6.13! and ~6.14! and, hence, the
terms witha51,2 can be dropped when estimating loop co
tributionsL, Q, andF. Then once the analytic continuatio
in Eq. ~5.15! is made, the longitudinal spin susceptibilit
reads

xzz~q,v!5
4^Sz&2

pTq

N8~q,v!1 iN9~q,v!

D8~q,v!1 iD 9~q,v!
, ~6.15!

where

N85 f 0
181 f 0

28, N952p~ f 0
192 f 0

29!, ~6.16!
D85F f 0
18

v

^Sz&q
2

4^Sz&2

pt
~11c0!GF f 0

28
v

^Sz&q
1

4^Sz&2

pt
~11c0!G1

12z

p

^Sz&2

tq
~ f 0

181 f 0
28!1p2f 0

19 f 0
29S v

^Sz&q
D 2

,

~6.17!

D952~ f 0
192 f 0

29!12z
^Sz&2

Tq
2p f 0

29
v

^Sz&q
F f 0

18
v

^Sz&q
2

4

p

^Sz&2

t
~11c0!G2p f 0

19
v

^Sz&q
F f 0

28
v

^Sz&q
1

4

p

^Sz&2

t
~11c0!G .

~6.18!
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VII. SPECTRAL DENSITY OF LONGITUDINAL SPIN
FLUCTUATIONS

It is instructive first to calculate the spectral density sta
ing with the approximate solution for the longitudinal GF
Ref. 4, i.e., withDSW(q)'P(q). In this approximation, the
spectral density

Im DSW~q,v!'Im P~q,v!52p
t

J

1

^Sz&2q
lnUv1«q

v2«q
U
~7.1!

exhibits weak resonances at spin-wave energies as it
noted in Ref. 4. Since beyond the critical region^Sz&2

;(TC2T), formula ~7.1! shows an increase in the spectr
density asT→TC andq\0. However, the complete expres
sion ~5.13! with the denominator involved describes a stro
renormalization of the longitudinal spin fluctuations due
processes of virtual creation and annihilation of spin wav

Let us examine Eq.~6.15! more closely. First of all, let us
investigate whether the equationD8(q,v) has solutions tha
would determine the dispersion law of longitudinal wave e
citations. To this end, we make use of the analytic exp
sions~6.13! and ~6.14! assuming thatuau!1. It is not diffi-
cult to show that there indeed is a solution of that sort,

vq'0.43̂ Sz&q, ~7.2!

and the expansion parametera does not go beyond the ana
lytic region ~6.13!. The quantityvq should be considered a
the frequency of collective vibrations of longitudinal comp
nents of the spin. It lies energetically above the spin-wa
frequency«q /J5^Sz&q2 at the same temperature and wa
vector.

The shape of the spectral density ImD(q,v) can be stud-
ied only numerically. We have two parameters dependen
temperature:t and^Sz&. We take the temperature dependen
of magnetization in the mean-field approximation,

^Sz&5SA12t, t5T/TC , ~7.3!

whereTC is the Curie point. To be not attached to a partic
lar ferromagnetic model, we defineTC in the form TC
5vSJ wherev is a dimensionless parameter of an order
unity that should be calculated for a chosen model. Thus
the temperature factors in the expressions~6.17! and ~6.18!
are written in terms of the relative temperaturet and model
parameterv,

^Sz&
t

5
1

v

A12t

t
,

^Sz&2

t
5

S

v
12t

t
.

The (q,v) dependence of the dynamic structure factor

Szz~q,v!5
J

v
Im D~q,v! ~7.4!

was numerically calculated at different values oft from the
range 0.6,t,0.95. At lowert, we come into the spin-wave
region, andSzz(q,v) becomes exponentially small due to th
factor exp(2TC /T) in the low-temperature asymptotics of in
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tegral~6.10!. On the other hand, whent→1, we get into the
critical region where the physics of spin fluctuations is co
pletely different. Analysis shows thatSzz(q,v) is not
changed qualitatively if the parameterv amounts to severa
units, therefore, we tookv53 for the numerical calculations

In Fig. 13, we plot an example of numerical calculatio
of the frequency dependenceSzz(q,v) at various values of
the wave vector and fixed temperature. In all the calcu
tions, we accepted the values of parametersS51 andz56.
We observe a three-peak structure with two wide maxima
frequencies6vq and a sufficiently narrow central peak of
lower intensity. With growingq, the height of the centra
peak approaches the height of thevq peak, and they tend to
merge and form a broad distribution in the spectrum.

The width of thevq peak grows with increasingq. When
the temperature changes, the form of the spectral distribu
is not changed qualitatively, and only the intensities of pe
and their widths are changed. The behavior of the position
the resonance peakvq and its half-widthDvq as a function
of q at differentt is shown in Fig. 14. A practically linea
behavior ofvq as a function ofq is observed that corre
sponds to the approximate analytic result~7.2!. Also, the
half-width Dvq changes linearly withq, and at a fixed tem-
perature, the ratioDvq /vq is smaller than unity. This allows
us to assume that in the system, there do exist wave vi
tions of longitudinal components of spins, though with
strong attenuation. At the same time, in the system of lon
tudinal fluctuations, there is also the relaxation mode c
nected with the central peak, but, as it is seen from Fig.
it strongly interacts with the wave mode at largeq.

The intensity of thevq peak depends on the temperatu
and wave vector. It sharply increases when approachesTC ,
the stronger, the smallerq ~Fig. 15!. The tendency of
Szz(q,v) whenq→0 andT→TC to a singular behavior tes

FIG. 13. The longitudinal part of the dynamic structure fac
Szz(q,v) as a function of dimensionless frequencyv ~measured in
units 1022) at t50.8 and different wave vectorsq.
5-14
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tifies to the proximity of the hydrodynamic regime. O
GRPA results hold valid beyond the limits of the hydrod
namic regime determined by the condition

q!k; k51/j5A12t, ~t→1!, ~7.5!

signifying that the wave vector is far smaller than the inve
correlation lengthj. The physics of fluctuations in the hy
drodynamic region is known to be determined26 by the con-
servation laws~magnetization!; therefore the behavior o
fluctuations with largeq, we describe within the framewor
of GRPA, cannot follow from the GRPA. Nevertheless, w
see from Fig. 15 that both these regions are sewn togeth

Let us note that the spectral distribution~Fig. 13! for
smallq50,1 has a negative region at low frequencies. Ho
ever, in this case,k'0.45. So, it turns out that the conditio
of hydrodynamic approximation holds valid for this cas
therefore any other approximation~in the given case, GRPA!
should fail in this region. At lower temperatures,k grows,
therefore the negative regions of the spectrum are set i
larger values ofq. It follows from numerical calculations tha
the negative regions appear in the spectral distribution aq
'(3 –4)k. Consequently, at theseq andt, the GRPA fails to
work, and fluctuations should be described by the hydro
namic theory.

Notice also that the dynamic structure factor at largev
beyond thevq maximum takes for a moment negative valu
and then again comes back to positive values. We think

FIG. 14. Theq dependences of the position of theSzz(q,v)
maximum ~a! and the half-width Dvq ~b! for different
temperaturest.
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this is an artifact caused by inaccurate calculations of lo
P(q), L(q), Q(q), andF(q) that determine the dynami
susceptibility.

Thus, we conclude that in the region of investigated te
peratures 0.6,t,0.95, the three-peak structure arises w
two neighboring broad peaks that draw together when
proachingTc and form a continuous distribution that can b
observed in a neutron experiment as a unique broad p
centered at the zeroth frequency. The distribution wid
changes linearly withq. Apparently, the contradictory result
of neutron studies of longitudinal fluctuations in ferroma
nets~when some researchers observe two peaks; wherea
others, one broad maximum! are caused by a particular re
gime controlled by the temperature and parameters of
model~quantitiesS,z,v and dispersion relations for the spin
wave spectrum!.

VIII. CONCLUSIONS

In the present paper, a diagrammatic technique for s
operators has been newly formulated and used to study
longitudinal spin dynamics in the Heisenberg ferromagn
Our results describe a region in the (q,v) space beyond both
the hydrodynamical and the critical regimes forT,TC . The
longitudinal spin dynamics that is due to virtual multi-spi
wave processes was studied and discussed in great detai
the main physics here was captured already within a sim
approximation based on a quadratic spin-wave dispers
law. As the central result, we have shown that the dyna
structure factor for longitudinal spin components exhib
generally a three-peak structure including, first, two wi
maxima at frequenciesVq;6J^Sz&q corresponding to
damped wave modes and, second, a sufficiently narrow
less intensive central peak. When approaching the Curie t
perature, the intensity of the latter grows, and all three pe

FIG. 15. The dependence of thevq-peak intensity inSzz(q,v)
on temperaturet at differentq ~a! and on wave vectorq for differ-
ent t ~b!.
5-15
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form a broad distribution with the linearlyq-dependent
width. In some experiments this distribution is interpreted
an entire diffusive peak. This observation provides a natu
explanation for the seemingly conflicting experimental o
servations of two-peaked and single-peaked behavior, fo
in numerous inelastic neutron scattering studies of ferrom
netic materials.

We recall that the critical dynamics of the longitudin
spin components in the isotropic antiferromagnet below
critical temperatureT,TN (TN is the Néel temperature!, has
been investigated thoroughly both theoretically27 and with
the inelastic neutron scattering measurements.12,28 In particu-
lar, the dynamic renormalization-group analysis showed
for vÞ0, the peaks in the spin spectral density atT5TN
develop smoothly with decreasing temperature,T,TN , into
standard spin waves describing transverse spin fluctuat
in the hydrodynamic regime. At the same time, it was p
dicted that the longitudinal spin components behave ra
differently, and while crossing over from the hydrodynamic
to the critical regime, the coefficient of a spin diffusion b
comes divergent. The authors of Ref. 27 supposed that
a behavior forT,TN could be described by taking into ac
count all the loop diagrams built from transverse spin Gre
functions. Regarding the ferromagnetic case, in the pre
paper, we have shown that summation of just this kind
diagrams is of vital importance to properly describe the lo
gitudinal spin dynamics.

Study of the longitudinal spin dynamics in the isotrop
Heisenberg antiferromagnet is in progress. At the pres
stage, our investigation confirms the multi-spin-wave nat
of longitudinal spin dynamics in the ferromagnet sugges
in the early studies of the quantum4 and the classical13

Heisenberg models forT,TC . It should be emphasize
once more that the present analysis involves strongly re
malized spin-wave excitations existing at high temperatu
rather than the linear spin waves describing a transverse
component motion near the magnetic ground state.
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APPENDIX

Consider a thermal average of aT-ordered operator prod
uct A(t1), B(t2), C(t3), . . . , where t1 , t2 , t3 , . . . are
thermodynamic ‘‘times:’’

~~TA~t1!B~t2!C~t3! . . . eV!!

[Tr@e2bHTA~t1!B~t2!C~t3!•••eV#,

HereH is the Hamiltonian and the operatorV describes in-
teractions of the system under consideration with fluctuat
external fields. Differentiation with respect tot1 yields

]

]t1
~~TA~t1!B~t2!C~t3!•••eV!!

5~~TȦ~t1!B~t2!C~t3!•••eV!!1~~T$A~t1!,B~t2!%

3C~t3!•••eV!!1~~T$A~t1!,C~t3!%B~t2!•••eV!!

1•••1~~T$A~t1!,V%B~t2!C~t3!•••eV!!. ~A1!

Here Ȧ is given by

Ȧ5
]A

]t
52@A,H#2 , A~t!5etHAe2tH,

and the notation$ . . . , . . .% denotes

$A~t!,X~t8!%[d~t2t8!@A,X#2 . ~A2!

for commuting operators or

$A~t!,X~t8!%[6d~t2t8!@A,X#1 , ~A3!

for anticommuting ones. The sign in Eq.~A3! is determined,
as usual, by a parity of the number of that permutatio
within the sequence (ABC . . . X . . . ) oneneeds to remove
the operatorX to the first position.

The identity~A1! can be proved by expanding the exp
nential functioneV in a power series and applying, at th
final stage, the inverse operation. This identity should
regarded as the equation of motion for the Green function
the system in fluctuational fields.
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