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Crossover from diffusive to ballistic transport properties in magnetic multilayers
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We develop a theoretical model for computing the spin-dependent transport properties of magnetic multi-
layers in the presence of ballistic scattering at the interfaces and diffusive scattering within the layers for
currents perpendicular to the plane of the layers. The local chemical potentials are found to be momentum and
spin dependent in the vicinity of regions with ballistic scattering. We have derived the approximate macro-
scopic equations from the Boltzmann equation by taking into account both ballistic and diffusive scattering.
With these equations, realistic data of the reflection coefficients &ibrinitio calculations can be explicitly
included in computing magnetotransport properties. We apply our formulation to a number of interesting
magnetic multilayer structures.
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[. INTRODUCTION on relevant length scales involved in different scattering
mechanisms. In Sec. Il, we outline our model by defining the
In the last decade, transport properties of mesoscopic sydallistic and diffusive transport with a specific model system.
tems have been extensively studied. Mesoscopic transpolit Sec. Ill, we establish macroscopic transport equations for
theories are now regarded as well established. For exampl#)€ transition region by using the semiclassical Boltzmann
the Landauer-Buttiker formalism supplies a theoretical recipeduation. Since there is intensive interest in magnetic multi-
to link the measured transport coefficients to microscopidayers, we will keep track of the spin dependence of the
transmission probabilities of a given mesoscopic system.scattering, and will include spin relaxation processes. We
With existing transport theories, one does not have muclgolve these transport equations and calculate the conductance
difficulty in conceptually understanding important mesos-Of the system using our well-defined boundary conditions. In
copic physics such as contact resistahcegnductance particular, we show that the resistancentt a simple sum-
quanta and fluctuatiorisand localizatiorf. mation of the interface resistance and bulk resistance. Then
In practice, however, one encounters difficulties in quanWe apply our theory to several interesting cases such as Co/
titatively calculating the conductance and magnetoresistancel/Co and Fe/Au/Fe trilayers in Sec. IV. The detail deriva-
of a realistic experimental mesoscopic system. For exampldion of the macroscopic transport equations are discussed in
let us consider a simple case where the conductor consists #f¢ Appendix.
two intimately contacted metallic magnetic layers with an
interface atz=0. A current is applied perpendicular to the
interface, and one measures the conductance by placing volt-
age probes far away from the interface. To correctly calculate In this section, we first choose a model system which is
the conductance, one has to introduce leads and reservoirs fsimple enough to explicitly study the crossover from ballistic
away from the interface, and determine the transmission cdo diffusive transport. We consider two semi-infinite mag-
efficients between the leads in the presence of interfacial andgetic layers connected by an interface. A steady-state current
bulk impurity scattering. Such a calculation will be ex- flows perpendicular to the layers. The interface may have a
tremely tedious, if not entirely impossible, due to the vastfinite thickness as long as the thickness is much smaller than
numbers of conduction paths and scattering channels in thibe decoherence length of the conduction electrons. Thus ap-
structure. Thus, instead of calculating the transmission coefplicable systems include spin valve structures of Co/Cu/Co
ficients of the whole structure, one usually calculates theand magnetic tunnel junctions of Co/&D,/Co. The conduc-
transmission coefficient across a perfect interface by neglectance and magnetoresistance of this simple system were al-
ing the bulk impurity scattering.The effect of the bulk im- ready presented in quite a few papers with different physical
purity is then added as an additional resistance. As alreadgonsiderations; see the review articles in Refs. 12 and 13.
pointed out in a number of papétst! the resistance due to The main difficulty in determining the conductance is that
reflection at the interface depends on the bulk scattering ithe Boltzmann equation in the presence of the specular re-
the layer. Thus the interface resistance calculated by neglediection at the interface is not analytically solvable in
ing the bulk scattering cannot be identified as the measuregeneraf~814-8|nstead, most of the theories simply neglect
interface resistance. the spatial variation of the distribution function, and only
The purpose of this paper is to establish an explicit exfocus on the effect of the electronic structure. Until recently,
pression for the transport property when the electron scattethe interplay between diffusive scattering in the layers and
ing is ballistic in one region and diffusive in another. We ballistic scattering at interfaces has been emphasized.
intend to develop a method to calculate the conductance antherefore, we intend to establish a connecting theory when
magnetoresistance by using thé initio transmission co- the transport properties have both ballistic and diffusive
efficient as an input parameter. Our emphasis will be placedomponents in the structure.

1. MODEL
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Before we proceed to evaluate the conductance of this IIl. MACROSCOPIC EQUATIONS
system, let us first specify the length scales involved. The

smallest length is the Fermi wavglength of the conduct|o.n to calculate conductance and magnetoresistance. The deriva-
electrons, of the order of the lattice constant for both SPIN-URion of these equations is given in the Appendix.
and -down electrons_. The next Ie_:ngth scale is the ele(_:tron The macroscopic equations involve the spin-dependent
mean free pathss which characterize momentum relaxation cyrrent density and the local spin-dependent chemical poten-
in the layer. The longest transport length will be the spintjg|s. In the layered structure, these macroscopic variables are
diffusive lengthhg¢. We will assume\ e <As<Ag¢ through-  translational invariant in the plane of the layers. Thus we
out the paper, so that the semiclassical Boltzmann equation iébel,u.)?(z) as the chemical potential at positiarfindepen-
an adequate approach to describe the electron traniSport. dent ofx andy) for the electron with spirs (up or down

For electrons near the interfadwithin the mean free moving toward the right, i.e,>0. As we emphasized in
path, the electrons' travel' across interface baI.IisticaIIy andgec. II, the electrons are not necessary at the thermodynamic
thus the left- and right-going electrons have different eneryqilibrium if they are subject to ballistic scattering. There-
gies. Strictly speaking, the electrons are hot, and the elegyre, we need to keep track of the direction of the velocity in
trons do not satisfy the thermodynamic statistics. The cOngefining the chemical potential. Following the derivations

cept of the local chemical potentials breaks down.fom the Appendix, we find that the macroscopic equations
Nevertheless, one can still introduce so-called “quasichemitqr the chemical potentials, in the limit.<\(, are

cal potentials” to characterize the number of electrons at a
given site!® In the presence of the current, the number of the -
left- and right-going electrons is different and one has to > oy Ms T Hs
introduce a different chemical potential for left- and right- E('MS Ps)= A2
going electrons. Since the transmission coefficients depend s
on the spin for the magnetic interface, the chemical potential .
depends on the spin as well. Therefore, in the near-interface 2 — Ms— M_g V3 d -
region, there are four chemical potentials for the left-going, E(“S_M—S):)\—z”LT)\S d_z(l“s ~Hs)
right-going, spin-up, and spin-down electrons. In the inter- st
mediate region, i.e., when the electrons are a few mean free J3 d
paths away from the interface but within the spin-diffusive T d—(,ufs—,ufs), @)
. . ; " _¢dz

length, the impurity scattering washes out the ballistic com-
ponent of the electron transport. Thus the left- and right-
going electrons merge into a common chemical potential. d2 _ _ s — — 3d _  _
However, the spin-up and -down electrons continue to have E(ﬂ«sﬂlﬁs): )\_Z(Ms_ﬂfs)"_ﬁ a7 s ~Hs)
different chemical potentials since the spin is not relaxed by sf s
non-spin-flip impurity scattering. Thus only two chemical J3 d
potentials are required to describe the transport in the inter- +— —(uZ—uy), (3
mediate region. At the far region, i.e., when the electrons are 4\ _s dz
away from the interface by a spin diffusion length, the trans- ) ) ) )
port becomes bulklike and one recovers the homogeneodénerehs is the mean free path projected to thaxis (and is
bulk transport. There is no difference for spin-up and spin-eduals 1{3 of the mean free path in three-dimensions; see
down chemical potentials, i.e., only one chemical potential athe Appendi}, As¢ is the spin diffusion lengthPs=(ps
a given location. —p_Jl(pstp_s) is the spin polarization of the fsrromagnet

The above transport processes can be well describegs is the resistivity, and we have definedus=(u
by using the Boltzmann equation with appropriate approxi-+ 45)/2. The current density is related to these chemical
mations. Within the relaxation-time approximation, there ispotentials(see the Appendix
no conceptual difficulty in writing down the Boltzmann
equation. However, the solutions are difficult to obtain in the > < > <
presence of the momentum dependence of the reflection j (z)=\/—§ _Oms ks +\/§(’“5 ~Hs) ' (4)
coefficient at the interfac®.31-1’As we show in the Ap- * psl dz oz 2\s
pendix, the Boltzmann equation remains an integrodifferen-
tial equation even if one uses the relaxation-time approximawherep = 6772ﬁ/(ek§)\3).
tion. When many attempts are made to numerically solve These macroscopic equations determine the diffusion
such an integrodifferential equation, a very limited physicalproperties of the conduction electrons: E#) characterizes
insight into the interplay of the interface reflection andthe length scale of the hot electrons, i.e., it will take a length
impurity scattering is gained. Here we revisit the Boltzmannscale of the order of the mean free path to reach the thermo-
equation, and derive a set of macroscopic equations usingdynamic equilibrium for the electrons scattered by the ballis-
plausible scheme to decouple the chemical potentials antic scattering at the interface; E) describes the diffusion
current density in the distribution function, and thus theproperties of the conduction electron spin, i.e., the chemical
physical processes described in the preceding paragraph guetentials of the electrons for different spin channels become
shown explicitly. identical after the electrons diffuse for a distance known as

In this section, we outline the macroscopic equations used
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the spin-diffusion length. It is noted that the second and third J3 Ci\_s
terms on the right-hand side of E(R) are absent in the j?(z)z—[—yﬁ—exp(—zl)\sf)
ordinary spin-diffusion equatioff*?* these terms come from Ps NstAstA—s)
the ballistic component of the interface scattering. Equation a
(3) governs the effects of these two diffusion processes on - )\—exp(—z/ Rs)}, (10
the average chemical potential which is ultimately related to s
the measured position dependence of the electric potential, 3 C\
and thereby determines the resistance and the magnetoresis- iZ(2)= _[ -y — ;exp(_z/)\sf)
tance of the structure. -s Asi(AstA—g)
The solutions for each layer can be easily obtained from B
Egs.(1)—(3). For example, foz>0, we have + )\—exp(—z/)\,s) , (11
—S
Cih_g z
,u,>=’y +’y12+—eX[<——) i< _E o Cihs _
s 70 Aot A _g Nst iZs(2)= P BRI s W exp(—2z/\sy)
V3 z
ta 1‘7)‘*“‘(—)\—5)’ ) —)\iexp(—z/)\_s) . (12)
—S
C . Similarly, the current density for<<O can also be written
<_ 1% ~s N down.
Ms =7Yot v1Z+ ex;{ ) . .
AstN_g Ast The above solutions contain a number of constants of the
/3 . integrations which have to be determined by the boundary
—al 1+ = ex;{ — _), (6)  conditions. We assume that the electrons are subject to an
2 As average spin-dependent reflection and transmission across

the interface. The detailed balancing conditions will link the
- Cihs z current and chemical potentials at the two side of the inter-
MZs=7Y0t Y1273 ex;{ - )\—> face. We now list these boundary conditions.
s s s First the total current density

+B|1- = |exp — & ) (7) i@+ (@ =js s HiTstiSs (19
—S
is conserved. One can verify it immediately from E¢(®—
o Co\e ex;{_i) (12) that indeed
Hosmror AstA_g Ast j(2)
5 =0 (19
V3 z z
—B 1+7 exp — Ao ®) Examining the solutions foz>0 and z<0, one obtains
Y1="71 -
Similar solutions can be written down far 0 with the con- Next we write down the outer-boundary condition at
stants of integratioryy, y:1, C1, a, andg replaced byy;, z=—L andz=L when the layer thickneds is much larger

y;, Cy, a', andg’, the exponential factors exp@/\g and  than any transport length. Then the exponential terms in Egs.
exp(—z/\y) are replaced by explJ) \/gnd expt/\g) to ins:}J_re (5)—(8) can be discarded, and one has

the decay solution ag— —o, and 3 is changed to- /3. _ -~

Clearly, the solution contains two characteristic decay Yot yib=V(L)=0 (15)
lengths: the mean free path and the spin diffusion length. Iand
there is no ballistic transmission and reflection at the inter-
face, one would find that electron conduction is diffusive and Yo~ V1L =V(—L)=Vey, (16)

one recovers Valet-Fert type of the equation when there is NQhere we place the voltages x&L to be zero and at=
difference betweenu; and wg throughout the structure | 0 pe the external voltagé,
ext:

H 1
(even at the interfage™ _ The key boundary conditions are those at the interface.
By placing these solutions into E(f), the current density  \ye assume that the interface scattering can be characterized
for z>0 is thus by the average spin-dependent transmission and reflection
coefficients, but that there is no spin-flip process; then the
- \/§ Cih_¢ detailed balance conditions of the spin flux across the inter-
Js (D)= —| =7t o XN —Z/\gy) face are
Ps Asi(NsT N _g)
@ js (07)=T4j5(07)—R4js(0) 17
+ —exp(—z/\g) |, (9
Ns and
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jS(07)=Tgjs(0")—RgjI(07), (18 straightforward to carry out the algebra and we are able to

] o - find all constants. For example,
whereTg _g is the average transmission coefficient for elec-

trons across the interface. The last set of the boundary con- V3ipahs Ae s

ditions involve discontinuity of the chemical potentials at the C;=— BNt [ O(T— _T_) +| 1+ >

interface. In the same spirit of the contg&harvin resis- s hTs s s

tance, by counting the number of electrons at two sides of (Rs)\s R—s)\—s) )\sf()\er)\_s)()\s_)\f)}
X - ,

V3

the interface, one has =

T, T 2N\ g
ps (09)=ug(0")=ug (07)—pg(07), (19 (21)
f’:lnd by counting th_e number of electrons passing through th@nere c = 3R.A/p\s. The other constants have similar
interface one obtains tedious expressions that we do not list here.
_ . With these coefficients determined, we can calculate the
> _ <n+)— ,
Tsps (07) = Tous (07) = ARG 5(0), (20 resistance of the structure for the two magnetic layers

whereR.=h/e?N is the contact resistancal:A/aS is the aligned parallel and antiparallel, thereby the magnetoresis-
number of the channeld, is the cross-section area, aaglis ~ tance. For the parallel alignment of the magnetization, we

the lattice constant. assume that the left and right layers are identitait the
Equations(15)—(20) completely determine the constants interface reflection coefficient is arbitraryi.e., ps=p and
of the integration entering the chemical potentf@ss.(5)—  As=\&. After carrying out the algebra, we find the total

(8)] and the local current densitjEgs. (9)—(12)]. It is  resistance is

PP_ _
T A BAONHN )

Vext  Pshs {Hco<x§T_s+x"‘JS>+<1+ﬁ/2><RJ_sx§+R_JsAZS>] .

TsTos(AstA_y)

For the case where the two Co layers are in an antiferromagnetic configuvaBanwve identifyps=p’ and\s=\"g. By
carrying out a similar tedious calculation, we have

AP_ ps)\s { + CO()\fsTs+)\sTfs)+(1+ \/5/2)(R73Ts}\75+ RsTfs)\s) Asf()\s_)\s)z] (23)
T \/§A(7\S+7\_S) 2TsT AN\ s
|
Thus the magnetoresistanceA®=R;"—REP. Il we need to specify the effective interface transmission

The above expressiondEgs. (22) and (23)] explicitly  coefficientsT. For a sandwich structure such as Co/Cu/Co,
show that the total resistance of the system, either for a pathere are in fact two interfaces; one is Co/Cu and the other is
allel or antiparallel magnetization of the two magnetic layers,Cu/Co. To model these two interfaces by a single interface
cannot be written simply as a summation of the interface anttetween two Co layers, we replace the Co/Cu/Co structure
the bulk resistance, but also includes additional terms whiclpy a simplified Co/Co structure; see Fig. 1. This simplifica-
represent the transition of the electron transport from thdion is valid as long as the thickness of the spacer layer is
ballistic to diffusive regions. thinner than the transport length scale. The effective trans-

mission coefficienfT s of the right diagram in Fig. 1 can be
constructed from the two individual transmission coefficients
IV. APPLICATIONS AND RESULTS of the left diagram, depending on the coherence of the scat-

The main difficulty in determining the conductance of atenng between the two interfaces. In general, we can Write

layered system is the interface scattering parameters. While
the bulk parameters, such as the resistivity and the mean fres

paths, can be accurately measured experimentally, the inter * FIN qu) = f FlFE f(b

face resistance can only be determined indirectly. Therefore,
it will be extremely useful to use the interface parameter
from anab initio calculation rather than indirectly obtained T TX T
experimental data. Our formulation makes a quantitative pre- s 78 s
diction possible, since all the parameters are either from di- F|G. 1. The two-interface problem is modeled by an equivalent
rect experimental result§or bulk parametepsor from ab  one-interface problem with an effective transmission coefficient
initio data(for interface transmission coefficients constructed from the two transmission coefficients of the left dia-
To directly utilize the analytical results obtained in Sec.gram; see Eq(24).
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TABLE I. Spin-dependent transmission coefficients and magne- " T T T
toresistance for a number of trilayersis the ratio of the mean free Co/Cu/Co
paths for spin-up and -down. The magnetoresistayiRes in units
of 1074 uQ cn?. I (2) (PP)
120
AR AR
Materials T,=T;(AF) T,(F) T,(F) (a=50 (a=1)
Iy, (2) (AP)
Co/Cu/Co 0.34 0.76 0.22 1.1 0.19 :
Fe/Au/Fe 0.15 0.39 0.09 1.7 0.74 - -
Fe/Ag/Fe 0.13 0.39 0.08 1.9 0.91 0 .
Ni/Cu/Ni 0.44 0.70 0.32 0.82 0.06
1, (PP)
16 . . .
Co/Cu/Co (AP) 50 L ,
-1000 -500 0 500 1000
12+ . Z (A)
w
-g FIG. 3. The spin-dependent current density profiles by using the
g same parameters as those of Fig. 2.
& 8f o] TLTR
s ) u, & T(6)= s s , (24
£ W, (@) 1-2RERRcosh+RERR
gl ]
o whereTS and TR are the transmission coefficient across the
Co/Cu and Cu/Co interfaces of the Co/Cu/Co structure,
RL (P =1-TL(R s the corresponding reflection coefficient,
0 ! ! ! and d is the phase shift of the electron wave acquired in one
-1000  -500 0 500 1000 round trip between the two interfaces. It is rather reasonable
Z (A) to assume that the phase shiftis either random due to
decoherencéuncorrelated scatteringrom two interfaces or
16 . . . almost uniformly distributed fron#=0 to 6=2 due to large
numbers of the momentum channels for the metallic system.
Co/Cu/Co (PP) Therefore, we may take the average over the angle in Eq.
(24), and we find
) 2 | LR
= 1 J2w TS
£ Ts=5,], Ts(6)dd RRE (25)
o sl .
2 N Now we can utilizeab initio data to determind. The
§ % (2) ] transmission coefficients of the interfaces, e.g., Co/Cu, Fe/
E /S W () Au, and Ni/Cu, have been calculated by Stfét is noted,
e 4 w(2) however, that, the average transmission coefficients for the
o 1 @) electrons going from the nonmagnetic layer to the magnetic
1 layer are different from the electrons going from the mag-
netic layer to the nonmagnetic layer in Ref. 22; this is be-
_?000 : _5'00 : (') 5(')0 1000 cause the num_ber of states at the Fermi Ieyels are different
for the magnetic and nonmagnetic layers. It is easy to show
Z (A) that the average transmission coefficient used in our detailed

FIG. 2. The spin-dependent right-going and left-going chemical
potential profiles obtained by using the transmission coefficients o
Co/Cu interface derived from StiléRef. 22. The impurity scatter-
ing in the layer is assumed to be spin independent with a mean fr

balance equations is simply the geometrical mean of these
two coefficients, i.e.To=\TI™T™" where T2™ represents
the transmission coefficient from the materialgo m; those

daumbers are listed in Ref. 22. In Table |, we have evaluated

path\.=67 A, a resistivity 10uQ cm, and a spin diffusion length  the tgansmission Coefficients from E@5) by using the data.
\ss=500 A. The upper and lower panels are for the magnetizatio®f Ts " in Ref. 22. It is noted that when the two magnetic
of two Co layers antiparallel and parallel, respectively.

layers are antiparalle]l,';:TBS, the equivalent transmission
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20 r T . T . T T 120 . T . T . T
— @ Co/Cu/Co (AP) | Co/Cu/Co i) (PP)
------- ) )
o 15 7 Hi((Z) //,/"/ A IT(Z) (AP) /:‘_’__‘_._-»- """
E ............ 1 (@) _,/’/ 80| ’_,./""‘ ll(z) (AP) N
= L _/,-
[
[
= }
a 101 1 -
§ sl ] S i) (PP)
£ 2«
o ///
/// 0 L 1 . 1 L 1 L
- -1000 -500 0 500 1000
O 1 1 1 °
-1000  -500 0 500 1000 Z(A)
Z(A) FIG. 5. The spin-dependent current density profiles in the pres-
16 T T T ence of the spin-dependent bulk scattering. The parameters are
8————————— Co/Cu/Co (PP) same as those of Fig. 4.

have identical chemical potentials; this is because we have

) : taken the bulk scattering to be spin independg@mtd the

S 3 transmission coefficient is also independent of the)spin

E | In Fig. 3, we illustrate the spin dependence of the electric

S 8f 1 current density for Co/Cu/Co without the spin dependence of
| Yo w00 a0 s _::Z; the bulk scattering. For the antiparallel alignment of the Co

= Z(h) u}(z) layers, the currents for spin-up and -down electrons are the
g ak ~ W@ | same at the interface since both the effective interface trans-

mission coefficient and bulk mean free path are spin inde-
pendent. For the parallel alignment, the spin-up and -down
electrons separates most at the interface. Since the current
D000 500 o =00 000 de_nsity in Fig. 3 included left- and right—going electrons, the
. spin current decays at the spin-diffusion length, i.e., the
Z(A) length scale of the mean free path has been integrated in

FIG. 4. The spin dependent right- and left-going chemical po-c@lculating the current density. o
tential profiles in the presence of the spin-dependent bulk scattering, igure 4 shows the chemical potentials in the presence of
The transmission coefficients are derived from Ref. 22, and the bulk€ bulk spin-dependent scattering. In this case, both inter-
spin dependence of the mean free path#\ | =5. face and bulk scatterings contribute to the chemical potential
splitting between spin-up and -down channels. However, the
coefficients calculated from E@25) for spin-up and -down different chemical potentials for the left- and right-going
are identical, i.e.T{(AF)=T (AF)=TsT-J/(1-RsR" ). electrons are solely due to the interface scattering. In Fig. 5,
With these specified transmission coefficients, we camwe also illustrate the current density patterns in the presence
guantitatively determine the effects of the interface scatteref the bulk spin-dependent scattering. Finally, the magne-
ing. In Fig. 2, we show the chemical potentials near thetoresistance are shown in the last two columns of Table I.
interface for the case that the bulk diffusive scattering is spin
independent. In this case, the spin dependence of the chemi-
cal potentials comes solely from the interfacial ballistic scat-
tering. One immediately notices two different length scales: We have formulated macroscopic equations which can be
the mean free path and the spin diffusion lengths. Within theused to take into account both impurity scattering and inter-
distance of the mean free path, the separation of the righface specular reflection for current perpendicular to the plane
and left-going electron chemical potentials are clearly seenf the layers(CPP. This approach makes the realistic esti-
both for the parallel and antiparallel aligned magnetic layersmation of the resistance and magnetoresistance possible,
This separation signals the ballistic nature of the interfacesince full ab initio data can be incorporated into our calcu-
scattering, and it closes when the electrons diffuse into théations. Comparing to previous works on the CPP transport
interior of the layers. Within the spin diffusion length, the theories, our theory is physically more transparent in describ-
chemical potentials for spin-up and -down electrons remairing electron transport from ballistic to diffusive scattering.
different for the parallel alignment of the two Co layers. For Most importantly, we have introduced different chemical po-
the antiparallel alignment, the spin-up and -down electrongentials for right- and left-going electrons when the scattering

V. CONCLUSIONS
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is ballistic; this is one of the main reasons that the series With the picture we have discussed in Sec. Il, we intro-

resistance model for the interface scattering and bulk scatteduce two different chemical potentials for electrons going

ing is no more valid. toward and leaving from the interface. We take the distribu-
Our calculations can also serve as a criterion in determintion functionf, ¢ in the form

ing whether the magnetoresistive head based on the tradi-

tional spin-valves has required signals when the current afo - -

flows perpendicular to the layers. As the magnetoresistance T Je (s 0k + us 6(—k) —9s(k,2)],

in magnetic multilayers is larger for CPP than for CIP, one (A2)

wishes to develop CPP-GMR heads for perpendicular mag- ) . )

netic recording. The present calculation shows that the optiheree(x) is the step function. As we have emphasized that

mal signals for the traditional spin valves, e.g., Co/Cu/Co, ighe d|§tlnct§)n of tﬁe left- and right- going quasichemical

about AR=1.10 for a cross section of 0.0%u(m)2. pot_ennals,us_ and ug are necessary to characterize the b_al—

Whether the signal of this magnitude is enough for the MRIistic scattering at the interface. It is noted that the function

head application will be judged by signal engineers. 9s(kz,2) depends on both the magnitude and direction of the
wave vectork, .

By placing Eq.(A2) into Eq. (Al), the Boltzmann equa-

fk'S:fo‘f‘
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APPENDIX: DERIVATION OF MACROSCOPIC 9s(k,,2) 394(K,,2) ,U«; 0(k2)+ﬂs< 0(—k,)
EQUATIONS = - +uv, 97 - -
S S
In this appendix, we derive the macroscopic equations R — - —
given in Egs.(1)—(4). We start with the semiclassical Boltz- L Hs tHs —20s Mt H-s—20- (A3)
mann equation in the relaxation-time approximation, 2Tms 27 '
2 s ¢ T f—T where we have definet| '= 7,1+ 7./ . The above equation
Uzﬁ v,—=— ks s, Tks s (A1)  involves two functions, the position-dependent function of
Jz de Tms Tsf the chemical potential and the nonequilibrium distribution

function gg(k,,z) which controls the local current density.
wherev ,= dey/ Ik, = vC0s6, v is the Fermi velocity, and e observe that only the first term on the right-side side of
is the angle between the direction of the V9|0City and zhe Eq. (A]_) exists for a homogeneous system. The remaining
axis, andE= —dV(z)/dz is the local electric field. Two re- terms are due to spatial inhomogeneity, and fluctuate around
laxation times7y,s and 7¢ are introduced to represent the the homogeneous result. Within the spirit of the mean-field
momentum and spin-flip scattering relaxation times. Theapproximation, a good trial solution is thus to assume that
overbar overf is the average ofy s over the solid angle in  gs(k;,z) has the form

the momentum spacé,= (1/4w) [d€),fy s(z). To determine
the Boltzmann distribution from Eq(Al), we need to
specify the boundary condition. In our problem, the distribu-
tion functions isfk,5=f°+eEvZ7-35(ek— €g) at zero tem-
perature forz=+ o, wheref® is the equilibrium distribution SO that

function. Atz=0 the two sides of the distributions are con-

nected via the detailed balancing conditions which are ex- — _UFTs
plicitly dealt with in Sec. IV. If one demands that the detailed 9s 4
balancing conditions be valid fagverymode of momenta, ) ) . )
one would have no choice except to solve L) numeri- To examine such a tentgtlye solution indeed l_Jemg a good
cally. In general, it is extremely difficult to solve EGA1) ~ @PProximation, we place it into E¢A3); we obtain

even for a simple form of the reflection coefficients such as

g Ips

9s(kz,2)=v,7g eE+W0(kz)+¥0(_kz)}v (A4)

(A5)

g Ipg
0z iz |’

in the free-electron modélHowever, in most caseab initio 2 2 f92Ms> 32#5

s vi ; e 0272 - 0k, +——- 0(—ky)
calculations yield average reflection and transmission coeffi- "2°s| ;2 972
cients across the interfaé®Thus one may focus on the de-
tailed balancing condition on the average of the incoming =g 0(Ky) + ps 0(—ky)
and outgoing distribution functions; this treatment is similar - - <
to the mean-field theory where the angular dependence of the _ Ts | Ms Tl _UFTs< Ips s )
scattering matrix has been omitted. Below we develop an Tms 2 4 Jz 9z
approximate solution which will be simple and yet accurate - _ - <
enough to capture the average transport process across the C Ts|MosTHos UFT—5(3M—5_5M—5> (A6)
interface. Tst 2 4 az Jz

214407-7
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Clearly, Eq.(A6) cannot be satisfied for every velocity,
unless the chemical potentigls” or ug depend on the mo-

mentum. In fact, it is strictly true that the local potential nearvérg Pug
the interface depends on the direction of the electron mo—5—

mentum due to the momentum dependence of the transmi

sion coefficient. However, as we have emphasized, we are
only interested in the average over the incoming and outgo-
ing distribution functions. Thus an average over the incom-

ing and outgoing momenta should be taken in &$). By
replacingv? by v2/3, we find that the above equation can be
written separately fok,>0 andk,<0, i.e.,

2 2
vETe Pug . T [Betms  vets[dps  dps
3 pz2 Ks Tms 2 4 \ 9z Jz
_Ts ,ufs-F,LLfs_va_s 0,ufs_(9,ufs
Tsf 2 4 0z 0z

(A7)
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and
o Ts|metus  vers[dms  dug
o 972 Ks Tms 2 4 Jz 0z
_Ts ILLESJ’_MfS_ UVFT—s al’“fs_ﬁl“is
Tsf 2 4 iz iz ||’

(A8)

These two equations, along with the other two obtained by
exchanges to —s, determine the four chemical potentials
wi . i, py, andu] . Equations(1)—(3) are the result of
taking the linear combinations of the above equations; we
have defined the mean free path=vg7s/\/3, and the dif-
fusion length\g;=[ 7,7 ve7s/ (37 +37)]1*% and we ne-
glect the difference between and ;. The current density

is js(2) =efv,fy ,d°k. By using Eqs(A2) and(A3), we ob-
tain Eq.(4) for the current density.
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