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Frustration-induced phase transitions in the spinS orthogonal-dimer chain
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We investigate quantum phase transitions in a frustrated orthogonal-dimer chain with an arbitra®y spin
=1/2. When the ratio of the competing exchange couplings is varied, first-order phase transitions®ccur 2
times among distinct spin-gap phases. The introduction of single-ion anisotropy further enriches the phase
diagram. The phase transitions described by the present model possess most of the essential properties inherent
in frustrated quantum spin systems.
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I. INTRODUCTION
H=32 (S;-Suj+S3j-Spj+1)
Geometrical frustration in strongly correlated electron .
systems has attracted much current interest. A remarkable ,
example of such a material is the two-dimensional spin-gap +J 21' (S2j+S4j) (S1j+ Sg5), (1)
compound SrCyBO;),,! in which the characteristic

orthogonal-dimer structure of the €u ions stabilizes the N : ; -
in-singlet ground stafe* Remarkably, strong frustration J(J') is the antn‘erromagr_\etlc exchange coupling. The
sP get g . Y. g Tu .| =1/2 model has been studied wHli*! Below, we focus on a
induces an anom'aIOl'Js first-order phase transition in add't'oﬂigher—spin generalization of the system.
to plateau-formation in the magnetization procesore re- We first exploit the NloM technique to clarify the topo-
cently, another orthogonal-dimer compound ,RdZnQ;  |ogical nature of the syster '8 Note that the Hamiltonian
(Ref. 6 was synthesized, where higher-spin and orbital mohas the remarkable relatigi,S,;+S,;]=0. Therefore, by
ments (= 9/2) show the antiferromagnetic order at the criti- introducing the composite spiT; defined asT;=S,;
cal temperaturely=2.4 K, making such higher-spin sys- +S,;, we obtain the effective mixed-spin Hamiltonian as
tems more interesting.
One of the most_protqtyplcal phenom_ena mherent |n.the H:E [J'Sy; Tj+J'Tj S5y +3Ss;- Sy 1]
frustrated systems is thirst-order transition, discussed in I
some frustrated systems such as laddeend orthogonal- J 1
dimer system&-4°*!Although a systematic treatment of a +> 2 Ti(Tj+1)— S IS(S+1)N, 2
system with an arbitrary spiiis not easy, it is highly desir- 27 4
able to clarify how such first-order transitions are induced bywhereN is the total number of sites. Then the Hilbert space
frustration in order to understand the essential propertiesf Hamiltonian (1) can be classified into each subspace
common to such frustrated quantum spin systems. specified by[S;{T;}]. The singlet ground state as well as
In this paper, we investigate a remarkable one-relevantlow-energy excitations are in the space with uniform
dimensional (1D) spinS orthogonal-dimer model, which Tj(=T). In particular, for a givenT#0 we can describe
possesses most of the essential properties of first-order phalé&v-energy properties by the NtM (T=0 gives a trivial
transitions in this class of frustrated spin systéfils.By ~ System with decoupled dimersintroducing three kinds of
exploiting the nonlinear sigma model (MiM) approach as Fhe fluctgatlon fleldé," we obtain the Euclidean Lagrang-
well as the exact diagonalization and the series expansiof@n £, with the effective fielde as
we_find distinct (5+1) spin-gap phases in the srﬂehain3 _ 1 1. i0 )
which are separated by first-order quantum phase transitions. L= 2—( v 2+ —¢2) - 4—¢~ (@' X D), (©)]
We also discuss the effect of single-ion anisotropy, which 9 Us ™
plays an important role in higher-spin systetA¥Ve demon-  where
strate that a higher-spin generalization of the model results in

whereS ; is theith spin operator in theth plaquette, and

the remarkably rich phase diagram, which realizes the idea of o=2mT, )
valence-bond sollquS) (Ref. 13 in a sequence of first- g=2AB/T, (5)
order phase transitions
4
1 ’/ ~ 3 ’/ ~
Il. MODEL HAMILTONIAN o—Cl | .O—(_ | .O—O
Let us consider the 1D quantum spin system with the 2
orthogonal-dimer structut&!! shown schematically in Fig. FIG. 1. Orthogonal-dimer spin chain: the dimer bonds shown by
1. The corresponding Hamiltonian reads solid lines have the characteristic orthogonal structure.
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FIG. 4. VBS picture of the phases for tise=1 model.
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E/JS(S+1)N

gradually approaches the classical one, although Stdh-
sitions should exist for any finit& By examining several
systems with different cluster sizes, we determine the phase
/] diagram rather precisely, as shown in Fig. 3. In this way, the
present model is the remarkable s@microscopic model,
FIG. 2. Ground-state energy as a function BJ obtained ~ Which clearly determines a sequence of the phase transitions
by exact diagonalization for eight sites. From up to down,triggered by frustration. Moreover, thist-order transitions
S=1/2,1,3/2, 2,5/2, and 3. The broken line is the energy for thefound here are contrasted to teeconeorder ones known
classical limitS— . The inset shows the derivative of the ground- for the ordinary spirS Heisenberg chain with bond
state energy, in which the origin for each curve is shifted for con-alternation®®
venience. We now clarify the nature of each spin-gap phase by tak-
ing the S=1 model, which contains three distinct spin-gap
phases, as an example. For this purpose, a VBS descfiption
of the ground state is useful, where the topological nature is
with A=(2t+jo)Y? B=[4j,t?+2(1-2jo)t+jo]l ¥% jo,  specified by a combination of singlet bonds between the de-
=J'/J, andt=S/T. Note that the topological angleis zero = composed=1/2 spins, as shown in Fig. 4. Recall that in the
(mod 2w) for any choice ofT, and the system is always small (large J'/J region, the composite spii=0(2) on
gapped. Therefore, in case the phase transition between tleach diagonal bond is realized. Hence the difpéaiquette
distinct subspacgsS;{T;}] occurs, it should be accompanied phase characterized by Fig(af# [4(c)] is stabilized there.
by the discontinuity in the parametegsandvs. This sug- Note that in the dimer phase there is no correlation among
gests that the possible quantum phase transition should be sihglet dimer bonds due to the orthogonal-dimer structure, in
first order. contrast to the plaquette phase in which a weak correlation
still exists among singlet plaquettes. On the other hand, in
the intermediate phase, strong frustration induces the spin
T=1 on each diagonal bond, resulting in the singlet phase
To clarify this point, we numerically diagonalize Hamil- characterized by Fig. (). This may be regarded as the
tonian (1) for a small cluster with periodic boundary condi- frustration-induced Haldane phase
tions. The ground-state energy is shown in Fig. 2. It is found To confirm the above predictions based on a VBS analy-
that the cusps appeaaimes in the energy diagram for the sis, we perform a numerical diagonalization of small clusters
spinS case, implying that théirst-order quantum phase tran- in the corresponding subspaces. In Figg)5the flat line is
sitions indeed occur @ times. Also shown is the energy in the energy for the exact dimer state. The energy for the
the classical limit S—«, which is given asE/JSN Haldane phaseN=28,16, and 24) obtained by the exact di-
=—1[1+(J3'13)?], and —J'/J for the helical phase (0 agonalization in the subspa¢¢T;=1}] is shown by the
<J’1J<1) and the antiferromagnetically ordered phase (1solid line with closed circles, open circles, and open squares,

<J'1J). As Sincreases, the profile of the energy diagramrespectively. We also show the ground-state energy of the
original orthogonal-dimer spin chailNE 16) by the bold

0 05 1

v =6J'StBA (6)

lll. FIRST-ORDER TRANSITIONS

—————— : . line with closed triangles. As is clearly seen, the increase of
2r ; 186551}& a T J’/J triggers a first-order quantum phase transition from the
O 24 sites dimer phase T;=0) to the Haldane phasel(=1) at the
critical value Q'/J).~0.56. Shown in Fig. &) is the energy
N
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FIG. 3. Ground-state phase diagram for the orthogonal-dimer
spin chain with a generic spi& The closed circles, open circles,

0352 0.56

J'/J

and open squares indicate the phase boundaries determined by theFIG. 5. The energy for th&=1 orthogonal-dimer spin chain in

spin chain N=8,16, and 2% with periodic boundary conditions.

the restricted subspace.
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FIG. 6. Various excitations in th&=1 orthogonal-dimer spin

chain. The bold lines indicate a dispersive magnetic excitation

while the solid(broken) lines indicate dispersionless magnétion-
magneti¢ excitations.

0

FIG. 7. Phase diagram for the anisotroe 1 chain with the
orthogonal-dimer structure.

T; is not a good quantum number in the presence ofQihe

- term. The frustration-induced intermediate phases, however,
Haldane phaseT;=1) and the plaquette phasg;¢2). In are stable against the introduction of small anisotropy. In

the plaquette phase, we have used the series expahbipn A : )
chogsir?g an igolated plaguette as the unperturk?ed s?sterEfl,Ct’ cusps St'_" exist in the energy d|agram_ for the spin
and regarded the interaction between plaquettes as a pert T cha!n N=16), from which we dfeter_mlne the phase
bation. The ground-state energy, calculated up to the nint oundaries shown by the open cwc]es in Fig. 7. The Haldane
order, is shown in Fig. 5 by the broken line from which we Phase gradually shrinks with the increase f>0), and
find the critical point (’/J).~0.88 between the Haldane finally disappears. We note that aroune:0.8 the dimer and
and plaguette phases. It is thus concluded that first-ordéfaquette phases indeed merge into a single phase. In order
guantum phase transitions occur among three singlet phast clearly distinguish the Haldane phase and the difoer
specified by the distinct subspacedS;{T;}](T;  Plaquett¢ phase, we make use of the symmetry of the space
=0,1, and 2), as predicted by the MM approach. inversionP and the spin reversal. Under twisted boundary
Keeping this in mind, we now consider excitations in thecondition$®  (Sfy411= =St 1. S nar1= = SL1 Sinass
S=1 orthogonal-dimer spin chain. In the dimer phase:sil), the dimer or plaquette state has the eigenvatue
(J'/3<0.56), the ground state is given by the product of=7=1, while the Haldane state has the vaRe r=—1.
isolated dimerg{T;=0}], which allows us to estimate the Therefore, we can distinguish these phases by diagonalizing
excitation gap exactly from the finite-size calculation. Thetne Hamiltonian with twisted boundary in the restricted
lowest magnetic excitation is described by a defect in thespace specified bp=7=*1. The results foD=0.4 are

uniform spin alignment, i.e., it is given by the lowest triplet ghq\yn, in Fig. 8. It is found that the two lowest-energy levels
s;ate_w) the sfpﬁce o, OI, 0,0,. "}]j It(')SS%ISO found that, in jytersect each other twice when the ratio of the exchange
the vicinity of the critical point §’/J~0.56), a nonmagnetic couplingJ’/J is varied. This implies that the quantum phase

excitation belonging to the spa¢é,1,0,0,0...] can be L : g
the lowest one, as shown by the broken line. In the Haldan}eranSItIonS between phases with distinct symmetRy=(z

; . . ~'==1) occur twice, being consistent with the above predic-
phase (0.56.J /‘]<O.'88)' we estimate sevgral kinds of spin tions based on the VBS analysis. By scaling the critical val-
gaps by an exact diagonalization for 24 sites. The Haldan

’ — ’ -2 i
gap, expected naively, is the lowest away from the criticalEes as L1)e(N)=(I'1))c(>) +aN™, we estimate the

points, shown by the bold line in Fig. 6. There are other

dispersionless excitations, which can be described by a de- AW
fect in the spin alignment such &%,1,1,1...], and M D/J1=0.4 1
[2,1,1,1...]. These excitations are bound into another non- -12 -

magnetic state, which is the lowest excitation in the Haldane

around the other first-order critical point between the

phase close to the plaquette phask/J~0.88). In the = -14f .
plaquette phase (0.881'/J), the series expansion is more - P=1=+1

efficient to obtain dispersive and dispersionless excitations. -16F v

The results, computed up to the seventh and ninth orders are : —— P=1=-1

shown by the closed circles in Fig. 6. In this way, several -18f

different excitations become almost degenerate around Y By S v a—
the first-order phase transition points, reflecting strong : : : '
frustration. VAl

FIG. 8. Two lowest energies with twisted boundary conditions
for N=16 andD=0.4. The energy of the Haldane statt={r

Finally we discuss the effect of single-ion anisotrifpy =—1) and the dimer or the plaquette sta={r=1) are shown
with the HamiltonianHD=DE(SiZ’j)2. The composite spin by open and closed circles.

IV. EFFECT OF SINGLE-ION ANISOTROPY
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——N=16
- , , , a rich structure with various type of spin-gap phases which
-0.2 -0.1 0 are separated by first-order phase transitions inherent in fully
D/J frustrated systems. Although we have given detailed ac-

. counts for theS=1 case, it is straightforward to generalize
FIG. 9. The Binder parameteJyee for J'/J=0.9. The closed the discussions to an arbitrary-spin case. For example, four
and open _(:lrclesN:8 and 16) are calculated with periodic bound- istinct spin-gap phases f&=3/2 in Fig. 3 are completely
ary conditions. classified by the VBS states shown in Fig. 10.

phase boundaries shown by the crosses in Fig. 7, which Finally we emphasize again that the first-order phase tran-

agree well with those determined from the original plaquettes'tIOnS in the present model are triggered by strong frustra-

chain (N=16) shown by open circles. In contrast, wHiis tion, which may capture most of essential properties com-

negative, the antiferromagnetic correlation is enhanced, an@on to this class of fully frustrated systems. To demonstrate

the system is driven to the Neordered phase. To character- this point clearly, it is desirable to study whether the distinct
ize this transition, we check the behavior of the BinderSPin-gap phases obtained here for the 1D orthogonal-dimer

parametef? system can persist even in the 2D system, when the inter-
chain couplings are introduced. For this purpose, we have
(0% performed exact diagonalization studies for the 4 S=1
Uneer=1- 3(02>2’ (7) orthogonal-dimer system. We have found that the first-order
transition points are continuously changed with the increase
whereO is the order parameter defined as of the interchain couplings and thus the frustration-induced
Haldane phase persists even in the 351 orthogonal-
O:Z (—1)‘+J'SIZ’J._ (8)  dimer system. Therefore, we believe that the frustration-
i

induced spin-gap phases obtained here play a key role in

In Fig. 9, the Binder parameters fdbr=8 and 16 are shown clarifying the phase diagram of the 2D sySnerthogonal-
as a function oD with J'/J=0.9. Since the Binder param- dimer model.

eter stays invariant with the change Nfat the transition

point, we can determine the critical valu®/J).~ —0.07.

Consequently, we end up with the phase diagram for the spin ACKNOWLEDGMENTS
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