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Monte Carlo simulations of the four-dimensional XY spin glass at low temperatures
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We report on the results for simulations of the four-dimensionalXY spin glass using the parallel tempering
Monte Carlo method at low temperatures for moderate sizes. Our results are qualitatively consistent with
earlier work on the three-dimensional gauge glass as well as three- and four-dimensional Edwards-Anderson
Ising spin glass. An extrapolation of our results would indicate that large-scale excitations cost only a finite
amount of energy in the thermodynamic limit. The surface of these excitations may be fractal, although we
cannot rule out a scenario compatible with replica symmetry breaking in which the surface of low-energy
large-scale excitations is space filling.
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I. INTRODUCTION

There has been an ongoing controversy regarding
spin-glass phase. There are two main theories: the ‘‘dro
picture’’ ~DP! by Fisher and Huse1 and the replica symmetry
breaking picture~RSB! by Parisi.2,3 While RSB follows the
exact solution of the Sherrington-Kirkpatrick model and p
dicts that excitations which involve a finite fraction of th
spins cost a finite energy in the thermodynamic limit, t
droplet picture states that a cluster of spins of sizel costs an
energy proportional tol u, whereu is positive. It follows that
in the thermodynamic limit, excitations that flip a finite clu
ter of spins cost an infinite energy. In addition, the DP sta
that these excitations are fractal with a fractal dimensionds

,d, whered is the space dimension, whereas in RSB th
excitations are space filling,4 i.e., ds5d.

Krzakala and Martin,5 as well as Palassini and Young6

~referred to as KMPY! found, on the basis of numerical re
sults on small systems with Ising symmetry, that an interm
diate picture may be present: while the surface of large-s
excitations appears to be fractal, only a finite amount of
ergy is needed to excite them in the thermodynamic limit.
the context of their work, it is necessary to introduce tw
exponents,u and u8, whereLu is the typical energy for an
excitation induced by a change in boundary conditions i
system of linear sizeL, andLu8 describes the energy of the
mally excited system-size clusters. Subsequently, similar
sults were found for the three-dimensional gauge gla7

which has a continuous symmetry but is known to hav
finite Tc .

The differences between DP and RSB can be quanti
by studying the distribution4,8–11 P(q) of the spin overlapq
defined in Eq.~4! below. For finite systems, the DP predic
two peaks at6qEA , where qEA is the Edwards-Anderson
order parameter, as well as a tail down toq50 that vanishes
in the thermodynamic limit like12,13 ;L2u. On the contrary,
RSB predicts a nontrivial distribution with a finite weight
the tail down toq50, independent of system size.

Earlier work that studied the nature of the spin-glass s
has focused on the Ising spin glass,4–6,8 though some work
has also been carried out on the gauge glass model o
vortex glass transition in superconductors.7 Here, we con-
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sider a vector spin-glassmodel, the four-dimensionalXY
spin glass, which is known to have a finite transitio
temperature14 Tc with Tc.0.95. We perform Monte Carlo
simulations for a modest range of sizes down to low te
peratures (T.0.2Tc) using the parallel tempering Mont
Carlo15,16 technique. Our main result is thatP(0) does not
appear to decrease with increasing system size for the ra
of sizes studied.

We also look for information on the surface of the larg
scale low-energy excitations by studying the ‘‘link overlap
defined in Eq.~13! below. The data for this quantity sugges
that the surface may be space filling, i.e.,ds5d, as in RSB,
though the small range of sizes precludes us from makin
firm statement on this and a scenario compatible with the
is also viable in whichds,d.

The layout of the paper is as follows: In Sec. II we d
scribe the model and the measured observables. We dis
our equilibration tests for the parallel tempering Monte Ca
method for this specific model in Sec. III. Our results a
discussed in Sec. IV. Section V summarizes our conclusi
and presents ideas for future work.

II. MODEL AND OBSERVABLES

The XY spin glass consists of two-component spins
unit length on a hypercubic lattice in four dimensions w
periodic boundary conditions. The Hamiltonian is given b

H52(
^ i , j &

Ji j Si•Sj , ~1!

where the sum is over nearest neighbors, the linear sizeL,
the number of spins isN5L4, and Si[(Si

x ,Si
y) is an XY

spin. SinceuSi u51, one can parametrize the spins asSi
5@cos(fi),sin(fi)# with f iP@0,2p#. The Hamiltonian then
transforms to

H52(
^ i , j &

Ji j cos~f i2f j !. ~2!

The Ji j are chosen according to a Gaussian distribut
with zero mean and standard deviationJ, i.e.,
©2002 The American Physical Society01-1
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P~Ji j !5
1

A2pJ
expF2

Ji j
2

2J2G . ~3!

Unless otherwise stated we will takeJ51.
We concentrate on two observables, the spin overlaq

and the link overlapql . The ~tensor! spin overlap is defined
in terms of the spin configurations of two copies of the s
tem, denoted by~1! and ~2!, as follows:

qmn5
1

N (
i 51

N

Si ,m
(1)Si ,n

(2) , m,nP$x,y%. ~4!

In analytic work, the spin-glass order parameter is define
be the average of thetrace of qmn . To be precise, forL
→`, the order parameter tensor is predicted to be of
form

S q/2 0

0 q/2D . ~5!

However, this implicitly assumes that the symmetry has b
broken by a small field, which is inconvenient to impleme
in numerics, so we adopt the following equivalent procedu
We apply all possible symmetries~rotations and reflection! to
one replica and take thelargestvalue of the resulting trace
Consider first rotations under whichq→q8 where

q85S qxx8 qxy8

qyx8 qyy8
D . ~6!

Maximizing Tr(q8) with respect to the relative rotation ang
between the replicas givesq1, where

q15A~qxx1qyy!
21~qyx2qxy!

2. ~7!

The rotation also makes the two off-diagonal pieces eq
i.e., qxy8 5qyx8 .

We also must consider how theqmn transform under re-
flections of the angles of the spins in one replica,f i
→2f i . It is easy to see that under this transformationq1
→q2 and vice-versa, where

q25A~qxx8 2qyy8 !21~qxy8 1qyx8 !2

5A~qxx2qyy!
21~qxy1qyx!

2, ~8!

where the second line follows after some algebra. Since
spin-glass order parameter is obtained by maximizing
trace with respect to all symmetry transformation, it is giv
by

q5max$q1 ,q2%. ~9!

We use the notationq, somewhat inconsistently, for the spin
glass order parameter to conform with notation in oth
work. The spin-glass order parameter function in R
theory,P(q), is given by the distribution ofq in Eq. ~9!.

We also define the smaller ofq1 andq2 by q̄, i.e.,

q̄5min$q1 ,q2%. ~10!
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If the order parameter tensor tends to the form in Eq.~5! for
L→` then q̄→0 in this limit. We shall see that our result
support this.

If we are willing to assumethat the form in Eq.~5! ap-
plies in the thermodynamic limit then we can obtain the sp
glass order parameter distribution a little more simply fro
the quantity

Q5Aqxx
2 1qyy

2 1qyx
2 1qxy

2 , ~11!

which is invariant under symmetry transformations. Since

2Q25q21q̄2, ~12!

then, if q̄→0 for L→`, the distributions ofq andA2Q are
the same in this limit.

The link overlap is defined, quite simply, by

ql5
1

Nb
(
^ i , j &

~Si
(1)
•Sj

(1)!~Si
(2)
•Sj

(2)!, ~13!

whereNb5Nd is the number of bonds (d54 is the space
dimension!. Since this is already invariant under global sym
metry operations we do not need to consider the effects
rotations and reflections as we did for the spin overlap. T
link overlap can be expressed in terms of spin angles by

ql5
1

Nb
(
^ i , j &

cos~f i
(1)2f j

(1)!cos~f i
(2)2f j

(2)!. ~14!

While a change inq induced by flipping a cluster of spin
is proportional to thevolumeof the cluster,ql changes by an
amount proportional to thesurfaceof the cluster. The weight
in P(q) for smallq varies asL2u8, whereu8 was introduced
in Sec. I. In addition, we expect the variance of the li
overlap to fit to a form Var(ql);L2m l where, as shown in
Ref. 8,m l5u812(d2ds).

III. EQUILIBRATION

For the simulations, we use the parallel tempering Mo
Carlo method.15,16 In this technique, one simulates identic
replicas of the system atNT different temperatures, and, i
addition to the usual local moves, one performs glo
moves where the temperatures of two replicas~with adjacent
temperatures! are exchanged. This allows us to study larg
systems at lower temperatures than with the conventio
Monte Carlo method. Since we require two copies at e

TABLE I. Parameters of the simulation.Nsampis the number of
samples, i.e., sets of disorder realizations,Nsweepis the total number
of sweeps simulated for each of the 2NT replicas for a single
sample, andNT is the number of temperatures used in the para
tempering method.

L Nsamp Nsweep NT

3 13104 3.03104 39
4 23103 4.03105 39
5 13103 2.03106 39
1-2
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MONTE CARLO SIMULATIONS OF THE FOUR- . . . PHYSICAL REVIEW B 65 214401
temperature to determine the spin and link overlaps, see
~4! and ~13!, we actually simulate 2NT replicas.

The lowest temperature has to be far belowTc.0.95 and
yet high enough that a range of sizes can be simulated.
chose the value of 0.2. The highest temperature has to
such that the system equilibrates very fast, and we ch
1.498. The intermediate temperatures are determined em
cally provided that the acceptance ratios of the moves in
changing the replicas are larger than about 0.4 and are
roughly equal.

FIG. 1. A plot of@^ql&#av ~the link overlap!, ql(U,qs) defined to

be the RHS of Eq.~15!, @^q&#av ~the spin overlap!, and @^q̄&#av

defined in Eq.~10!, as a function of Monte Carlo sweepsNsweepfor
each replica, averaged over the last half of the sweeps. For eq
bration, @^ql&#av and ql(U,qs) should agree. The two sets of da
approach each other from opposite directions and, once conve
do not seem to change at longer times, indicating that the syste

equilibrated. The data for@^q&#av and @^q̄&#av show that they too
have equilibrated in roughly the same equilibration time. While
shown here, data for higher moments of the different observa
have the same equilibration time as the link overlap@^ql&#av. ~Data
for L53, T50.2, and 3230 samples!.

FIG. 2. Data for the spin overlap distributionP(q) at tempera-
ture T50.20 for different system sizes. Note the logarithmic ve
cal scale. The lines go through all the data points but, for cla
only some of the data points are shown.
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Table I lists the parameters of the simulation;Nsamp~num-
ber of samples!, Nsweep ~total number of sweeps performe
by each set of spins!, and NT ~number of temperature val
ues!.

It is important to ensure that the system is equilibrat
However, the equilibration test proposed by Bhatt a
Young17 does not work with parallel tempering Monte Car
because the temperature of each replica does not stay
stant throughout the simulation. Here we use the met
introduced by Katzgraberet al.8 for short-range spin glasse
with a Gaussian distribution of exchange interactions t
relates the average energy to the link overlap. By perform
an integration by parts with respect toJi j of the average
energyU[@^H&#av(<0), we obtain

@^ql&#av5qs2
2

z

TuUu
J2 , ~15!

wherez is the number of nearest neighbors,^•••& denotes a
thermal average, and@•••#av denotes an average over th
disorder. The quantityqs is given by

qs5
1

Nb
(
^ i , j &

@^~Si•Sj !
2&#av, ~16!
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FIG. 3. Same as Fig. 2 but at temperatureT50.42.

FIG. 4. Data for the overlap distributionP(q̄) at temperature
T50.20 for different system sizes. The weight in the distributi

tends towardsq̄50 for increasingL.
1-3
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HELMUT G. KATZGRABER AND A. P. YOUNG PHYSICAL REVIEW B65 214401
where the sum is over pairs of neighboring spins. The sim
lation is started with randomly chosen spins so that all r
licas are uncorrelated. This will have the effect that bo
sides of Eq.~15! are approached from opposite direction
Once they agree, the system is in equilibrium as can be s
in Fig. 1 for T50.2 ~to be compared withTc'0.95),14 the
lowest temperature simulated, and forL53. We show data
for the smallest size since it allows us to generate m
samples for longer equilibration times to better illustrate
method. For larger system sizes we stop the simulation, o
the data for@^ql&#av and the right-hand side~RHS! of Eq.
~15! agree.

Because theXY spin glass has a vector order parame
symmetry, we discretize the angles of the spins toNf5512
to speed up the simulation. This number is large enoug
avoid any crossover effects to other models as discusse
Cieplak et al.18 To ensure a reasonable acceptance ratio
single-spin Monte Carlo moves, we choose the proposed
angle for a spin within an acceptance window about the c
rent angle, where the size of the window is proportional
the temperatureT. By tuning a numerical prefactor, we en
sure the acceptance ratios for these local moves are
smaller than 0.4 for each system size at the lowest temp
ture simulated.

FIG. 5. Log-log plot of@^q̄&#av as a function of system sizeL at
several temperatures.

FIG. 6. The distribution of the link overlap atT50.20 for dif-
ferent sizes.
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IV. RESULTS

Figures 2 and 3 show data forP(q) for T50.20 and 0.42,
respectively. In both cases we see a peak at largeq and a tail
for smallerq that does not extend toq50. However, it is not
surprising that there is a ‘‘hole’’ at smallq sinceq is defined
to be the maximum ofq1 andq2. If q̄[min$q1,q2% tends to
zero at largeL, which is expected as discussed above, th
in RSB theory, the tail would extend to smaller values oq
for larger L while maintaining the same height. Looking
Figs. 2 and 3, this seems to be the case, at least for the r
of sizes that we have been able to study.

In Fig. 4 we show data forP(q̄) at T50.20. As expected,
the distributions seem to collapse to zero for increasing s
tem size. Figure 5 shows the variation of the mean ofq̄ with
L on a log-log plot. The data have been fitted to straight lin
with slopes shown. The quality of the fits19 is only moderate;
Q50.06, 0.09, and 0.04 forT50.200, 0.247, and 0.305, re
spectively. Given the rather small range of sizes, and he
the likelihood of systematic corrections to scaling, we fe
that the data are consistent with@^q̄&#av→0 for L→`. Since
q̄>0, if @^q̄&#av50 then the whole distribution collapses
q̄50.

Lastly we present in Figs. 6 and 7 results for the distrib

FIG. 7. Same as Fig. 6 but at temperatureT50.42.

FIG. 8. Log-log plot of the variance ofql as a function of
system sizeL at several temperatures.
1-4
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MONTE CARLO SIMULATIONS OF THE FOUR- . . . PHYSICAL REVIEW B 65 214401
tion of the link overlapP(ql). There is a pronounced peak a
largeql values as well as the hint of a shoulder for smal
values in theT50.20 data. The width of the distribution
decreases with increasing system size. This is demonstr
in Fig. 8, which shows the variance ofql against system size
L for several low temperatures.

There is some curvature in the data for Var(ql), so first we
attempt a three-parameter fit of the form

Var~ql !5a1bL2c, ~17!

finding small but finite values fora, see Table II. As we have
the same number of data points as variables, we canno
sign fitting probabilities to the fits. We also attempt a powe
law fit of the form

Var~ql !5dL2m l, ~18!

see Table III. However, the quality of the fits is poor a
shown by the fitting probabilities19 Q. The effective exponent
m l is found to vary with temperature. Extrapolating toT
50, we obtainm l[u812(d2ds)50.29460.073. If we as-
sume thatu8'0, this givesd2ds50.14760.036.

V. CONCLUSIONS

To conclude, we have studied the low-temperature pr
erties of the four-dimensionalXY spin glass at low tempera
tures. Our main result is that the order parameter distribut
P(q) has, in addition to a peak, a tail that seems to exte
for smaller values ofq, and whose height seems to persist,
the system size increases, see Figs. 2 and 3. This interp
tion of the data is compatible with the RSB picture or th
KMPY scenario. However, the range of lattice sizes is ve

TABLE II. Fits for Var(ql). Fit parameters for the fit in Eq.~17!
for different temperatures. We cannot quote fitting probabiliti
since we have the same number of data points as variables.

T a b c

0.200 0.00100 0.0205 2.55
0.247 0.00087 0.0328 2.76
0.305 0.00073 0.0611 3.16
0.420 0.00036 0.1044 3.40
o
:

b
s
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small, so it is not clear if this interpretation would persist
large sizes. Unfortunately, it is currently not feasible to stu
much larger sizes in equilibrium, because relaxation tim
are too long. Nonetheless, we feel that results on rather s
equilibrated samples are of interest in their own right for t
following reason: In any experiment, a sample is not fu
equilibrated at low temperatures, but is rather only equ
brated up to some finite length scale, which only increa
slowly with increasing measurement time. Thus a compl
understanding will require anonequilibrium theory, but a
component of this is likely to be a theory of equilibrium o
finite scales where local equilibrium has been achieved.

We have also studied the link overlapql . The variance of
ql decreases with increasingL but we are unable to ascertai
whether it tends to zero in the thermodynamic limit, a
hence we are unable to determine whether or not the sur
is space filling.

In future work, it would be useful to look more carefull
at the nature of the large-scale low-energy excitations to
whether they correspond to gradual orientations in the s
directions or whether vortices play a role.
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