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Crossover from diffusive to ballistic transport properties in magnetic multilayers
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We develop a theoretical model for computing the spin-dependent transport properties of magnetic multi-
layers in the presence of ballistic scattering at the interfaces and diffusive scattering within the layers for
currents perpendicular to the plane of the layers. The local chemical potentials are found to be momentum and
spin dependent in the vicinity of regions with ballistic scattering. We have derived the approximate macro-
scopic equations from the Boltzmann equation by taking into account both ballistic and diffusive scattering.
With these equations, realistic data of the reflection coefficients fromab initio calculations can be explicitly
included in computing magnetotransport properties. We apply our formulation to a number of interesting
magnetic multilayer structures.
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I. INTRODUCTION

In the last decade, transport properties of mesoscopic
tems have been extensively studied. Mesoscopic trans
theories are now regarded as well established. For exam
the Landauer-Buttiker formalism supplies a theoretical rec
to link the measured transport coefficients to microsco
transmission probabilities of a given mesoscopic syste1

With existing transport theories, one does not have m
difficulty in conceptually understanding important meso
copic physics such as contact resistance,2 conductance
quanta and fluctuations,3 and localization.4

In practice, however, one encounters difficulties in qu
titatively calculating the conductance and magnetoresista
of a realistic experimental mesoscopic system. For exam
let us consider a simple case where the conductor consis
two intimately contacted metallic magnetic layers with
interface atz50. A current is applied perpendicular to th
interface, and one measures the conductance by placing
age probes far away from the interface. To correctly calcu
the conductance, one has to introduce leads and reservoi
away from the interface, and determine the transmission
efficients between the leads in the presence of interfacial
bulk impurity scattering. Such a calculation will be e
tremely tedious, if not entirely impossible, due to the v
numbers of conduction paths and scattering channels in
structure. Thus, instead of calculating the transmission c
ficients of the whole structure, one usually calculates
transmission coefficient across a perfect interface by neg
ing the bulk impurity scattering.5 The effect of the bulk im-
purity is then added as an additional resistance. As alre
pointed out in a number of papers,6–11 the resistance due t
reflection at the interface depends on the bulk scatterin
the layer. Thus the interface resistance calculated by neg
ing the bulk scattering cannot be identified as the measu
interface resistance.

The purpose of this paper is to establish an explicit
pression for the transport property when the electron sca
ing is ballistic in one region and diffusive in another. W
intend to develop a method to calculate the conductance
magnetoresistance by using theab initio transmission co-
efficient as an input parameter. Our emphasis will be pla
0163-1829/2002/65~21!/214407~8!/$20.00 65 2144
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on relevant length scales involved in different scatter
mechanisms. In Sec. II, we outline our model by defining
ballistic and diffusive transport with a specific model syste
In Sec. III, we establish macroscopic transport equations
the transition region by using the semiclassical Boltzma
equation. Since there is intensive interest in magnetic mu
layers, we will keep track of the spin dependence of
scattering, and will include spin relaxation processes.
solve these transport equations and calculate the conduct
of the system using our well-defined boundary conditions
particular, we show that the resistance isnot a simple sum-
mation of the interface resistance and bulk resistance. T
we apply our theory to several interesting cases such as
Cu/Co and Fe/Au/Fe trilayers in Sec. IV. The detail deriv
tion of the macroscopic transport equations are discusse
the Appendix.

II. MODEL

In this section, we first choose a model system which
simple enough to explicitly study the crossover from ballis
to diffusive transport. We consider two semi-infinite ma
netic layers connected by an interface. A steady-state cur
flows perpendicular to the layers. The interface may hav
finite thickness as long as the thickness is much smaller t
the decoherence length of the conduction electrons. Thus
plicable systems include spin valve structures of Co/Cu
and magnetic tunnel junctions of Co/Al2O2/Co. The conduc-
tance and magnetoresistance of this simple system wer
ready presented in quite a few papers with different phys
considerations; see the review articles in Refs. 12 and
The main difficulty in determining the conductance is th
the Boltzmann equation in the presence of the specular
flection at the interface is not analytically solvable
general.6–8,14–16Instead, most of the theories simply negle
the spatial variation of the distribution function, and on
focus on the effect of the electronic structure. Until recen
the interplay between diffusive scattering in the layers a
ballistic scattering at interfaces has been emphasize17

Therefore, we intend to establish a connecting theory w
the transport properties have both ballistic and diffus
components in the structure.
©2002 The American Physical Society07-1
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Before we proceed to evaluate the conductance of
system, let us first specify the length scales involved. T
smallest length is the Fermi wavelengthlF of the conduction
electrons, of the order of the lattice constant for both spin
and -down electrons. The next length scale is the elec
mean free pathsls which characterize momentum relaxatio
in the layer. The longest transport length will be the sp
diffusive lengthls f . We will assumelF!ls!ls f through-
out the paper, so that the semiclassical Boltzmann equatio
an adequate approach to describe the electron transport18

For electrons near the interface~within the mean free
path!, the electrons travel across interface ballistically a
thus the left- and right-going electrons have different en
gies. Strictly speaking, the electrons are hot, and the e
trons do not satisfy the thermodynamic statistics. The c
cept of the local chemical potentials breaks dow
Nevertheless, one can still introduce so-called ‘‘quasiche
cal potentials’’ to characterize the number of electrons a
given site.19 In the presence of the current, the number of
left- and right-going electrons is different and one has
introduce a different chemical potential for left- and righ
going electrons. Since the transmission coefficients dep
on the spin for the magnetic interface, the chemical poten
depends on the spin as well. Therefore, in the near-inter
region, there are four chemical potentials for the left-goi
right-going, spin-up, and spin-down electrons. In the int
mediate region, i.e., when the electrons are a few mean
paths away from the interface but within the spin-diffusi
length, the impurity scattering washes out the ballistic co
ponent of the electron transport. Thus the left- and rig
going electrons merge into a common chemical poten
However, the spin-up and -down electrons continue to h
different chemical potentials since the spin is not relaxed
non-spin-flip impurity scattering. Thus only two chemic
potentials are required to describe the transport in the in
mediate region. At the far region, i.e., when the electrons
away from the interface by a spin diffusion length, the tra
port becomes bulklike and one recovers the homogene
bulk transport. There is no difference for spin-up and sp
down chemical potentials, i.e., only one chemical potentia
a given location.

The above transport processes can be well descr
by using the Boltzmann equation with appropriate appro
mations. Within the relaxation-time approximation, there
no conceptual difficulty in writing down the Boltzman
equation. However, the solutions are difficult to obtain in t
presence of the momentum dependence of the reflec
coefficient at the interface.6–8,14–17As we show in the Ap-
pendix, the Boltzmann equation remains an integrodiffer
tial equation even if one uses the relaxation-time approxim
tion. When many attempts are made to numerically so
such an integrodifferential equation, a very limited physi
insight into the interplay of the interface reflection a
impurity scattering is gained. Here we revisit the Boltzma
equation, and derive a set of macroscopic equations usi
plausible scheme to decouple the chemical potentials
current density in the distribution function, and thus t
physical processes described in the preceding paragrap
shown explicitly.
21440
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III. MACROSCOPIC EQUATIONS

In this section, we outline the macroscopic equations u
to calculate conductance and magnetoresistance. The de
tion of these equations is given in the Appendix.

The macroscopic equations involve the spin-depend
current density and the local spin-dependent chemical po
tials. In the layered structure, these macroscopic variables
translational invariant in the plane of the layers. Thus
labelms

.(z) as the chemical potential at positionz ~indepen-
dent of x and y) for the electron with spins ~up or down!
moving toward the right, i.e.,vz.0. As we emphasized in
Sec. II, the electrons are not necessary at the thermodyn
equilibrium if they are subject to ballistic scattering. Ther
fore, we need to keep track of the direction of the velocity
defining the chemical potential. Following the derivatio
from the Appendix, we find that the macroscopic equatio
for the chemical potentials, in the limitls!ls f , are

d2

dz2
~ms

.2ms
,!5

ms
.2ms

,

ls
2

, ~1!

d2

dz2
~m̄s2m̄2s!5

m̄s2m̄2s

ls f
2

1
A3

4ls

d

dz
~ms

.2ms
,!

2
A3

4l2s

d

dz
~m2s

. 2m2s
, !, ~2!

d2

dz2
~m̄s1m̄2s!5

Ps

ls f
2 ~m̄s2m̄2s!1

A3

4ls

d

dz
~ms

.2ms
,!

1
A3

4l2s

d

dz
~m2s

. 2m2s
, !, ~3!

wherels is the mean free path projected to thez axis ~and is
equals 1/A3 of the mean free path in three-dimensions; s
the Appendix!, ls f is the spin diffusion length,Ps5(rs
2r2s)/(rs1r2s) is the spin polarization of the ferromagn
(rs is the resistivity!, and we have definedm̄s5(ms

.

1ms
,)/2. The current density is related to these chemi

potentials~see the Appendix!

j s~z!5
A3

rs
F2

]ms
.

]z
2

]ms
,

]z
1

A3~ms
.2ms

,!

2ls
G , ~4!

wherers56p2\/(ekF
2ls).

These macroscopic equations determine the diffus
properties of the conduction electrons: Eq.~1! characterizes
the length scale of the hot electrons, i.e., it will take a len
scale of the order of the mean free path to reach the ther
dynamic equilibrium for the electrons scattered by the bal
tic scattering at the interface; Eq.~2! describes the diffusion
properties of the conduction electron spin, i.e., the chem
potentials of the electrons for different spin channels beco
identical after the electrons diffuse for a distance known
7-2
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CROSSOVER FROM DIFFUSIVE TO BALLISTIC . . . PHYSICAL REVIEW B 65 214407
the spin-diffusion length. It is noted that the second and th
terms on the right-hand side of Eq.~2! are absent in the
ordinary spin-diffusion equation;20,21 these terms come from
the ballistic component of the interface scattering. Equat
~3! governs the effects of these two diffusion processes
the average chemical potential which is ultimately related
the measured position dependence of the electric poten
and thereby determines the resistance and the magneto
tance of the structure.

The solutions for each layer can be easily obtained fr
Eqs.~1!–~3!. For example, forz.0, we have

ms
.5g01g1z1

C1l2s

ls1l2s
expS 2

z

ls f
D

1aS 12
A3

2 D expS 2
z

ls
D , ~5!

ms
,5g01g1z1

C1l2s

ls1l2s
expS 2

z

ls f
D

2aS 11
A3

2 D expS 2
z

ls
D , ~6!

m2s
. 5g01g1z2

C1ls

ls1l2s
expS 2

z

ls f
D

1bS 12
A3

2 D expS 2
z

l2s
D , ~7!

m2s
, 5g01g1z2

C1ls

ls1l2s
expS 2

z

ls f
D

2bS 11
A3

2 D expS 2
z

l2s
D . ~8!

Similar solutions can be written down forz,0 with the con-
stants of integrationg0 , g1 , C1 , a, andb replaced byg08 ,
g18 , C18 , a8, andb8, the exponential factors exp(2z/ls) and
exp(2z/lsf) are replaced by exp(z/ls) and exp(z/lsf) to insure
the decay solution asz→2`, andA3 is changed to2A3.
Clearly, the solution contains two characteristic dec
lengths: the mean free path and the spin diffusion length
there is no ballistic transmission and reflection at the in
face, one would find that electron conduction is diffusive a
one recovers Valet-Fert type of the equation when there is
difference betweenms

. and ms
, throughout the structure

~even at the interface!.21

By placing these solutions into Eq.~4!, the current density
for z.0 is thus

j s
.~z!5

A3

rs
F2g11

C1l2s

ls f~ls1l2s!
exp~2z/ls f!

1
a

ls
exp~2z/ls!G , ~9!
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j s
,~z!5

A3

rs
F2g11

C1l2s

ls f~ls1l2s!
exp~2z/ls f!

2
a

ls
exp~2z/ls!G , ~10!

j 2s
. ~z!5

A3

r2s
F2g12

C1ls

ls f~ls1l2s!
exp~2z/ls f!

1
b

l2s
exp~2z/l2s!G , ~11!

j 2s
, ~z!5

A3

r2s
F2g12

C1ls

ls f~ls1l2s!
exp~2z/ls f!

2
b

l2s
exp~2z/l2s!G . ~12!

Similarly, the current density forz,0 can also be written
down.

The above solutions contain a number of constants of
integrations which have to be determined by the bound
conditions. We assume that the electrons are subject to
average spin-dependent reflection and transmission ac
the interface. The detailed balancing conditions will link t
current and chemical potentials at the two side of the in
face. We now list these boundary conditions.

First the total current density

j 5 j s~z!1 j 2s~z!5 j s
.1 j s

,1 j 2s
. 1 j 2s

, ~13!

is conserved. One can verify it immediately from Eqs.~9!–
~12! that indeed

] j ~z!

]z
50. ~14!

Examining the solutions forz.0 and z,0, one obtains
g15g18 .

Next we write down the outer-boundary condition
z52L andz5L when the layer thicknessL is much larger
than any transport length. Then the exponential terms in E
~5!–~8! can be discarded, and one has

g01g1L5V~L !50 ~15!

and

g082g18L5V~2L !5Vext , ~16!

where we place the voltages atx5L to be zero and atx5
2L to be the external voltageVext .

The key boundary conditions are those at the interfa
We assume that the interface scattering can be characte
by the average spin-dependent transmission and reflec
coefficients, but that there is no spin-flip process; then
detailed balance conditions of the spin flux across the in
face are

j s
.~01!5Tsj s

.~02!2Rsj s
,~01! ~17!

and
7-3
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j s
,~02!5Tsj s

,~01!2Rsj s
.~02!, ~18!

whereTs(2s) is the average transmission coefficient for ele
trons across the interface. The last set of the boundary
ditions involve discontinuity of the chemical potentials at t
interface. In the same spirit of the contact~Sharvin! resis-
tance, by counting the number of electrons at two sides
the interface, one has

ms
.~01!2ms

,~01!5ms
.~02!2ms

,~02!, ~19!

and by counting the number of electrons passing through
interface one obtains

Tsms
.~02!2Tsms

,~01!5ARcj s~0!, ~20!

whereRc5h/e2N is the contact resistance,N5A/a0
2 is the

number of the channels,A is the cross-section area, anda0 is
the lattice constant.

Equations~15!–~20! completely determine the constan
of the integration entering the chemical potentials@Eqs.~5!–
~8!# and the local current density@Eqs. ~9!–~12!#. It is
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straightforward to carry out the algebra and we are able
find all constants. For example,

C152
A3 j rsls

6~ls1l2s!
3H C0S ls

Ts
2

l2s

T2s
D1S 11

A3

2 D
3S Rsls

Ts
2

R2sl2s

T2s
D1

ls f~ls1l2s!~ls2ls8!

2lsl2s
J ,

~21!

whereC05A3RcA/rsls . The other constants have simila
tedious expressions that we do not list here.

With these coefficients determined, we can calculate
resistance of the structure for the two magnetic lay
aligned parallel and antiparallel, thereby the magnetore
tance. For the parallel alignment of the magnetization,
assume that the left and right layers are identical~but the
interface reflection coefficient is arbitrary!, i.e., rs5rs8 and
ls5ls8 . After carrying out the algebra, we find the tot
resistance is
RT
PP[

Vext

A j
5

rsls

A3A~ls1l2s!
H L1

C0~ls
2T2s1l2s

2 Ts!1~11A3/2!~RsT2sls
21R2sTsl2s

2 !

TsT2s~ls1l2s!
J , ~22!

For the case where the two Co layers are in an antiferromagnetic configuration~AP!, we identifyrs5r2s8 andls5l2s8 . By
carrying out a similar tedious calculation, we have

RT
AP5

rsls

A3A~ls1l2s!
3H L1

C0~l2sTs1lsT2s!1~11A3/2!~R2sTsl2s1RsT2sls!

2TsT2s
1

ls f~ls2l2s!
2

4lsl2s
J . ~23!
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ce

ture
a-
r is
ns-

nts
cat-
te

ent
ent
ia-
Thus the magnetoresistance isDR5RT
AP2RT

PP .
The above expressions@Eqs. ~22! and ~23!# explicitly

show that the total resistance of the system, either for a
allel or antiparallel magnetization of the two magnetic laye
cannot be written simply as a summation of the interface
the bulk resistance, but also includes additional terms wh
represent the transition of the electron transport from
ballistic to diffusive regions.

IV. APPLICATIONS AND RESULTS

The main difficulty in determining the conductance of
layered system is the interface scattering parameters. W
the bulk parameters, such as the resistivity and the mean
paths, can be accurately measured experimentally, the i
face resistance can only be determined indirectly. Theref
it will be extremely useful to use the interface parame
from anab initio calculation rather than indirectly obtaine
experimental data. Our formulation makes a quantitative p
diction possible, since all the parameters are either from
rect experimental results~for bulk parameters! or from ab
initio data~for interface transmission coefficients!.

To directly utilize the analytical results obtained in Se
r-
,
d
h
e

ile
ee
er-
e,
r

e-
i-

.

III we need to specify the effective interface transmissi
coefficientsTs . For a sandwich structure such as Co/Cu/C
there are in fact two interfaces; one is Co/Cu and the othe
Cu/Co. To model these two interfaces by a single interfa
between two Co layers, we replace the Co/Cu/Co struc
by a simplified Co/Co structure; see Fig. 1. This simplific
tion is valid as long as the thickness of the spacer laye
thinner than the transport length scale. The effective tra
mission coefficientTs of the right diagram in Fig. 1 can be
constructed from the two individual transmission coefficie
of the left diagram, depending on the coherence of the s
tering between the two interfaces. In general, we can wri19

FIG. 1. The two-interface problem is modeled by an equival
one-interface problem with an effective transmission coeffici
constructed from the two transmission coefficients of the left d
gram; see Eq.~24!.
7-4
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TABLE I. Spin-dependent transmission coefficients and mag
toresistance for a number of trilayers.a is the ratio of the mean free
paths for spin-up and -down. The magnetoresistanceDR is in units
of 1024 mV cm2.

Materials T↓5T↑ (AF) T↑ (F) T↓ (F)
DR

~a55.0!
DR

~a51!

Co/Cu/Co 0.34 0.76 0.22 1.1 0.19
Fe/Au/Fe 0.15 0.39 0.09 1.7 0.74
Fe/Ag/Fe 0.13 0.39 0.08 1.9 0.91
Ni/Cu/Ni 0.44 0.70 0.32 0.82 0.06

FIG. 2. The spin-dependent right-going and left-going chem
potential profiles obtained by using the transmission coefficient
Co/Cu interface derived from Stiles~Ref. 22!. The impurity scatter-
ing in the layer is assumed to be spin independent with a mean
pathls567 Å, a resistivity 10mV cm, and a spin diffusion length
ls f5500 Å. The upper and lower panels are for the magnetiza
of two Co layers antiparallel and parallel, respectively.
21440
Ts~u!5
Ts

LTs
R

122ARs
LRs

Rcosu1Rs
LRs

R
, ~24!

whereTs
L andTs

R are the transmission coefficient across t
Co/Cu and Cu/Co interfaces of the Co/Cu/Co structu
Rs

L(R)512Ts
L(R) is the corresponding reflection coefficien

andu is the phase shift of the electron wave acquired in o
round trip between the two interfaces. It is rather reasona
to assume that the phase shiftu is either random due to
decoherence~uncorrelated scattering! from two interfaces or
almost uniformly distributed fromu50 to u52p due to large
numbers of the momentum channels for the metallic syst
Therefore, we may take the average over the angle in
~24!, and we find

Ts5
1

2pE0

2p

Ts~u!du5
Ts

LTs
R

12Rs
LRs

R
. ~25!

Now we can utilizeab initio data to determineTs . The
transmission coefficients of the interfaces, e.g., Co/Cu,
Au, and Ni/Cu, have been calculated by Stiles.22 It is noted,
however, that, the average transmission coefficients for
electrons going from the nonmagnetic layer to the magn
layer are different from the electrons going from the ma
netic layer to the nonmagnetic layer in Ref. 22; this is b
cause the number of states at the Fermi levels are diffe
for the magnetic and nonmagnetic layers. It is easy to sh
that the average transmission coefficient used in our deta
balance equations is simply the geometrical mean of th
two coefficients, i.e.,Ts

L5ATs
nmTs

mn where Ts
nm represents

the transmission coefficient from the materialsn to m; those
numbers are listed in Ref. 22. In Table I, we have evalua
the transmission coefficients from Eq.~25! by using the data
of Ts

nm in Ref. 22. It is noted that when the two magne
layers are antiparallel,Ts

L5T2s
R , the equivalent transmissio

-

l
of

ee

n

FIG. 3. The spin-dependent current density profiles by using
same parameters as those of Fig. 2.
7-5
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Y. -N. QI AND S. ZHANG PHYSICAL REVIEW B65 214407
coefficients calculated from Eq.~25! for spin-up and -down
are identical, i.e.,T↑(AF)5T↓(AF)5Ts

LT2s
L /(12Rs

LR2s
L ).

With these specified transmission coefficients, we c
quantitatively determine the effects of the interface scat
ing. In Fig. 2, we show the chemical potentials near
interface for the case that the bulk diffusive scattering is s
independent. In this case, the spin dependence of the ch
cal potentials comes solely from the interfacial ballistic sc
tering. One immediately notices two different length scal
the mean free path and the spin diffusion lengths. Within
distance of the mean free path, the separation of the ri
and left-going electron chemical potentials are clearly s
both for the parallel and antiparallel aligned magnetic laye
This separation signals the ballistic nature of the interf
scattering, and it closes when the electrons diffuse into
interior of the layers. Within the spin diffusion length, th
chemical potentials for spin-up and -down electrons rem
different for the parallel alignment of the two Co layers. F
the antiparallel alignment, the spin-up and -down electr

FIG. 4. The spin dependent right- and left-going chemical
tential profiles in the presence of the spin-dependent bulk scatte
The transmission coefficients are derived from Ref. 22, and the
spin dependence of the mean free pathsl↑ /l↓55.
21440
n
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e
n
mi-
-
:
e
t-
n

s.
e
e

in
r
s

have identical chemical potentials; this is because we h
taken the bulk scattering to be spin independent~and the
transmission coefficient is also independent of the spin!.

In Fig. 3, we illustrate the spin dependence of the elec
current density for Co/Cu/Co without the spin dependence
the bulk scattering. For the antiparallel alignment of the
layers, the currents for spin-up and -down electrons are
same at the interface since both the effective interface tra
mission coefficient and bulk mean free path are spin in
pendent. For the parallel alignment, the spin-up and -do
electrons separates most at the interface. Since the cu
density in Fig. 3 included left- and right-going electrons, t
spin current decays at the spin-diffusion length, i.e.,
length scale of the mean free path has been integrate
calculating the current density.

Figure 4 shows the chemical potentials in the presenc
the bulk spin-dependent scattering. In this case, both in
face and bulk scatterings contribute to the chemical poten
splitting between spin-up and -down channels. However,
different chemical potentials for the left- and right-goin
electrons are solely due to the interface scattering. In Fig
we also illustrate the current density patterns in the prese
of the bulk spin-dependent scattering. Finally, the mag
toresistance are shown in the last two columns of Table

V. CONCLUSIONS

We have formulated macroscopic equations which can
used to take into account both impurity scattering and in
face specular reflection for current perpendicular to the pl
of the layers~CPP!. This approach makes the realistic es
mation of the resistance and magnetoresistance poss
since full ab initio data can be incorporated into our calc
lations. Comparing to previous works on the CPP transp
theories, our theory is physically more transparent in desc
ing electron transport from ballistic to diffusive scatterin
Most importantly, we have introduced different chemical p
tentials for right- and left-going electrons when the scatter

-
g.
lk

FIG. 5. The spin-dependent current density profiles in the p
ence of the spin-dependent bulk scattering. The parameters
same as those of Fig. 4.
7-6
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is ballistic; this is one of the main reasons that the se
resistance model for the interface scattering and bulk sca
ing is no more valid.

Our calculations can also serve as a criterion in determ
ing whether the magnetoresistive head based on the t
tional spin-valves has required signals when the curr
flows perpendicular to the layers. As the magnetoresista
in magnetic multilayers is larger for CPP than for CIP, o
wishes to develop CPP-GMR heads for perpendicular m
netic recording. The present calculation shows that the o
mal signals for the traditional spin valves, e.g., Co/Cu/Co
about DR51.1V for a cross section of 0.01 (m m)2.
Whether the signal of this magnitude is enough for the M
head application will be judged by signal engineers.
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APPENDIX: DERIVATION OF MACROSCOPIC
EQUATIONS

In this appendix, we derive the macroscopic equatio
given in Eqs.~1!–~4!. We start with the semiclassical Boltz
mann equation in the relaxation-time approximation,

vz

] f k,s

]z
2eEvz

] f °

]e
52F f k,s2 f̄ s

tms
1

f k,s2 f̄ 2s

ts f
G , ~A1!

wherevz5]ek /]kz5vFcosu, vF is the Fermi velocity, andu
is the angle between the direction of the velocity and thz
axis, andE52]V(z)/]z is the local electric field. Two re-
laxation timestms and ts f are introduced to represent th
momentum and spin-flip scattering relaxation times. T
overbar overf̄ s is the average off k,s over the solid angle in
the momentum space,f̄ s5(1/4p)*dVk f k,s(z). To determine
the Boltzmann distribution from Eq.~A1!, we need to
specify the boundary condition. In our problem, the distrib
tion functions is f k,s5 f 01eEvztsd(ek2eF) at zero tem-
perature forz56`, wheref 0 is the equilibrium distribution
function. At z50 the two sides of the distributions are co
nected via the detailed balancing conditions which are
plicitly dealt with in Sec. IV. If one demands that the detail
balancing conditions be valid foreverymode of momenta,
one would have no choice except to solve Eq.~A1! numeri-
cally. In general, it is extremely difficult to solve Eq.~A1!
even for a simple form of the reflection coefficients such
in the free-electron model.7 However, in most cases,ab initio
calculations yield average reflection and transmission co
cients across the interface.22 Thus one may focus on the de
tailed balancing condition on the average of the incom
and outgoing distribution functions; this treatment is simi
to the mean-field theory where the angular dependence o
scattering matrix has been omitted. Below we develop
approximate solution which will be simple and yet accur
enough to capture the average transport process acros
interface.
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With the picture we have discussed in Sec. II, we int
duce two different chemical potentials for electrons goi
toward and leaving from the interface. We take the distrib
tion function f k,s in the form

f k,s5 f 01S 2
] f 0

]e D @ms
.u~kz!1ms

,u~2kz!2gs~k,z!#,

~A2!

whereu(x) is the step function. As we have emphasized t
the distinction of the left- and right- going quasichemic
potentialsms

. andms
, are necessary to characterize the b

listic scattering at the interface. It is noted that the functi
gs(kz ,z) depends on both the magnitude and direction of
wave vectorkz .

By placing Eq.~A2! into Eq. ~A1!, the Boltzmann equa-
tion reads,

vzFeE1
]ms

.

]z
u~kz!1

]ms
,

]z
u~2kz!G

5
gs~kz ,z!

ts
1vz

]gs~kz ,z!

]z
2

ms
.u~kz!1ms

,u~2kz!

ts

1
ms

.1ms
,22ḡs

2tms
2

m2s
. 1m2s

, 22ḡ2s

2ts f
, ~A3!

where we have definedts
215tms

211ts f
21 . The above equation

involves two functions, the position-dependent function
the chemical potential and the nonequilibrium distributi
function gs(kz ,z) which controls the local current density
We observe that only the first term on the right-side side
Eq. ~A1! exists for a homogeneous system. The remain
terms are due to spatial inhomogeneity, and fluctuate aro
the homogeneous result. Within the spirit of the mean-fi
approximation, a good trial solution is thus to assume t
gs(kz ,z) has the form

gs~kz ,z!5vztsFeE1
]ms

.

]z
u~kz!1

]ms
,

]z
u~2kz!G , ~A4!

so that

ḡs5
vFts

4 S ]ms
.

]z
2

]ms
,

]z D , ~A5!

To examine such a tentative solution indeed being a g
approximation, we place it into Eq.~A3!; we obtain

vz
2ts

2F ]2ms
.

]z2
u~kz!1

]2ms
,

]z2
u~2kz!G

5ms
.u~kz!1ms

,u~2kz!

2
ts

tms
Fms

.1ms
,

2
2

vFts

4 S ]ms
.

]z
2

]ms
,

]z D G
2

ts

ts f
Fm2s

. 1m2s
,

2
2

vFt2s

4 S ]m2s
.

]z
2

]m2s
,

]z D G . ~A6!
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Clearly, Eq.~A6! cannot be satisfied for every velocityvz

unless the chemical potentialsms
. or ms

, depend on the mo
mentum. In fact, it is strictly true that the local potential ne
the interface depends on the direction of the electron m
mentum due to the momentum dependence of the trans
sion coefficient. However, as we have emphasized, we
only interested in the average over the incoming and ou
ing distribution functions. Thus an average over the inco
ing and outgoing momenta should be taken in Eq.~A6!. By
replacingvz

2 by vF
2/3, we find that the above equation can

written separately forkz.0 andkz,0, i.e.,

vF
2ts

2

3

]2ms
.

]z2
5ms

.2
ts

tms
Fms

.1ms
,

2
2

vFts

4 S ]ms
.

]z
2

]ms
,

]z D G
2

ts

ts f
Fm2s

. 1m2s
,

2
2

vFt2s

4 S ]m2s
.

]z
2

]m2s
,

]z D G
~A7!
he
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vF
2ts

2

3

]2ms
,

]z2
5ms

,2
ts

tms
Fms

.1ms
,

2
2

vFts

4 S ]ms
,

]z
2

]ms
.

]z D G
2

ts

ts f
Fm2s

. 1m2s
,

2
2

vFt2s

4 S ]m2s
,

]z
2

]m2s
.

]z D G .
~A8!

These two equations, along with the other two obtained
exchanges to 2s, determine the four chemical potentia
m↑

. , m↑
, , m↓

. , andm↓
, . Equations~1!–~3! are the result of

taking the linear combinations of the above equations;
have defined the mean free pathls5vFts /A3, and the dif-
fusion lengthls f5@t↑t↓vFts f /(3t↑13t↓)#1/2, and we ne-
glect the difference betweents andtms. The current density
is j s(z)5e*vzf k,zd

3k. By using Eqs.~A2! and~A3!, we ob-
tain Eq.~4! for the current density.
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