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Tunneling of quantum rotobreathers

J. Dorignac and S. Flach
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany
~Received 11 December 2001; revised manuscript received 13 February 2002; published 6 June 2002!

We analyze the quantum properties of a system consisting of two nonlinearly coupled pendulums. This
nonintegrable system exhibits two different symmetries: a permutational symmetry and another one related to
the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of
two kinds of quasidegenerate states. At sufficiently high energy, pairs of symmetry-related states glue together
to form quadruplets. We show that, starting from the anticontinuous limit, particular quadruplets allow us to
construct quantum states whose properties are very similar to those of classical rotobreathers. Contrary to the
classical situation, the coupling between pendulums necessarily introduces a periodic exchange of energy
between them at a frequency which is proportional to the energy splitting between quasidegenerate states
related to the permutation symmetry. This splitting may remain very small as the coupling strength increases
and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a
time period very long as compared to the inverse of the internal rotobreather frequency.

DOI: 10.1103/PhysRevB.65.214305 PACS number~s!: 63.20.Pw, 63.20.Ry, 36.20.Ng
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I. INTRODUCTION

As revealed by the increasing number of rece
papers,1–26 the quantum counterpart or the quantization
classical discrete breathers has become these very last
a real challenging and exciting field. At present, indeed,
theory of classical breathers, defined as ‘‘time-periodic s
tially localized motions in networks of oscillators
~MacKay23!, has reached a high degree of perfection a
may certainly be considered as a real achievement. S
their discovery~in 1988! by Sievers and Takeno,27 such ex-
citations have attracted a wide interest due to their ra
universal character. They are generically present in any n
linear Hamiltonian lattices as a result of the interplay b
tween nonlinearity and discreteness from which they o
their self-localization property. For this reason, they are a
called ‘‘intrinsic localized modes,’’ as there is no need
‘‘extrinsic’’ disorder which would lead to Anderson localiza
tion.

Classical discrete breathers have been theoretically
dicted and experimentally detected in Josephson junc
arrays,28–30 nonlinear optical waveguide arrays,31 and quasi-
one-dimensional antiferromagnets.32 They have been also
predicted to exist as localized electromagnetic waves in p
tonic crystals with a nonlinear Kerr medium33 and are dis-
cussed in relation with slow relaxation in biologicala-helix
structures.34

The physical realizations of discrete breathers from ab
come from diverse fields and are convincing examples
their ubiquity. Mathematical support for this comes from t
fact of both their dynamical and structural stability, the lat
meaning that their existence is not restricted to Hamiltoni
of a particular form. The basic requirement is that t
breather frequency as well as its harmonics not lie inside
phonon band.14,35 Such a nonresonance condition may
achieved by combining the discreteness of a lattice with
nonlinearity of the potentials, the first providing a natu
upper bound of the linearized Hamiltonian spectrum~say
0163-1829/2002/65~21!/214305~21!/$20.00 65 2143
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phonons! with the latter allowing for a tuning of frequencie
out of this spectrum.35

Most of the classical properties of breathers are thus w
understood and will be briefly described in the next secti
An important area of application of breathers, however
namely, condensed matter physics—has recently raised
legitimate question of their quantum counterparts. In motio
at the atomic scale, quantum effects may hardly be negle
and the materials in which quantum breathers may be fo
are numerous indeed~see, e.g., Ref. 23!. Looking for a quan-
tum state which has the same property of localization like
classical breather is not a straightforward task, however.
main difficulty is coming from the linearity of quantum me
chanics which, together with the translational invariance
the lattice, leads to spatially delocalized~Bloch type! eigen-
states. Nevertheless, a Wannier-like transform of these ei
states, to be explained in more detail in the next section, m
lead to strongly localized states provided the coupling
tween the atoms of the lattice is not too strong. The
Wannier-like states, the analogs of classical breathers, ar
longer eigenstates of the quantum system and thus evolv
time according to the Schro¨dinger equation. Their eigenval
ues form quantum breather bands. More precisely,
Wannier-like states may tunnel from site to site during a ti
typically proportional to the inverse of the correspondi
bandwidth. Classical breathers, however, remain localized
a given site for ever. This leads to the conclusion that
bandwidth of a quantum breather band has to vanish w
the quantum breather energy tends to infinity~classical
limit !. Even more important is the expectation that at fin
energy the bandwidth of a quantum breather band must
main very small for a non-negligible range of the lattice co
pling parameter.

The purpose of this paper is to construct a quant
breather state by using the method sketched out above
more amply detailed in the next section. Our system cons
of two pendulums coupled by a cosine potential. This int
action potential, which preserves the rotational invarian
allows us to study the quantum counterpart of classical ro
©2002 The American Physical Society05-1
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J. DORIGNAC AND S. FLACH PHYSICAL REVIEW B65 214305
breathers. Rotobreathers are exact solutions of the equa
of motion governing the dynamics of coupled pendulum
where, e.g., one pendulum is in a rotating state while
others librate at the same frequency but with rapidly decre
ing amplitudes as the distance from the rotobreather ce
increases.36 To confirm analytic studies by numerical comp
tations for the quantum case we are restricted to small sys
sizes. The system under investigation is made of two ide
cal units only~two pendulums! but still possesses a transl
tional invariance which corresponds to its permutation sy
metry. In this case, the Bloch waves are represented by s
symmetric or antisymmetric with respect to this symmet
For weak coupling, this leads to a twofold quasidegener
which defines the breather band. Our system, however,
sesses a time-reversal symmetry as well. At the same tim
classical rotobreather state is not invariant under time re
sal. This leads to the occurrence of doublets of quasideg
erate states at energies situated above the separatrix al
for a single quantum pendulum. As a consequence the q
tum rotobreather states are characterized by quadruplet
this paper, we will study how the fine structure of the qu
druplet resulting from this fourfold quasidegeneracy evolv
as the coupling parameter increases. As a result we wil
able to describe the properties of both the energy or mom
tum transfer from one pendulum to the other one, as wel
of the inversion of the total momentum. In particular we w
study the influence of the coupling strength between
pendulums.

The plan of the paper is as follows: in the next section
briefly review some recent advances in classical and qu
tum breather theory and we explain in more detail
method of the Wannier-like transform of the Bloch wav
used to construct the quantum breather. In Sec. III, we
scribe the essential properties of a single quantum pendu
and we derive important formulas concerning the splitt
occurring in the doublets in the high-energy sector. In S
IV, we start by presenting some results of the classical pr
lem corresponding to two coupled pendulums. Then we co
pute the quantum spectrum of this system. We derive
exact spectrum at the uncoupled limit and we construc
quantum rotobreather. By increasing the coupling betw
the pendulums, we follow the quantum rotobreather and
compute the splittings occurring in the correspond
quadruplet.

II. BREATHERS: RECENT CLASSICAL RESULTS
AND QUANTUM ASPECTS

Mathematical existence proofs of classical discr
breathers~CDB’s! have been obtained for a wide variety
model Hamiltonians37 and have simultaneously given rise
an accurate numerical method allowing for their practi
construction.38 Both are based on the so-calledanticontinu-
ous limit ~i.e., the limit where the coupling between oscill
tors vanishes, also called the tight-binding limit in solid-sta
physics!, provided a nonlinear on-site potential is present.
this limit time-periodic spatially localized~on one or more
sites! solutions trivially exist. More recently, an existenc
proof of CDB’s based on a discrete version of the cen
21430
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manifold reduction has also been given for Fermi-Pas
Ulam ~FPU! chains for which the method based on the an
continuous limit fails.39 This completes and enlarges the r
sults previously obtained in Ref. 40 by a homoclinic orb
approach. At last, also recently, a variational approach
been carried out to prove the existence of hard disc
breathers in some classes of Hamiltonians.41 Obviously, the
wide range of applications of these rigorous mathemat
results supports the idea that CDB’s are generic solution
nonlinear Hamiltonian lattices as claimed for the first time
Sievers and Takeno when they discovered this new kind
intrinsic localized modes.27

Together with their existence proofs, the properties
CDB’s have been extensively studied. It has been shown
example that they are structurally stable provided the n
resonance condition holds35 and linearly stable in any dimen
sion provided the coupling is weak enough.14 Their spatial
decay is generally exponential~for any finite-range interac-
tion potential! but may be also algebraic in case the intera
tion potential itself is algebraically decaying.42 More re-
cently, it has even been confirmed that pure nonlin
interaction potentials give rise to a superexponential deca
the breather tail.35,43At last and directly related to their spa
tial decay properties, possible energy thresholds for their
pearance have been derived according to whether the la
dimension exceeds a system-dependent critical value
not.44 Extensive studies of CDB’s properties as well as t
perspectives in this field may be found in different revie
~see, for instance, Refs. 14, 15, 23, 25 and 45!.

Let us focus on an essential property of CDB’s. The
time-periodic solutions occur in a lattice but are spatia
localized which means that they are not invariant under
discrete translational symmetry of the lattice whereas
Hamiltonian is. If we now consider the corresponding qua
tum problem, the invariance of the quantum HamiltonianĤ
with respect to the discrete translational symmetry yie

@Ĥ,T̂#50. Here T̂ denotes the operator of spatial trans
tions. The eigenstates ofT̂ are thus eigenstates ofĤ and are
delocalized on the lattice~Bloch waves!. Of course, this dis-
crete translational symmetry of the lattice is broken if w
consider, for instance, a finite system with fixed or op
boundary conditions. Nevertheless, if the lattice consists
sufficiently large number of sites, discrete translational sy
metry is practically restored similar to the infinite lattice. S
we arrive at the result that while the classical system allo
for spatially localized states, the quantum system does
However, at large enough energy the quantum and the c
sical descriptions of the system should give similar resul

It is possible to reconcile the quantum and the class
points of view provided we again start from the anticontin
ous limit. In this limit the Hamiltonian consists only of a su
of identical Hamiltonians~one for each site! Ĥ5(sĤs and a
general eigenstateuc& of the system may be represented
the tensorial product of local eigenstatesufs&, uc&5
^ sufs&. Then, a localized excitation is constructed by
excitation of levelk at siten, ufn

(k)&, whereas the other site
reside in their ground stateufsÞn

(0) &. This leads toucn
(k)&

5 ^ s,nufs
(0)& ^ ufn

(k)& ^ s.nufs
(0)&. The excitation siten can
5-2
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TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B65 214305
be any site of the lattice. The energy of the constructed s
does not depend onn. The corresponding eigensubspace
degenerated states has a dimensionN equal to the number o
sites~provided no additional accidental degeneracy occu!.
Therefore in the uncoupled~anticontinuous! limit, any uni-
tary transform of the preceding basis leaves the subsp
invariant although it yields a new basis. As the Hamiltoni

system is invariant under the discrete translationT̂ whatever
the intersite coupling« is, at nonzero coupling, the eigen

states ofĤ must belong to one of theN symmetry sectors
defined byT̂. When the coupling becomes zero, we may th
choose the eigenbasis ofT̂ as a basis of theN-dimensional
subspace. We denote its eigenvectors byulq

(k)& whereq la-
bels the symmetry sector. Each of these new eigenstat
completely delocalized ~in the sense that ;q,
@( j u^c j

(k)ulq
(k)&u4#215N).

Let us switch on the coupling between the sites. We
pect theN-fold degenerate eigenenergies to split under
effect of the perturbation and to form a band ofN nearly
degenerate states. These eigenstates, correctly symme
by the unitary transformT̂, now give a new~perturbed! basis
ulq

(k)(«)&. Provided« is weak enough, these new eigenve
tors are close to those defined at the uncoupled limit and
an inverse unitary transformT̂21 is expected to yield a basi
ucn

(k)(«)& close to the local basis of the uncoupled limit, th
is, ucn

(k)(«)&5ucn
(k)&1O(«). These states are thus well loca

ized provided the coupling is weak enough. This transform
tion is very similar to the one performed on the electro
Bloch waves to obtain the celebrated Wannier functio
known to be localized around each atom of a lattice.46 A
major difference with the usual electronic Wannier functio
however, is that our Wannier-like state~the quantum
breather! describes a local excitation of the lattice itself. T
purpose of this transform is not to describe an external
gree of freedom~the electron! moving in a periodic potentia
of a lattice using a local~atomic! basis, but merely to con
struct a spatially localized bound state of phonons. Howe
being a linear combination of nondegenerate eigenstates
quantum breather is no longer an eigenstate ofĤ and evolves
nontrivially in time. The corresponding tunneling effect, i.e
the transfer of an initial excitation from site to site, takes
time typically given by the width of the band at a given val
of the coupling«. In order to bridge the gap between th
classical manifestation of the breather solution and its qu
tum realization, we thus expect the quantum system to
hibit bands ofN nearly degenerate eigenstates whose wi
tends to zero as the average energy of the band tend
infinity.

One purpose of a quantum theory of breathers is thu
know how the above-defined bands behave as the coup
increases. Several successful attempts to answer this que
have already been done in one-dimensional integrable
tems ~Refs. 4 and 6–11 and the review in Ref. 22!. The
~soliton-breather! bandwidth is shown to behave typical
like DEn;(«/g)n/(n21)! wheren is the number of boson
in the system. In the considered cases this number typic
depends on energy as a power law. Finallyg is a measure of
21430
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the nonlinearity. It follows that for large energy bandsn
→`), the bandwidth tends rapidly~in fact more than expo-
nentially fast! to zero with increasingn. In this case the
tunneling time tends to infinity in the classical limit and th
quantum breather state remains localized on its initial sit

Several questions remain however. At high energy, if
on-site potential behaves likex2q, the density of states
~evaluated ate50 by means of the Weyl’s formula! scales
like g(E);EN(11q)/(2q)21 asE→`, whereN is the number
of sites. An immediate conclusion is that if the number
sites is greater or equal to 2, the density of states~DOS!
increases with energy according to a power law with ex
nents linearly depending onN. Then, we may ask whethe
the corresponding increase of level-level interactions~hy-
bridization! with N will destroy the quantum breather~QB!
bands or not. A partial answer to this question can be fou
by considering the ratio of the breather bandwidth to
mean level spacing 1/g(E) at a given ~high-!energy E:
limE→`g(E)DE. Assuming that the DOS scales as indicat
by Weyl’s formula, the ratio of the bandwidth to the mea
level spacing will tend to zero provided the bandwidth d
creases exponentially with increasing energy~or faster!. The
above-mentioned integrable examples fall into this categ
This result seems to indicate and to explain the possibi
starting from the quantum problem, to recover the limit
the classical breather at high energy. Another question is
lated to the impact of the nonintegrability of the system
the quantum breather bands and in particular the role of
chaotic trajectories induced by the nonintegrability lyin
nearby the classical breathers at the quantum level.

Up to now, except for integrable systems, where anal
cal results are obtainable, studies of quantum breathers
been done mostly numerically. Such studies become rap
extremely difficult due to the huge matrices to be diagon
ized and so far have been restricted to small one-dimensi
~1D! systems for which the number of sites has not excee
N512.20 Even for these moderate lattice sizes, the aver
dimension of the~truncated! Hamiltonian matrices is gener
ally of order 106 and requires specific numerical diagonaliz
tion methods.13,16 The numerical results reported in the p
pers mentioned above are restricted to the low-energy se
as soon as the number of sites exceeds a few units.
follows from computing the number of configurations o
tainable by truncating the basis top bosons per site onN
sites@(p11)N#. There remains the possibility to study ve
small systems (N52 or 3), as has already been done for t
dimer ~integrable! Refs. 4 and 12! and the trimer
~nonintegrable!.24,47 The dimer has also been used to d
scribe the tunneling of a QB along a chain by a suita
linearization of the lattice around it.18 This linearization
method was also employed to study the properties of cla
cal rotobreathers in a chain of pendulums.36 Yet we still lack
a thorough analysis of the specific properties of quant
rotobreathers. We will consider a dimer of two coupled qua
tum pendulums which, due to the presence of both nonlin
on-site and interaction potentials, is not integrable.

As far as we know, no experimental study of quantu
rotobreathers has been done yet. This is possibly due to
quite large activation energy. The reader should notice h
5-3
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J. DORIGNAC AND S. FLACH PHYSICAL REVIEW B65 214305
ever that a large number of studies have been devoted to
rotational motions of molecules~see, e.g., Refs. 48–51! es-
pecially of methyl groups whose dynamical properties
usually obtained via neutron scattering.3,5,17,52,53The transi-
tions thus obtained concern the so-called quantum rotati
tunneling effect.53 This tunneling occurs between the equ
librium positions defined by the onsite potential which
n-fold according to the individual symmetry of the observ
molecule and the symmetry of its environment. For the m
thyl groupsn is generally equal to 3 but for ammonia
Hofmann clathrates, the fourfold symmetry of the host cr
tal induces an approximative 12-fold54 or more complex51,55

symmetry. The studied tunneling process is thus respons
for a rotation of the molecule at energies where such a p
cess is forbidden in the classical case. The quantum r
breather on the other hand is a state whose energy is situ
abovethe barrier energy of a single on-site potential. A ne
tunneling effect appears because of the coupling betw
molecules. It corresponds to the transfer of the excitat
from site to site~or from molecule to molecule!. A study of
the properties of 4-methyl-pyridine by Fillaux and c
workers has revealed the presence of a quantum sine-Go
breather in this compound.3,5,17 The properties of this state
shown to be the ground state of the system, are theoretic
analyzed via a semiclassical quantization procedure of
classical solution of the sine-Gordon equation and can
successfully compared to experimental results. However,
coupling between adjacent methyl groups is so strong al
certain crystal directions~chains! that the relative phases o
neighboring groups are small. That allows to use the spa
continuum sine-Gordon theory. In the case of a rotobreat
such an approximation becomes invalid due to the unav
able large phase difference created at the interface betw
the rotating and oscillating groups. The study of the prop
ties of rotobreathers~either classical or quantum! thus re-
quires one to preserve the rotational invariance of the in
action potential.

III. SINGLE-PENDULUM PROBLEM

In this section we briefly review some of the properties
the classical and quantum single-pendulum problem~SPP!
~for more details see Ref. 56!. In the quantum case, we focu
on quasidegenerate states and their energy splitting. We s
by two different methods that it is possible to compute t
splitting in leading order. The Hamiltonian of the pendulu
system is given by

H~x,p!5
1

2
p21a@12cos~x!#, ~1!

wherex andp represent the angle variable and the associa
momentum, respectively.a.0 tunes the barrier height of th
on-site potential.

A. Classical case

The classical equation of motion to Eq.~1! reads

ẍ1a sin~x!50, ~2!
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which possesses two different solutions. Denoting byE the
energy of the pendulum and byEs52a the energy of the
separatrix separating the oscillatory motion from the ro
tional one we get the following.

~i! Oscillation:E,Es ,

sin~x/2!5k sn~Aat;k!, ~3!

where the modulus of the Jacobian elliptic function sn
defined by the relationk5(E/2a)1/2 and the period of the
oscillation isTosc54K(k)/Aa, K(k) being the complete el-
liptic integral of the first kind.57

~ii ! Rotation:E.Es ,

sin~x/2!5snS Aa

k̃
t; k̃D , ~4!

where k̃5(2a/E)1/2 and where the rotation period isTrot

52k̃K( k̃)/Aa.

B. Quantum case

While the classical problem of the pendulum is a ve
basic one, a thorough study of the related quantum prob
has been done quite recently~Aldrovandi and Leal
Ferreira56!. Here we will focus on the momentum-revers
symmetry of the Hamiltonian~1! which leads to the appear
ance of pairs of quasidegenerate states above the separ

1. Analytical solution

The stationary Schro¨dinger equation corresponding to th
Hamiltonian~1! is given by

2
1

2

d2c~x!

dx2
1a@12cos~x!#c~x!5Ec~x!. ~5!

Herec is the wave function of the pendulum andE its en-
ergy. As the wave function of the pendulum has to be sin
valued,56,58 we impose the periodicity condition

c~x12p!5c~x!. ~6!

It is possible to get an analytical solution of Eq.~5! by per-
forming the following change of variables:u5(p2x)/2 and
f(u)5c(x). We obtain the canonical form of the Mathie
equation57

d2f~u!

du2
1@a22q cos~2u!#f~u!50, ~7!

where

q54a and a58~E2a!. ~8!

Because of the previous change of variables,f(u) is now a
p-periodic function. In Ref. 57 it is shown that the Mathie
equation supportsp-periodic solutions if and only if the
characteristic valuea belongs to an infinite countable set o
values denoted by$a2n(q),b2n(q)%, nPN. Here a2n is re-
lated to theevenMathieu functionce2n(u,q) whereasb2n is
related to theodd Mathieu functionse2n(u,q). As follows
5-4
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TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B65 214305
from their definition~8!, q is directly related to the energy o
the separatrix,Es52a—that is, to the depth of the cosin
potential appearing in the Schro¨dinger equation—whereas
up to a scaling and a shift factor,a represents the eigenene
gies of the pendulum Hamiltonian. For a given value oq
~that is, ofa), the series$a2n ,b2n% increases monotonically
with n keeping the propertyb2n,a2n . For n50 the only
possible solution is an even functionce0(u,q) which repre-
sents the ground state of the system.

According to the previous results, the analytical soluti
of the Schro¨dinger equation~5! reads

c2n
(e)5

1

Ap
ce2nS p2x

2
,qD , E2n

(e)5
a2n~q!

8
1a,

c2n
(o)5

1

Ap
se2nS p2x

2
,qD , E2n

(o)5
b2n~q!

8
1a, ~9!

for nPN* ; and

c0
(e)5

1

Ap
ce0S p2x

2
,qD , E0

(e)5
a0~q!

8
1a, ~10!

for n50, which represents the ground state of the pendu
Hamiltonian.

2. Fourier representation

Using the periodicity condition~6! imposed to the wave
function, let us consider its Fourier expansion

c~x!5
1

A2p
(

mPZ
cmeimx, ~11!

where

cm5
1

A2p
E

0

2p

c~x!e2 imxdx. ~12!

Because of the periodicity of the wave function, the Four
space associated to the pendulum problem is infinite but
crete. In the Fourier representation~FR!, the stationary
Schrödinger equation becomes

m2cm2a~cm111cm21!5Ẽcm , mPZ, ~13!

where for later convenience we have redefined the energ

Ẽ52~E2a!. ~14!

Equation~13! represents a tight-binding equation who
hopping terms and on-site potential would be2a and m2,
respectively. In this equation, the sum (cm111cm21) re-
lated to the cosine potential plays now the role of a discr
Laplacian while the on-site ‘‘potential’’ termm2 comes from
the kinetic energy. Thus, in the FR, the terms of the Sch¨-
dinger equation have inverted their role. This fact is imp
tant in understanding how the Discrete Wentzel-Krame
Brillouin ~DWKB! method59,60 applies to the Mathieu
equation~see Sec. III B 6!.
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Equation ~13! is invariant under the transformation (m
→2m). This symmetry operation corresponds to the inv
sion of the momentum of the system (p→2p) which origi-
nates in the time reversal symmetry of the original proble
This allows us to separate the eigenstates of Eq.~13! into
symmetricus& and antisymmetricua& states.

We may write the Hamiltonian of Eq.~13! as

H̃5 (
mPZ

m2um&^mu2a~ um11&^mu1um&^m11u! ~15!

where we have used the ket notationum& to represent the
plane-wave function̂ xum&5eimx/A2p. The matrix repre-
sentingH̃ in the FR is infinite, tridiagonal, and symmetric
Its diagonal elements arem2 and the off-diagonal element
are constant and equal to2a. Moreover,H̃m,n5H̃2m,2n .
This additional ‘‘central’’ symmetry is a direct consequen
of the time-reversal symmetry and the Hermitian propert
of H̃.

3. Low-energy states

Without any on-site potential (a50), it follows from Eq.
~15! that um& and u2m& are eigenstates ofH̃ with identical
energym2. Consequently, each state except the ground s
u0& is twofold degenerate in this limit. This twofold degen
eracy is due to the two equivalent possible motions of ro
ing clockwise or counterclockwise.

The switching on of an on-site potential governed by t
parametera lifts this degeneracy in a way depending on t
energy level of the state under consideration. Whena be-
comes nonzero, the pendulum system admits oscillati
which correspond to the motion in the cosine arch of
potential well in the classical system~see Fig. 1!. The quan-
tum system also admits such kinds of states but their num
is limited by the value ofa because of the quantization rule
As a becomes larger, the number of states below the se
ratrix increases and can be estimated to 8Aa/p by using the
Weyl formula @see Eq.~27! and the following paragraph in
the limit k→1]. If the value ofa is large enough, we may
expand the cosine potential aroundx50 and obtain

a~12cos~x!!5aS 1

2
x22

1

24
x41

1

720
x61o~x7! D .

~16!

The first order of this expansion leads to the harmo
approximation of Eq.~1! with an oscillation frequencyv
5Aa. Thus, low-energy states of the quantum pendulum
well represented by the corresponding low-energy harmo
eigenstates~at least for large enough values ofa). As the
level spacing of the harmonic oscillator is constant~and pro-
portional tov) we expect the states to be regularly spac
deep inside the well. This is illustrated in Fig. 1 which re
resents the lower part of the spectrum of a pendulum w
a550. The energy levels ofus& and ua& states have been
represented in the right and left parts of the potential w
respectively. Indeed the few first states are quite regula
spaced while they condensate upon reaching energies c
5-5
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FIG. 1. Energy levels of a pendulum witha
550. States have been distinguished according
their parity. Only a few states lying above th
separatrix have been displayed. The numbern of
the corresponding doublet is written on top of
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to the separatrix. By using standard second-order pertu
tion theory, we may obtain the first corrections to the pu
harmonic spectrum:

En5
1

2
@n1~n11!#v2

1

25
@n21~n11!2#

2
1

29
@n31~n11!3#

1

v
1OS 1

v2D , ~17!

wheren labels the eigenstate number (nPN). This expres-
sion ceases to be valid when nonlinear corrections bec
large as compared to the harmonic term. Still it shows t
the spacing becomes smaller as the energy increases b
mains below the energy of the separatrix:

Dn5En112En.S v2
1

8
2

1

64v D2S 1

8
1

3

128v Dn

2
3

256v
n2. ~18!

4. High-energy states

For energies above the separatrix, Fig. 1 shows that s
metric and antisymmetric states glue together to form p
of nearly degenerate states. From a physical point of v
this is due to the fact that far above the separatrix the co
potential appears like a perturbation of the free rotor a
shifts the levels only a bit around their valueẼm

free rotor5m2

(m2@2a). Because of the momentum-reversal symme
the Hamiltonian~15! diagonalizes into two blocks each re
lated respectively tous& or ua& states. In the FR, the corre
sponding reduced matrices are still tridiagonal. By apply
standard perturbation theory in the parametera to one of
these matrices whose spectrum is now free of nearly de
erate eigenvalues, we obtain corrections to the free rotor
ergy Ẽm

free rotor5m2. To second order, we find
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Ẽn
d5n21

2a2

4n221
1OS a4

n6 D . ~19!

Explicit corrections up toa6/n10 are obtainable~see Ref. 57,
p. 724!. As we mentioned, this energy is the mean energy
a doublet. This is indicated by the subscriptd in Eq. ~19!.

5. Analytical computation of the splitting: High-order
perturbation theory

It is also possible to calculate explicitly the splitting b
tween the symmetric and antisymmetric states of a dou
labeled bym (m2@2a). The inverse of this splitting is a
direct measure of the time required by a rotating state
invert its initial momentum. It has to be noticed that by ‘‘ro
tating state’’ we mean the superposition of the statesus& and
ua& belonging to the same doublet. The expectation value
the momentum forus& andua& is zero due to the momentum
reversal symmetry.

A possible way to get the splitting is to use higher-ord
perturbation theory as has already been done in Ref. 12@Eq.
~12!#. A proof of this formula has been derived in Ref. 4 a
applied to the quantum discrete self-trapping equation. T
special ‘‘centrosymmetric’’ form of the tridiagonal Hamil
tonian matrix in the FR allows us to compute the exact le
ing order of the splitting as

DEn5
1

2
DẼn5

1

8
@a2n~4a!2b2n~4a!#5

a2n

~2n21!! 2
.

~20!

Notice that due to the relation between the eigenfunction
the SPP and the Mathieu functions, the splittingDEn gives in
turn the result of the splitting between the characteristic v
ues associated to the symmetric and antisymme
p-periodic Mathieu functionsce2n andse2n . A similar com-
putation allows us to obtain the splitting for the 2p-periodic
Mathieu functions. By using the notations of Ref. 57, we g
5-6
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FIG. 2. Spacings and splittings of the spe
trum of a quantum pendulum fora550. Quanti-
ties are described in the text.
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8

~r 21!! 2 S q

4D r

1o~qr 11! as r→`.

~21!

Such a splitting has been derived by Bell by applying t
Brillouin-Wigner perturbation theory to Mathieu’
equation.61 The splitting~21! gives the width of ther th in-
stability zone of Mathieu’s equation. Since then, result h
been rederived by several authors and was generalized t
case of Hill’s equation.62–67 Frolov has computed the firs
correction to this splitting by means of Whittaker’s method68

The result is reported in the note in Ref. 69 together with
second correction. We have calculated the latter by using
explicit solution of the Rayleigh-Schro¨dinger perturbation
theory provided by Silverstone and Holloway72 when applied
to the symmetric and antisymmetric parts of Eq.~15!. This
expression for the splitting corrects and makes precise
formula presented in Ref. 57. It can be checked by using
small-q expansions of the low-order characteristic valu
themselves.

As the doublet labeln becomes large enough, we find th
following asymptotic form for the splitting:

DEn;S n

p
2

1

12p D S eAa

2n D 4n

~n→`!, ~22!

indicating that it decays more than exponentially fast an
increases. Moreover, this expression contains its limit of
lidity as the numbern has to be larger than the critical valu
nc5eAa/2 to ensure that the splitting is small~see comment
in Ref. 73!.

6. Discrete WKB theory

Another way to compute the doublet splitting is to use t
DWKB method developed in Ref. 59 and to use the discr
counterpart of Herring’s formula as done in Ref. 60 Follo
ing Ref. 60 and according to Eq.~13!, the splitting between
the nearly degenerate states reads
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DEn5
1

2
uẼs

(n)2Ẽa
(n)u5as0

(n)a1
(n) , ~23!

wheres0
(n) anda1

(n) are the Fourier components of the sym
metric and antisymmetric states of thenth doublet. Instead of
evaluating these components by using the connection for
las of Ref. 59, we use the resulting forms given in Ref.
The asymptotic behavior~see expression 20.2.29 of Ref. 5!
of the Fourier components of the Mathieu functions yield

A0
(2n)~q!5

~n21!!

n! ~2n21!!

qn

4n
A2n

2n~q!,

B2
(2n)~q!5

n!

~n21!! ~2n21!!

qn21

4n21
B2n

2n~q!,

where A and B are the coefficients of the cosine and si
Fourier series of thep-periodic Mathieu functionsce2n and
se2n . The superscript indicates the order whereas the s
script labels the Fourier components. The correct normal
tion yields s0

(n)5A2A0
(2n)(q) and a1

(n)5B2
(2n)(q)/A2 @see

Eqs. ~9! and ~11!#. By taking into account thatA2n
2n(q)

5B2n
2n(q)511o(q) anda5q/4, we finally get

DEn5
a2n

@~2n21!! #2
, ~24!

which coincides with Eq.~20!. The graph~Fig. 2! shows the
spacings and the splittings of the SPP spectrum fora550 as
a function of the energyE. The crosses correspond toEn11
2En as obtained from the numerical diagonalization of E
~13!. The two upper branches~dotted line! represent the
spacing betweenneighboring eigenvalues~whenE,Es) and
the spacing between thedoublets~when E.Es) computed
by using the density of states~26!. They are shown to be in
excellent agreement with the numerical data. The splitting
that is, the energy difference between the statesus& and ua&
of the doublets—is represented by the third branch whic
5-7
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FIG. 3. ‘‘Potential’’ curvesU6 used in the
DWKB theory to compute the eigenfunctions o
the SPP. Some symmetric~solid line! and anti-
symmetric ~dashed line! eigenfunctions have
been superposed to them. Their base line situa
at their energy level allows us to compare th
location and the width of their peaks to the inte
val between the potential curvesU6. The value
of a is 50. For the sake of visibility, the wave
functions have been multiplied by a suitable sc
ing factor.
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decreasing rapidly as the energy increases. Again, the
lytical result~solid curve! given by Eq.~24! is excellent. The
inset shows a comparison between this analytical split
and the numerical result obtained by using Herring’s form
~23!. Notice that the splitting can be now as small as 102120

although it has been computed with a simpleFORTRAN

scheme in double precision~16 digits!. Because the eigen
values are of order of unity, it is of course impossible
obtain such a result by subtracting two neighboring eigen
ues obtained by diagonalizing Eq.~13! in double precision.
The precision is in this case limited to;10214. But the way
to compute the eigenvectors makes it possible inasmuc
the numerical limit becomes not the number of digits but
smallest number representable by the computer. This re
shows that it is possible to compute very small splittings
using commonFORTRAN routines instead of using high
precision schemes provided byMATHEMATICA or MAPLE, for
instance.

An equally important property of the DWKB method
that it provides with a simple and nice picture of the ba
properties of the eigenstates. Indeed, as explained in Re
it is possible to associate a ‘‘classical’’ Hamiltonian defin
by Hcl5m222a cosf to the three-term recursion relatio
~13!, wherem andf correspond to the conjugated ‘‘coord
nate’’ and ‘‘momentum.’’ This definition is rather natural a
f̂[2 i ]/]m is precisely the Fourier representation of t
angular variablex. Interpretingf as a momentum, the ex
pression ofHcl shows that its classical motion is confine
between two ‘‘potential’’ curves defined byU6(m)5m2

62a ~see Fig. 3!. The idea is then to use this fact to compu
the DWKB solution related to this ‘‘classical’’ Hamiltonian
The internal region defined by the two parabolasU6(m)
represents the classical allowed region whereas the reg
outside are forbidden. The eigenfunctions are thus locali
in the allowed region while they decay exponentially~or
faster! in the forbidden ones. We find that at sufficiently hig
energy~far above the separatrix! the eigenfunction of energy
E;m2/21a is localized aroundm and 2m whatever its
parity. Its localization length around these two centers
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roughly given by L(E)5AẼ12a2AẼ22a
;Es /A2(E2a) as E@Es52a. The localization length in
the Fourier space thus decreases like the square root o
energy.

7. Density and number of states

Finally we provide with expressions of the numbern(E)
and the densityr(E) of states computed by means of Wey
formula:

r~E!5
1

2pE d„E2H~x,p!…dxdp. ~25!

It yields

r~E!5
2A2

pAE
kK~k! S E,2a, k5A E

2a D
5

2A2

pAE
K~k! S E.2a, k5A2a

E D , ~26!

and by integrating

n~E!5
8Aa

p
@E~k!2k82K~k!# ~E<2a!

5
4A2E

p
E~k! ~E>2a!, ~27!

with the same definition ofk as above. In these expressio
E(k) andK(k) denote the complete elliptic integrals of th
first and second kinds~see, e.g., Ref. 57!.

The above expressions ofr(E) show that the density o
states develops a logarithmic divergency close to the sep
trix. In this limit, its expression readsr(E); ln(16E/uE
2Esu)/(pAa). This phenomenon is known as a Van Ho
singularity74 and has also been discussed for the case of
5-8



h
n

er-

TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B65 214305
FIG. 4. Density of states for a pendulum wit
parametera553103. Numerical data have bee
obtained from Eq.~15! for a matrix truncated to
1001 Fourier components (2500<m<500).
Comparison with analytical expression~26!
shows an excellent agreement until truncation
rors become important (E;1.253105).
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quantum dimer.12 The graph~Fig. 4! shows the excellen
agreement between the DOS computed by means of We
formula and the DOS computed numerically by diagonali
tion of Eq. ~13!.

Using Eq.~27!, we may now obtain the splittingDE as a
function of the doublet energyE:

DE~E!'
a

4A2E

p
E(A2a

E
)

H GF4A2E

p
ESA2a

E
D G J 2 ~E→`!. ~28!

IV. TWO COUPLED PENDULUMS

The Hamiltonian of the two coupled pendulums is giv
by

H5H11H21H int

5(
i 51

2 H pi
2

2
1a~12cosxi !J 1«@12cos~x12x2!#,

~29!

where«.0 represents the coupling parameter between
pendulums.

The coupling has been chosen to be periodic inx1
2x2) to allow solutions where one pendulum is oscillati
whereas the other one is rotating. This condition is essen
to obtain rotobreather-type solutions. Notice finally that su
a Hamiltonian has already been used to describe clas
nonlinear rotating modes in a chain of coupled pendulum36

The Hamiltonian~29! possesses two different symmetrie
One is related to the exchange of the coordinates of the
pendulums$Sp:(x1 ,p1)↔(x2 ,p2)%, and the other to the re
versal of the global momentum of the system,$Sm :(p1
1p2)↔2(p11p2)%. The latter represents the generalizati
of the momentum-reversal symmetry already observed in
single-pendulum system.
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A. Classical rotobreather

Although the system is invariant with respect to the p
mutation of the coordinates, some solutions of the equati
of motion are not. Indeed, there exist exact solutions of
Hamilton equations derived from Eq.~29!, which consist of
two pendulums oscillating at the same frequency but w
different amplitudes. It is also possible to obtain solutio
where one pendulum is oscillating whereas the other on
rotating, both again evolving at the same frequency. Here
ter, both kinds of solutions will be respectively referred to
‘‘breather’’ and ‘‘rotobreather’’ solutions. Because of the si
of our system, the exponential spatial decay property
usual breathers becomes meaningless and the clas
breather-type solution refers only to exact time-periodic
lutions which break the permutation symmetrySp .

As Poincare´ sections~PS’s! are known to be a useful too
in describing the behavior of nonintegrable dynamical s
tems, we will use them to locate the orbits of the classi
rotobreathers at a given energy. This energy has to be la
than the separatrix level of the SPP to allow one of the p
dulums to rotate. At the same time this energy cannot be
close to the SPP separatrix energy for nonzero«. Indeed, the
system develops a chaotic layer in the vicinity of the se
ratrix and prevents any stable periodic solution of the ro
breather type from existing. Concerning the classical ro
breather itself it is obtained by using standard numeri
methods like a Newton scheme or a variational method~see,
e.g., Refs. 15 and 38!. The purpose of this paper is not t
carry out an extensive study of the classical system bu
deal mainly with its quantum counterpart. Consequently
will give here just one example of a classical rotobreath
The values of the parameters area55, «51. The energy of
the rotobreather isEb.31.77 and its periodTb.0.885. The
initial data are p1

b.7.969, p2
b.20.160, x1

b50, and
x2

b525.231029. The first pendulum is rotating whereas th
second one is librating. The graph~Fig. 5! represents two
Poincare´ sections realized with the conditionx150 at an
energy fixed toEb . The first PS@Fig. 5~a!# is plotted in the
phase space of the second pendulum. As its trajector
5-9
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J. DORIGNAC AND S. FLACH PHYSICAL REVIEW B65 214305
strictly periodic, the Poincare´ section of the rotobreather or
bit consists of a single point~a * symbol in the graph!. Other
periodic trajectories present in this system have been vis
ized by 1 and 3 symbols. They respectively show the in
phase and out-of-phase motions which are modes inva
under permutation. The second PS@Fig. 5~b!# represents the
same case in the momentum space. Given the natural Fo
representation of the quantum problem due to the 2p peri-
odicity of the wave function, this PS provides an ideal fram
for the comparison of the classical and the quantum si
tions. Notice that because of the existence of symmetries
presented rotobreather solution is not the only one. Indee
the momentum space (p1 ,p2), the global momentum-
reversal symmetry corresponds to the reflection symm
with respect to the point (p150,p250). The permutation
symmetry is the mirror symmetry with respect to the li
p15p2. Using these two symmetries we obtain the locat
of the four classical rotobreather solutions:$(p1

b ,p2
b);

(2p1
b ,2p2

b);(p2
b ,p1

b);(2p2
b ,2p1

b). We note that the PS

FIG. 5. Poincare´ sections of the two coupled pendulum syste
in the phase space of the second pendulum~a! and in the momenta
space~b!. The conditions of the maps arex150, p1.0 ~a! and
x150, x2.0 ~b!. The energyE531.77. In-phase~cross!, out-of-
phase~times!, and rotobreather~star! trajectories are represente
The inset shows the time evolution of the pendulums momenta
the rotobreather solution. Quasiperiodic motions surrounding it
have similarly.
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structure itself does not display the permutation symme
The latter applies to the whole phase space and not to on
its particular sections. Let us indeed consider the PS in
momenta space (p1 ,p2) made with the condition (x150,x2
.0) @Fig. 5~b!#. The regular regions around (p1.7,p2.0)
and (p1.0,p2.7) are clearly nonsymmetric with respect
the reflection at the straight linep15p2 ~which corresponds
to the permutation of the pendulums!. Symmetric topological
structures of these regions would correspond to two differ
PS’s: one made with the actual condition (x150,x2.0)
whereas the other should be realized with the permuta
related condition (x250,x1.0).

The four regular regions of Fig. 5 surrounding a rot
breather solution are filled with tori and are separated
stochastic layers. Any classical trajectory starting on a giv
torus remains trapped on it for all times. This prevents
classical system from transferring the initial excitation fro
one pendulum to the other one. In other words, starting fr
a rotobreather configuration where the left pendulum p
forms a rotation whereas the right one is librating, the syst
will never switch to the symmetry-related configuratio
where the right pendulum would rotate and the left o
would oscillate. We will see that such a situation is impo
sible to be realized in the quantum system and that th
exists a tunneling effect between tori which has been term
‘‘dynamical tunneling’’ by Davis and Heller75 ~see also Ref.
76!.

In order to find the quantum counterpart of the classi
rotobreather, we will proceed exactly as in the classical ca
Starting from the anticontinuous limit where we know th
classical rotobreather to exist, we will find the correspond
quantum state and study its evolution with respect to
coupling«.

B. 2D Fourier space

The state of the two pendulums systemc(x1 ,x2) has to
be 2p periodic in each of its variables as in the singl
pendulum problem. We thus expand it as a double Fou
series

uc&5 (
(m,n)PZ2

cm,num,n&, ~30!

whereum,n&5um& ^ un& and^xun&5exp(inx)/A2p. With Eq.
~29!, the eigenvalue equationHuc&5Euc& reads

Ẽcm,n5~m21n2!cm,n2a~cm11,n1cm21,n!

2a~cm,n111cm,n21!2«~cm11,n211cm21,n11!,

~31!

whereẼ52(E22a2«) is a shifted and rescaled energy.
In this discrete Fourier space, the symmetry operationsSm

andSp become$Smu(m,n)→(2m,2n)% ~momentum rever-
sal! and $Spu(m,n)→(n,m)% ~permutation!. As H is invari-
ant under these symmetries, it commutes with the co
sponding operators and its eigenstates gather in four diffe
symmetry classes. We denote the four different kinds
eigenstates by$us&,ua&,us̄&,uā&%. Their symmetry properties
are shown in Table I.S andA indicate respectively that the

or
-
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TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B65 214305
state is symmetric or antisymmetric with respect to the c
responding symmetry. To evaluate numerically the eigen
ues and eigenvectors of Eq.~31!, we truncate the infinite
system to2N<m,n<N, where N is chosen sufficiently
large to prevent any important truncation errors for sta
whose energyẼ!2N2. In this case, the total number of com
puted eigenvalues is (2N11)2. Due to the above symme
tries, we have to diagonalize only the submatrices repres
ing the four different classes of eigenvectors. The rank of
submatrices related tous&, ua&, uā&, and us̄& is (N11)2,
N(N11), N(N11), andN2, respectively.

C. Global spectrum at the anticontinuous limit „«Ä0…

There are two limiting cases where the eigenvalue eq
tion ~31! can be solved analytically. These correspond
situations where the classical system becomes integra
The first one is realized when the coupling parameter« is
equal to zero, i.e., where the system consists of two iden
decoupled pendulums. The second one is realized when
on-site parametera becomes zero, where, by passing to t
center-of-mass representation, the system can be reduce
free rotor plus a decoupled pendulum. In these two limits
global spectrum of the system is given by the sum of t
one-particle spectra. Moreover, in the limit where« is equal
to zero, the two spectra are identical. This leads to a two
degeneracy of the main part of the global spectrum. Ne
theless, by constructing the eigenvectors in such a way
they belong to a given symmetry class, the eigenstates
unambiguously defined and already represent the pro
zeroth-order states suitable for any perturbation calcula
in «.

1. Limit of zero on-site parameter„aÄ0…

Let us first derive some results concerning the antic
tinuous limit («50) when the onsite parameter is itself equ
to zero (a50). In this case, the system consists of two fr
rotors and the global spectrum is given by

Ẽm,n5m21n2. ~32!

The corresponding eigenstates are given by a product of
rectly symmetrized plane waves: namely,

us&5
1

2
~ um,n&1u2m,2n&1un,m&1u2n,2m&),

ua&5
1

2
~ um,n&2u2m,2n&1un,m&2u2n,2m&),

TABLE I. Symmetry properties of the four kinds of eigenstate

State Momentum reversalSm PermutationSp

us& S sm,n5s2m,2n S sm,n5sn,m

ua& A am,n52a2m,2n S am,n5an,m

us̄& S s̄m,n5 s̄2m,2n
A s̄m,n52 s̄n,m

uā& A ām,n52ā2m,2n
A ām,n52ān,m
21430
r-
l-

s

nt-
e

a-
o
le.

al
he

to a
e
o

ld
r-
at
re
er
n

-
l

r-

us̄&5
1

2
~ um,n&1u2m,2n&2un,m&2u2n,2m&),

uā&5
1

2
~ um,n&2u2m,2n&2un,m&1u2n,2m&).

Notice thatẼm,n is a non-negative integer in this limit. It
degeneracy can be expressed as follows~result due to Gauss
see, e.g., Ref. 77!.

Let ẼPN* and

g~Ẽ!5#$~m,n!PZ2:m21n25Ẽ%

be the degeneracy of the levelẼ. Let

Ẽ5 )
prime p

pe(p)

be its prime number factorization. If;p[3 mod 4, e(p)
[0 mod 2, thenẼ can be written as the sum of tw
squares, i.e.,g(Ẽ)Þ0 ~Fermat!. In this case~Gauss!, its de-
generacy is given by

g~Ẽ!54 )
p[1 mod 4

~e~p!11!. ~33!

As a first example we assumeẼ56174. Its prime number
factorization readsẼ52332373. As 7[3 mod 4 and as
its power is odd (3[1 mod 2), the Fermat theorem implie
that Ẽ cannot be written as the sum of two squares. Con
quently g(Ẽ)50 in this case. A second example isẼ
55850. Its prime number factorization readsẼ52332

352313. The only prime number of this factorization suc
thatp[3 mod 4 is 3. But its power is even. Thus by use
the Fermat theorem,Ẽ can be decomposed into the sum
two squares. Its degeneracy is nonzero and is given by
~33!. The only prime numbers of its factorization to be of th
form p[1 mod 4 are 5 and 13. Thusg(5850)
54)p55,13@e(p)11#543332524. Looking for the corre-
sponding couples of integers leads to (m,n)P$(615
↔675);(633↔669);(651↔657)% where the arrow in-
dicates that the permutation has also to be taken into acco
Each set of parentheses separated by a semicolon repre
eight different states leading to a total degeneracy of 24.

More generally, if a couple (m,n) is such thatẼ5m2

1n2, then all the couples (6m,6n);(6n,6m) are degen-
erate, leading to ageneric eightfold degeneracy. Othe
couples (p,q)Þ(m,n) which possess the same energy cor
spond to anaccidentaldegeneracy~like for the second ex-
ample from above!.

Exceptions to these rules are the couples (6m,6m) for
which the permutation does not play any role. Their deg
eracy is thus equal to 4. They represent physically two p
dulums with equal momenta~up to their sign!. Another ex-
ception to the generic eightfold degeneracy comes from

.
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FIG. 6. Spectrum of the global uncoupled (e
50) system computed by diagonalizing Eq.~31!
for different values of the maximal number o
Fourier components,N, of the wave functionuc&.
The linear dimension of the Hamiltonian matri

is (2N11)2. a550. Ẽ1 ~see text! has been in-
dicated as well as the thresholds where, beca
of truncation, the computed spectrum starts to
larger gapped. Thresholds are represented
straight lines ended by the symbol of the corr

sponding spectrum. The asymptoteẼ5n/p is
also shown.
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couples (6m,0);(0,6m) whose degeneracy is also equal
4. In this case one of the pendulums is at rest and time~or
equivalently momentum! reversal does not affect it. Thi
leads to a quadruplet of degenerate states. Whenever a
site or an interaction potential~or both! is switched on, the
degeneracy is lifted and gives rise to a quadruplet of ne
degenerate states. The latter represent our quantum
breather as long as the quadruplet remains quasidegene

Another important property of the global spectrum at t
uncoupled limit is that the number of states~i.e., the inte-
grated density of states! behaves asymptotically as

n~Ẽ!5 (
Ẽ8<Ẽ

g~Ẽ8!5pẼ1O~AẼ! ~Ẽ→`!. ~34!

2. Switching on the on-site potential„aÅ0…

Expression~34! is valid not only in the limit of free rotors
but also whena and « are nonzero. This is confirmed b
Weyl’s formula which provides with the zeroth order term
the degeneracyg(Ẽ). Indeed@Ref. 78, p. 497, Eq.~21.4!#,

gWeyl~Ẽ!5
1

2 S 1

2pEṼ(x1 ,x2),Ẽ
dx1 dx2D , ~35!

where 2Ṽ(x1 ,x2)/25a(cosx11cosx2)1« cos(x12x2). The
prefactor 1/2 is coming from the rescaling ofẼ as compared
to E. As (x1 ,x2)P] 2p,p] 2, when Ẽ.Ẽ1

5max„Ṽ(x1 ,x2)…, the integral term is constant and equal
(2p)2. Thus gWeyl(Ẽ)5p and nWeyl(Ẽ)5pẼ1const when
Ẽ.Ẽ1. It is possible to show by direct calculation that th
constant term is equal to zero and thatẼ152(2a2«) if a

>2« or Ẽ152(«1a2/2«) if a<2«. As Ẽ1 corresponds to
the ‘‘top’’ of the potential for any values of the parameters«
anda, and serves as a critical value in the global spectr
indicating the level at which the influence of the potentiaV
starts to be weak.
21430
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Expression~34! thus provides a very useful guide fo
checking the energy level at which truncation errors beco
important. Note that truncation errors are of two types. Fi
because of the truncation of the whole matrix, there exists
energy threshold for which some eigenvalues of the spect
are missing. Indeed, fore50, the global spectrum is given
by the sum of the SPP spectrum with itself. In this case, e
assuming that the numerically computed eigenvalues are

act, the SPP spectrum ends atẼe
SPPbecause of truncation. Le

us denote the energy of its ground state byẼ0
SPP. Then the

first missing eigenvalue isẼe11
SPP1Ẽ0

SPP where Ẽe11
SPP is the

first eigenvalue followingẼe
SPP. This provides with a thresh

old where the eigenvalues start to be ranked in a wrong w
Their label becomes false and so does the computed num

of statesn(Ẽ). This is shown in Fig. 6 which represents th
spectrum of two uncoupled pendulums as computed fr
Eq. ~31! for different values ofN ~recall that 2N<m,n
<N). The second type of error induced by the truncation i
modification of the values of the energies themselves. As
have verified these errors increase as we reach the uppe
of the truncated spectrum but are nevertheless very sma
we respect the threshold indicated above.

Although the degeneracy~33! has been obtained for th
case where both the on-site and the coupling parameters
zero, it provides us with useful information when consid
ing the near degeneracy ofn-uplets arising at sufficiently
high energy~that is, far above twice the energy of the sep
ratrix of the SPP!.

As the on-site parametera becomes different from zero
the first part of the free rotor spectrum of the SPP is mo
fied. Far below the SPP’s separatrix, the quadratic spect
Ẽl

SPP5 l 2 is replaced by a harmonic oscillator oneẼl
SPP

;2(Aa l 2a). The number of statesn(Ẽ) of the global un-
coupled system thus becomes a quadratic function of
energy. This explains the form of the functionẼ(n) observed
in Fig. 6 which starts as a square root and asymptotic
becomes a linear function ofn.
5-12
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TUNNELING OF QUANTUM ROTOBREATHERS PHYSICAL REVIEW B65 214305
D. Quantum rotobreather state

1. Anticontinuous limit

The goal of this paper is to define and to study a quan
rotobreather stateuF& whose properties are very similar t
those of the classical rotobreather. Consequently it is nat
to look for a quantum state which, at the anticontinuous lim
(«50), represents a state consisting of a rotating pendu
and another one at rest~up to quantum fluctuations!. As the
pendulums are not coupled, this state is represented by
tensorial product of the SPP’s ground stateus0& ~correspond-
ing to the pendulum at rest! and a superposition of two state
(usn&,uan&) belonging to the same doubletn of the SPP~cor-
responding to a rotating pendulum!. The addition of the two
SPP spectra and the construction of the quantum rotobrea
uF& is schematically depicted in Fig. 7. The states deno
by us& (ua&) are symmetric~antisymmetric! with respect to
the inversion of the momentum:

uF&5
1

A2
us0& ^ ~ usn&1uan&). ~36!

In order to obtain the stateuF& at «50 as a linear combina
tion of the symmetrized eigenvectors listed in the Sec. IV
we first construct it in terms of the SPP eigenvectors. T
symmetrization of the tensorial products leads to the follo
ing expression of the four possible classes of states:

us&5
1

A2
~ us& ^ us8&1us8& ^ us&)

or
1

A2
~ ua& ^ ua8&1ua8& ^ ua&),

FIG. 7. Schematic representation of the sum of two pendu
spectra. Straight solid arrows indicate the levels to be added
dashed arrows the symmetric~permutation! operation. The result is
indicated in the global spectrum by a curved arrow. The const
tion of the quantum rotobreather stateuF& is explicitly represented.
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us̄&5
1

A2
~ us& ^ us8&2us8& ^ us&)

or
1

A2
~ ua& ^ ua8&2ua8& ^ ua&),

ua&5
1

A2
~ us& ^ ua&1ua& ^ us&),

uā&5
1

A2
~ us& ^ ua&2ua& ^ us&), ~37!

where us&,us8& (ua&,ua8&) represent any of the symmetri
~antisymmetric! SPP eigenvectors.

Using these expressions,uF& is readily written as

uF&5
1

2
~ us&1us̄&1ua&1uā&), ~38!

where us&,us̄&5(us0& ^ usn&6usn& ^ us0&)/A2 and ua&,uā&
5(us0& ^ uan&6usn& ^ ua0&)/A2. In this anticontinuous
limit, we may compute the eigenvalues corresponding
each of the four states which contribute touF&. We obtain

Ẽs5Ẽs̄5Ẽs0
1Ẽsn

, Ẽa5Ẽā5Ẽs0
1Ẽan

. ~39!

As the expression~39! shows, the absence of any couplin
between the pendulums is responsible for the true deg
eracy of the states whose parity is the same with respec
the momentum reversal symmetry. This follows from the fa
that the global spectrum is given by the sum of the S
spectrum with itself in the anticontinuous limit~cf. Fig. 7!.
Thus the energy levelẼs0

1Ẽsn
is obtained in this limit ei-

ther by adding the energy of the ground stateus0& of the first
pendulum to the energy of the symmetric stateusn& of the
nth doublet of the second pendulum or by adding the ene
of the ground state of the second pendulum to the energ
the symmetric state of the first one.

We have already shown@see Eq.~20!# that the presence o
an on-site potential (aÞ0) lifts the degeneracy of the sym
metric and antisymmetric states belonging to the same d
blet of the SPP. We may thus compute the splitting betw
the two pairs of degenerate states (us&,us̄&) and (ua&,uā&):

dn5Ẽs2Ẽa52
a2n

~2n21!! 2
. ~40!

For sufficiently largen this splitting is extremely small and
thus the four states making upuF& form a quadrupletof
nearly degenerate eigenenergies which has been repres
in Fig. 7. Notice finally that the inverse of this splitting
directly related to the time taken by the system whose ini
state isuF& to reverse its total momentum. As one of th
pendulums is at rest~up to quantum fluctuations!, this means
that the pendulum initially rotating in a given sense tunn
into the state which corresponds to the opposite rota
sense on a time scaletp;1/dn . This effect is purely
quantum.

nd

c-
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J. DORIGNAC AND S. FLACH PHYSICAL REVIEW B65 214305
2. Nonzero coupling«

As soon as the coupling parameter« is nonzero the de-

generacy of the states (us&,us̄&) and (ua&,uā&) of the quadru-
plet is lifted. Here we are interested in the computation of
corresponding eigenvalues in order to find the splittin
which determine the evolution of quantities such as in
vidual energies or momenta of the pendulums. If the sp
tings between the states making up the quantum brea
become of the order of the mean level spacing of the sp
trum, we may conclude that the breather solution is lost.47

One possible source of a dramatic increase of the s
tings can be a strong overlap of the quantum state with
chaotic layer of the classical system~see, e.g., Ref. 79 for a
general review of the manifestations of classical phase sp
structures in quantum mechanics!. This overlap is generally
computed by means of a Husimi distribution which is one
the possible phase-space representations of a quantum
~see, e.g., Ref. 80!. This distribution is then superposed to th
corresponding Poincare´ section of the classical system whic
allows to compute the overlap. This method has for insta
been used in the case of a driven bistable system.81 At the
same time these studies have shown that doublet states
lapping up to 70% with the chaotic layer may still posses
small splitting. To avoid misinterpretations, here we w
compare the Fourier components of the quantum ro
breatheruF& with the Poincare´ section of the classical sys
tem in the momenta space. The main result will be that
phase space locations of the classical and the quantum
breathers are roughly the same.

This direct comparison is possible due to the results
tained in Ref. 82 showing that the Husimi distribution of t
pendulum problem can be found analytically. It follows th
for the pendulum potential, the discrete Fourier represe
tion of the eigenfunctions and their Husimi distributions r
stricted to the momentum space differ insignificantly.

3. Tunneling of thezF‹ state

In this section we derive the expressions of some relev
quantities which allow us to follow the time evolution of th
initial state uF&5(us&1us̄ &1ua&1uā &)/2. This state is
formed at«Þ0 by the eigenstates which belong to the qu
druplet of states. These states in turn are defined by the
sorial product of the ground state of the SPP spectrum
one of its doublets at the anticontinuous limit. BecauseuF&
is not an eigenstate, it evolves in time. In order to visual
this evolution and because we are working in the 2D disc
Fourier space~2DFS!, we may compute the time evolutio
of its momentum. This is done by computing the two fun
tions ^DP&5^FuP̂12 P̂2uF& and ^P&5^FuP̂11 P̂2uF&
whereP̂1 andP̂2 are, respectively, the momenta operators
pendulums 1 and 2. If the total momentum of the syst
were conserved~as in the integrable limita50), the differ-
ence of the momentâDP& would represent the transfer o
momentum between the pendulums. This is not the case
nonzero value ofa. Although the total momentum̂P& is in
general not conserved, for not too small values of« it
evolves very slowly as compared tôDP&. We may thus
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consider that the latter represents the transfer of the ex
tion from pendulum to pendulum with a good accuracy.

Another quantity of interest is the difference between
individual ~or on-site! energies ^DH&5^FuĤ12Ĥ2uF&
where Ĥ i5 P̂i

2/21a(12cosX̂i). As the total energy of the
system is conserved,^DH& measures the transfer of energ
between the pendulums.

In order to give a simple expression of the above qua
ties let us use the two symmetries of permutation and m
mentum reversal. We denote their respective operators bP
andM which are unitary:P †P5M †M51 ~see, e.g., Ref.
83!. Moreover, the following relations hold:

M †P̂iM52 P̂i , P †P̂iP5 P̂j , ~41!

M †Ĥ iM5Ĥ i , P †Ĥ iP5Ĥ j , ~42!

M †Ĥ intM5Ĥ int , P †Ĥ intP5Ĥ int , ~43!

where (i , j )P(1,2),iÞ j , and where Ĥ int5«@12cos(X̂1

2X̂2)# is the interaction energy term.
Using the fact that the Hilbert spaceE associated to the

coupled pendulum problem can be written as the direct s
E5Es% Es̄% Ea% Eā , any operator may be represented by
434 block matrix in the basis ($usi&%,$us̄j&%,$uak&%,$uāl&%)
formed by all the states belonging toEs first, then all the
states belonging toEs̄ , etc. in the order described abov
From the preceding relations and by using the symme
properties of the eigenstates, it follows that the relevant
erators for our study have the form

P̂1,25S 0 0 Pas 6Pās

0 0 6Pas̄ Pās̄

Psa 6Ps̄a 0 0

6Psā Ps̄ā 0 0

D ~44!

and

Ĥ1,25S Hss 6Hs̄s 0 0

6Hss̄ Hs̄s̄ 0 0

0 0 Haa 6Hāa

0 0 6Haā Hāā

D . ~45!

We have used the condensed notationOmn5^muÔ1un& which
symbolically represents all the matrix elements of the o
servableÔ1 between states of two given subspacesEm and
En . The sign is1 for 1 and 2 for 2. In this basis, the
operatorĤ int is block diagonal.

Using the time evolution of the initial stateuF&,

uF~ t !&5
1

2 (
m

e2 iEmtum& where mP$s,s̄,a,ā%, ~46!

we finally obtain

^DP&5^suP̂1uā&cos~Es2Eā!t1^ s̄uP̂1ua& cos~Es̄2Ea!t,
~47!
5-14
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FIG. 8. Evolution of a part of the spectrum a
a function of the coupling«. The on-site param-
eter isa55. Energies are rescaled according

Ẽ52(E22a2«). The quadruplet under investi

gation starts at an energyẼ.41.43. It corre-
sponds to a state formed of the ground state of
SPP and the doubletn57.
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^P&5^suP̂1ua&cos~Es2Ea!t1^s̄uP̂1uā& cos~Es̄2Eā!t,
~48!

^DH&5^suĤ1us̄& cos~Es2Es̄!t1^auĤ1uā& cos~Ea2Eā!t.
~49!

Notice that the energy differences occurring in^DH& are
zero at the anticontinuous limit. No transfer of energy b
tween the pendulums occurs due to the fact that they
decoupled. The excitation~and thus the energy! is entirely
conserved on its initial site. In this limit we know~in leading
order! the value of the splittings Es2Ea5Es̄2Eā
5a2n/(2n21)!2 and thus the time taken by the system
reverse its initial momentum:tp5p(2n21)!2/a2n wheren
labels the doublet of the rotating pendulum. These splitti
also occur in̂ DP&. Thus for small« we cannot assign the
meaning of a transfer of momentum between the pendul
to the time evolution of̂ DP&.

In the other integrable limit where«Þ0 but a50, it is
also possible to compute the exact spectrum of the sys
Notice that the total momentum of the system is strictly co
served in this case. The absence of the on-site potenti
also responsible for the degeneracy of the states of diffe
parity concerning the momentum-reversal symmetry.
thus haveEs5Ea andEs̄5Eā . It is possible to show~see the
Appendix! that the splitting Es2Es̄5@an(22«)
2bn(22«)#/4 which yields in leading orderuEs2Es̄u
52(«/2)n/(n21)!2 wheren is the label of the doublet of the
initially rotating pendulum. The time taken by the system
transfer its excitation from one site to the second one iste
5p(n21)!2/2(«/2)n in this limit. By comparingte with tp
we observe that for large enoughn, tp@te holds, regardless
the values of« anda. This indicates that in general transf
of energy~and momentum! from site to site will be a much
faster process than the process of total momentum reve

When a and « are both nonzero, the different splitting
have to be calculated numerically by following the evoluti
of the quadruplet as a function of the coupling«. This is the
purpose of the following section.
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4. Following the quadruplet

In Fig. 8, we have plotted the evolution of a part of th
global spectrum of the coupled pendulums as a function
the coupling«. The on-site parameter isa55. The energies
of the different classes of states have been represente
different lines and symbols. The quadruplet which represe

the levels of the states$us&,us̄&,ua&,uā&% from which uF& is

formed has an energyẼ.41.43 at«50. This corresponds to
a quadruplet made of the ground state of the SPP and
doublet n57 at the anticontinuous limit. Indeed, by usin

Eqs. ~17! and ~19!, we obtain Ẽ7
d.49150/195 andE0

.A(5)21/16⇒Ẽ0.A(5)21/16210. The sum of these en
ergies givesẼ.41.43. At «51 the quadruplet energy isẼ
.41.54. This corresponds toE.31.77 which is the energy
of the classical rotobreather presented in the Sec. IV A.

At slightly larger energy we observe an octuplet in t
spectrum. It consists of states mixing two neighboring do
blets: namelyn54 and n855. Its energy is aroundẼ
.42.3 which can be computed also by using Eq.~19!. The
reason for the occurrence of this octuplet is depicted in F
7. By combining the two states of the doubletn with those of
n8 we obtain four different~although nearly degenerate! lev-
els of energy. But there are two ways to attribute these d
blets to pendulums 1 and 2~represented by the solid an
dashed arrows in Fig. 7!. We thus obtain two identical qua
druplets which yield an octuplet. Finally, the visible clust
of levels atẼ'43.25 corresponds to a quadruplet made
the combination of a single symmetric state~the last one
situated below the separatrixẼsep52a510) with the doublet
n56.

From a general point of view, the evolution of the ener
levels of a spectrum as a function of a given parameter~here
«) can be compared to the time evolution of a gas of p
ticles obeying dynamical laws of the Calogero-Moser syst
type.84–87This system is Hamiltonian and the interaction b
tween particles~eigenvalues! is strongly repulsive at shor
distances. This gives rise to avoided crossings. Neverthe
5-15
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FIG. 9. Evolution of
uF& (uFm,nu2) as the coupling
strength« increases. Each picture
represents the 2D Fourier spac
p1(m) along thex axis andp2(n)
along they axis. The value of each
componentuFm,nu2 is represented
by its gray level from white~0! to
black (;0.3).
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in the presence of symmetries, the different parity sec
decouple from each other and thus, do not interact.88 As a
result, the four sectors$s,s̄,a,ā% evolve individually accord-
ing to the Calogero-Moser dynamics but do not interact w
each other. Thus they may cross. Such a crossing is obse
in Fig. 8 in the vicinity of the point («55,Ẽ544).

Figure 8 also shows the pairing of eigenvalues wh
momentum-related parities are complementary. For insta
eigenvalues of thes sector cluster with eigenvalues of thea

or ā sectors. The reason is that the influence of the on-
potential becomes weak and thus the corresponding splitt
small as the energy becomes sufficiently high.

By following the quadruplet which starts atẼ.41.43, we
observe that it first survives an avoided crossing with o
(us&,ua&) pair («;0.7). Then it survives again another on
with two (us̄&,uā&) states and starts to split into two pai
(us&,ua&) and (us̄&,uā&) after a collision with a quasiquadru
plet which originates from the octuplet atẼ.42.3. Finally,
in the vicinity of «57.5, the (us̄&,uā&) pair seems to join a
new (us&,ua&) pair but remains clearly separated from it. T
fact that pairs of permutationally related eigenvalues m
survive avoided crossings is already known and may for
stance be observed in the case of the trimer problem.24,47

In order to see the progressive evolution of our init
stateuF& as the coupling increases, we have plotted sn
shots of its evolution for different values of« ~Fig. 9!. Each
picture represents the 2D discrete Fourier space. Thex axis
represents the coordinatemPZ related to the momentum o
the first pendulump1 and they axis,nPZ related top2. The
uF& state has been computed on a square lattice of 41341
Fourier components. For clarity only a 21321 lattice has
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been displayed. We observe that the stateuF& remains almost
unchanged for 0<«<2. The excitation is well localized in

the 2D Fourier space. The average momentum^P̂1&
5(m,nmuFm,nu2, which defines the projection of the excita
tion ‘‘center’’ on thex axis, is large and makes the first pe
dulum ‘‘rotating’’ whereaŝ P̂2&5(m,nnuFm,nu2 is small and
makes the second pendulum ‘‘oscillating.’’ The quotes in
cate that this correspondence refers to an interpretatio
terms of the classical system. As« becomes larger than 4
the state starts to spread on the lattice and does not c
spond to a ‘‘coherent’’ excitation anymore. A plot of th
Poincare´ section of the classical system at«56 with an en-
ergy corresponding to the one ofuF& has shown the allowed
region of the Fourier space to be chaotic~except in the vi-
cinity of the in-phase and out-of-phase motion and in a t
region where the classical rotobreather still exists!. This
means that any small perturbation of the initial conditions
the classical rotobreather leads to a chaotic trajectory.
verify in this particular example that the strong overlap
the chaotic sea with the quantum state leads to large s
tings of tunneling pairs@here (us&,us̄&) and (ua&,uā&)].

5. Evolution of the splittings with«

To provide quantitative results concerning the behavior
the different splittings involved in the expressions~47! as«
increases, we have computed them over the same rang
values. The result is presented in Fig. 10. It always conce
the stateuF& obtained from the quadruplet of preceding se
tion. Notice that for the sake of clarity, only three of the s
possible splittings have been displayed on the figure. T
omitted splittings behave very similarly according to t
5-16
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FIG. 10. Dependence of different splittings o

the quadruplet whose energy at«50 is Ẽ
.41.43 on«. Only three of them have been dis
played, each being associated with a given tu
neling process. The splittings are given in term

of the rescaled energyDẼ52DE.
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symmetry properties of the involved states. Each of the
played splittings corresponds to a given tunneling proces
specified in the figure. For«.0.15 the graph basically con
sists of two curves. One is related to the momentum or
ergy transfer between the pendulums and another one i
lated to the reversal of the total momentum of the syste
This means that the upper curve is related to the transfe
the excitation from a general point of view~energy or mo-
mentum!. The lower curve represents a process~the global
momentum reversal! which is not associated with any kin
of excitation transfer between the pendulums but only t
global modification of the system. It has no relation with t
tunneling of the quantum rotobreather from site to site.

Note that at the anticontinuous limit, the energies of

statesua& (us&) and uā& (us̄&) are identical. The splitting
which corresponds to the energy transfer (uẼa2Ẽāu in the
figure! is thus zero. This explains the behavior of the cor
sponding~thin solid! curve, in logarithmic scale, which de
creases regularly with«. Moreover, due to this degenerac
all the remaining splittings are equal and given by Eq.~40!.
For the uF& state we obtaind7.3.15310210 which corre-
sponds to the saturation value obtained numerically foruẼs

2Ẽau and uẼs2Ẽāu ~thick solid and dashed lines!.
The splittings depend smoothly on« except for values of

the coupling where crossings and avoided crossings
place~see Fig. 8!. The first crossing involves the quadrupl
states$us&,ua&,us̄&,uā&% and a (us8&,ua8&) pair at «.0.73.
Avoided crossings occur between (us&,us8&) and (ua&,ua8&)
pairs and are responsible for the peaks appearing in the t
splittings. The case of the second crossing («.3.30) is
slightly different. This avoided crossing concerns t
(us̄&,us̄8&) and (uā&,uā8&) pairs. The splittinguẼs2Ẽau be-
haves smoothly whereas the two others exhibit spikes du
the collision. This follows from the fact thatuẼs2Ẽau does
not contain any contribution of states interacting with t
colliding pair. Note that the spikes observed in such cro
ings may have different forms according to the exact real
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tion of the collision and the specific splitting unde
consideration.24

Finally, when the coupling parameter becomes larger t
5, the splittings corresponding to the transfer of the exc
tion between the pendulums start to be of the same orde
the mean spacing in the spectrum@1/p here as shown in Eq
~34!#. This is the signature of the disappearance of the qu
tum rotobreather since no quantum state is able to keep
energy on a given pendulum during a sufficiently long tim
at the considered energy level.

We conclude this section by discussing the dependenc
the splitting governing the energy transfer on the quadru
energy ~Fig. 11!. As expected the splittings decrease w
increasing quadruplet energy. This can be qualitatively
derstood by referring to the analytical expression of the sp
ting ata50. Indeed, taking into account the slow change
the quadruplet energy with«, Ẽm,0.m21«2/(m221), we

may directly replacem by AẼm,0 in the expression of the

splitting. We thus obtainD(Ẽ,a50).4(«/2)AẼ/G(AẼ)2

which gives a rapidly decreasing function of the quadrup
energy for values of«!Ẽ.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, after a brief review of the essential results
the single-pendulum problem, we have used a two-coup
pendulum model to show the possibility of constructing
quantum stateuF& whose properties are similar to those of
classical rotobreather. This state has been constructed
starting from a state which mimics the behavior of a rotat
pendulum decoupled from another one at rest at the antic
tinuous limit. Four states, each belonging to a different sy
metry sector, are shown to be necessary to form it.
switching on the coupling between the pendulums, we foll
the resulting evolution of the quadruplet and monitor t
different splittings. Each of them can be shown to be ass
ated with a given tunneling process according to the part
pating states.
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FIG. 11. Dependence of the splitting gover
ing the energy tunneling on« for different qua-
druplet energies. The three curves correspond
quadruplets starting from a ground state and
doublet at«50. The respective labels arem57,
11, and 17. The corresponding energies at«50

are Ẽ541.43, 113.3, and 281.2.
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In general, we have seen that two processes have t
distinguished. The first concerns the tunneling~or transfer!
of the initial excitation ~energy! between the pendulum
which corresponds to a tunneling of the quantum ro
breatheruF& between neighboring sites. This tunneling effe
is associated to the permutation symmetry present in the
tem. The second tunneling effect relies on another symm
due to the invariance of the system to a reversal of its t
momentum. This symmetry already appears in the sin
pendulum problem where it is responsible for the occurre
of doublets of nearly degenerate states at sufficiently h
energy~above the separatrix!. This second tunneling effec
takes a time which is orders of magnitude larger than
time of the excitation transfer between pendulums~except
for very small coupling values!.

By progressively increasing the pendulum coupling,
have shown that the quadruplet under investigation may
vive crossings~or avoided crossings! with other states. Nev-
ertheless, for large enough coupling, the nearly degene
states of different permutation symmetry parities sepa
sufficiently from each other, leading to splittings of the ord
of the mean level spacing in the spectrum. This situat
corresponds classically to a large chaotization of the ph
space at the considered energy level and thus to a st
overlap of the quantum state with the chaotic layer surrou
ing the regular island where the classical rotobreather is
cated. The disappearance of the quantum rotobreather
plies that the corresponding state is no more able to keep
excitation on a given pendulum for a long time as compa
to the typical oscillation time of the system.

To conclude this paper, we first comment on the relat
between the classical and the quantum~roto!breathers in ex-
tended lattices. An essential ingredient for the existence
quantum breather is the appearance of bands of nearly
generate eigenstates whose bandwidths remain very sma
the coupling increases. Nevertheless, the general method
ployed to construct the quantum breather by starting from
anticontinuous limit may be used as well for a chain ofN
purely harmonic oscillators~with a harmonic coupling!. As
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this chain cannot possess any kind of classical breath
what prevents quantum breathers from existing on suc
chain? To answer this question, we compute the bandw
corresponding to a local excitation ofn bosons close to the
anticontinuous limit. We obtainDEn5n(Av214«2v), v
being the oscillator frequency and« the coupling. This
shows that the bandwidth becomes large as the mean en
of the band,En;nv, does. Moreover, the density of state
scales likeg(E);EN21 ~see the Introduction! and the prod-
uct g(En)DEn→` asE→`. This shows that like the clas
sical harmonic chain, the quantum system cannot sup
quantum breathers.

A second comment concerns the ‘‘classical-like’’ behav
of the quantum breather. By defining the latter as a supe
sition of the eigenstates making up a single band, its ti
evolution isde factorestricted to these states. The fine stru
ture of the band thus provides the only available frequenc
of this evolution. As the corresponding splittings are ve
small, none of them is related to the classical breather
quency. These frequencies only concern the tunneling of
excitation from site to site. On the other hand, the individu
energies of particles making up a classical breather, for
ample, oscillate around their mean value at the breather
quency. Where does such a frequency appear in the quan
system? It turns out that this frequency is naturally recove
by considering quantum states which display an excitat
similar to the quantum breather but which are not restric
to a single band. We have verified in our system that a
herent state parametrized by the average phases and
menta of the quantum rotobreatheruF& excites mainly the
quadruplets separated by an energy difference which co
sponds approximately to the classical rotobreather freque
The interaction between quadruplets is thus responsible
the ‘‘classical-like’’ time behavior of averaged observabl
~like individual energies!. This should generalize to nonlin
ear systems with more than two degrees of freedom wh
we expect interactions between bands to play a similar
as the interaction between quadruplets in our system.
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APPENDIX A: COUPLED ROTORS

In this appendix, we solve the problem of two coupl
rotors, i.e., the limit of the two coupled pendulums when
on-site parametera is equal to zero. In this case, the syste
defined by the Hamiltonian~29! is integrable. Indeed,

Hcr5
1

2
~p1

21p2
2!1«@12cos~x12x2!#. ~A1!

Let s5(x11x2)/2 and d5(x12x2)/2. Then the classica
equations of motion read

s̈50, ~A2!

d̈1« sin~2d!50. ~A3!

The system decouples and consists of a free rotor for
center of mass motion and a pendulum for the relative co
dinate 2d ~with an ‘‘on-site’’ parameter 2«).

Let us turn to the associated quantum problem. T
Hamiltonian~A1! gives rise to the time-independent Schr¨-
dinger equation

F2
1

2
~]x1

2 1]x2

2 !1«@12cos~x12x2!#2EGc~x1 ,x2!50,

~A4!

which yields~after the change of variables defined above!

F2
1

4
~]s

21]d
2!1«@12cos~2d!#2EG c̃~s,d!50, ~A5!

wherec̃(s,d)5c(x1 ,x2). Because of the 2p periodicity of
c(x1 ,x2) in each of its variables, we may expand it as
double Fourier series:

c~x1 ,x2!5
1

2p (
m,nPZ2

cm,nexp@ i ~mx11nx2!#

5
1

2p H (
s,dP(2Z)2

c̃s,d
(e) exp@ i ~ss1dd!# ~A6!

1 (
s,dP(2Z11)2

c̃s,d
(o) exp@ i ~ss1dd!#J

5c̃~s,d!, ~A7!

where we have defineds5m1n and d5m2n and where
the notationss,dP(2Z)2 and s,dP(2Z11)2 indicate, re-
spectively, thats,d have to be both even numbers or bo
odd numbers. Moreover,c̃s,d

(e) 5c (s1d)/2,(s2d)/2 for s,d both

even @reason for the superscript (e)] and similarly c̃s,d
(o)

5c (s1d)/2,(s2d)/2 for s,d both odd. It follows that the first
term in Eq. ~A7! is a p periodic function in each of the
21430
e

e
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variabless or d whereas the second one is 2p periodic. No-
tice further that because the potential only depends ond, Eq.
~A5! decouples to give

F2
1

2
]s

222EsG c̃s~s!50, ~A8!

F2
1

2
]d

212«@12cos~2d!#22EdG c̃d~d!50, ~A9!

wherec̃(s,d)5c̃s(s)c̃d(d) andE5Es1Ed .
Equation~A9! is a Mathieu equation with a characterist

valuea and a parameterq defined by

a54~Ed2«! and q522«. ~A10!

Taking into account the preceding remarks concerning
periodicity as well as the two possible parities~odd or even!
of the solutions, we finally get

Es
s5

1

4
s2 and Ed

d5
1

4 S a
bD

d
~q!1«, ~A11!

wheres,dPZ2 have to have the same parity~even or odd!
and where we have introduced a spinor notation

S f
gD

m
~z!5H f m~z! if m>0,

gumu~z! if m,0.
~A12!

For the usual notation of the Mathieu equation see Ref.
By defining the rescaled energy byẼ52(E2«) and using
the quantum numbersm,n we finally get the following ex-
pression for the spectrum of the coupled rotors:

Ẽm,n5
1

2 F ~m1n!21S a
bD

(m2n)
~22«!G , ~m,n!PZ2.

~A13!

It follows Ẽm,n5Ẽ2n,2m . Thus all the levels are twofold
degenerate except whenm52n, which corresponds to a to
tal momentum of the system equal to zero. Notice that, w
«→0, the characteristic values converge to (m2n)2 and we
recover the free rotor spectrumẼm,n5m21n2. Moreover, at
sufficiently high momentum differencesum2nu@A«, the en-
ergiesẼm,n and Ẽn,m become nearly degenerate. Their spl
ting, computed by means of Eq.~21!, gives

DEum2nu5
1

2
DẼum2nu52

~«/2! um2nu

~ um2nu21!! 2
. ~A14!

The eigenfunctions corresponding to the spectrum~A13!
may be expressed according to their symmetry sectors b

c (m,n)~x1 ,x2!5NsS C
SD

s

~s!S ce
seD

d
~d;q!, ~A15!

where the normalization factorNs is 1/p for sÞ0 and
1/A2p if s50 and wheres, d, s, andd have already been
5-19
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defined as functions ofm, n, x1, and x2. Here Cs(s)
5cos(ss) andSs(s)5sin(ss). With this notation, the corre
spondence between the symmetry sectors and the valuess
andd are
tt,

tt
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er,
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tte
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us&⇒~s>0;d>0!, ua&⇒~s,0;d>0!,

us̄&⇒~s,0;d,0!, uā&⇒~s>0;d,0!.
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