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From Fermi-liquid-like to non-Fermi-liquid behavior of the generalized Anderson impurity model:
The Bethe-ansatz solution
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The exact solution for the generalized Anderson impurity model is presented. Here localized electrons
interact in the shell via a Hubbard-like repulsion and Hund’s rule exchange interaction. An impurity reveals, in
general, a mixed-valent behavior. Depending on the relative position of the impurity level and the strengths of
Hubbard like and Hund'’s couplings, an impurity can reveal either a Fermi-liquid-like or non-Fermi-liquid-like
behavior. The competition between characteristics of in-shell Coulomb interactions can produce a behavior
similar to the channel-anisotropic multichannel Kondo situation, which is responsible for the non-Fermi-liquid
physics of the model. Similar conclusions can be made for a two-impurity Kondo model.
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The behavior of hybridization impurities has been theo-
retically studied in the framework of the Anderson impurity +Vf dX3(X) 2 [ ¢ o (X) fm ot H.C], (1)
model, which possesses the exact Bethe ansatz softftion. me
Usually this pertains to in-shell electrons with only spin in- wherey, (x) (f ) creates a conduction electron at site
ternal degrees of freedom, and the Hubbard-like in-shell retin-shell one ax=0) with the spino and orbital indexm
pulsion between electrons produces the many-body physics —1, ... |, V are hybridization elementéere supposed to
with the Kondo effect being the prime example. In thebe independent on positions, spins, and orbital ingices
Kondo case the magnetic impurity hybridized with conduc-andJ are the Hubbard-like and Hund's rulexchangg in-
tion e|ectrons manifests |tse|f in a |0w_energy Fermi ||qu|d She” |nteract|0n5, and the Fermi Ve|0C|ty OfACOI‘ldUCtIOI’I elec-
behavior’® but with the renormalized density of states, trons is equated to unity. The countertetiy,, = (1/A)
which is determined by the crossover scale—the Kondox[(d%/dx?)—&(x)(x/|x[)[8'(x+0)+ &' (x—0)] is neces-
temperaturé:? It is also possible to consider a larger degen-sary to preserve the integrability at the position of the impu-
eracy of the in-shell electroflarge values of the total mo- [ty (zerg. The parameteA measures the curvarture scale of
ment j=13), similar Fermi-liquid-like physics resufté for ~ the spectrum. The inclusion of the counterterm does not prin-
the magnetic localized electrdrf.However there exist many cipally affect physical properties of a single hybridization
materials in which the ground state of ions in the symmetridmpurity (cf. Ref. 12.
configuration has an orbital degeneracy in addition to the Two scattering processes are possible, namely, the scatter-
Kramers(spin degenerac§.Here the so-called multichannel ing of conduction electrons off the localized one, and the
Kondo situation can appear, whose main feature is the divegcattering between conduction electrons. We can find two-
gency of the density of states for the impurity—the non-particle scattering matriceSTPSM's) for the first type of
Fermi-liquid behavior:*° In this study we propose a Bethe Scattering. The two-electron wave function for this process
ansatz solution of the generalized Anderson model, in whicl§an be written as a product of a coordinate wave function
the Coulomb in-shell coupling reveals itself in the Hubbard-referring to the positiongmomenta of electrons, a spin
like interaction and Hund's exchandeWe show that the Wave function, and an orbital wave function. The global
competition between those interactions and the relative posymmetry of the wave function has to be antisymmetric un-
tion of the energy level of the localized electron can produceler the exchange of the two electrons. Hence, if the spin and
the effective channel-anisotropic Kondo situation. The lattelorbital parts have the same symmetry, the coordinate wave
determines the transition between the Fermi-liquid and nonfunction is antisymmetric and vanishesxif=x,, so that the

Fermi-liquid behaviors. The Hamiltonian of the model haselectrons cannot interadfor instance, for only two orbitals
the effectively one-dimensional fofrf the interacting electrons necessarily form a spin triplet and

an orbital singlet or a spin singlet and an orbital triplet. The
former situation pertains to an attractive total effective inter-
N ) . action, while for the latter the effective coupling is repul-
H=- deE Pm,o(X) (191 9X+Heound ¥m,o(X) sive) The TPSM then factorizegsimilarly to the two-
7 channel Kondo probletfl
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wherek;, , are the momentd, , andP,, , denote the iden- Wwherej=1,... N, a=1,...M, f=1,... M, g9=p,,
tity matrices and permutation operators in the orbital andvi,=N, M, ,,=0, ;bjzztanfl[r/z(kj—e)], en(y)=(2y
spin subspaces, respectively= mN(Eg)V? [N(Eg) is the  —ic’'n)/(2y+ic'n), g,(y)=(2y—icn)/(2y+icn), c

density of states of conduction electrons at the Fermi level =T"(U—J)/(2e+U—-J), and ¢'=I'(U+J)/(2e+U+J).
fsm(K)=[p?=(2e+U+J)p]/(UFJ); and p;=k;/A, (cf.  The energy and projections of the total spin and orbital
Ref. 13; note that this paper only gives the Bethe ansatthoments are equal tEZEJN:lkJ-, $*=(N/2)—M and L*
equations(BAE’s), but not the solution of them Then we :2(|N_2r2I:1Mr)i respectively.

take the scaling limitA—c. For only two orbitals, e.g., The solutions to BAE(3) in the thermodynamic limit
when applied to a triplet wave functideither in the spin or  (wjth L ,N,M,M,— and finite ratiosN/L, M/L, M, /L)
the orbital subspagethe corresponding TPSM yields one, can pe classified in the framework of the “string
while if it acts on a singlet it gives rise to a phase shift. Sincenypothesis“’ for any values ofU and J in the following
the TPSM in each subspace satisfies the Yang-Baxter relggay (a) Real charge rapidities—we define the density of
tions (YBR),™ their product also does. The TPSM's between apidities, which belong to the clas) asp(p), the density
conduction electrons have to satisfy the Yang-Baxter relabf their “holes” as p(p) and the “dressed”(interactions

tions withR (and mutually and also preserve the integrabil- «qress” “pare” energies of excitationsenergy of those ex-

ity. Formally there is no direct coupling between conduction ., _.. ~ . .
e?/ectrons iz the model. Howeverp thg naive choise of theC|tat|onSS(p)=TIn_(;_)/_p); Tis the temperatureb) Strlngs of .
diagonal scattering matrices for t,he TPSM'’s between Congomplei< spin rapldltles—tbese are bound spin states with
duction electrons does not satisfy the YBR. Correlations bedn(N), on(X) and =T |n(0n/0r_1) being the dens_mes of_ thg
tween conduction electrons aireducedthrough the hybrid- real parts and dressed energies of those spin excitations,
ization with in-shell electrons. Hence the hybridization of Wheren=1,2, ... denotes the length of the spin strirg)
conduction electrons wittinteracting in-shell electrongly- ~ Strings of complex orbital rapidities—they ae E)())und orbital
namically correlateghe motion of formers. That is why the States with densities of their real partg)) (&), their

TPSM between conduction electrons dynamically obtains théholes” (" (&) and dressed energies =T In(o!/¢1)

form of R(Kk). It turns out that different behaviors of scatter- for r-orbital (r=1, ... ,2) strings of lengtm=1,2, ... .(d)

ings in spin and orbital subspaces is not novel in the theorfgzomplex spin and charge rapidities, which correspond to

of exactly solvable models, and this is similar to the situationbound  states of electrons with  different  spin

in the multichannel channel-asymetric Kondo probfém. components—we define their densities and dressed energies
Given the elementary TPSIEQ. (2)] we can derive the as o(\), o(\) and W(\)=T In(c/c). (€) Complex orbital

set of BAE’s for the quantum numbe(sapidities), which  and charge rapidities—these pertain to bound states of elec-

parametrize the eigenvalues and eigenfunctions of the Schrerons with different orbital components, with densities of

dinger equation with periodic boundary conditions, in thetheir real parts and dressed energies being defined as

way similar to that in Refs. 10 and 12. The procedure isy ()~ SOy and O =TInEEO), (r

standard, and we skip the _d_etallsNWe introduce several sets; 2 n=12...).Note that becaus¢®=p;, one

of rapidities: charge rapiditiegk;};- (,\‘/’IV'th N being the  can identify p=3(? and e=®{?). Which classes are real-

number of electrons spin rapidities{\ .}, (wWith M being  jzed in the solution depend on the signs and relative values

the number of down spinsand orbital rapiditiqug)}gﬂ;l of the Hubbard-like interactiot), the Hund’s rule exchange

(with the number of electrons with theh orbital index be- J, ande. Forc,c’<0 the repulsion exists in both spin and

ing N,.=M,_;—M,, r=1,...,2). A crystalline electric orbital subspaces. Here the solutions of the clagaggb)

field (D) can lift the degeneracy of the orbitals, the lattersand (c) are valid. Forc=0, ¢c'<0 one has an effective re-

becoming unequally populatetSimilarly, an external mag- pulsion in the spin subspace and the effective attraction in

netic fieldH lifts the spin degeneragyEach eigenstate cor- the orbital subspace, with the solutions from the clagags

responds to a solution of the BAE, here obtained on a perith), (c), and(e). Forc<0, ¢'=0 the situation is opposite—

odic interval of the length.: there is an effective repulsion in the orbital subspace and an
effective attraction in the spin subspdotasseqa), (b), (c),
' . M My and (d)]. Finally, for ¢,c’=0 all of the classes are present,
e Wt 2 =TT gy(pj—n ) 1 ei(p;— €M), because of the effective attraction in both spin and orbital
r=1 a=1 subspaces.

Let us consider for simplicity the most important physical
1 : .
) £r—1) () £(r+1) casel =3 (only two orbitalg. Here onlyr =1 matter in the
qﬂl 1§’ — &g )ql;[l e&r’ —& ) classes(c) and (e) (and we omit this supraindex in what
follows). After some algebra we can write the integral equa-
M ) A1) tions, which describe the thermodynamics of our model. The
= —ql;[l e (&’ —&3), (3)  set for densities of rapidities is

Mi_1 Mii1

(Alm)+L al TAAN—e)+a] A(AN—¢€)]

N M
jljl gl(}\a_pj):_(gl gZ()\a_)\ﬁ)a =;'+0'+a§ * 0.+ag:- * p_bg,* @ns

214404-2



FROM FERMI-LIQUID-LIKE TO NON-. ..
(AMlm)+L - al T2 (Aé—e)+al A (Aé—e)]
=§+E+a§'* E+a§'* p—bix oy,
Pt AS % on=—sgnc)al x p+bS % o, (4

ontAS ko= —sgrc)aSx p+bSx 3,

(Al2m)+L tal(Ap—e)=p+p+aSxko+al * 3

+sgrc)agx o,

+sgrc)ay x @

The set of integral equations for dressed energies can b

written as
V—Wo+2u+2D—TaSk In[1+e” (/D]

=Talx In[1+e 'D]—TbS x In[1+e~ (xn/T],

d—Do+2u+H-Tas % In[1+e (*/D]

=Ta % In[1+e “M]—Thex In[1+e ¢/,

2nD—TIn[1+eln/ M)+ TAS x In[1+e (xm/M)]
= —Tsgnc')as * In[1+e~ (/D]

+ThS % In[1+e~ ¥/, (5)
NH—TIN[1+ e/ D]+ TAC % In[1+el¢m/D)]

=—Tsgr(c)afx In[1+e” D]+ Thix In[1+e~(*/D],

e—eotput+(H2)+D=Tax In[1+e YD)+ Ta % In[1
ot ut( 1 1
+e (®D]+Tsgr(c)al In[ 1
+e (4n/M]+Tsgn(c’)as * In[ 1
+e (i,

wherey is the chemical potential, the symbel denotes the
convolution, and the Fourier transforms of the kernels are

z 20| z z
An,m(w)ZCOt%T [a\nfm|(w)_an+m(w)]a

’ ’ Cw
bﬁyc (w)=2aﬁ'c (w)COS)’(C’,T) — 5n.\c’\/\c\(5n,|C|/|C’|)'
(6)

n|Zw|)

aﬁ(w)=ex% -

gg~Ap, Wo=~2AN, and ®y=2A¢. The summation is
meant over repeated indices. The free energy is equal to
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F=—(TA/27r)(fdpln[1+e_(8/T)]+2j d\

><In[1+e’(“"T)]+2f déin[1+e @D, (7)

The total number of electrons amdprojections of the total
spin and orbital momentdfor conduction electrons and
the impurity are N=[dpp(p)+2fdhoc+2fd&s, &
=(12)fdpp(p)+[déZ -2 _,[dNay,, andL*=[dpp(p)
+2[déo—23]_,[d&g,, respectively. The solution of inte-
gral equationg4) and (5) yields the thermodynamic proper-
ties of the model as a function &f, J, €, T, x, H, andD.

The terms in Eqs(4), which do not depend op, o, 3, o,
§nd<pn (driving terms of order ofL 1, determine the behav-

ior of the impurity, while the remaining driving terms in
those equations determine the behavior of conduction elec-
trons. Note that the set of integral equations for dressed en-
ergies does not depend on impurity terms explicitly. It turns
out, however, that the behavior of the impurity follows the
properties of the host. Because of the division of driving
terms in Eqs(4) into ones of order of unity and the ones of
order ofL ™1, and because those equations are linear, we can
separate each of densities of rapidities, respectively, into con-
tributions from the host and from the impurity, like=py,

+L pimp; etc™? (for each class of densitiesHence we
can write equations, similar in structure to E¢$), for host
densities and for impurity densities of rapidities. In a similar
way we can divide the energy, spin, orbital moment, and
number of electrongvalence for the impurity in-shell state
into the host part and the impurity contribution. It is not
difficult to show that the behavior of conduction electrons in
the model[determined by those equations for the host den-
sities of rapidities and by Eq<5)] is the sameas for a
free-electron ga&s it must bg Hence from now on we will
concentrate on the behavior of an impurity, omitting the in-
deximp in what follows.

For high energiesT>V) the model describes the high-
behavior of a single noninteracting impurity shell, whose
properties are well knowh*! The most interesting properties
are revealed in the ground state and at low temperatures.
Dressed energies can be separated into their positive and
negative parts. According to the Fermi statistics obeyed by
the rapidities® (all quasiparticles are hard-core ohegosi-
tive parts of dressed energies pertain to empty states in the
ground statgholeg, while negative parts correspond to the
occupied statefilling up of Dirac seas Note that the sym-
metry of eigenfunctions isiot fermionic but rather of an
anyonic natur¥!” due to interactions.

The casec,c’=0, as we discussed above, pertains to all
classes of excitationg&ll possible bound statedeing the
solutions of the BAE. This case is similar to the case of the
degenerate Anderson modebut with differentvalues of ef-
fective interactions for orbital and spin degrees of freedom.
In the ground state the classé, (d), and (e) matter. In
general the valence of the impurity reveals either nonmag-
netic, mixed-valence, and magnetic behavibrdepending
on the relative position ofé. The behavior of the impurity in
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the magnetic regime with the valence of the in-shell electrorsolving the BAE is thefusion proceduré? The latter is the
being close to 1 is the Fermi-liquid lik&> search for a solution to BAE’s for charge rapidities within
The most interesting case is, e.g., with=0, c<0 (i.e.,  the class of orbital bound states. Those which have maximal

U+J=0, U+J+2e=0, andU=J, U+2e<J or U<, spin are only important for_ the Iow-energy_ phys’résT_he
U+2e=J). Here one can show after some straightforwardnumber of orbitons bound in those states is determined by
calculations that only solutions of class@s unbound elec-  the number of orbitals, i.e., for our case it is 2. One conduc-
tron excitations,(c) one can call these chargeless and spinion electron, however, is bound at the impurity orbitee.,

less excitations “orbitons” and their bound statésr n=1 It charge rapidity is reak,= e, with a fixed ratioe/A). In

and in the commensurate case for integer|c’|/|c|: let the limit of A —oo all real parts of th_ose string solutions can
Ic'|=|c|), and (d) those low-lying excitations are spin- be neglectetf (except _for th_e rapidity of the co_ndu.ct|on
singlet orbital-triplet Cooper-like pairghey carry charge electron .bo.und. at thg Impurity .s}teln fact the fusion is a
_2e, spin zero and orbital momen) and can have negative way of eliminating o_rbltal rapidities from the BAE. After this
parts for any, H, andD. The Fermi points for those exci- proced_ure host rap|pllt|es l_aecome present in the fus_ed BAE
tations are ob’tai}led from the conditiosg+B)=0, « only with the e_ffectlve Spns (1/2;c(ic)._ln the limit J

" ¢ My =k » Kin —00 _only effective spins 1 are relevant in the low-energy
(£A1,)=0 and¥(+Q)=0.[Generally _speakm"ﬁ Edas.(3)  physics of the model, which is characteristic of the two-
Imply Symmet”c distributions for rapIdItIeS; hOWeVer, for the Channe| Kondo prob'erH)_ In the Opposite case Of Vanishing
low-energy behaviofwith the characteristic energies being Jj one recovers the single-channel Kondo cafer the be-
much less than than the Fermi energye can consider the havior of an impurity two low-energy scales are important:
lower limits being infinite] Then the ground-state integral T,=(N/L)exp(re/|c|) and  T,=(N/L)cos(c|/2|c’|)

equations for densities become X exp(rel/|c’|). The solution of the BAE reveals that in the
ground statefor small enoughe) the mixed valence of the
a) A (AN—e)+al AY(AN—€) impurity increases with the growth of the band filling of
o 5 conduction electrongi.e., the valence of the impurity de-
_ rac rc pends explicitly on thdéotal number of electrong the sys-
Tt j_xd)\ 4 oot f_wdkal P tem) The ground-state magnetization of the localized elec-

A A tron for H<T,<Ty is proportional toH/T, with standard
1 c n c Kondo logarithmic corrections, i.e., M} .~H/T,(1
B f_mdgblwl_ f_wdgb“%' +|InH/aT ] *---) (a is some nonuniversallté%nstanThe
latter are characteristic for the asymptotically free behavior
5 A B 0 of an impurity spin. It is typical of a simple one-channel
o1+ <p1+f dg’aggol:f dka§p+f d\bfo Kondo problem with a finite magnetic susceptibility. How-
- - - ever for T,<H<Tg the magnetization of the impurity re-
A, veals a logarithmic behavioM|,.~—(H/T,)In(H/aTy)
—f dé' Al en, (with divergent susceptibilify typical for the two-channel
o Kondo behavior. For nonzero low temperatuiles T,<Tg
tS) we obtain the lowF (Sommerfeldl coefficient of the specific

~ Q , A ; -1
aE(Ap—e)—p—p:f dras U_f ldgaicpl heat for the localized 7lelectron Yioc Ta.[_l
S —oo — (3T /wT)IN(T/T)A+|InT/TJ~*—---) and the finite
A ground-state susceptibility X|0C~T;1In(Ta/TK)(1
_f ndfaﬁgon, +|InT/T¢| *=---) (both with typical logarithmic corrections
—o of an asymptotically free spin This case pertains to the

single-channel Kondo physics, though two different energy
~ An B Q scales fory,,c and vy, mean that the Wilson ratio differs
‘Pn+‘Pn+Lwd§ Ann$n= wadkangrﬁwd)‘bgU from the Fermi-liquid oné. For T,<T<Tyx we havey,..
% Xioe~ — (T) “Hn(T/Ty) (i.e., logarithmically divergent
AL and with the remnant entropy of the impuris,.=In 2.
B f,xdg ALn@1- For higher temperatures the magnetic susceptibility of the
impurity manifests the Curie-like behavior with typical loga-
[For the incommensurate situation one has to remove the lagthmic corrections. The temperature dependence of the re-
equation from Eqgs(8), and in the remaining equations to sistivity is determined by the scattering of conduction elec-
remove the last terms in their right-hand sideSor A;,,  trons off the spins of localized electrongmagnetic
= (L*=0) one can obtain the solutions fgr , as func- impurities.® We calculate it in a standard way, taking into
tions of o andp. In a zero magnetic field one can eliminate account subleading irrelevant perturbations in the
p, and find the valence of the impuritthe average number renormalization-group sense. It can be approximédfed a
of localized in-shell electronswhich varies depending on small hybridization anisotropy at low temperatures by

the relative position ofe, as it must. To find the relative Ap(T)~A(T/T,)?+--- for T<T,<Tx and Ap(T)
dependence of the characteristics in the magnetic regime; B(T/T, )Y+ ... for T,<T<Ty.
charge degrees of freedom can be eliminafeahd one ob- For ¢’<0, c=0 the situation is opposite to the above.

tains the effective equation feronly. The alternative way of The low-energy physics is determined by unbound electron
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excitations, spinons, and spin-triplet orbital-singlet Coopercompetition between characteristics of the in-shell Coulomb
like pairs. One has a formal similarity to the previous casenteractions can produce a behavior similar to the channel-
with the interchange«~c’, H/2—D andL?*-2S Finally, anisotropic multichannel Kondo behavior, which is respon-
for c,c’<0 only unbound electron excitations, spinons, andsible for the transition to the non-Fermi-liquid-like physics in
orbitons can have their Dirac seéstates with negative en- the model. Finally, we can point out that in Ref. 13 the au-
ergies. In this case the situation is reminiscent to the Ander-thors reported a similarity in the Bethe ansatz equations,
son impurity model with the in-shell attraction of electrdns. which determine the behaviors of the generalized Anderson

Summarizing, we have presented an exact solution for theodel and that of the two-impurity Kondo modfeand the
generalized Anderson impurity model. The impurity in-shell two-impurity Anderson modeé’ This means that the two-
electron is hybridized with conduction ones. Localized elecimpurity Kondo model, according to our results, also has to
trons interact via the Hubbard-like repulsion and Hund’s rulereveal the properties characteristic of the channel-anisotropic
exchange interactions. Depending on the relative position afultichannel Kondo model, i.e., the transition between the
the impurity’s energy level and strengths of the Hubbard-likeFermi-liquid-like and non-Fermi-liquid-like behaviors. The
and Hund’'s exchange couplings, the impurity can manifestesults of our calculations can be applied to the non-Fermi-
either a Fermi-liquid-like behavior or a transition to a non-liquid-like behaviors of some rare-earth and actinide
Fermi-liquid-like behaviofwith the divergent magnetic sus- compound$l?? and also to the behaviors of a split-gate
ceptibility and Sommerfeld coefficient This is why the quantum ddt or double-dot configuratiorfs.
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