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From Fermi-liquid-like to non-Fermi-liquid behavior of the generalized Anderson impurity model:
The Bethe-ansatz solution

A. A. Zvyagin
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The exact solution for the generalized Anderson impurity model is presented. Here localized electrons
interact in the shell via a Hubbard-like repulsion and Hund’s rule exchange interaction. An impurity reveals, in
general, a mixed-valent behavior. Depending on the relative position of the impurity level and the strengths of
Hubbard like and Hund’s couplings, an impurity can reveal either a Fermi-liquid-like or non-Fermi-liquid-like
behavior. The competition between characteristics of in-shell Coulomb interactions can produce a behavior
similar to the channel-anisotropic multichannel Kondo situation, which is responsible for the non-Fermi-liquid
physics of the model. Similar conclusions can be made for a two-impurity Kondo model.
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The behavior of hybridization impurities has been the
retically studied in the framework of the Anderson impur
model, which possesses the exact Bethe ansatz solutio1,2

Usually this pertains to in-shell electrons with only spin i
ternal degrees of freedom, and the Hubbard-like in-shell
pulsion between electrons produces the many-body phy
with the Kondo effect being the prime example. In t
Kondo case the magnetic impurity hybridized with condu
tion electrons manifests itself in a low-energy Fermi liqu
behavior,3–5 but with the renormalized density of state
which is determined by the crossover scale—the Kon
temperature.1,2 It is also possible to consider a larger dege
eracy of the in-shell electron~large values of the total mo
ment j > 1

2 ), similar Fermi-liquid-like physics results6,7 for
the magnetic localized electron.1,2 However there exist many
materials in which the ground state of ions in the symme
configuration has an orbital degeneracy in addition to
Kramers~spin! degeneracy.8 Here the so-called multichanne
Kondo situation can appear, whose main feature is the di
gency of the density of states for the impurity—the no
Fermi-liquid behavior.9,10 In this study we propose a Beth
ansatz solution of the generalized Anderson model, in wh
the Coulomb in-shell coupling reveals itself in the Hubba
like interaction and Hund’s exchange.11 We show that the
competition between those interactions and the relative p
tion of the energy level of the localized electron can produ
the effective channel-anisotropic Kondo situation. The la
determines the transition between the Fermi-liquid and n
Fermi-liquid behaviors. The Hamiltonian of the model h
the effectively one-dimensional form1,2

H52E dx(
m,s

cm,s
† ~x!~ i ]/]x1Ĥcount!cm,s~x!

1S (
m8,s8Þm,s

@~U/2! f m,s
† f m8,s8

† f m8,s8 f m,s

2~J/2! f m,s
† f m8,s8

† f m8,s f m,s8#1e(
m,s

f m,s
† f m,sD
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m,s

@cm,s
† ~x! f m,s1H.c.#, ~1!

wherecms
† (x) ( f m,s

† ) creates a conduction electron at sitex
~in-shell one atx50) with the spins and orbital indexm
52 l , . . . ,l , V are hybridization elements~here supposed to
be independent on positions, spins, and orbital indices!, U
and J are the Hubbard-like and Hund’s rule~exchange! in-
shell interactions, and the Fermi velocity of conduction ele
trons is equated to unity. The countertermĤcount5(1/L)
3@(]2/]x2)2d(x)(x/uxu)@d8(x10)1d8(x20)# is neces-
sary to preserve the integrability at the position of the imp
rity ~zero!. The parameterL measures the curvarture scale
the spectrum. The inclusion of the counterterm does not p
cipally affect physical properties of a single hybridizatio
impurity ~cf. Ref. 12!.

Two scattering processes are possible, namely, the sca
ing of conduction electrons off the localized one, and t
scattering between conduction electrons. We can find t
particle scattering matrices~TPSM’s! for the first type of
scattering. The two-electron wave function for this proce
can be written as a product of a coordinate wave funct
referring to the positions~momenta! of electrons, a spin
wave function, and an orbital wave function. The glob
symmetry of the wave function has to be antisymmetric u
der the exchange of the two electrons. Hence, if the spin
orbital parts have the same symmetry, the coordinate w
function is antisymmetric and vanishes ifx15x2, so that the
electrons cannot interact.~For instance, for only two orbitals
the interacting electrons necessarily form a spin triplet a
an orbital singlet or a spin singlet and an orbital triplet. T
former situation pertains to an attractive total effective int
action, while for the latter the effective coupling is repu
sive.! The TPSM then factorizes~similarly to the two-
channel Kondo problem10!

R̂~k1 ,k2!5
@ f s~k1!2 f s~k2!# Î s1 iG P̂s

f s~k1!2 f s~k2!1 iG

^
@ f m~k1!2 f m~k2!# Î m1 iG P̂m

f m~k1!2 f m~k2!1 iG
, ~2!
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A. A. ZVYAGIN PHYSICAL REVIEW B 65 214404
wherek1,2 are the momenta;Î m,s and P̂m,s denote the iden-
tity matrices and permutation operators in the orbital a
spin subspaces, respectively;G5pN(EF)V2 @N(EF) is the
density of states of conduction electrons at the Fermi lev#,
f s,m(k)5@p22(2e1U7J)p#/(U7J); and pj5kj /L, ~cf.
Ref. 13; note that this paper only gives the Bethe ans
equations~BAE’s!, but not the solution of them!. Then we
take the scaling limitL→`. For only two orbitals, e.g.,
when applied to a triplet wave function~either in the spin or
the orbital subspace! the corresponding TPSM yields on
while if it acts on a singlet it gives rise to a phase shift. Sin
the TPSM in each subspace satisfies the Yang-Baxter
tions ~YBR!,14 their product also does. The TPSM’s betwe
conduction electrons have to satisfy the Yang-Baxter re
tions with R̂ ~and mutually! and also preserve the integrab
ity. Formally there is no direct coupling between conducti
electrons in the model. However, the naive choise of
diagonal scattering matrices for the TPSM’s between c
duction electrons does not satisfy the YBR. Correlations
tween conduction electrons areinducedthrough the hybrid-
ization with in-shell electrons. Hence the hybridization
conduction electrons with~interacting! in-shell electronsdy-
namically correlatesthe motion of formers. That is why th
TPSM between conduction electrons dynamically obtains
form of R̂(k). It turns out that different behaviors of scatte
ings in spin and orbital subspaces is not novel in the the
of exactly solvable models, and this is similar to the situat
in the multichannel channel-asymetric Kondo problem.12

Given the elementary TPSM@Eq. ~2!# we can derive the
set of BAE’s for the quantum numbers~rapidities!, which
parametrize the eigenvalues and eigenfunctions of the Sc¨-
dinger equation with periodic boundary conditions, in t
way similar to that in Refs. 10 and 12. The procedure
standard, and we skip the details. We introduce several
of rapidities: charge rapidities$kj% j 51

N ~with N being the
number of electrons!, spin rapidities$la%a51

M ~with M being
the number of down spins!, and orbital rapidities$jq

(r )%q51
Mr

~with the number of electrons with ther th orbital index be-
ing Nr5Mr 212Mr , r 51, . . . ,2l !. A crystalline electric
field ~D! can lift the degeneracy of the orbitals, the latte
becoming unequally populated.~Similarly, an external mag-
netic fieldH lifts the spin degeneracy.! Each eigenstate cor
responds to a solution of the BAE, here obtained on a p
odic interval of the lengthL:

e2 i (kjL12f̂ j )5 )
g51

M

g1~pj2lg!)
q51

M1

e1~pj2jq
(1)!,

)
q51

Mr 21

e1~j f
(r )2jq

(r 21)! )
q51

Mr 11

e1~j f
(r )2jq

(r 11)!

52 )
q51

Mr

e2~j f
(r )2jq

(r )!, ~3!

)
j 51

N

g1~la2pj !52 )
d51

M

g2~la2ld!,
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where j 51, . . . ,N, a51, . . .M , f 51, . . . ,Mr , j j
(0)5pj ,

M05N, M2l 1150, f̂ j52tan21@G/2(kj2e)#, en(y)5(2y
2 ic8n)/(2y1 ic8n), gn(y)5(2y2 icn)/(2y1 icn), c
5G(U2J)/(2e1U2J), and c85G(U1J)/(2e1U1J).
The energy andz projections of the total spin and orbita
moments are equal toE5( j 51

N kj , Sz5(N/2)2M and Lz

52(lN2( r 51
2l M r), respectively.

The solutions to BAE~3! in the thermodynamic limit
~with L,N,M ,Mr→` and finite ratiosN/L, M /L, Mr /L)
can be classified in the framework of the ‘‘strin
hypothesis’’15 for any values ofU and J in the following
way. ~a! Real charge rapidities—we define the density
rapidities, which belong to the class~a! asr(p), the density
of their ‘‘holes’’ as r̃(p) and the ‘‘dressed’’~interactions
‘‘dress’’ ‘‘bare’’ energies of excitations! energy of those ex-
citations«(p)5T ln(r̃/r); T is the temperature.~b! Strings of
complex spin rapidities—these are bound spin states w
sn(l), s̃n(l) andfn5T ln(s̃n /sn) being the densities of the
real parts and dressed energies of those spin excitati
wheren51,2, . . . denotes the length of the spin string.~c!
Strings of complex orbital rapidities—they are bound orbi
states with densities of their real partswn

(r )(j (r )), their

‘‘holes’’ w̃n
(r )(j (r )) and dressed energieskn

(r )5T ln(w̃n
(r)/wn

(r))
for r-orbital (r 51, . . . ,2l ) strings of lengthn51,2, . . . .~d!
Complex spin and charge rapidities, which correspond
bound states of electrons with different sp
components—we define their densities and dressed ene
as s(l), s̃(l) and C(l)5T ln(s̃/s). ~e! Complex orbital
and charge rapidities—these pertain to bound states of e
trons with different orbital components, with densities
their real parts and dressed energies being defined
Sn

(r )(j (r )), S̃n
(r )(j (r )) and Fn

(r )5T ln(S̃n
(r)/Sn

(r)), (r
51, . . . ,2l , n51,2 . . . ). Note that becausej (0)[pj , one
can identifyr5S1

(0) and e5F1
(0) . Which classes are real

ized in the solution depend on the signs and relative val
of the Hubbard-like interactionU, the Hund’s rule exchange
J, ande. For c,c8<0 the repulsion exists in both spin an
orbital subspaces. Here the solutions of the classes~a!, ~b!
and ~c! are valid. Forc>0, c8<0 one has an effective re
pulsion in the spin subspace and the effective attraction
the orbital subspace, with the solutions from the classes~a!,
~b!, ~c!, and~e!. For c<0, c8>0 the situation is opposite—
there is an effective repulsion in the orbital subspace and
effective attraction in the spin subspace@classes~a!, ~b!, ~c!,
and ~d!#. Finally, for c,c8>0 all of the classes are presen
because of the effective attraction in both spin and orb
subspaces.

Let us consider for simplicity the most important physic
casel 5 1

2 ~only two orbitals!. Here onlyr 51 matter in the
classes~c! and ~e! ~and we omit this supraindex in wha
follows!. After some algebra we can write the integral equ
tions, which describe the thermodynamics of our model. T
set for densities of rapidities is

~L/p!1L21@a1
G1Lc~Ll2e!1a1

G2Lc~Ll2e!#

5s̃1s1a2
c

* s1a1
c

* r2bn
c8
* wn ,
4-2
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FROM FERMI-LIQUID-LIKE TO NON- . . . PHYSICAL REVIEW B 65 214404
~L/p!1L21@a1
G1Lc8~Lj2e!1a1

G2Lc8~Lj2e!#

5S̃1S1a2
c8
* S1a1

c8
* r2bn

c

* sn ,

w̃n1Anm
c8

* wm52sgn~c8!an
c8
* r1bn

c8
* s, ~4!

s̃n1Anm
c

* sm52sgn~c!an
c

* r1bn
c

* S,

~L/2p!1L21a1
G~Lp2e!5 r̃1r1a1

c

* s1a1
c8
* S

1sgn~c!an
c

* sn

1sgn~c8!an
c8
* wn .

The set of integral equations for dressed energies can
written as

C2C012m12D2Ta2
c

* ln@11e2(C/T)#

5Ta1
c

* ln@11e2(«/T)#2Tbn
c8
* ln@11e2(kn /T)#,

F2F012m1H2Ta2
c8
* ln@11e2(F/T)#

5Ta1
c8
* ln@11e2(«/T)#2Tbn

c

* ln@11e2(fn /T)#,

2nD2T ln@11e(kn /T)#1TAnm
c8

* ln@11e2(km /T)#

52Tsgn~c8!an
c8
* ln@11e2(«/T)#

1Tbn
c8
* ln@11e2(C/T)#, ~5!

nH2T ln@11e(fn /T)#1TAnm
c

* ln@11e(fm /T)#

52Tsgn~c!an
c

* ln@11e2(«/T)#1Tbn
c

* ln@11e2(F/T)#,

«2«01m1~H/2!1D5Ta1
c

* ln@11e2(C/T)#1Ta1
c8
* ln@1

1e2(F/T)#1Tsgn~c!an
c

* ln@1

1e2(fn /T)#1Tsgn~c8!an
c8
* ln@1

1e2(kn /T)#,

wherem is the chemical potential, the symbol* denotes the
convolution, and the Fourier transforms of the kernels ar

An,m
z ~v!5cothS uzvu

2 D @aun2mu
z ~v!2an1m

z ~v!#,

bn
c,c8~v!52an

c,c8~v!coshS c8,
cv

2 D2dn,uc8u/ucu~dn,ucu/uc8u!,

~6!

an
z~v!5expS 2

nuzvu
2 D ;

«0'Lp, C0'2Ll, and F052Lj. The summation is
meant over repeated indices. The free energy is equal to
21440
be

F52~TL/2p!S E dp ln@11e2(«/T)#12E dl

3 ln@11e2(C/T)#12E dj ln@11e2(F/T)# D . ~7!

The total number of electrons andz projections of the total
spin and orbital momenta~for conduction electrons and
the impurity! are N5*dpr(p)12*dls12*djS, Sz

5(1/2)*dpr(p)1*djS2(n51
` *dlsn , and Lz5*dpr(p)

12*djs22(n51
` *djwn , respectively. The solution of inte

gral equations~4! and ~5! yields the thermodynamic proper
ties of the model as a function ofU, J, e, T, m, H, andD.
The terms in Eqs.~4!, which do not depend onr, s, S, sn ,
andwn ~driving terms! of order ofL21, determine the behav
ior of the impurity, while the remaining driving terms i
those equations determine the behavior of conduction e
trons. Note that the set of integral equations for dressed
ergies does not depend on impurity terms explicitly. It tur
out, however, that the behavior of the impurity follows th
properties of the host. Because of the division of drivi
terms in Eqs.~4! into ones of order of unity and the ones
order ofL21, and because those equations are linear, we
separate each of densities of rapidities, respectively, into c
tributions from the host and from the impurity, liker5rh
1L21r imp ; etc.1,2 ~for each class of densities!. Hence we
can write equations, similar in structure to Eqs.~4!, for host
densities and for impurity densities of rapidities. In a simi
way we can divide the energy, spin, orbital moment, a
number of electrons~valence for the impurity in-shell state!
into the host part and the impurity contribution. It is n
difficult to show that the behavior of conduction electrons
the model@determined by those equations for the host d
sities of rapidities and by Eqs.~5!# is the sameas for a
free-electron gas~as it must be!. Hence from now on we will
concentrate on the behavior of an impurity, omitting the
dex imp in what follows.

For high energies (T@V) the model describes the high-T
behavior of a single noninteracting impurity shell, who
properties are well known.1,11The most interesting propertie
are revealed in the ground state and at low temperatu
Dressed energies can be separated into their positive
negative parts. According to the Fermi statistics obeyed
the rapidities15 ~all quasiparticles are hard-core ones!, posi-
tive parts of dressed energies pertain to empty states in
ground state~holes!, while negative parts correspond to th
occupied states~filling up of Dirac seas!. Note that the sym-
metry of eigenfunctions isnot fermionic but rather of an
anyonic nature16,17 due to interactions.

The casec,c8>0, as we discussed above, pertains to
classes of excitations~all possible bound states! being the
solutions of the BAE. This case is similar to the case of
degenerate Anderson model,2 but with differentvalues of ef-
fective interactions for orbital and spin degrees of freedo
In the ground state the classes~a!, ~d!, and ~e! matter. In
general the valence of the impurity reveals either nonm
netic, mixed-valence, and magnetic behavior,1,2 depending
on the relative position ofe. The behavior of the impurity in
4-3
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A. A. ZVYAGIN PHYSICAL REVIEW B 65 214404
the magnetic regime with the valence of the in-shell elect
being close to 1 is the Fermi-liquid like.3–5

The most interesting case is, e.g., withc8>0, c<0 ~i.e.,
U1J>0, U1J12e>0, and U>J, U12e<J or U<J,
U12e>J). Here one can show after some straightforwa
calculations that only solutions of classes~a! unbound elec-
tron excitations,~c! one can call these chargeless and sp
less excitations ‘‘orbitons’’ and their bound states~for n51
and in the commensurate case for integern5uc8u/ucu: let
uc8u>ucu), and ~d! those low-lying excitations are spin
singlet orbital-triplet Cooper-like pairs~they carry charge
22e, spin zero and orbital moment 1! and can have negativ
parts for anym, H, andD. The Fermi points for those exci
tations are obtained from the conditions«(6B)50, k1,n
(6A1,n)50 andC(6Q)50. @Generally speaking18 Eqs.~3!
imply symmetric distributions for rapidities; however, for th
low-energy behavior~with the characteristic energies bein
much less than than the Fermi energy! one can consider the
lower limits being infinite.# Then the ground-state integra
equations for densities become

a1
G1Lc~Ll2e!1a1

G2Lc~Ll2e!

5s1E
2`

Q

dl8a2
c8s1s̃1E

2`

B

dka18
cr

2E
2`

A1
djb1

cw12E
2`

An
djbn

cwn ,

w̃11w11E
2`

A1
dj8a2

cw15E
2`

B

dka1
cr1E

2`

Q

dlb1
cs

2E
2`

An
dj8A1n

c wn ,

~8!

a1
G~Lp2e!2 r̃2r5E

2`

Q

dla1
c8s2E

2`

A1
dja1

cw1

2E
2`

An
djan

cwn ,

w̃n1wn1E
2`

An
dj8Ann

c fn5E
2`

B

dkan
cr1E

2`

Q

dlbn
cs

2E
2`

A1
dj8A1n

c w1 .

@For the incommensurate situation one has to remove the
equation from Eqs.~8!, and in the remaining equations t
remove the last terms in their right-hand sides.# For A1,n
5` (Lz50) one can obtain the solutions forw1,n as func-
tions of s andr. In a zero magnetic field one can elimina
r, and find the valence of the impurity~the average numbe
of localized in-shell electrons!, which varies depending on
the relative position ofe, as it must. To find the relative
dependence of the characteristics in the magnetic reg
charge degrees of freedom can be eliminated,10 and one ob-
tains the effective equation forr only. The alternative way of
21440
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solving the BAE is thefusion procedure.12 The latter is the
search for a solution to BAE’s for charge rapidities with
the class of orbital bound states. Those which have maxi
spin are only important for the low-energy physics.12 The
number of orbitons bound in those states is determined
the number of orbitals, i.e., for our case it is 2. One cond
tion electron, however, is bound at the impurity orbital~i.e.,
its charge rapidity is real,kq5e, with a fixed ratioe/L). In
the limit of L→` all real parts of those string solutions ca
be neglected12 ~except for the rapidity of the conductio
electron bound at the impurity site!. In fact the fusion is a
way of eliminating orbital rapidities from the BAE. After thi
procedure host rapidities become present in the fused B
only with the effective spins (1/2)(c86c). In the limit J
→` only effective spins 1 are relevant in the low-ener
physics of the model, which is characteristic of the tw
channel Kondo problem.10 In the opposite case of vanishin
J one recovers the single-channel Kondo case.1 For the be-
havior of an impurity two low-energy scales are importa
TK5(N/L)exp(pe/ucu) and Ta5(N/L)cos(pucu/2uc8u)
3exp(pe/uc8u). The solution of the BAE reveals that in th
ground state~for small enoughe) the mixed valence of the
impurity increases with the growth of the band filling o
conduction electrons~i.e., the valence of the impurity de
pends explicitly on thetotal number of electronsin the sys-
tem.! The ground-state magnetization of the localized el
tron for H!Ta!TK is proportional toH/Ta with standard
Kondo logarithmic corrections, i.e., Mloc

z ;H/Ta(1
1u ln H/aTau212•••) (a is some nonuniversal constant!. The
latter are characteristic for the asymptotically free behav
of an impurity spin. It is typical of a simple one-chann
Kondo problem1 with a finite magnetic susceptibility. How
ever for Ta!H!TK the magnetization of the impurity re
veals a logarithmic behaviorMloc

z ;2(H/Ta)ln(H/aTK)
~with divergent susceptibility!, typical for the two-channel
Kondo behavior. For nonzero low temperaturesT!Ta!TK
we obtain the low-T ~Sommerfeld! coefficient of the specific
heat for the localized electron g loc;Ta

21@1
2(3Ta /pTK)ln(Ta /TK)#(11ulnT/Tau212•••) and the finite
ground-state susceptibility x loc;TK

21ln(Ta /TK)(1
1ulnT/TKu212•••) ~both with typical logarithmic corrections
of an asymptotically free spin!. This case pertains to th
single-channel Kondo physics, though two different ene
scales forx loc and g loc mean that the Wilson ratio differs
from the Fermi-liquid one.5 For Ta!T!TK we haveg loc
}x loc;2(TK)21ln(T/TK) ~i.e., logarithmically divergent!
and with the remnant entropy of the impuritySloc5 ln A2.
For higher temperatures the magnetic susceptibility of
impurity manifests the Curie-like behavior with typical log
rithmic corrections. The temperature dependence of the
sistivity is determined by the scattering of conduction ele
trons off the spins of localized electrons~magnetic
impurities!.6 We calculate it in a standard way, taking in
account subleading irrelevant perturbations in t
renormalization-group sense. It can be approximated~for a
small hybridization anisotropy! at low temperatures by
Dr(T);A(T/Ta)21••• for T!Ta!TK and Dr(T)
;B(T/TK)1/21••• for Ta!T!TK .

For c8<0, c>0 the situation is opposite to the abov
The low-energy physics is determined by unbound elect
4-4



e
s

n
-
er
s.
th

el
ec
ul
n
ik
e
n-
-

mb
nel-
n-
in
u-
ns,
son

-
to

opic
the
e
mi-
de
te

FROM FERMI-LIQUID-LIKE TO NON- . . . PHYSICAL REVIEW B 65 214404
excitations, spinons, and spin-triplet orbital-singlet Coop
like pairs. One has a formal similarity to the previous ca
with the interchangec↔c8, H/2↔D andLz↔2Sz. Finally,
for c,c8<0 only unbound electron excitations, spinons, a
orbitons can have their Dirac seas~states with negative en
ergies!. In this case the situation is reminiscent to the And
son impurity model with the in-shell attraction of electron1

Summarizing, we have presented an exact solution for
generalized Anderson impurity model. The impurity in-sh
electron is hybridized with conduction ones. Localized el
trons interact via the Hubbard-like repulsion and Hund’s r
exchange interactions. Depending on the relative positio
the impurity’s energy level and strengths of the Hubbard-l
and Hund’s exchange couplings, the impurity can manif
either a Fermi-liquid-like behavior or a transition to a no
Fermi-liquid-like behavior~with the divergent magnetic sus
ceptibility and Sommerfeld coefficient!. This is why the
-

te

.

gn
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competition between characteristics of the in-shell Coulo
interactions can produce a behavior similar to the chan
anisotropic multichannel Kondo behavior, which is respo
sible for the transition to the non-Fermi-liquid-like physics
the model. Finally, we can point out that in Ref. 13 the a
thors reported a similarity in the Bethe ansatz equatio
which determine the behaviors of the generalized Ander
model and that of the two-impurity Kondo model19 and the
two-impurity Anderson model.20 This means that the two
impurity Kondo model, according to our results, also has
reveal the properties characteristic of the channel-anisotr
multichannel Kondo model, i.e., the transition between
Fermi-liquid-like and non-Fermi-liquid-like behaviors. Th
results of our calculations can be applied to the non-Fer
liquid-like behaviors of some rare-earth and actini
compounds,21,22 and also to the behaviors of a split-ga
quantum dot23 or double-dot configurations.24
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