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Tunneling of quantum rotobreathers
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We analyze the quantum properties of a system consisting of two nonlinearly coupled pendulums. This
nonintegrable system exhibits two different symmetries: a permutational symmetry and another one related to
the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of
two kinds of quasidegenerate states. At sufficiently high energy, pairs of symmetry-related states glue together
to form quadruplets. We show that, starting from the anticontinuous limit, particular quadruplets allow us to
construct quantum states whose properties are very similar to those of classical rotobreathers. Contrary to the
classical situation, the coupling between pendulums necessarily introduces a periodic exchange of energy
between them at a frequency which is proportional to the energy splitting between quasidegenerate states
related to the permutation symmetry. This splitting may remain very small as the coupling strength increases
and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a
time period very long as compared to the inverse of the internal rotobreather frequency.
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I. INTRODUCTION phonon$ with the latter allowing for a tuning of frequencies
out of this spectrun®

As revealed by the increasing number of recent Most of the classical properties of breathers are thus well
papers.—2® the quantum counterpart or the quantization ofunderstood and will be briefly described in the next section.
classical discrete breathers has become these very last yedns important area of application of breathers, however—
a real challenging and exciting field. At present, indeed, themamely, condensed matter physics—has recently raised the
theory of classical breathers, defined as “time-periodic spalegitimate question of their quantum counterparts. In motions
tially localized motions in networks of oscillators” atthe atomic scale, quantum effects may hardly be neglected
(MacKayze‘), has reached a high degree of perfection andand the materials in which quantum breathers may be found
may certainly be considered as a real achievement. Sinc¥€ numerous indeedee, e.g., Ref. 23Looking for a quan-
their discovery(in 1988 by Sievers and Takerfd,such ex-  tum state which has the same property of localization like the
citations have attracted a wide interest due to their ratheflassical breather is not a straightforward task, however. The

universal character. They are generically present in any noff@in difficulty is coming from the linearity of quantum me-
linear Hamiltonian lattices as a result of the interplay pe-chanics which, together with the translational invariance of
tween nonlinearity and discreteness from which they owrfh€ lattice, leads to spatially delocalizéBloch type eigen-

their self-localization property. For this reason, they are alséggi‘ E)egggge:z}sﬁé;i\:]V?nnOan:r(;lél::ntzzr;ﬁ?Ln;x(:fstggisjnmg]zn-
called “intrinsic localized modes,” as there is no need in ’ P » ay

o . : lead to strongly localized states provided the coupling be-
tie>;]tr|n53|c disorder which would lead to Anderson localiza- tween the atoms of the lattice is not too strong. These
on. Wannier-like states, the analogs of classical breathers, are no

Classical discrete breathers have been theoretically p"f()nger eigenstates of the quantum system and thus evolve in

dicted and experimentally detected in Josephson junctiof o according to the Schdinger equation. Their eigenval-
a”ays_z’s_so nonlinear optical waveguide arraysand quasi- es form quantum breather bands. More precisely, the
one-dimensional antiferromagnéfsThey have been also \wannier-like states may tunnel from site to site during a time
predicted to exist as localized electromagnetic waves in phqypica"y proportional to the inverse of the corresponding
tonic crystals with a nonlinear Kerr meditdinand are dis-  pandwidth. Classical breathers, however, remain localized on
cussed in relation with slow relaxation in biologiaathelix  a given site for ever. This leads to the conclusion that the
structures? bandwidth of a quantum breather band has to vanish when
The physical realizations of discrete breathers from abovéhe quantum breather energy tends to infin{glassical
come from diverse fields and are convincing examples ofimit). Even more important is the expectation that at finite
their ubiquity. Mathematical support for this comes from theenergy the bandwidth of a quantum breather band must re-
fact of both their dynamical and structural stability, the lattermain very small for a non-negligible range of the lattice cou-
meaning that their existence is not restricted to Hamiltoniangling parameter.
of a particular form. The basic requirement is that the The purpose of this paper is to construct a quantum
breather frequency as well as its harmonics not lie inside thereather state by using the method sketched out above and
phonon band®* Such a nonresonance condition may bemore amply detailed in the next section. Our system consists
achieved by combining the discreteness of a lattice with thef two pendulums coupled by a cosine potential. This inter-
nonlinearity of the potentials, the first providing a naturalaction potential, which preserves the rotational invariance,
upper bound of the linearized Hamiltonian spectr¢say  allows us to study the quantum counterpart of classical roto-
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breathers. Rotobreathers are exact solutions of the equationganifold reduction has also been given for Fermi-Pasta-
of motion governing the dynamics of coupled pendulumsUlam (FPU) chains for which the method based on the anti-
where, e.g., one pendulum is in a rotating state while alkontinuous limit fails*® This completes and enlarges the re-
others librate at the same frequency but with rapidly decreassults previously obtained in Ref. 40 by a homoclinic orbit
ing amplitudes as the distance from the rotobreather Cent@'pproach_ At last, also recently, a variational approach has
increases? To confirm analytic studies by numerical compu- heen carried out to prove the existence of hard discrete
tations for the quantum case we are restricted to small systegeathers in some classes of Hamiltoni&h&bviously, the
sizes. The system under investigation is made of two identigjide range of applications of these rigorous mathematical
cal units only(two pendulumpbut still possesses a transla- results supports the idea that CDB’s are generic solutions of
tional invariance which corresponds to its permutation symngnjinear Hamiltonian lattices as claimed for the first time by
metry. In this case, the Bloch waves are represented by statesevers and Takeno when they discovered this new kind of
symmetric or antisymmetric with respect to this symmetry.intrinsic localized mode¥’
For weak coupling, this leads to a twofold quasidegeneracy Together with their existence proofs, the properties of
which defines the breather band. Our system, however, po£DB’s have been extensively studied. It has been shown for
sesses a time-reversal symmetry as well. At the same time @ample that they are structurally stable provided the non-
classical rotobreather state is not invariant under time revekesonance condition hol#fsand linearly stable in any dimen-
sal. This leads to the occurrence of doublets of quasidegersjgn provided the coupling is weak enoutTheir spatial
erate states at energies situated above the Separatrix alre%/cay is genera”y exponentiabr any ﬁnite_range interac-
for a single quantum pendulum. As a consequence the quafion potential but may be also algebraic in case the interac-
tum rotobreather states are characterized by quadruplets. fyn potential itself is algebraically decayifi§.More re-
this paper, we will study how the fine structure of the qua-cently, it has even been confirmed that pure nonlinear
druplet resulting from this fourfold quasidegeneracy evolvesnteraction potentials give rise to a superexponential decay of
as the coupling parameter increases. As a result we will begne preather taift>*3At last and directly related to their spa-
able to describe the properties of both the energy or momenta| decay properties, possible energy thresholds for their ap-
tum transfer from one pendulum to the other one, as well agearance have been derived according to whether the lattice
of the inversion of the total momentum. In particular we will dimension exceeds a System_dependent critical value or
study the influence of the coupling strength between theot** Extensive studies of CDB’s properties as well as the
pendulums. perspectives in this field may be found in different reviews
The plan of the paper is as follows: in the next section Wesee, for instance, Refs. 14, 15, 23, 25 anil 45
briefly review some recent advances in classical and quan- | et us focus on an essential property of CDB’s. These
tum breather theory and we explain in more detail thefime-periodic solutions occur in a lattice but are spatially
method of the Wannier-like transform of the Bloch waves|gcalized which means that they are not invariant under the
used to construct the quantum breather. In Sec. Ill, we degjscrete translational symmetry of the lattice whereas the
scribe the essential properties of a single quantum pendulumamiltonian is. If we now consider the corresponding quan-

and we derive important formulas concerning the splittingtum problem, the invariance of the quantum Hamiltonkan

occurring in the doublets in the high-energy sector. In S€Cyith respect to the discrete translational symmetry yields

IV, we start by presenting some results of the classical prob- .~ ~ A .
lem corresponding to two coupled pendulums. Then we com-H: T1=0. HereT denotes the operator of spatial transla-

pute the quantum spectrum of this system. We derive théons. The eigenstates 3fare thus eigenstates bf and are
exact spectrum at the uncoupled limit and we construct &lelocalized on the latticéBloch waves. Of course, this dis-
quantum rotobreather. By increasing the coupling betweefrete translational symmetry of the lattice is broken if we

the pendulums, we follow the quantum rotobreather and wé&onsider, for instance, a finite system with fixed or open
compute the splittings occurring in the correspondingboundary conditions. Nevertheless, if the lattice consists of a

quadruplet. sufficiently large number of sites, discrete translational sym-
metry is practically restored similar to the infinite lattice. So
we arrive at the result that while the classical system allows
Il. BREATHERS: RECENT CLASSICAL RESULTS for spatially localized states, the quantum system does not.
AND QUANTUM ASPECTS However, at large enough energy the quantum and the clas-
sical descriptions of the system should give similar results.

bre“;?ﬁgfs(rzta[gl;?sl) r?;(\llset?)neceen opl::?a?:lse dc;grgﬁzza\llaggcrg;e It is possible to reconcile the quantum and the classical
y points of view provided we again start from the anticontinu-

(Tnoiecl C':?argltﬂzﬁﬁcﬁdﬂ:‘;\(}i?gﬂﬁ%%oﬁslytﬁgfnp:';;g;lous limit. In this limit the Hamiltonian consists only of a sum
constructior?® Both are based on the so-calladticontinu-  ©f identical Hamiltoniangone for each siteH=>;H; and a
ouslimit (i.e., the limit where the coupling between oscilla- 9€neral eigenstate)) of the system may be represented as
tors vanishes, also called the tight-binding limit in solid-statethe tensorial product of local eigenstatégs), |i)=
physics, provided a nonlinear on-site potential is present. In®s/¢s). Then, a localized excitation Is constructed by an
this limit time-periodic spatially localizedon one or more ~€xcitation of levelk at siten, | (%), whereas the other sites
site9 solutions trivially exist. More recently, an existence reside in their ground statgp!?, ). This leads to|y{¥)
proof of CDB's based on a discrete version of the center=®-n|¢?)®|pF)© - n| #?). The excitation siten can
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be any site of the lattice. The energy of the constructed statthe nonlinearity. It follows that for large energy bands (
does not depend on. The corresponding eigensubspace of—), the bandwidth tends rapidlyn fact more than expo-
degenerated states has a dimendiequal to the number of nentially fas} to zero with increasinqh. In this case the
sites(provided no additional accidental degeneracy odcurs tunneling time tends to infinity in the classical limit and the
Therefore in the uncoupletnticontinuous limit, any uni-  quantum breather state remains localized on its initial site.
tary transform of the preceding basis leaves the subspace Several questions remain however. At high energy, if the
invariant although it yields a new basis. As the Hamiltonianon-site potential behaves like?9, the density of states
system is invariant under the discrete translafiowhatever ~ (evaluated a:‘s io /b%’ means of the Weyl's formulascales
the intersite coupling is, at nonzero coupling, the eigen- k€ 9(E)~E (1*a)/0~1 asE 0, whereN is the number

at 0 ¢ bel ¢ £ thal { A of sites. An immediate conclusion is that if the number of
states ol must belong to one o SYmmelry Seclors  gites is greater or equal to 2, the density of std@6S)

defined byT. When the coupling becomes zero, we may thuSincreases with energy according to a power law with expo-
choose the eigenbasis ®fas a basis of th&l-dimensional nents linearly depending oN. Then, we may ask whether
subspace. We denote its eigenvectors|)b§5)) whereq la-  the corresponding increase of level-level interactidng-
bels the symmetry sector. Each of these new eigenstates liidization with N will destroy the quantum breath€DB)
completely delocalized (in the sense that Vq, bands or not. A partial answer to this question can be found
[zj|<¢1(k)|)\gk)>|4]*1=|\|)_ by considering the ratio of the breather bandwidth to the
Let us switch on the coupling between the sites. We exmean level spacing §(E) at a given (high-)energy E:
pect theN-fold degenerate eigenenergies to split under thdime_...g(E)AE. Assuming that the DOS scales as indicated
effect of the perturbation and to form a band Nfnearly by Weyl's formula, the ratio of the bandwidth to the mean
degenerate states. These eigenstates, correctly symmetriZzéyel spacing will tend to zero provided the bandwidth de-
by the unitary transforrt, now give a newperturbed basis ~ Créases exp_onenn_ally with increasing ene@glyfast_eif. The
|)\gk)(s)>. Providede is weak enough, these new eigenvec_abpve-mennoned mtegraple examples fall Into this category.
tors are close to those defined at the uncoupled limit and thu‘ghs_result seems to indicate and to explain the po§3|pll|ty,
. . A g . . starting from the quantum problem, to recover the limit of
an gverse unitary transfor~ is expected to yield a basis e cjassical breather at high energy. Another question is re-
|#n°(e)) close to the local basis of the uncoupled limit, that|ateq to the impact of the nonintegrability of the system on
is, [449(2))=y9) + O(e). These states are thus well local- the quantum breather bands and in particular the role of the
ized provided the coupling is weak enough. This transformachaotic trajectories induced by the nonintegrability lying
tion is very similar to the one performed on the electronichearby the classical breathers at the quantum level.
Bloch waves to obtain the celebrated Wannier functions Up to now, except for integrab|e SystemS, where ana]yti_
known to be localized around each atom of a latfit&  ca results are obtainable, studies of quantum breathers have
major difference with the usual electronic Wannier functions,been done mostly numerically. Such studies become rapidly
however, is that our Wannier-like stat€he quantum extremely difficult due to the huge matrices to be diagonal-
breather describes a local excitation of the lattice itself. The jzed and so far have been restricted to small one-dimensional
purpose of this transform is not to describe an external de¢1D) systems for which the number of sites has not exceeded
gree of freedontthe electrophmoving in a periodic potential N=122° Even for these moderate lattice sizes, the average
of a lattice using a localatomig basis, but merely to con- dimension of thetruncated Hamiltonian matrices is gener-
struct a spatially localized bound state of phonons. However|ly of order 16 and requires specific numerical diagonaliza-
being a linear combination of nondegenerate eigenstates, thgn methods*® The numerical results reported in the pa-
quantum breather is no longer an eigenstate ahd evolves  pers mentioned above are restricted to the low-energy sector
nontrivially in time. The corresponding tunneling effect, i.e., as soon as the number of sites exceeds a few units. This
the transfer of an initial excitation from site to site, takes afollows from computing the number of configurations ob-
time typically given by the width of the band at a given valuetainable by truncating the basis pbosons per site ol
of the couplinge. In order to bridge the gap between the sites[ (p+1)N]. There remains the possibility to study very
classical manifestation of the breather solution and its quansmall systemsN =2 or 3), as has already been done for the
tum realization, we thus expect the quantum system to exdimer (integrable Refs. 4 and 1P and the trimer
hibit bands ofN nearly degenerate eigenstates whose widthnonintegrablg?**’ The dimer has also been used to de-
tends to zero as the average energy of the band tends $zribe the tunneling of a QB along a chain by a suitable
infinity. linearization of the lattice around if. This linearization
One purpose of a quantum theory of breathers is thus tmethod was also employed to study the properties of classi-
know how the above-defined bands behave as the couplingal rotobreathers in a chain of pendulufiet we still lack
increases. Several successful attempts to answer this questianthorough analysis of the specific properties of quantum
have already been done in one-dimensional integrable sysetobreathers. We will consider a dimer of two coupled quan-
tems (Refs. 4 and 6-11 and the review in Ref.)2Zhe  tum pendulums which, due to the presence of both nonlinear
(soliton-breather bandwidth is shown to behave typically on-site and interaction potentials, is not integrable.
like AE,~(e/y)"/(n—1)! wheren is the number of bosons As far as we know, no experimental study of quantum
in the system. In the considered cases this number typicallsotobreathers has been done yet. This is possibly due to their
depends on energy as a power law. Finallis a measure of quite large activation energy. The reader should notice how-
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ever that a large number of studies have been devoted to thvehich possesses two different solutions. DenotingEbthe
rotational motions of moleculesee, e.g., Refs. 48—b&s-  energy of the pendulum and Hy,=2a the energy of the
pecially of methyl groups whose dynamical properties areseparatrix separating the oscillatory motion from the rota-
usually obtained via neutron scatteritt}’°>3The transi- tional one we get the following.

tions thus obtained concern the so-called quantum rotational (i) Oscillation:E<Eg,

tunneling effecE® This tunneling occurs between the equi-

librium positions defined by the onsite potential which is sin(x/2) =k sn(Vat;k), (©)

n-fold according to the individua}l symmetry of the ObserVedwhere the modulus of the Jacobian elliptic function sn is
molecule and the symmetry of its environment. For the Meyefined by the relatiok=(E/2a)? and the period of the

thyl groupsn is generally equal to 3 but for ammonia in S _ .
oscillation isT,s=4K(k)/va, K(K) being the complete el-
Hofmann clathrates, the fourfold symmetry of the host crys-Iilotic integral of the first kind”’

tal induces an approximative 12-fafdor more compleX*° (i1) Rotation:E> E
symmetry. The studied tunneling process is thus responsible otation. s’
for a rotation of the molecule at energies where such a pro- o

cess is forbidden in the classical case. The quantum roto- sin(x/2)=sr(7t;~k), (4)
breather on the other hand is a state whose energy is situated K

abovethe barrier energy of a single on-site potential. A new
tunneling effect appears because of the coupling betweelf N
molecules. It corresponds to the transfer of the excitatior 2KK (K)/Va.

from site to site(or from molecule to molecujeA study of

the properties of 4-methyl-pyridine by Fillaux and co- B. Quantum case
workers has revealed the presence of a quantum sine-Gordon

. . ’17 . .
brr]eather 'B th|hs compocljuii:i. T?ehpropertles of thr|]s state, pasic one, a thorough study of the related quantum problem
shown to be the ground state of the system, are theoreticalyy,q peen done quite recentlyAldrovandi and Leal

analyzed via a semiclassical quantization procedure of thﬁerreiréﬁ). Here we will focus on the momentum-reversal

classical solution of the sine-Gordon equation and can bgymmetry of the Hamiltoniail) which leads to the appear-

succe_ssfully compare_d to experimental res_ults. However, thgn e of pairs of quasidegenerate states above the separatrix.
coupling between adjacent methyl groups is so strong along

certain crystal directiongchaing that the relative phases of 1. Analytical solution

neighboring groups are small. That allows to use the space- _ . _ .
continuum sine-Gordon theory. In the case of a rotobreather, 1h€ stationary Schrbnger equation corresponding to the
such an approximation becomes invalid due to the unavoid-iamiltonian() is given by

able large phase difference created at the interface between 5

the rotating and oscillating groups. The study of the proper- _ E dy(x) +a[1- cogX)](x) =Ep(x) (5)
ties of rotobreathergeither classical or quantunthus re- 2 dx? ’

quires one to preserve the rotational invariance of the inter- ) . ,
action potential. Here ¢ is the wave function of the pendulum afdits en-

ergy. As the wave function of the pendulum has to be single
valued®®>®we impose the periodicity condition

In this section we briefly review some of the properties of Y(x+2m) = ih(x). ©)
the classical and quantum single-pendulum probl&RB It is possible to get an analytical solution of E§) by per-
(for more details see Ref. hdn the quantum case, we focus forming the following change of variableg= (7—x)/2 and
on quasidegenerate states and their energy splitting. We sho(u) = (x). We obtain the canonical form of the Mathieu
by two different methods that it is possible to compute thisequationi’
splitting in leading order. The Hamiltonian of the pendulum

herek=(2a/E)¥? and where the rotation period i

While the classical problem of the pendulum is a very

Ill. SINGLE-PENDULUM PROBLEM

system is given b d2¢(u
yoIem B GER B (i(z L fa-2qc0820)16w =0, (@)
1
_Th2 _
H(X,p)= 5P +a[1—cogXx)], (1) where
wherex andp represent the angle variable and the associated g=4a and a=8(E—a). (8)

momentum, respectivelg>0 tunes the barrier height of the

on-site potential. Because of the previous change of variablgg)) is now a

mr-periodic function. In Ref. 57 it is shown that the Mathieu
equation supportgr-periodic solutions if and only if the

A. Classical L P
Classical case characteristic valua belongs to an infinite countable set of

The classical equation of motion to E(d.) reads values denoted bya,.(q),b,,(q)}, neN. Hereay, is re-
) lated to theevenMathieu functionce,,(u,q) wheread,,, is
X+ a sin(x)=0, (2 related to theodd Mathieu functionse,,(u,q). As follows

214305-4



TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B55 214305

from their definition(8), q is directly related to the energy of Equation (13) is invariant under the transformatiom(
the separatrixEs=2a—that is, to the depth of the cosine — —m). This symmetry operation corresponds to the inver-
potential appearing in the Schiinger equation—whereas, sion of the momentum of the system-¢ — p) which origi-

up to a scaling and a shift facta,represents the eigenener- nates in the time reversal symmetry of the original problem.
gies of the pendulum Hamiltonian. For a given valuegof This allows us to separate the eigenstates of (E8) into
(that is, of ), the serieda,, by} increases monotonically symmetric|s) and antisymmetri¢a) states.

with n keeping the property,,<a,,. For n=0 the only We may write the Hamiltonian of Eq13) as
possible solution is an even functia®,(u,q) which repre-
sents the ground state of the system. =
J Y H= 3 m2m)(m|—a(m+1)(m|+|m)m+1]) (15

According to the previous results, the analytical solution

of the Schrdinger equatior(5) reads .
where we have used the ket notatipn) to represent the

@ 1 =X (¢ 2n(Q) plane-wave function(x|m)=e'™9277. The matrix repre-
2n:\/_;C62“ 5 4], Eaw=—g @ sentingH in the FR is infinite tridiagonal, and symmetric.
Its diagonal elements am? and the off- diagonal elements
1 X b,n(q) are constant and equal tea. Moreover,Hy, ,=H ..
g%):—se2n<T,q>, E(2‘,’1)= 8 +a, (9 This additional “central” symmetry is a direct consequence
Vm of the time-reversal symmetry and the Hermitian properties
for ne N*; and of H.
(e):i m—X (e):ao(q) 3. Low-energy states
b cel—5—.q|, Eg +a, (10 : . . .
J 8 Without any on-site potentialo{=0), it follows from Eq.
for n=0, which represents the ground state of the pendulunﬁls) that|m> and|—m) are eigenstates df with identical
Hamiltonian. energym?. Consequently, each state except the ground state

|0) is twofold degenerate in this limit. This twofold degen-
eracy is due to the two equivalent possible motions of rotat-
] o N . ing clockwise or counterclockwise.

Using the periodicity conditiori6) imposed to the wave  “The switching on of an on-site potential governed by the

2. Fourier representation

function, let us consider its Fourier expansion parametew lifts this degeneracy in a way depending on the
energy level of the state under consideration. Whebe-
P(x) = 1 2 o™ (11) comes nonzero, the pendulum system admits oscillations
m H

J2m which correspond to the motion in the cosine arch of the
potential well in the classical systefsee Fig. 1L The quan-
where tum system also admits such kinds of states but their number
is limited by the value ofr because of the quantization rules.
e ImXgy. (12) As a becomes larger, the number of states below the sepa-
ratrix increases and can be estimated {@m by using the
Weyl formula[see Eq.27) and the following paragraph in
'the limit k—1]. If the value of« is large enough, we may
ISxpand the cosine potential arouxd 0 and obtain

1 2w
wm—EfO W(X)

Because of the periodicity of the wave function, the Fourier,
space associated to the pendulum problem is infinite but di
crete. In the Fourier representatigfrR), the stationary
Schralinger equation becomes 1 1 1
B a(l—cogx))= 2x —ﬂx + 250X x8+o(x")|.
m2¢m_ a(Ymi1t dm-1)=E¢n, mel, (13 (16)

where for later convenience we have redefined the energy as
The first order of this expansion leads to the harmonic
E=2(E-a). (14)  approximation of Eq(1) with an oscillation frequency»
= Ja. Thus, low-energy states of the quantum pendulum are
Equation(13) represents a tight-binding equation whosewell represented by the corresponding low-energy harmonic
hopping terms and on-site potential would ber andm?,  eigenstategat least for large enough values aj. As the
respectively. In this equation, the suny(,,+ ¢¥,—1) re- level spacing of the harmonic oscillator is const@rtd pro-
lated to the cosine potential plays now the role of a discret@ortional tow) we expect the states to be regularly spaced
Laplacian while the on-site “potential” terrm? comes from  deep inside the well. This is illustrated in Fig. 1 which rep-
the kinetic energy. Thus, in the FR, the terms of the Schroresents the lower part of the spectrum of a pendulum with
dinger equation have inverted their role. This fact is impor-a=50. The energy levels dfs) and |a) states have been
tant in understanding how the Discrete Wentzel-Kramersfepresented in the right and left parts of the potential well,
Brillouin (DWKB) method®®® applies to the Mathieu respectively. Indeed the few first states are quite regularly
equation(see Sec. Il B & spaced while they condensate upon reaching energies close
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2o ' ' ' ™ Potential Well ——
Symmetric states
Antisymmetric states ——
150 | .
n=13
n=12
o n=11 .
2 10 FIG. 1. Energy levels of a pendulum witha
ﬁ 100 =50. States have been distinguished according to
o ] . . .
5 S their parity. Only a few states lying above the
T, << / separatrix have been displayed. The nunmbef
N // the corresponding doublet is written on top of it.
50 | \% / 4
0 1 1 1 1 / 1 1 1
-3 2 1 0 1 2 3
X
to the separatrix. By using standard second-order perturba- 242 o
tion theory, we may obtain the first corrections to the pure Eﬂ=n2+ 5 — (19
harmonic spectrum: 4n“—1 n

Explicit corrections up tax®/n'° are obtainablésee Ref. 57,

1 1 . . .

E,==[n+(n+1)]w— —5[n2+ (n+1)3?] p. 724. As we mentioned, this energy is the mean energy of
2 2 a doublet. This is indicated by the subscrpin Eg. (19).

(17) 5. Analytical computation of the splitting: High-order
perturbation theory

— i[n3+(n+ 1)3]£+O L
2° « w?
. o . It is also possible to calculate explicitly the splitting be-
V\{heren labels the eigenstate numbme(I\). Th's. EXPIeS-  yeen the symmetric and antisymmetric states of a doublet
sion ceases to be valid when non]mear corr'ec_t|ons becon]gbded bym (m?>2a). The inverse of this splitting is a
large as _compared to the harmonic term. Stl_ll it shows thaBirect measure of the time required by a rotating state to
the spacing becomes smaller as the Energy Increases but {&Vert its initial momentum. It has to be noticed that by “ro-
mains below the energy of the separatrix: tating state” we mean the superposition of the stasesand
|a) belonging to the same doublet. The expectation value of
EJF i) n the momentum fofs) and|a) is zero due to the momentum
8 128w reversal symmetry.
3 A possible way to get the splitting is to use higher-order
- n2 (18) perturbation theory as has already been done in RefER;2
256w (12)]. A proof of this formula has been derived in Ref. 4 and
applied to the quantum discrete self-trapping equation. The
4. High-energy states special “centrosymmetric” form of the tridiagonal Hamil-
pionian matrix in the FR allows us to compute the exact lead-
ing order of the splitting as

8 6do

1 1
A=Eni1—Ep=| o -

For energies above the separatrix, Fig. 1 shows that sy
metric and antisymmetric states glue together to form pair
of nearly degenerate states. From a physical point of view

this is due to the fact that far above the separatrix the cosine 1 . 1 2n
potential appears like a perturbation of the free rotor and AE,=5AEy=g[asn(4a)—bn(4a)]= 2

. . e ot 2 8 (2n—1)!
shifts the levels only a bit around their val&®® = m? (20)

(m?>2a). Because of the momentum-reversal symmetry,

the Hamiltonian(15) diagonalizes into two blocks each re- Notice that due to the relation between the eigenfunctions of
lated respectively t¢s) or |a) states. In the FR, the corre- the SPP and the Mathieu functions, the splitt,, gives in
sponding reduced matrices are still tridiagonal. By applyingwurn the result of the splitting between the characteristic val-
standard perturbation theory in the parameteto one of yes associated to the symmetric and antisymmetric
these matrices whose spectrum is now free of nearly degenr-periodic Mathieu functionse,,, andse,,. A similar com-
erate~eigenvalues, we obtain corrections to the free rotor erpytation allows us to obtain the splitting for thergeriodic
ergy EM® = m2 To second order, we find Mathieu functions. By using the notations of Ref. 57, we get
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8 q ' 1~ n)__&=(n n),(n
ar(Q)—br(Q)Zm(Z +0o(q'"1) as r—wx. AEn:§|E§)—Eg)|=asg)a(1), (23
r—1)!

(2D wheres{™ anda{" are the Fourier components of the sym-

hemetric and antisymmetric states of théh doublet. Instead of

Brillouin-Wigner ~ perturbation theory to  Mathieu's evaluating these components by using the connection formu-
las of Ref. 59, we use the resulting forms given in Ref. 57.

equatior® The splitting(21) gives the width of theth in- . . .
stability zone of Mathieu's equation. Since then, result hasThe asymptotic behavidsee expression 20.2.29 of Ref,)57

been rederived by several authors and was generalized to tl% the Fourier components of the Mathieu functions yields
case of Hill's equatioi>=%’ Frolov has computed the first

Such a splitting has been derived by Bell by applying t

correction to this splitting by means of Whittaker’s metti8d. ACY(q) = ﬂ q_n 2n(q)
The result is reported in the note in Ref. 69 together with the 0 nl(2n—1)! gn" 2m7"
second correction. We have calculated the latter by using the

explicit solution of the Rayleigh-Schdinger perturbation n! gt

theory provided by Silverstone and Hollowayhen applied B (q)= (=D (En=1)1 471 B2"(q),

to the symmetric and antisymmetric parts of Eg5). This

expression for the_sphttlng corrects and makes precise th&here A and B are the coefficients of the cosine and sine
formula presented in Ref. 57. It can be checked by using the, rier series of ther-periodic Mathieu functionse,, and
smallq expansions of the low-order characteristic valuessem_ The superscript indicates the order whereas the sub-

themselves. _ script labels the Fourier components. The correct normaliza-
As the doublet labeh becomes large enough, we find the tion yields Sgn): \/EASZ”)(q) and a(l“)zB(ZZ”)(q)/\/E [see
following asymptotic form for the splitting: Egs. (9) and (11)]. By taking into account thaﬁgﬂ(q)
\ N 1\ [ eyal® =B2"(q)=1+0(q) anda=q/4, we finally get
Sle )2 (0 @ o
o _ _ E.= 5 (24
indicating that it decays more than exponentially fastnas [(2n—=1)!]

ingreases. Moreover, this expression contains it.sllimit of Vay hich coincides with Eq(20). The graph(Fig. 2 shows the
thy as the numben has to be larger than the critical value o 0 a0 the splittings of the SPP spectrumufoi50 as
pc—e\/ZIZ to ensure that the splitting is smésiee comment a function of the energ¥. The crosses correspond i, ¢
in Ref. 73. —E,, as obtained from the numerical diagonalization of Eq.
. (13). The two upper branche&lotted ling represent the
6. Discrete WKB theory spacing betweeneighboring eigenvalugsvhenE<E,) and
Another way to compute the doublet splitting is to use thethe spacing between thdoublets(when E>E,) computed
DWKB method developed in Ref. 59 and to use the discretdy using the density of staté26). They are shown to be in
counterpart of Herring’s formula as done in Ref. 60 Follow- excellent agreement with the numerical data. The splitting—
ing Ref. 60 and according to E¢L3), the splitting between that is, the energy difference between the stgpsnd|a)
the nearly degenerate states reads of the doublets—is represented by the third branch which is
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FIG. 3. “Potential” curvesU* used in the
DWKB theory to compute the eigenfunctions of
the SPP. Some symmetrisolid line) and anti-
symmetric (dashed ling eigenfunctions have
been superposed to them. Their base line situated
at their energy level allows us to compare the
location and the width of their peaks to the inter-
val between the potential curvés™. The value
of a is 50. For the sake of visibility, the wave
functions have been multiplied by a suitable scal-
ing factor.
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decreasing rapidly as the energy increases. Again, the angsughly given by L(E)= \/~E+2a— \/E—Za
lytical result(solid curve given by Eq.(24) is excellent. The ~E./\2(E—a) asE>E.=2a. The localization length in

inset shows a comparison between this analytical splitinghe Fourier space thus decreases like the square root of the
and the numerical result obtained by using Herring’s formmaenergy,

(23). Notice that the splitting can be now as small as *8
although it has been computed with a SIim@EeRTRAN
scheme in double precisiofl6 digits. Because the eigen- ) ] . )
values are of order of unity, it is of course impossible to  Finally we provide with expressions of the numirgiE)
obtain such a result by subtracting two neighboring eigenval@nd the density(E) of states computed by means of Weyl's
ues obtained by diagonalizing E€L3) in double precision. formula:

The precision is in this case limited to10~ 4. But the way

7. Density and number of states

to compute the eigenvectors makes it possible inasmuch as _ i B
the numerical limit becomes not the number of digits but the p(E)= 2 S(E—H(x,p))dxdp (29
smallest number representable by the computer. This result
shows that it is possible to compute very small splittings bylt yields
using commonFORTRAN routines instead of using high-
precision schemes provided MATHEMATICA or MAPLE, for 2.2 E
instance. p(E)=——=kK(k) E<2a, k= CP
An equally important property of the DWKB method is mE «
that it provides with a simple and nice picture of the basic 242 5
properties of the eigenstates. Indeed, as explained in Ref. 59 == Y
Pl : ! _ e \ K(k) |E>2a, k , (26)
it is possible to associate a “classical” Hamiltonian defined mE E

by H=m?—2a cos¢ to the three-term recursion relation _ .
(13), wherem and ¢ correspond to the conjugated “coordi- and by integrating
nate” and “momentum.” This definition is rather natural as

d=—idldm is precisely the Fourier representation of the B 8Va 1o

angular variablex. Interpreting¢ as a momentum, the ex- n(E)= T[g(k)_k K] (E<2a)
pression ofH. shows that its classical motion is confined

between two “potential” curves defined by *(m)=m? _4\/Eg "
+2a (see Fig. 3 The idea is then to use this fact to compute o (k)
the DWKB solution related to this “classical” Hamiltonian.

The internal region defined by the two parabolas(m)  with the same definition ok as above. In these expressions
represents the classical allowed region whereas the regiod§k) andC(k) denote the complete elliptic integrals of the
outside are forbidden. The eigenfunctions are thus localizefirst and second kindésee, e.g., Ref. 57

in the allowed region while they decay exponentialbyr The above expressions p{E) show that the density of
faste) in the forbidden ones. We find that at sufficiently high states develops a logarithmic divergency close to the separa-
energy(far above the separatjithe eigenfunction of energy trix. In this limit, its expression readg(E)~In(16E/|E
E~m?/2+« is localized aroundn and —m whatever its —Eg|)/(7). This phenomenon is known as a Van Hove
parity. Its localization length around these two centers issingularity® and has also been discussed for the case of the

(E=2a), (27)
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FIG. 4. Density of states for a pendulum with

parameter=5x 10°. Numerical data have been
4 obtained from Eq(15) for a matrix truncated to

0.038 | b

p 0025
1001 Fourier components |500<m=500).
0.02 1 Comparison with analytical expressioli26)
shows an excellent agreement until truncation er-
0015 1 rors become importante~ 1.25x 10°).
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Energy E
quantum dimet? The graph(Fig. 4) shows the excellent A. Classical rotobreather

agreement between the DOS computed by means of Weyl's
formula and the DOS computed numerically by diagonaliza-
tion of Eq. (13).

Using Eq.(27), we may now obtain the splittin E as a

Although the system is invariant with respect to the per-
mutation of the coordinates, some solutions of the equations
of motion are not. Indeed, there exist exact solutions of the
Hamilton equations derived from E9), which consist of

two pendulums oscillating at the same frequency but with
different amplitudes. It is also possible to obtain solutions
where one pendulum is oscillating whereas the other one is
5 (E—x®). (29 rotating, both again evolving at the same frequency. Hereaf-
] ter, both kinds of solutions will be respectively referred to as

4\2E 2a

AE(E)~

function of the doublet energh:
a7 NE)
4\/% 2«
[F 5( \/ E) “breather” and “rotobreather” solutions. Because of the size
& of our system, the exponential spatial decay property of
usual breathers becomes meaningless and the classical
IV. TWO COUPLED PENDULUMS breather-type solution refers only to exact time-periodic so-
. . o lutions which break the permutation symmegy.
The Hamiltonian of the two coupled pendulums is given  pq PoincaresectionsPS’ are known to be a useful tool
by in describing the behavior of nonintegrable dynamical sys-
tems, we will use them to locate the orbits of the classical
H=Hai+Ho+Hin rotobreathers at a given energy. This energy has to be larger
2 than the separatrix level of the SPP to allow one of the pen-
= 2 {_+a 1— COSX: )] +e[1—cogX;—X,)], dulums to rotate. At the same time this energy cannot be too
= close to the SPP separatrix energy for nonzertmdeed, the
(29) system develops a chaotic layer in the vicinity of the sepa-
ratrix and prevents any stable periodic solution of the roto-
wheree>0 represents the coupling parameter between th&reather type from existing. Concerning the classical roto-
pendulums. breather itself it is obtained by using standard numerical
The coupling has been chosen to be periodic 33 ( Methods like a Newton scheme or a variational metfsee,
—X,) to allow solutions where one pendulum is oscillating €-9-, Refs. 15 and 38The purpose of this paper is not to
whereas the other one is rotating. This condition is essentifi@Ty out an extensive study of the classical system but to
to obtain rotobreather-type solutions. Notice finally that sucHleal mainly with its quantum counterpart. Consequently we
a Hamiltonian has already been used to describe classic@flll give here just one example of a classical rotobreather.
nonlinear rotating modes in a chain of coupled pendultfins. The values of the parameters are-5, £ =1. The energy of
The Hamiltonian(29) possesses two different symmetries. the rotobreather |Eb 3177 and its period,= 0 885. The
One is related to the exchange of the coordinates of the twisiitial data are p}=7.969, pS=-0.160, x}=0, and
pendulums{Sy,: (X1,P1) < (X2,P2)}, and the other to the re- x5=—5.2x10"°. The first pendulum is rotating whereas the
versal of the global momentum of the systef§,,:(p;  second one is librating. The gragRig. 5 represents two
+p,)— —(p1+P,)}. The latter represents the generalizationPoincaresections realized with the conditiory=0 at an
of the momentum-reversal symmetry already observed in thenergy fixed toEy,. The first P§Fig. 5a)] is plotted in the
single-pendulum system. phase space of the second pendulum. As its trajectory is
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structure itself does not display the permutation symmetry.
The latter applies to the whole phase space and not to one of
its particular sections. Let us indeed consider the PS in the
momenta spacep( ,p,) made with the conditionx; =0,

>0) [Fig. 5b)]. The regular regions aroung{=7,p,=0)

and (p;=0,p,=7) are clearly nonsymmetric with respect to
the reflection at the straight ling, = p, (which corresponds

to the permutation of the pendulunSymmetric topological
structures of these regions would correspond to two different
PS’s: one made with the actual conditior; €0x,>0)
whereas the other should be realized with the permutation
related condition X,=0,x;>0).

The four regular regions of Fig. 5 surrounding a roto-
breather solution are filled with tori and are separated by
stochastic layers. Any classical trajectory starting on a given
torus remains trapped on it for all times. This prevents the
classical system from transferring the initial excitation from
one pendulum to the other one. In other words, starting from
a rotobreather configuration where the left pendulum per-
forms a rotation whereas the right one is librating, the system
will never switch to the symmetry-related configuration
where the right pendulum would rotate and the left one
would oscillate. We will see that such a situation is impos-
sible to be realized in the quantum system and that there
exists a tunneling effect between tori which has been termed
“dynamical tunneling” by Davis and Hellé? (see also Ref.
76).

: \ \ In order to find the quantum counterpart of the classical
. \\ \\ rotobreather, we will proceed exactly as in the classical case.
5 0 : T Starting from the anticontinuous limit where we know the
(b) p1 classical rotobreather to exist, we will find the corresponding
) quantum state and study its evolution with respect to the

FIG. 5. Poincaresections of the two coupled pendulum system coupling e.
in the phase space of the second pendulanand in the momenta
space(b). The conditions of the maps arg=0, p;>0 (a) and B. 2D Fourier space
X1=0, X,>0 (b). The energyE=31.77. In-phasdcross, out-of-
p;ase(tir%es), and rotobreagt]r):gtstat) trajectgries are represented. The stat.e Qf the two pen(_julumsf SyStW11X2) has.to
The inset shows the time evolution of the pendulums momenta foP€ 27 periodic in each of its variables as in the single-
the rotobreather solution. Quasiperiodic motions surrounding it bePe€ndulum problem. We thus expand it as a double Fourier

p2
o
—
momenta
LOaNWAOID~N®
——T

0051152253354
time . L

have similarly. series
strictly periodic, the Poincarsection of the rotobreather or- = > gmalmn), (30)
bit consists of a single poiriah * symbol in the graph Other (mnyez?

periodic trajectories present in this system have been Vis“a%here m.nd=Im e Iny and(xIn) = ex ;

! . ) ,ny= =exp(nx)/y2m. With Eq.
ized by + and X symbols. They respectively show the in- rgzg) tr|1e ei>ger|1vazlutle gquati<dr|llzzf>=E|(//> reads

phase and out-of-phase motions which are modes invariant '

under permutation. The second FSg. Sb)] represents the  Ey = (m2+n2) ¢, ,— @(Pms 10+ Y1)

same case in the momentum space. Given the natural Fourier ' ’ ’

representation of the quantum problem due to thepri- —a(Ymnr1t ¥mn-1) —&(Wmi1n-1F ¥m-1n+1)
odicity of the wave function, this PS provides an ideal frame (31)

for the comparison of the classical and the quantum situa- ~

tions. Notice that because of the existence of symmetries, thehereE=2(E—2a—¢) is a shifted and rescaled energy.
presented rotobreather solution is not the only one. Indeed, in In this discrete Fourier space, the symmetry operatitns
the momentum spacep(,p,), the global momentum- andsS, become{Sy|(m,n)—(—m,—n)} (momentum rever-
reversal symmetry corresponds to the reflection symmetrga) and{S,|(m,n)—(n,m)} (permutatiof. As H is invari-
with respect to the pointpg;=0,0,=0). The permutation ant under these symmetries, it commutes with the corre-
symmetry is the mirror symmetry with respect to the line sponding operators and its eigenstates gather in four different
p1=p,. Using these two symmetries we obtain the locationsymmetry classes. We denote the four different kinds of
of the four classical rotobreather solution§(p?,p5); eigenstates by|s),|a),|s),[a)}. Their symmetry properties
(—p2,—p2); (P3,p%); (—p3,—pY). We note that the PS are shown in Table ISandA indicate respectively that the
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TABLE I. Symmetry properties of the four kinds of eigenstates.

9= (Imn)+|-m,~ )~ n,m)— |~ n, ~m)

State Momentum reversal, PermutationS,

|S> S $n=S-m,—n S $n.n=Snm — 1

|a) A 8mn= ~8-m,—n S 8nn=anm |a>:§(|m’n>_|_m'_n>_ nvm>+|_n!_m>)'

|i> S _Sm,nzs;m,fn A im,n= _inm

|2) A 8mn= ~8-m,-n A apn=-anm Notice thatE,, , is a non-negative integer in this limit. Its

degeneracy can be expressed as follgwsult due to Gauss;

. . . . . see, e.g., Ref. 37
state is symmetric or antisymmetric with respect to the cor- ~g . L
Let Ee N* and

responding symmetry. To evaluate numerically the eigenval-

ues and eigenvectors of E¢31), we truncate the infinite - ~

system to—N=<m,n<N, where N is chosen sufficiently g(E)=#{(m,n) e ZZm*+n?=E}

large to prevent any important truncation errors for states ~

whose energf <2N2. In this case, the total number of com- Pe the degeneracy of the level Let

puted eigenvalues is (2+1)?. Due to the above symme-

tries, we have to diagonalize only the submatrices represent- E= [[ pe®

ing the four different classes of eigenvectors. The rank of the prime p P

submatrices related tfs), |a), |a), and|s) is (N+1)?,

N(N+1), N(N+1), andN?, respectively. be its prime number factorization. ¥p=3 mod 4,e(p)
=0 mod 2, thenE can be written as the sum of two

C. Global spectrum at the anticontinuous limit (£=0) squares, i.eg(E)#0 (Fermaj. In this caseGaus$, its de-

There are two limiting cases where the eigenvalue equad€neracy is given by
tion (31) can be solved analytically. These correspond to
situations where the classical system becomes integrable. =y
The first one is realized when the coupling parametes 9(E) 4p511_r[nod4(e(p)+l)' 33
equal to zero, i.e., where the system consists of two identical
decoupled pendulums. The second one is realized when thgs a first example we assunte=6174. lts prime number
on-site parametest becomes zero, where, by passing to thegsiorization reade =2x32x73. As 7=3 mod 4 and as
center-of-mass representation, the system can be reduced t?@power is odd (321 mod 2), the Fermat theorem implies

free rotor plus a decoupled penqulum. In these two limits thethatE cannot be written as the sum of two squares. Conse-
global spectrum of the system is given by the sum of two '

one-particle spectra. Moreover, in the limit wherés equal ~ duently g(E)=0 in this case. A second example B
to zero, the two spectra are identical. This leads to a twofold=5850. Its prime number factorization reads=2x 32
degeneracy of the main part of the global spectrum. Neverx 52X 13. The only prime number of this factorization such
theless, by constructing the eigenvectors in such a way thdhatp=3 mod 4 is 3. But its power is even. Thus by use of

they belong to a given symmetry class, the eigenstates atfie Fermat theorenE can be decomposed into the sum of
unambiguously defined and already represent the propeyo squares. Its degeneracy is nonzero and is given by Eq.
zeroth-order states suitable for any perturbation calculation33). The only prime numbers of its factorization to be of the
in e. form p=1 mod 4 are 5 and 13. Thusg(5850)
o ) =4ll,-5 14 e(p) +1]=4X3X2=24. Looking for the corre-
1. Limit of zero on-site parametefa=0) sponding couples of integers leads tan,f)e{(*+15
Let us first derive some results concerning the anticon<—* 75);(* 33« =69);(*+ 51« +57)} where the arrow in-
tinuous limit (e =0) when the onsite parameter is itself equal dicates that the permutation has also to be taken into account.
to zero (@=0). In this case, the system consists of two freeEach set of parentheses separated by a semicolon represents

rotors and the global spectrum is given by eight different states leading to a total degeneracy of 24.
5 More generally, if a coupleng,n) is such thatE=m?
Emn=m?+n2. (320  +n?, then all the couples¥m,+n);(=n,=m) are degen-

erate, leading to ageneric eightfold degeneracy. Other

([:'ouples 0.,9) # (m,n) which possess the same energy corre-

spond to amaccidentaldegeneracylike for the second ex-

1 ample from above

|s):§(|m,n>+ |—m,—n)+|n,m)+|—n,—m)), Exceptions to these rules are the couplesr(,==m) for
which the permutation does not play any role. Their degen-

eracy is thus equal to 4. They represent physically two pen-

dulums with equal momentaup to their sign. Another ex-

ception to the generic eightfold degeneracy comes from the

The corresponding eigenstates are given by a product of co
rectly symmetrized plane waves: namely,

@)= (Imm) == m, =)+ fn,m) = =, ~m)),
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=0) system computed by diagonalizing Eg1)

for different values of the maximal number of

] Fourier componentsy, of the wave function).

The linear dimension of the Hamiltonian matrix
is (2N+1)2. «=50. E* (see text has been in-
dicated as well as the thresholds where, because
of truncation, the computed spectrum starts to be
larger gapped. Thresholds are represented by
straight lines ended by the symbol of the corre-
sponding spectrum. The asymptoe=n/m is
also shown.
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couples ¢-m,0);(0,=m) whose degeneracy is also equal to  Expression(34) thus provides a very useful guide for
4. In this case one of the pendulums is at rest and tione checking the energy level at which truncation errors become
equivalently momentuinreversal does not affect it. This important. Note that truncation errors are of two types. First,
leads to a quadruplet of degenerate states. Whenever an dfiecause of the truncation of the whole matrix, there exists an
site or an interaction potentigbr both is switched on, the  energy threshold for which some eigenvalues of the spectrum
degeneracy is lifted and gives rise to a quadruplet of nearlgre missing. Indeed, for=0, the global spectrum is given
degenerate states. The latter represent our quantum rotgy the sum of the SPP spectrum with itself. In this case, even
breather as long as the quadruplet remains quasidegeneralgssming that the numerically computed eigenvalues are ex-

Another important property of the global spectrum at the ~Spp .
uncoupled limit is that the number of statée., the inte- act, the SPP spectrum endféf because of truncation. Let

grated density of stateehaves asymptotically as us denote the energy of its ground stateB§/". Then the
first missing eigenvalue €557 +E5"" where ESTY is the
first eigenvalue followindESP?. This provides with a thresh-
old where the eigenvalues start to be ranked in a wrong way.

Their label becomes false and so does the computed number
2. Switching on the on-site potentigla# 0) of statesn(E). This is shown in Fig. 6 which represents the
Expression(34) is valid not only in the limit of free rotors spectrum of two uncoupled pendulums as computed from

but also whenw and & are nonzero. This is confirmed by Ed- (31 for different values ofN (recall that —N<m,n
Weyl's formula which provides with the zeroth order term of <N). The second type of error induced by the truncation is a

= modification of the values of the energies themselves. As we
the degeneracy(E). Indeed[Ref. 78, p. 497, Eq(21.4)], have verified these errors increase as we reach the upper end

of the truncated spectrum but are nevertheless very small if
Inen(E) = E(if dxldxz), (35)  We respect the threshold indicated above.
Y 2\ 27 J¥(xy xp)<E Although the degenerac{83) has been obtained for the
case where both the on-site and the coupling parameters are

where —V(x;,X,)/2= a(COSX; +COSX,)+& COSf —X,). The  Zero, it provides us with useful information when consider-

prefactor 1/2 is coming from the rescaling®Bfas compared in_g the near degeneracy ‘“““P"?ts arising at sufficiently

2 =~ high energy(that is, far above twice the energy of the sepa-
to E~ As (leXZ) E] - 77,’77] y when E>E ratrix of the SPB)
=max(V(Xy,Xz)), the integral term is constant and equal to  As the on-site parameter becomes different from zero,
(27)2. Thus gWey|(E)= 7 and nmy|(E)= wE+const when the first part of the free rotor spectrum of the SPP is modi-
E>E". Itis possible to show by direct calculation that the fied. Far below the SPP’s separatrix, the quadratic spectrum
constant term is equal to zero and tlat=2(2a—¢) if « Ei =1 is replaced by a harmonic oscillator orig""
>2¢ or E* =2(s+ a%2s) if a=<2s. AsE" corresponds to ~2(val—a). The number of states(E) of the global un-
the “top” of the potential for any values of the parameters coupled system thus becomes a quadratic function of the
and «, and serves as a critical value in the global spectrunenergy. This explains the form of the functiiin) observed

indicating the level at which the influence of the potential in Fig. 6 which starts as a square root and asymptotically
starts to be weak. becomes a linear function of

nE)=> gE)=mE+0(E) (E—=). (39

E'<E
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where|a),|a’) (|a),|a’)) represent any of the symmetric
(antisymmetri¢ SPP eigenvectors.
Using these expressionsb) is readily written as

Q
\%

|
|

Ground states

FIG. 7. Schematic representation of the sum of two pendulum
spectra. Straight solid arrows indicate the levels to be added and
dashed arrows the symmetfjgermutation operation. The result is — —
indicated in the global spectrum by a curved arrow. The construcWhere |s).[s)=(|oo)®[ay) = o) ®|00))/2 and |a),[a)

=(log)®|an)=|on)®|ag))/\2. In this anticontinuous

tion of the quantum rotobreather stade) is explicitly represented. =\ ] .
limit, we may compute the eigenvalues corresponding to
each of the four states which contribute|t). We obtain

1 _ _
[®)= 5 (|5)+[5)-+]a)+ ), (39

D. Quantum rotobreather state

1. Anticontinuous limit ES=E§=E%—I—EU”, Ea=E;=EUO+Ean. (39

The goal of this paper is to define and to study a quantumys the expressiori39) shows, the absence of any coupling
rotobreather statéd) whose properties are very similar to petween the pendulums is responsible for the true degen-
those of the classical rotobreather. Consequently it is naturgdyacy of the states whose parity is the same with respect to
to look for a quantum state which, at the anticontinuous limitthe momentum reversal symmetry. This follows from the fact
(e=0), represents a state consisting of a rotating pendulurthat the global spectrum is given by the sum of the SPP
and another one at re@ip to quantum fluctuationsAs the  spectrum with itself in the anticontinuous linief. Fig. 7).
pendulums are not coupled, this state is represented by thl%us the energy leve, +E, is obtained in this limit ei-

90 9n

tensorial product of the SPP’s ground stiatg) (correspond- _ i
ing to the pendulum at reésand a superposition of two states tNer by adding the energy of the ground statg) of the first

(lon),|@n)) belonging to the same doublebf the SPRcor-
responding to a rotating pendulyinThe addition of the two

SPP spectra and the construction of the quantum rotobreath
|@) is schematically depicted in Fig. 7. The states denote

by |o) (]a)) are symmetri¢antisymmetri¢ with respect to
the inversion of the momentum:

1
|<I>>=E|0'O>®(|a'n>+|an>). (36)

In order to obtain the stafe) ate=0 as a linear combina-

pendulum to the energy of the symmetric sthig) of the
nth doublet of the second pendulum or by adding the energy
af the ground state of the second pendulum to the energy of

dhe symmetric state of the first one.

We have already showjsee Eq(20)] that the presence of
an on-site potential¢# 0) lifts the degeneracy of the sym-
metric and antisymmetric states belonging to the same dou-
blet of the SPP. We may thus compute the splitting between

the two pairs of degenerate statés)(|s)) and (a),|a)):

~ ~ aZn

Sn=Es— Ea=2—(2n_l)!2. (40)

tion of the symmetrized eigenvectors listed in the Sec. IV Bizg g sfficiently largen this splitting is extremely small and

" . &hus the four states making y@) form a quadrupletof
symmetrization of the tensorial products leads to the fOIIOW'nearIy degenerate eigenenergies which has been represented
ing expression of the four possible classes of states:

in Fig. 7. Notice finally that the inverse of this splitting is
directly related to the time taken by the system whose initial
1 state is|®) to reverse its total momentum. As one of the
Is)=—=(lo)®|c’)+|o")®|0)) pendulums is at regtip to quantum fluctuationsthis means
V2 that the pendulum initially rotating in a given sense tunnels
into the state which corresponds to the opposite rotation
sense on a time scale,~1/5,. This effect is purely

1
or =(le)ela’)+]a’)®]a)),
2 quantum.

%
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2. Nonzero couplinge consider that the latter represents the transfer of the excita-

As soon as the coupling parameteiis nonzero the de- tion from pendulgm to .pendulu_m with a good accuracy.
generacy of the statess),[s)) and (a).[a)) of the quadru- Ar}other quantity _Of mterest' is the dlfferencie be}ween the
plet is lifted. Here we are interested in the computation of themdlvmllfal (Aozr on-sitg energies (AH)=(®[|H; ~H| )
corresponding eigenvalues in order to find the splitingsVhere Hi=Pi/2+a(1-cosX;). As the total energy of the
which determine the evolution of quantities such as indi-SYStém is conservedAH) measures the transfer of energy
vidual energies or momenta of the pendulums. If the splitP€tween the pendulums. , ,
tings between the states making up the quantum breather N Order to give a simple expression of the above quanti-
become of the order of the mean level spacing of the spedleS Iet us use the two symmetries of permutation and mo-
trum, we may conclude that the breather solution is1bst. Mmentum reversal. We denthre the|rTrespect|ve operatorB by

One possible source of a dramatic increase of the splittd M which are unitary’P"P=M'M=1 (see, e.g., Ref.
tings can be a strong overlap of the quantum state with th83)- Moreover, the following relations hold:
chaotic layer of the classical systgsee, e.g., Ref. 79 for a

general review of the manifestations of classical phase space MTPiM=—P;, P'PP= Pi, (41)
structures in quantum mechanic$his overlap is generally o . . -

computed by means of a Husimi distribution which is one of M'HM=H;, P'HP=Hj, (42)
the possible phase-space representations of a quantum state ~ ~ ~ ~

(see, e.g., Ref. 80This distribution is then superposed to the MMHM=Hin,  P'HipP=Hin, (43

corresponding Poincasection of the classical system which . o - A
allows to compute the overlap. This method has for instanc¥here  (,j)e(1,2)ji#j, and where Hjy=s[1—cosi,
been used in the case of a driven bistable sy§feAt.the ~ —Xy)] is the interaction energy term.
same time these studies have shown that doublet states over-Using the fact that the Hilbert spaceassociated to the
lapping up to 70% with the chaotic layer may still possess a&oupled pendulum problem can be written as the direct sum
small splitting. To avoid misinterpretations, here we will £=E®E®E,®E,, any operator may be represented by a
compare the Fourier components of the quantum roto4x4 block matrix in the basis{(si)},{|sj>},{|ak>},{|a|)})
breather|®) with the Poincaresection of the classical sys- formed by all the states belonging & first, then all the
tem in the momenta space. The main result will be that thgtates belonging t&;, etc. in the order described above.
phase space locations of the classical and the quantum roterom the preceding relations and by using the symmetry
breathers are roughly the same. properties of the eigenstates, it follows that the relevant op-
This direct comparison is possible due to the results oberators for our study have the form
tained in Ref. 82 showing that the Husimi distribution of the

pendulum problem can be found analytically. It follows that 0 0 Pas *Pas
for the pendulum potential, the discrete Fourier representa- +p— —
. - - - s - - - A 0 0 - Pas Pas
tion of the eigenfunctions and their Husimi distributions re- Pi,= (44)
stricted to the momentum space differ insignificantly. Psa *Ps 0 0

*Psa Pa 0 0

3. Tunneling of the|®) state and
In this section we derive the expressions of some relevant .
guantities which allow us to follow tﬂe time evolution of the Hss  *Hss 0 0
initial state |®)=(|s)+|s)+|a)+|a))/2. This state is . | THss Hs O 0
formed ate #0 by the eigenstates which belong to the qua- Hi2= 0 0 H.a *Ha (45
druplet of states. These states in turn are defined by the ten- - o
0 0 *H,z Ham

sorial product of the ground state of the SPP spectrum and

one of its doublets at the anticontinuous limit. Becal$8¢  \ve have used the condensed nOta@n=<M|©1|V> which

is not an eigenstate, it evolves in time. In order to visualizesy yhoically represents all the matrix elements of the ob-
this evolution and because we are working in the 2D discrete

Fourier spacd2DFS, we may compute the time evolution servableo; be_tween states of two given sut_)spaég_sand
of its momentum. This is done by computing the two func-g"' T?eﬂ&gr.] I;I+ ;O(;. 1 andl— for 2. In this basis, the
; ENT- S BB o F operatorH;,, is block diagonal.

tions A<AP> _A<CD|P1 P2|(D>, and (P)=(®[P,+P,|®) Using the time evolution of the initial stat@),
whereP, andP, are, respectively, the momenta operators of

pendulums 1 and 2. If the total momentum of the system 1 . o

were conservedas in the integrable limit:=0), the differ- [P(1)= 5 > e Eu|u) where pe{s,;s,aal, (46
ence of the momentéAP) would represent the transfer of K

momentum between the pendulums. This is not the case forge finally obtain

nonzero value ofr. Although the total momenturP) is in . .

general not conserved, for not too small values eofit (AP)=(s|P,|a)cog Es— Ex)t+(s|P4|a) cog Eg— E,)t,
evolves very slowly as compared {&P). We may thus 4
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45

445

44

FIG. 8. Evolution of a part of the spectrum as
a function of the coupling. The on-site param-
eter isa=5. Energies are rescaled according to
E=2(E—2a—¢). The quadruplet under investi-
gation starts at an energ§=41.43. It corre-
sponds to a state formed of the ground state of the
SPP and the doublei=7.

43

Energy

425 -7
42

415 e

41

(Py=(s| |51|a>cos{Es— Ea)t+<g||51|g> cog Eg— EQt, 4. Following the quadruplet
(48) In Fig. 8, we have plotted the evolution of a part of the
o o global spectrum of the coupled pendulums as a function of
<AH>=<S||:|1|S> cog Eq— E;)t+(a|l:|1|a) cogE,—Ext. the couplinge. The on-site parameter ie=5. The energies
(490  of the different classes of states have been represented by
different lines and symbols. The quadruplet which represents

zero at the anticontinuous limit. No transfer of energy be—the levels of the statefis),|s).|a).[a)} from which|®) is

tween the pendulums occurs due to the fact that they arormed has an enerdy=41.43 ats =0. This corresponds to
decoupled. The excitatiofand thus the energyis entirely ~ @ quadruplet made of the ground state of the SPP and the
conserved on its initial site. In this limit we knogin leading ~ doubletn=7 at the anticontinuous limit. Indeed, by using
ordgb the vazlue of the splittings E;-—E,=Es—E;  Egs. (17) and (19), we obtain E$=49+50/195 andE,

— n H ~

=a“"/(2n—1)!“ and thus the time taken by the system toz\/@_ 1/16=E,=(5)— 1/16- 10. The sum of these en-

reverse its initial momentumz, = 7(2n—1)!%/a" wheren C =
p f—3 =
labels the doublet of the rotating pendulum. These splittingsergles givesE=41.43. Ate =1 the quadruplet energy i

also occur in{AP). Thus for smalle we cannot assign the =41.54. This corresponds ©=31.77 which is the energy

: of the classical rotobreather presented in the Sec. IV A.
meaning of a transfer of momentum between the pendulums . ,
At slightly larger energy we observe an octuplet in the

to Tzetrt]i(;ngtr?:alflil:]ttiggrgs)lAePI?rhit where=0 but a=0. it is spectrum. It consists of states mixing two neighboring dou-
also possible to compute the exact spectrum of the systerR!€tS: namelyn=4 and n’=5. Its energy is around
Notice that the total momentum of the system is strictly con-=42-3 which can be computed also by using Ef). The
served in this case. The absence of the on-site potential [§aS0n for the occurrence of this octuplet is depicted in Fig.
also responsible for the degeneracy of the states of differerf BY combining the two states of the doubfewith those of
parity concerning the momentum-reversal symmetry. We! We obtain four differentalthough nearly degeneratev-
thus haveE = E, andE<=Ej. Itis possible to showsee the els of energy. But there are two ways to attribute these dou-
Appendiy  that the spliting Eq—Es=[a,(—2¢) blets to pendulums 1 and @epresented by the solid and
—bn(—2¢)]/4 which yields in leading orderdEq—E dashed arrows in Fig.)7We thus obtain two identical qua-
=2(£/2)"/(n—1)!2 wheren is the label of the doublet of the druplets which yield an octuplet. Finally, the visible cluster

initially rotating pendulum. The time taken by the system toof levels atE~43.25 corresponds to a quadruplet made of
transfer its excitation from one site to the second one.is the combination of a single symmetric stdtee last one
=(n—1)!%/2(¢/2)" in this limit. By comparingr, with T, Situated below the separatfﬁge,f 2a=10) with the doublet
we observe that for large enough7,> 7, holds, regardless n=6.
the values ok and«. This indicates that in general transfer ~ From a general point of view, the evolution of the energy
of energy(and momentumfrom site to site will be a much levels of a spectrum as a function of a given paramgtere
faster process than the process of total momentum reversat) can be compared to the time evolution of a gas of par-
When « and e are both nonzero, the different splittings ticles obeying dynamical laws of the Calogero-Moser system
have to be calculated numerically by following the evolutiontype84~8"This system is Hamiltonian and the interaction be-
of the quadruplet as a function of the couplingThis is the  tween particlegeigenvaluesis strongly repulsive at short
purpose of the following section. distances. This gives rise to avoided crossings. Nevertheless,

Notice that the energy differences occurring (iAH) are
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in the presence of symmetries, the different parity sectorbeen displayed. We observe that the sfdtgremains almost
decouple from each other and thus, do not intefadts a  unchanged for &z<2. The excitation is well localized in

result, the four sectors,s,a,a} evolve individually accord- the 2D Fourier space. The average momentRy)
ing to the Calogero-Moser dynamics but do not interact With:Em,nm|q)m,n|2| which defines the projection of the excita-
each other. Thus they may cross. Such a crossing is observegn “center” on thex axis, is large and makes the first pen-
in Fig. 8 in the vicinity of the point {=5E=44). dulum “rotating” whereas(P,) ==, ,n|®, »|? is small and

Figure 8 also shows the pairing of eigenvalues whosenakes the second pendulum “oscillating.” The quotes indi-
momentum-related parities are complementary. For instancgate that this correspondence refers to an interpretation in
eigEnvaIues of the sector cluster with eigenvalues of the  terms of the classical system. Asbecomes larger than 4,
or a sectors. The reason is that the influence of the on-sit¢he state starts to spread on the lattice and does not corre-
potential becomes weak and thus the corresponding splittinggoond to a “coherent” excitation anymore. A plot of the
small as the energy becomes sufficiently high. Poincaresection of the classical systemsat6 with an en-

By following the quadruplet which starts Bt=41.43, we  ergy corresponding to the one [#b) has shown the allowed
observe that it first survives an avoided crossing with ond€gion of the Fourier space to be chadéxcept in the vi-
(Is),|a)) pair (¢~0.7). Then it survives again another one cinity of the in-phase and out-of-phase motion and in a tiny
with two ([s),|a)) states and starts to split into two pairs region where the classical rotobreather still ejisfEhis

d (s 1) aft lisi ith iquad means that any small perturbation of the initial conditions of
(Is).[a)) and (s),|a)) after a collision with a quasiquadru- the classical rotobreather leads to a chaotic trajectory. We

plet which originates from the octuplet Bt=42.3. Finally,  verify in this particular example that the strong overlap of
in the vicinity of e =7.5, the (s),|a)) pair seems to join a the chaotic sea with the quantum state leads to large split-
new (/s),|a)) pair but remains clearly separated from it. Thetings of tunneling pairghere qs>,|§>) and Qa>,|§))].
fact that pairs of permutationally related eigenvalues may
survive avoided crossings is already known and may for in-
stance be observed in the case of the trimer proBfeth.

In order to see the progressive evolution of our initial To provide quantitative results concerning the behavior of
state|®) as the coupling increases, we have plotted snapthe different splittings involved in the expressiods) ase
shots of its evolution for different values ef(Fig. 9). Each  increases, we have computed them over the same range of
picture represents the 2D discrete Fourier space.XTév@s  values. The result is presented in Fig. 10. It always concerns
represents the coordinatee 7 related to the momentum of the statg®) obtained from the quadruplet of preceding sec-
the first pendulunp,; and they axis,n e Z related top,. The tion. Notice that for the sake of clarity, only three of the six
|®) state has been computed on a square lattice of441  possible splittings have been displayed on the figure. The
Fourier components. For clarity only a 221 lattice has omitted splittings behave very similarly according to the

5. Evolution of the splittings withe
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FIG. 10. Dependence of different splittings of
the quadruplet whose energy at=0 is E

o]
£ el =41.43 one. Only three of them have been dis-
;o). played, each being associated with a given tun-
neling process. The splittings are given in terms
1078 |- of the rescaled energ§E=2AE.
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symmetry properties of the involved states. Each of the distion of the collision and the specific splitting under
played splittings corresponds to a given tunneling process aonsideratiort*

specified in the figure. Far>0.15 the graph basically con- Finally, when the coupling parameter becomes larger than
sists of two curves. One is related to the momentum or enS, the splittings corresponding to the transfer of the excita-
ergy transfer between the pendulums and another one is réon between the pendulums start to be of the same order as
lated to the reversal of the total momentum of the systemthe mean spacing in the spectriitiz here as shown in Eq.
This means that the upper curve is related to the transfer ¢84]- This is the signature of the disappearance of the quan-
the excitation from a general point of vie(energy or mo- UM rotobreather since no quantum state |.s.able to kee.p the
mentun). The lower curve represents a procéte global ~ENErgy on a given pendulum during a sufficiently long time
momentum reversawhich is not associated with any kind &t the considered energy level.

of excitation transfer between the pendulums but only to %he\/\ée I(i:t(t)irrldu%?/é?rlwsinse?r?gr:er?grdIS(t:ruaSnSsl?gr tgﬁ g]ipeggspucel;f
global modification of the system. It has no relation with the pitting g 9 gy d P

tunneling of the quantum rotobreather from site to site. energy (Fig. 1. As expected the splittings decrease with

: . I : increasing quadruplet energy. This can be qualitatively un-
Note that at the anticontinuous limit, the energies of thege g4 by referring to the analytical expression of the split-

states|a) (|s)) and|a) (|s)) are identical. The splitting ting ata=0. Indeed, taking into account the slow change of
which corresponds to the energy transféE(~E,| in the  the quadruplet energy with, Ep,o=m?+&2/(m?—1), we

figure) is thus zero. This explains the behavior of the corre- . = . .
sponding(thin solid) curve, in logarithmic scale, which de- ma.y.d|rectly replacem b}/ EJ”'O in the expregEsmn Oj '[2he
splitting. We thus obtainA (E,a=0)=4(c/2) BT (VE)

creases regularly witla. Moreover, due to this degeneracy, =F" : > ' )
all the remaining splittings are equal and given by Eg). which gives a rapidly decreasing function of the quadruplet

For the|d) state we obtains,~3.15x 10~ 2° which corre-  energy for values of <E.
sponds to the saturation value obtained numericalMEgr

—E,| and|Es—EZ] (thick solid and dashed lings V. SUMMARY AND CONCLUDING REMARKS

The splittings depend smoothly eénexcept for values of . . , .
the coupling where crossings and avoided crossings tak In this paper, after a brief review of the essential results of

place(see Fig. 8 The first crossing involves the quadruplet tN€ Single-pendulum problem, we have used a two-coupled-
states{|s),|a) |§> @} and a (s'),]a’)) pair at 5=0.73, pendulum model to show the possmlllty o_f constructing a
Avoided c,roséin ,s oceur betweeﬁs)( I5'y) and (a),|a’)) quantum statéd) whose properties are similar to those of a

) q 9 ble for th ,k M the th classical rotobreather. This state has been constructed by
gs;lrt fir?gns. a{ﬁéeigggsgf ethzr seecgr?g i:‘)ggﬁgﬁ'rg 3:8) ii res‘f’arting from a state which mimics the behavior of a rotaFing

: . ) . . pendulum decoupled from another one at rest at the anticon-
slightly different. - This aYO'ded cros.S|-ng _concemns thetinuous limit. Four states, each belonging to a different sym-
(Is),[s")) and (a),[a")) pairs. The splitting|Es—E,| be-  metry sector, are shown to be necessary to form it. By
haves smoothly whereas the two others exhibit spikes due @witching on the coupling between the pendulums, we follow
the collision. This follows from the fact thaEs—E,| does the resulting evolution of the quadruplet and monitor the
not contain any contribution of states interacting with thedifferent splittings. Each of them can be shown to be associ-
colliding pair. Note that the spikes observed in such crossated with a given tunneling process according to the partici-
ings may have different forms according to the exact realizapating states.
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Comparison of |Ea-Ea| for different energies
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FIG. 11. Dependence of the splitting govern-
ing the energy tunneling oa for different qua-
druplet energies. The three curves correspond to
quadruplets starting from a ground state and a
doublet ate =0. The respective labels ame=7,

11, and 17. The corresponding energies &0

areE=41.43, 113.3, and 281.2.
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In general, we have seen that two processes have to likis chain cannot possess any kind of classical breathers,
distinguished. The first concerns the tunnelilog transfey what prevents quantum breathers from existing on such a
of the initial excitation (energy between the pendulums chain? To answer this question, we compute the bandwidth
which corresponds to a tunneling of the quantum roto-corresponding to a local excitation afbosons close to the
breathefd) between neighboring sites. This tunneling effect gnticontinuous limit. We obtaid E,,=n(Jw’+4e — ), o
is associated to the permutation symmetry present in the Sygjsing the oscillator frequency ane the coupling. This
tem. The second tunneling effect relies on another symmetryy, s that the bandwidth becomes large as the mean energy

due to the invariance of the system to a reversal of its tot%f the band,E,~nw, does. Moreover, the density of states
"-n L] . ]

momentum. This symmetry already appears in the Singleécales likeg(E)~EN"? (see the Introductionand the prod-

pendulum problem where it is responsible for the occurrence : . i
of doublets of nearly degenerate states at sufficiently higﬁj.Ctg(IE“)AIE”—>C>O ask-—c. This shows that like the clas

energy(above the separatyixThis second tunneling effect sical tharn;onu;,hchaln, the quantum system cannot support
takes a time which is orders of magnitude larger than thé4antum breatners. . T .
A second comment concerns the “classical-like” behavior

time of the excitation transfer between pendulutazcept o
for very small coupling valués of the quantum breather. By defining the latter as a superpo-

By progressively increasing the pendulum coupling, wesition _of the eigenstateg making up a single banq, its time
have shown that the quadruplet under investigation may sygVvolution isde factorestricted to these states. The fine struc-
vive crossinggor avoided crossingswith other states. Nev- ture of the band thus provides the only available frequencies
ertheless, for large enough coupling, the nearly degenera® this evolution. As the corresponding splittings are very
states of different permutation symmetry parities separatémall, none of them is related to the classical breather fre-
sufficiently from each other, leading to splittings of the orderquency. These frequencies only concern the tunneling of the
of the mean level spacing in the spectrum. This situatiorexcitation from site to site. On the other hand, the individual
corresponds classically to a large chaotization of the phasenergies of particles making up a classical breather, for ex-
space at the considered energy level and thus to a strorgmple, oscillate around their mean value at the breather fre-
overlap of the quantum state with the chaotic layer surroundguency. Where does such a frequency appear in the quantum
ing the regular island where the classical rotobreather is losystem? It turns out that this frequency is naturally recovered
cated. The disappearance of the quantum rotobreather invy considering quantum states which display an excitation
plies that the corresponding state is no more able to keep themilar to the quantum breather but which are not restricted
excitation on a given pendulum for a long time as comparedo a single band. We have verified in our system that a co-
to the typical oscillation time of the system. herent state parametrized by the average phases and mo-

To conclude this paper, we first comment on the relatiormenta of the quantum rotobreath@) excites mainly the
between the classical and the quant{roto)breathers in ex- quadruplets separated by an energy difference which corre-
tended lattices. An essential ingredient for the existence of aponds approximately to the classical rotobreather frequency.
quantum breather is the appearance of bands of nearly d&he interaction between quadruplets is thus responsible for
generate eigenstates whose bandwidths remain very small g® “classical-like” time behavior of averaged observables
the coupling increases. Nevertheless, the general method ertike individual energies This should generalize to nonlin-
ployed to construct the quantum breather by starting from thear systems with more than two degrees of freedom where
anticontinuous limit may be used as well for a chainNof we expect interactions between bands to play a similar role
purely harmonic oscillatoréwith a harmonic coupling As  as the interaction between quadruplets in our system.
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APPENDIX A: COUPLED ROTORS

In this appendix, we solve the problem of two coupled
rotors, i.e., the limit of the two coupled pendulums when the
on-site parametes is equal to zero. In this case, the system
defined by the HamiltoniafR9) is integrable. Indeed,

1 -
— =5+ 2¢e[1—cog2d)]—2E4|Pg(d)=0, (A9)

2

L wherey(s,d) =9(s) Yg(d) andE=E+Ej.
H ==(p2+02)+ e[ 1—cog X, — . Al Equation(A9) is a Mathieu equation with a characteristic
a=5 (PLHP2)+el %)) A1) valuea and a parametey defined by

Let s=(x;+X,)/2 and d=(x;—X,)/2. Then the classical a=4(Eq—¢) and q=—2s¢ (A10)

equations of motion read d '
. Taking into account the preceding remarks concerning the
s=0, (A2)  periodicity as well as the two possible pariti@sid or even

of the solutions, we finally get

d+e sin(2d)=0. (A3)
. 1 1/a
The system decouples and consists of a free rotor for the EJ=—0? and Egz—(b (q)+e, (Al11)
center of mass motion and a pendulum for the relative coor- 4 4 s

dinate 2l (with an “on-site” parameter 2).

Let us turn to the associated quantum problem. Th
Hamiltonian (A1) gives rise to the time-independent Schro
dinger equation (

where o, 5e 7? have to have the same paritgven or odd
fnd where we have introduced a spinor notation

):[fﬂ(z) if u=0,
P(Xq1,X2)=0 9/, ). (2) if pu<O.

(A4) For the usual notation of the Mathieu equation see Ref. 57.

. ] ] ] By defining the rescaled energy [B=2(E—=¢) and using
which yields(after the change of variables defined above the quantum numbens,n we finally get the following ex-

pression for the spectrum of the coupled rotors:

f

(A12)

1
- E(a§1+ J% ) +e[1—cogx;—x;)]—E

¥(s,d)=0, (A5)

1 2 2
3 (92+35) +s[1-cog2d)]-E

a
~ (m+n)2+(b) (—2¢&)|, (mn)eZ2
where (s,d) = (X4,X,). Because of the 2 periodicity of (m-n)

#(X1,X,) in each of its variables, we may expand it as a (A13)

double Fourier series:

Em,nzz

It follows E,,,=E_, . Thus all the levels are twofold

1 degenerate except whem= —n, which corresponds to a to-
P(Xq,X5) 5~ 2 , YmneXAI(MX+NX;)] tal momentum of the s_ystem equal to zero. Notice that, when
mneZ £—0, the characteristic values converge to<n)? and we
1 recover the free rotor spectruiy, ,=m?+ n?. Moreover, at

“27). 562(:27)2 Pexdi(os+od)] (A6) sufficiently high momentum differencés—n|> Ve, the en-
’ ’ ergiesE, , andE,, ,, become nearly degenerate. Their split-
ting, computed by means of ER1), gives
+ 2 Pexdi(os+6d)]

0,8e(22+1)? (8/2)\m—n|

1 -
AE|m,n‘:§AE‘m,n|=2m.

(A14)

=¥(s,d), (A7)
The eigenfunctions corresponding to the spectr(Ai3)

where we have defined=m+n and §=m—n and where may be expressed according to their symmetry sectors by

the notationss, 5 (27)? and o, 6 (27+1)? indicate, re-
spectively, thato, § have to be both even numbers or both c
odd numbers. Moreovel 5=y, 52, 52 for o, 8 both P (X1, X0) =N, S) (s)
even [reason for the superscripe)] and similarly y{% 7
= Yo+ 8)2,(0— )12 TOr 0,6 both odd. It follows that the first where the normalization factalV,, is 1/m for o#0 and
term in Eq. (A7) is a 7 periodic function in each of the 1/\27 if c=0 and wherer, &, s, andd have already been

ce .
sel (dia), (A9
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defined as functions ofm, n, x4, and x,. Here C,(s)
=cos(s) and S,(s) =sin(os). With this notation, the corre-

PHYSICAL REVIEW B65 214305

|s)=(0=0;6=0), |a)=(0<0;6=0),

spondence between the symmetry sectors and the values of

and é are

|s)=(0<0;6<0), |a)=(0=0;6<0).
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