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Monte Carlo simulations of the four-dimensional XY spin glass at low temperatures
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We report on the results for simulations of the four-dimensiof¥élspin glass using the parallel tempering
Monte Carlo method at low temperatures for moderate sizes. Our results are qualitatively consistent with
earlier work on the three-dimensional gauge glass as well as three- and four-dimensional Edwards-Anderson
Ising spin glass. An extrapolation of our results would indicate that large-scale excitations cost only a finite
amount of energy in the thermodynamic limit. The surface of these excitations may be fractal, although we
cannot rule out a scenario compatible with replica symmetry breaking in which the surface of low-energy
large-scale excitations is space filling.
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I. INTRODUCTION sider avector spin-glassmodel, the four-dimensionaXyY
spin glass, which is known to have a finite transition
There has been an ongoing controversy regarding thtemperaturé' T, with T,=0.95. We perform Monte Carlo
spin-glass phase. There are two main theories: the “droplegimulations for a modest range of sizes down to low tem-
picture” (DP) by Fisher and Huseand the replica symmetry peratures T=0.2T;) using the parallel tempering Monte
breaking picturRSB) by Parisi?® While RSB follows the ~ Carlo'**® technique. Our main result is th&(0) does not
exact solution of the Sherrington-Kirkpatrick model and pre-a2ppear to decrease with increasing system size for the range
dicts that excitations which involve a finite fraction of the Of Sizes studied. _
spins cost a finite energy in the thermodynamic limit, the e also look for information on the surface of the large-
droplet picture states that a cluster of spins of izests an  Scale low-energy excitations by studying the “link overlap”
energy proportional tf, whered is positive. It follows that ~ d€fined in Eq(13) below. The data for this quantity suggests
in the thermodynamic limit, excitations that flip a finite clus- that the surface may be space filling, i@,~d, as in RSB.’
ter of spins cost an infinite energy. In addition, the DP state hough the small range of sizes precludes us from making a

o , . irm statement on this and a scenario compatible with the DP
that these excitations are fractal with a fractal dimensign is also viable in whictd,<d.

<d, whered is the space dimension, whereas in RSB these™ 1 4 layout of the paper is as follows: In Sec. Il we de-
excitations are space filliribi.e., ds=d. L scribe the model and the measured observables. We discuss
Krzakala and Martirf, as well as Palassini and YOLﬁ]g our equilibration tests for the parallel tempering Monte Carlo
(referred to as KMPY found, on the basis of numerical re- method for this specific model in Sec. Ill. Our results are
sults on small systems with Ising symmetry, that an intermegiscussed in Sec. IV. Section V summarizes our conclusions
diate picture may be present: while the surface of large-scalgnd presents ideas for future work.
excitations appears to be fractal, only a finite amount of en-
ergy is needed to excite them in the thermodynamic limit. In
the context of their work, it is necessary to introduce two

exponentsg and 6', whereL’ is the typical energy for an  The XY spin glass consists of two-component spins of
excitation induced by a change in boundary conditions in anjt length on a hypercubic lattice in four dimensions with
system of linear sizé, andL? describes the energy of ther- periodic boundary conditions. The Hamiltonian is given by
mally excited system-size clusters. Subsequently, similar re-
sults were found for the three-dimensional gauge dlass,
which has a continuous symmetry but is known to have a H=-2> 3S'S, (1)
finite T, . )

The differences between DP and RSB can be quantifiehere the sum is over nearest neighbors, the linear size is
by studying the distributic®~** P(q) of the spin overlam  the number of spins id=L*, and S=(S,S) is an XY
defined in Eq(4) below. For finite systems, the DP predicts spin. Since|S|=1, one can parametrize the spins &s

two peaks at*gea, wheregea ?S the Edwards-And.erson =[cos(),sin(¢)] with ¢; €[0,27]. The Hamiltonian then
order parameter, as well as a tail dowmte O that vanishes  .4nsforms to

in the thermodynamic limit likE¥** ~L~¢. On the contrary,

RSB predicts a nontrivial distribution with a finite weight in

the tail down tog=0, independent of system size. H=— E Jijcos i — ;). 2
Earlier work that studied the nature of the spin-glass state .

has focused on the Ising spin gl&s§;® though some work

has also been carried out on the gauge glass model of the The J;; are chosen according to a Gaussian distribution

vortex glass transition in superconductérslere, we con- with zero mean and standard deviatidri.e.,

Il. MODEL AND OBSERVABLES
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72 If the order parameter tensor tends to the form in &g for
; P
P(Jij) = \/— — (3)  L— theng—0 in this limit. We shall see that our results
‘] 2‘] support this.
Unless otherwise stated we will takle=1. If we are willing to assumethat the form in Eq(5) ap-

We concentrate on two observables, the spin ovegap plies in the thermodynamic limit then we can obtain the spin-
and the link overlamm, . The (tensoy spin overlap is defined glass order parameter distribution a little more simply from
in terms of the spin configurations of two copies of the sys-the quantity
tem, denoted byl) and(2), as follows:

) Q=+ Ay a5t Oy (12)
z S(l) wovelxyl 4) which is invariant under symmetry transformations. Since
) 2Q°=q*+?, (12

In analytic work, the spin-glass order parameter is defined to

be the average of theace of q,,. To be precise, folL then, |fq—>0 for L— oo, the distributions ofj and \2Q are
—oo, the order parameter tensor is predicted to be of théhe same in this limit.

form The link overlap is defined, quite simply, by

/12 0
(qO qlz)' 5) q= N, <|2 (S 5(1))(3(2) S(Z)) (13

However, this implicitly assumes that the symmetry has beethere N,=Nd is the number of bondsd=4 is the space
broken by a small field, which is inconvenient to implementdimension. Since this is already invariant under global sym-
in numerics, so we adopt the following equivalent proceduremetry operations we do not need to consider the effects of
We apply all possible symmetri¢tations and reflectiorio  rotations and reflections as we did for the spin overlap. The
one replica and take thargestvalue of the resulting trace. link overlap can be expressed in terms of spin angles by
Consider first rotations under which—q' where

1
g a=r- > coda{V— D)ot pP—¢(?). (14
L ( Uxx qu) ©) Np &)
Gy Gyy While a change i induced by flipping a cluster of spins
Maximizing Tr(q') with respect to the relative rotation angle is proportional to thevolumeof the clusterg, changes by an
between the replicas gives, where amount proportional to theurfaceof the cluster. The weight
in P(q) for smallq varies ad ~?, whered’ was introduced
1= V(Gxxt yy)*+ (Ayx— Oxy) . (7)  in Sec. I. In addition, we expect the variance of the link

pverlap to fit to a form Var§,)~L ™~ # where, as shown in

The rotation also makes the two off-diagonal pieces equal, ¢ 8. = 0 +2(d—dy).

H I
I.€., Oy =0y~
We also must consider how tteg,, transform under re-

flections of the angles of the spins in one replieh, lll. EQUILIBRATION

— —¢;. Itis easy to see that under this transformatipn For the simulations, we use the parallel tempering Monte
—(_ and vice-versa, where Carlo method>*® In this technique, one simulates identical
replicas of the system af; different temperatures, and, in
q2= \/(q;(x_ q§y)2+(q>’<y+ %x)z addition to the usual local moves, one performs global
moves where the temperatures of two replicaih adjacent
= V(Gyx— Gyy)*+ (Ay Ay, (8)  temperaturesare exchanged. This allows us to study larger

systems at lower temperatures than with the conventional

where the second line follows after some algebra. Since th ; . .
onte Carlo method. Since we require two copies at each

spin-glass order parameter is obtained by maximizing the

trace with respect to all symmetry transformation, it is given 1o £ parameters of the simulatiohlsayis the number of

by samples, i.e., sets of disorder realizatiddgyeepis the total number
—max] ) ) of sweeps simulated for each of the\N replicas for a single
q G125 sample, andNt is the number of temperatures used in the parallel

We use the notatiog, somewhat inconsistently, for the spin- tempering method.
glass order parameter to conform with notation in other

work. The spin-glass order parameter function in RSB- Nsamp Nsweep Ny
theory,P(q), is given by the distribution ofj in Eq. (9). 3 1% 10" 3.0x 10° 39
We also define the smaller of, andq, by q, i.e., 4 2% 10° 4.0x 10° 39
— 5 1x10° 2.0x10° 39

q=min{d;,qy}. (10)
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FIG. 1. Aplot of[{(q;)].y (the link overlap, q;(U,qs) defined to Table | lists the parameters of the simulatidhyy,(num-

be the RHS of Eq(15), [(d)]a (the spin overlap and[(d)]ay  ber of samplels Ngyeep (total number of sweeps performed
defined in Eq(10), as a function of Monte Carlo sweeNsyecpfor by each set of spinsand Ny (number of temperature val-
each replica, averaged over the last half of the sweeps. For equilhes).
bration, [(d)]ay and q;(U,qs) should agree. The two sets of data |t s jmportant to ensure that the system is equilibrated.
approach each other from opposite directions and, once convergeﬁ,owever' the equilibration test proposed by Bhatt and
do not seem to change at longer times, indicating that the system if‘oung“ does not work with parallel tempering Monte Carlo
equilibrated. The data fo(q)]., and[(a)]ay show that they too  pecause the temperature of each replica does not stay con-
have equilibrated in roughly the same equilibration time. While notgignt throughout the simulation. Here we use the method
shown here, data for higher moments of the different observableg,roduced by Katzgrabest al® for short-range spin glasses
have the same equilibration time as the link oveflé)Ja- (Data  \yith 5 Gaussian distribution of exchange interactions that
for L =3, T=0.2, and 3230 samples relates the average energy to the link overlap. By performing
an integration by parts with respect 8y of the average

temperature to determine the spin and link overlaps, see EqenergyU=[{H)],(=<0), we obtain
(4) and(13), we actually simulate R+ replicas.

The lowest temperature has to be far belbyw=0.95 and 2 T|U|
yet high enough that a range of sizes can be simulated. We [Kan]a=ds= 7 2

chose the value of 0.2. The highest temperature has to be . .
g " herez is the number of nearest neighbofs; -} denotes a

such that the system equilibrates very fast, and we chos
1.498. The intermediate temperatures are determined empiff’érmal average, anfl - - J,, denotes an average over the

cally provided that the acceptance ratios of the moves inte/diSorder. The quantity is given by
changing the replicas are larger than about 0.4 and are all

(19

1
roughly equal. A=, UED [{(S-S)*)av: (16)
T | T | T T | T
10 T=020 E
L .
- A3 4
L E|4 -
| o5 )
G
[ 1 = =
0.1 ——

FIG. 2. Data for the spin overlap distributid®(q) at tempera- _
ture T=0.20 for different system sizes. Note the logarithmic verti-  FIG. 4. Data for the overlap distributioR(q) at temperature
cal scale. The lines go through all the data points but, for clarity,T=0.20 for different system sizes. The weight in the distribution
only some of the data points are shown. tends towards|=0 for increasing..
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FIG. 5. Log-log plot of (g)]4, as a function of system sieat FIG. 7. Same as Fig. 6 but at temperatiire 0.42.
several temperatures.
where the sum is over pairs of neighboring spins. The simu- IV. RESULTS

lation is started with randomly chosen spins so that all rep- Figures 2 and 3 show data f&(q) for T=0.20 and 0.42

licas are uncorrelated. This will have the effect that both - :
) . o respectively. In both cases we see a peak at lqraed a tail
sides of Eq.(15) are approached from opposite dlrectlons'l‘or smallerq that does not extend ®@=0. However, it is not

Once they agree, the system is in equilibrium as can be se ising that there is a “hole” : ; -
in Fig. 1 for T=0.2 (to be compared witi,~0.95)1* the Slrprising t atthere is a ‘hole”at smay SInceq s defined
to be the maximum of; andq,. If g=min{qg,,q,} tends to

lowest temperature simulated, and for=3. We show data R .
b gero at largd., which is expected as discussed above, then,

for the smallest size since it allows us to generate mor RSB th the tail Id extend t I I ¢
samples for longer equilibration times to better illustrate the" eory, the tail would extend to smaller valuéqo

method. For larger system sizes we stop the simulation, oncf r larger L Wh'le. maintaining the same height. Looking at
the data for[(q,)]a, and the right-hand sidéRHS) of Eq. igs. 2 and 3, this seems to be the case, at least for the range
(15) agree. of sizes that we have been abLe to study.

Because th&Y spin glass has a vector order parameter In Fig. 4 we show data foP(q) atT=0.20. As expected,
symmetry, we discretize the angles of the spin&ljp=512 the distributions seem to collapse to zero for increasing sys-
to speed up the simulation. This number is large enough ttem size. Figure 5 shows the variation of the mean wfith
avoid any crossover effects to other models as discussed lyon a log-log plot. The data have been fitted to straight lines
Cieplak et al*® To ensure a reasonable acceptance ratio fowith slopes shown. The quality of the fitds only moderate;
single-spin Monte Carlo moves, we choose the proposed ne®@=0.06, 0.09, and 0.04 foF=0.200, 0.247, and 0.305, re-
angle for a spin within an acceptance window about the curspectively. Given the rather small range of sizes, and hence
rent angle, where the size of the window is proportional tothe likelihood of systematic corrections to scaling, we feel

the temperaturd. By tuning a numerical prefactor, we en- that the data are consistent W[t@]av_)o for L— . Since

sure the acceptance ratios for these local moves are n T T PRI
. la':>/0, if =0 then the whole distribution collapses to
smaller than 0.4 for each system size at the lowest temper%- 0 [(a)Ja P

ture simulated. - L
Lastly we present in Figs. 6 and 7 results for the distribu-
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FIG. 6. The distribution of the link overlap dt=0.20 for dif- FIG. 8. Log-log plot of the variance off, as a function of
ferent sizes. system sizd. at several temperatures.
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TABLE II. Fits for Var(q,). Fit parameters for the fit in Eq17) TABLE lII. Fit parameters for the fit in Eq(18) for different
for different temperatures. We cannot quote fitting probabilitiestemperatures. Note that the fit probabilit®sare small.
since we have the same number of data points as variables.

T d M Q
T a b c

0.200 —4.92+0.06 1.070.05 5.0< 102
0.200 0.00100 0.0205 2.55 0.247 —4.50+0.05 1.38-0.04 3.6<10°3
0.247 0.00087 0.0328 2.76 0.305 —3.99+0.04 1.77-0.03 2.9<10°©
0.305 0.00073 0.0611 3.16 0.420 —3.06+0.04 2.56-0.03 6.0<10°8
0.420 0.00036 0.1044 3.40

small, so it is not clear if this interpretation would persist to
tion of the link overlapP(q,). There is a pronounced peak at large sizes. Unfortunately, it is currently not feasible to study
large g, values as well as the hint of a shoulder for smallermuch larger sizes in equilibrium, because relaxation times
values in theT=0.20 data. The width of the distribution are too long. Nonetheless, we feel that results on rather small
decreases with increasing system size. This is demonstratedjuilibrated samples are of interest in their own right for the
in Fig. 8, which shows the variance gf against system size following reason: In any experiment, a sample is not fully

L for several low temperatures. equilibrated at low temperatures, but is rather only equili-
There is some curvature in the data for \@i( so first we  brated up to some finite length scale, which only increases
attempt a three-parameter fit of the form slowly with increasing measurement time. Thus a complete
understanding will require aonequilibrium theory but a
Var(g,)=a-+bL"¢, (17 component of this is likely to be a theory of equilibrium on

finding small but finite values faa, see Table Il. As we have finite scales where local equilibrium has been achieved.

the same number of data points as variables, we cannot as- We have also studied the link overlgp. The variance of

sign fitting probabilities to the fits. We also attempt a power-, " decreases with increasingbut we are unable to ascertain
Iagv fit of%hl?e form ' ptap whether it tends to zero in the thermodynamic limit, and

hence we are unable to determine whether or not the surface
_ is space filling.

Var(qy)=dL"#, (18) Irrw) future w%rk, it would be useful to look more carefully
see Table lll. However, the quality of the fits is poor asat the nature of the large-scale low-energy excitations to see
shown by the fitting probabiliti€S Q. The effective exponent whether they correspond to gradual orientations in the spin
w is found to vary with temperature. Extrapolating To  directions or whether vortices play a role.
=0, we obtainu,=6"+2(d—dg)=0.294+0.073. If we as-
sume thatd’ =0, this givesd—d;=0.147+0.036. ACKNOWLEDGMENTS
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