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Quantum and classical localization, the spin quantum Hall effect, and generalizations
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We consider network models for localization problems belonging to symmetry class C. This symmetry class
arises in a description of the dynamics of quasiparticles for disordered spin-singlet superconductors which have
a Bogoliubov–de Gennes Hamiltonian that is invariant under spin rotations but not under time reversal. Our
models include but also generalize the one studied previously in the context of the spin quantum Hall effect.
For these systems we express the disorder-averaged conductance and density of states in terms of sums over
certain classical random walks, which are self-avoiding and have attractive interactions. A transition between
localized and extended phases of the quantum system maps in this way to a similar transition for the classical
walks. In the case of the spin quantum Hall effect, the classical walks are the hulls of percolation clusters, and
our approach provides an alternative derivation of a mapping first established by Gruzberg, Ludwig, and Read
@Phys. Rev. Lett.82, 4524~1999!#.
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I. INTRODUCTION

Localization of a particle moving in a random enviro
ment may occur both quantum mechanically and with cl
sical dynamics, but the phenomenon is very different in
two cases. In this paper we discuss a class of quant
mechanical localization problems for which some physi
quantities can be expressed exactly in terms of avera
taken in a classical counterpart. The equivalence holds
spite the fact that interference effects dominate the beha
of the quantum systems.

Disordered quantum systems can in general be class
according to their symmetries under time reversal and s
rotation. Three such symmetry classes are represented b
Wigner-Dyson random-matrix ensembles, while an ad
tional seven have been identified more recently. The mo
we study here belong to one of these additional clas
termed class C by Altland and Zirnbauer.1 One feature which
distinguishes systems belonging to each of the additio
symmetry classes from those in the Wigner-Dyson classe
that they have a special energy in their spectrum, with eig
states occurring in pairs either side of this energy. Some
the additional classes have realizations as Bogoliubov
Gennes Hamiltonians for quasiparticles in disordered su
conductors, where pairing interactions are treated at
mean-field level. Here the special energy is the chem
potential in the superconductor and eigenstates are relat
pairs by a particle-hole transformation. In particular, class
arises for quasiparticles in a spin-singlet superconducto
which time-reversal symmetry is broken for orbital motio
but Zeeman splitting is negligible.1 Since quasiparticle
charge is not conserved in a superconductor, experimen
investigate quasiparticle dynamics in these systems m
probe thermal or spin transport. Moreover, as the charac
istic features of the symmetry class appear only close to
chemical potential, it is particularly gapless superconduc
that are interesting: cuprate superconductors in the m
state constitute a conspicuous example.

The models we study are especially simple realization
0163-1829/2002/65~21!/214301~10!/$20.00 65 2143
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their symmetry class. They are obtained as generalization
the network model originally introduced to describe localiz
tion in the context of the integer quantum Hall plate
transition.2 Thus they are formulated in the language of sc
tering theory and represent quantum particles, in gen
with N-component wave functions, propagating on the
rected links, or edges, of a lattice and scattering betw
links at nodes. The symmetry of class C restrictsN to even
values, while our approach requires that all nodes of
lattice have two ingoing and two outgoing links. For the
models, we are concerned with the density of states, obta
from the time-evolution operator, and with the disorde
averaged conductance of a finite sample, calculated from
Landauer formula. In both cases, our starting point is
expansion for the Green function as a sum over Feynm
paths. Our central result is that the terms in this sum wh
survive after disorder averaging can be interpreted as s
avoiding classical random walks with attractive, short-ran
interactions.

A particular network model from class C, in two dimen
sions and withN52, has been studied previously.3–7 It
shows the so-called spin quantum Hall effect, having t
insulating phases, with quantized values of the Hall cond
tance differing by an integer, separated in the phase diag
by a delocalization transition which is analogous to the qu
tum Hall plateau transition. In a remarkable paper, using
persymmetry to perform disorder averages, Gruzberg, L
wig, and Read5 ~GLR! showed that many physical quantitie
of interest in this model can be determined from the prop
ties of the perimeters, or hulls, of classical percolation cl
ters in two dimensions. The approach we describe here
vides an alternative derivation of their results, using mo
elementary, nonsupersymmetric methods, as well as an
tension to other lattices, including ones in more than t
dimensions and irregular lattices for which transfer mat
methods are inappropriate. It also extends to any even i
ger N. Our expressions give disorder-averaged phys
quantities for the quantum system in terms of averages o
classical random walks on the same lattice. In the c
©2002 The American Physical Society01-1
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E. J. BEAMOND, JOHN CARDY, AND J. T. CHALKER PHYSICAL REVIEW B65 214301
treated by GLR these walks are simply percolation hulls,
which many analytical results are available. By contrast
the general case the properties of the classical walks are
known. Nevertheless, the classical problem is much sim
than the original quantum problem, and we are able to c
struct further examples for which it is tractable. We rema
that a different type of connection between quantum H
plateau transitions and percolation, based on the clas
limit, was discussed recently in Refs. 8 and 9.

There are some important qualitative differences betw
the properties of systems from Wigner-Dyson classes
those from the additional symmetry classes. In particu
while single-particle quantities such as the density of sta
are smooth functions of energy in the former case, in
latter case they may have singularities at the special ene
which we take to be zero in the following. This is illustrate
by previous results on the behavior of models from class
obtained using a variety of techniques.10–16 Random-matrix
ensembles with this symmetry, representing the ze
dimensional limit appropriate for quantum dots, have a d
sity of states that vanishes quadratically in energy at ener
much smaller than the mean level spacing.1,10 A similar be-
havior is expected for finite-dimensional systems if states
Anderson localized, on the grounds that random-ma
theory should describe states within a localization volum13

Calculations for one-dimensional systems from class C,
ing either supersymmetry11,13 or the Dorokhov-Mello-
Pereyra-Kumar~DMPK! equation,14 confirm this idea.

Existing information on localization in class C systems
also provided in part by renormalization-group treatmen12

of the appropriate nonlinear sigma model at weak coupli
corresponding to weak disorder. These calculations iden
two as the lower critical dimension. Thus, as in the Wign
Dyson symmetry classes, it is only in more than two dime
sions that a transition occurs between localized and met
phases as a function of disorder strength, while in one
mension even weak disorder is sufficient to localize
states. In addition, for two-dimensional systems with brok
time-reversal symmetry, including both ones from t
Wigner-Dyson unitary class and ones from class C, a d
calization transition of the quantum Hall type is possible, a
it is this transition that has been the focus of past work
class C network models.3–7

Many of these aspects, including the form of the dens
of states in a localized phase and the possibility of a quan
Hall plateau transition, emerge naturally from the approa
we describe here, which is presented as follows. In Sec. II
introduce in detail the models that we are concerned with
Sec. III we set out our general results, relating the densit
states and average conductance for a network model to
erages over certain classical random walks, and pre
proofs of these results. We describe applications of th
general results to the spin quantum Hall effect, to rando
matrix theory, and to localization on a Cayley tree, in S
IV. Open questions and future prospects are discussed in
V.

II. MODELS

We shall be concerned with models both for closed s
tems and~in connection with the Landauer formula for co
21430
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ductance! for open systems, but initially we restrict defin
tions to closed systems. Consider a graphG consisting of
directed edgese connecting nodesn, each of degree 4, with
the restriction that at each node two directed edges enter
two leave. AnN-component wave function propagates
each edge. This propagation may be described by a un
evolution operatorU, which evolves the wave function on
unit forward in time as the particle moves from a given ed
to a neighboring one. The evolution operator plays the sa
role in defining the network model as does the Hamilton
in the case, for example, of a tight-binding model. This w
discussed for theU(1) network model in Refs. 17 and 18. I
general, it is constructed from two ingredients. First, w
each edgee is associated a unitaryN3N matrix Ue . This
matrix specifies the~generalized! phase acquired on travers
ing the link. Second, with each noden is associated anS
matrix of the form

Sn51^ S cosun sinun

2sinun cosun
D , ~1!

where 1 is the N3N unit matrix. ThisS matrix describes
scattering at the node from the incoming edges to the ou
ing ones. IfG hasE edges~and thereforeE/2 nodes!, thenU
is anN3N matrix, with N5EN. It consists ofE/2 blocks,
each associated with a particular node and of size 2N32N.
The block at the noden has the form

S U3
1/2 0

0 U4
1/2D SnS U1

1/2 0

0 U2
1/2D ~2!

where~1,2! and~3,4! label the edges which are, respective
incoming and outgoing at this node.

So far, the symmetry class of the network model has
been fixed, except that propagation along directed lin
breaks time-reversal symmetry. To identify network mod
from class C, one starts4 from the defining property of a
HamiltonianH with this symmetry, which is1

H* 52syHsy , ~3!

where sy denotes the conventional Pauli matrix acting
spin variables andH* is the complex conjugate ofH. Ap-
plying this toU, interpreted asU5eiH, the number of wave-
function componentsN must be even, so that the space
states on each link may be viewed as consisting ofN/2 two-
component subspaces, within whichsy operates. Then Eq
~3! becomes

U5syU* sy , ~4!

and from this an equivalent restriction follows on the ed
phases,Ue5syUe* sy , which are therefore unitary Sp(N)
matrices, equivalent forN52 to SU~2! matrices.

Randomness is introduced into these models via the e
phases. We take them to be independent random varia
drawn from a distribution which is uniform on the invaria
~Haar! measure of Sp(N). The quenched average of a give
quantity in the network model, denoted by^•••&, is the mean
with respect to this measure.
1-2
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QUANTUM AND CLASSICAL LOCALIZATION, THE . . . PHYSICAL REVIEW B 65 214301
An open system is constructed from a closed system
this type by ‘‘cutting open’’ a number of edges. The tw
halves of each edge cut into two in this way constitute o
new edge directed into the system and one new edge dire
out of the system. We may consider a conductance exp
ment between two ‘‘contacts’’ by grouping a subset of the
of the incoming edges$ein% to form one contact and anothe
subset of the outgoing edges$eout% to form the other. The
transmission matrixt between these two contacts is a recta
gular matrix whose elements are^eoutu(12U)21uein&. The
spin conductance measured between the two contacts in
of (\/2)2/h is

g5Tr t†t. ~5!

from the multichannel Landauer formula.
Clearly, a great variety of specific models can be co

structed within this framework, by making different choic
for the graphG and for the number of channelsN. We defer
discussion of particular examples to Sec. IV.

III. GENERAL RESULTS

In this section we state and prove our results for a gen
graphG. We consider first the particular case ofN52, and
discuss the extension to generalN in Sec. III E.

A. Green function, Feynman path expansion and classical
walks

The Green function for propagation from edgee8 to edge
e is ~with N52) a 232 matrix

G~e,e8;z![^eu~12zU!21ue8&, ~6!

where ue& is a state in the two-component space of wa
functions for a particle located on the edgee. For uzu,1, Eq.
~6! may be expanded as a sum over Feynman paths oG
which begin one8 and end one: each path gives an ordere
product of factorszUj along edges traversed by the pa
weighted by appropriate factors of cosun and 6sinun for
each node through which it passes. Alternatively, we m
rewrite Eq.~6! as

G~e,e8;z!52^euz21U †~12z21U †!21ue8&, ~7!

obtaining instead a series convergent foruzu.1, involving an
ordered product of factorsz21U j

† and an overall negative
sign for each Feynman path.

Our central result is an expression for the disord
averaged, Sp~2! trace of the Green function, Tr^G(e,e,z)&,
in terms of classical paths. To state this result, we define
the same graphG a classical scatteringproblem as follows.
Each node may be decomposed into two disconnected pi
in two ways, viz. (13,24) or (14,23), as illustrated in Fig.

Theorem 1. The average Green function is given foruzu
,1 by the generating function for the probabilityP(e;L) in
the classical problem that the edgee belongs to a loop of a
given lengthL. Explicitly,
21430
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Tr^G~e,e;z!&522 (
L.0

P~e;L !z2L. ~8!

For uzu.1, it is given instead by

Tr^G~e,e;z!&5 (
L.0

P~e;L !z22L. ~9!

B. Density of states

The eigenvalues of the evolution operatorU for a closed
graph lie on the unit circle in the complex plane and may
written as exp(iej), with eigenphases2p,e j<p for j
51 . . .N. These eigenphases are analogous for the netw
model to the energy eigenvalues of a system specified b
Hamiltonian. We define the density of states to be

r~e![
1

N (
j

^d~e2e j !&. ~10!

A consequence of the symmetry of Eq.~4! is that r(e)
5r(2e).

Defining P(L), the edge average ofP(e;L), by

P~L !5
1

E (
e

P~e;L !, ~11!

it follows from Eqs.~8! and ~9! that

r~e!5
1

2p F12 (
L.0

P~L !cos~2Le!G . ~12!

C. Conductance

The classical scattering problem introduced in Sec. II
may also be considered for an open system. For an o
system withM cut links, each decomposition breaksG into
M directed paths which each run from an ingoing edge to
outgoing one, together with a number~possibly zero! of
closed loops. LetP(e,e8) be the probability that a path run
from the ingoing edgee8 to the outgoing edgee.

Theorem 2. The disorder average of the conductance
fined in Eq.~5! is given by

^g&52 (
eP1,e8P2

P~e,e8!, ~13!

FIG. 1. Decomposition of a given node. In the network mod
S-matrix elements cosun and6sinun are associated with the tran
sitions (1,2)→(3,4) as indicated on the left. Each decomposition
the node is then weighted with factorspn5cos2un and 12pn

5sin2un, as indicated.
1-3



nt

en

t

e
re

ri
p

m

ro
n
hs
ra
t i

e
a

in

the

s,
ust

s

-

e
a

ing
to

s
e

or-
e
r
ay
nd-
ins

e
ot

rms

E. J. BEAMOND, JOHN CARDY, AND J. T. CHALKER PHYSICAL REVIEW B65 214301
where sets 1 and 2 denote, respectively, the edges incide
the first contact fromG, and those incident onG from the
second contact.

D. Proofs

For a closed system it is useful to introduce the resolv

R~z![(
e

Tr G~e,e;z! ~14!

@where Tr again indicates an Sp~2! trace# and to generalize
this to the case where the parameterz takes independen
valuesze on each edgee. The expansion ofR($z%) as a sum
over paths then yields a multinomial expression in all theze .
We now require two lemmas about Sp~2! matrices.

Lemma 1. If UPSp(2),then its meanqth moment,̂ Uq&,
is zero unlessq50 or q52, in which case it takes the valu
1 or 2 1

2 1, respectively. This can be shown using the rep
sentationU5exp(ianW•sW ), wherenW is a unit real 3 vector and
the s ’s are the Pauli matrices, so that

Uq5cosqa11 i sinqanW •sW . ~15!

The result now follows from the observation that the inva
ant measure for Sp~2! is the uniform measure on the grou
manifold S3, and therefore has the form*dU5p21*0

p(1

2cos 2a)da*dnW.
Lemma 2. If G is a real linear combination of Sp~2! ma-

trices, it is itself proportional to an Sp~2! matrix, with a real
scalar constant of proportionality. This follows directly fro
the above representation for each matrix.

The main argument in the proof of theorem 1 now p
ceeds as follows. As discussed above, for each realizatio
the randomness,R($z%) is a sum over closed directed pat
on G. For a particular path, each link or node may be t
versed an arbitrary number of times. We first show that i
sufficient, in calculating the mean̂R($z%)&, to restrict this
sum to those paths which traverse each edge exactly twic
not at all. Let us consider the sum of all paths in which
particular edgee is traversed exactlyq times. This has the
form

ze
qTr@UeA~e,e!#q ~16!

whereA(e,e) denotes the sum overall weighted paths which
begin and end one, but do not themselves traversee. By
lemma 2, this is proportional to an Sp~2! matrix,19 so it may
be written as
21430
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A~e,e!5uA~e,e!uÃ~e,e!, ~17!

where uA(e,e)u is real andÃ(e,e)PSp(2). Defining Ue8

[UeÃ(e,e), Eq. ~16! may be written

ze
qTr Ue8

quA~e,e!uq. ~18!

The invariant integration overUe is equivalent to that over
Ue8 , so that, by lemma 1, the result will vanish unlessq50
or q52. Since^R($z%)& is a multinomial expression in the
parameters$z%, the argument may be applied to each edge
turn to show that the only allowed powers of anyze entering
this expression are 0 or 2. This establishes the first part of
proof.

For paths in which each node is visited only 0 or 2 time
the main result follows immediately. For such a path m
traverse a closed loop in the decomposition ofG exactly
twice. At each node there will be factors of cos2un or
(6sinun)

2, giving precisely the correct weighting for thi
loop to appear in the decomposition. The product of Sp~2!
matrices along the loop will have the form

Tr ^~U1U2 . . . !~U1U2 . . . !& ~19!

Thus, definingU18[U1U2 . . . , this is equivalent to averag
ing U18

2, which gives2 1
2 by Lemma 1. Finally, the trace

gives a factor of 2.
Further effort is required to treat paths which visit som

nodes more than twice. A little thought shows that such
node must be visited exactly four times, entering and leav
exactly twice along each directed edge, if the contribution
R(z) is not to vanish on averaging. Consider such a noden,
and label the incoming and outgoing edges as~1,2!, ~3,4!
respectively~see Fig. 1!. We show that the sum over all path
visiting this node four times may be written in terms of th
two ways of decomposing this node, with precisely the c
rect weights. LetA( i , j ) be the sum over all paths from edg
j P(3,4) to edgei P(1,2), which do not use any of these fou
edges. The sum over paths visiting the node four times m
be decomposed into eighteen different contributions, depe
ing on the order in which the edges are visited. Each conta
a product of four factorsA( i , j ) as well as Sp~2! matricesUi
and U j . There are in fact two types of contribution: in th
first type, two of theA( i , j ) appear twice and the others n
at all; while in the second type all fourA( i , j ) appear once
each. There are six of the first type and they have the fo
Tr U1A~1,3!U3U2A~2,4!U4U1A~1,3!U3U2A~2,4!U4s4, ~20!

Tr U1A~1,3!U3U1A~1,3!U3U2A~2,4!U4U2A~2,4!U4c2~2s2!, ~21!

Tr U1A~1,3!U3U2A~2,4!U4U2A~2,4!U4U1A~1,3!U3c2~2s2! ~22!

and
1-4
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Tr U1A~1,4!U4U2A~2,3!U3U1A~1,4!U4U2A~2,3!U3c4, ~23!

Tr U1A~1,4!U4U1A~1,4!U4U2A~2,3!U3U2A~2,3!U3c2~2s2!, ~24!

Tr U1A~1,4!U4U2A~2,3!U3U2A~2,3!U3U1A~1,4!U4c2~2s2!, ~25!
-

h
y

where we have introduced the shorthands[sinun and c
[cosun . @Note that Eqs.~21! and ~22! give separate contri
butions toR($z%); the case is similar for Eq.~24! and~25!#.
As before, we writeA( i , j )5uA( i , j )uÃ( i , j ) and note that, by
a change of integration variable, Eq.~20! is, on averaging,
equivalent to the average ofU1

2 ~that is,2 1
2 ), multiplied by

uA(1,3)u2uA(2,4)u2s4. By a similar argument, Eqs.~21! and
~22! are equal to the average ofU1

2U2
2 @that is, (2 1

2 )2], mul-
tiplied by uA(1,3)u2uA(2,4)u2c2(2s2). The total of Eqs.
~20!–~22! is therefore
he
in

-
in

or

21430
2uA~1,3!u2uA~2,4!u2@s412~2 1
2 !c2~2s2!#

52uA~1,3!u2uA~2,4!u2sin2un . ~26!

Similarly, Eqs.~23!–~25! sum up to

2uA~1,4!u2uA~2,3!u2cos2un . ~27!

Now consider the other twelve contributions, in whic
A(1,3), A(2,4), A(1,4), and A(2,3) each appear exactl
once. Six of these are
Tr U1A~1,3!U3U1A~1,4!U4U2A~2,4!U4U2A~2,3!U3c4, ~28!

Tr U1A~1,3!U3U2A~2,3!U3U2A~2,4!U4U1A~1,4!U4s4, ~29!

Tr U1A~1,3!U3U1A~1,4!U4U2A~2,3!U3U2A~2,4!U4c2~2s2!, ~30!

Tr U1A~1,3!U3U2A~2,3!U3U1A~1,4!U4U2A~2,4!U4c2~2s2!, ~31!

Tr U1A~1,3!U3U2A~2,4!U4U1A~1,4!U4U2A~2,3!U3c2~2s2!, ~32!

Tr U1A~1,3!U3U2A~2,4!U4U2A~2,3!U3U1A~1,4!U4c2~2s2!. ~33!
ging

ith
In addition, there are six equal contributions in which t
factors are cyclically permuted so that each beg
U1A(1,4) . . . . Each term is proportional to
uA(1,3)uuA(2,4)uuA(1,4)uuA(2,3)u. The remainder of the ex
pressions may be simplified, for example, by redefin
U1Ã(1,3)5U18 andU2Ã(2,4)5U28 . This reduces Eqs.~28!–
~33! to

Tr U18U3U18BU4U28U4U28CU3c4, ~34!

Tr U18U3U28CU3U28U4U18BU4s4, ~35!

Tr U18U3U18BU4U28CU3U28U4c2~2s2!, ~36!

Tr U18U3U28CU3U18BU4U28U4c2~2s2!, ~37!

Tr U18U3U28U4U18BU4U28CU3c2~2s2! ~38!

Tr U18U3U28U4U28CU3U18BU4c2~2s2!, ~39!

where B[Ã(1,3)21Ã(1,4) and C[Ã(2,4)21Ã(2,3). By
making suitable changes of integration variables, as bef
we find that Eqs. ~34! and ~35! give factors of
s

g

e,

(2 1
2 )2Tr(BC), while Eqs. ~36!–~39! give (2 1

2 )3Tr(BC).
The sum of all 12 such contributions is therefore

X[
1

2
Tr~BC!uA~1,3!uuA~2,4!uuA~1,4!uuA~2,3!u

3~c41s412c2s2!

5
1

2
Tr A~1,3!†A~1,4!A~2,4!†A~2,3!. ~40!

The important feature of this result is that it isindependent of
un . It may be written, trivially, as

X5pnX1~12pn!X, ~41!

while the first six contributions have the form@as given in
Eqs.~26! and ~27!#

2pnuA~1,4!u2uA~2,3!u22~12pn!uA~1,3!u2uA~2,4!u2.
~42!

Therefore we can obtain the same total result, after avera
overU1 , . . . ,U4, if we decompose the noden in each of the
two possible ways, and weight the two decompositions w
probabilitiespn and 12pn respectively~see Fig. 1!. For in
1-5
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the first case~13,24! we find2uA(1,4)u2uA(2,3)u21X, while
in the second case of (14,23) we obta
2uA(1,3)u2uA(2,4)u21X.

Now we may simply go throughG, decomposing it node
by node. The result is that^R($z%)& is given by the weighted
sum over the same quantity calculated on graphs ari
from all possible decompositions ofG; such graphs consist o
closed loops with no remaining nodes. In each decomp
tion, a given edgee belongs to just one loop, and, for th
loop, of lengthL say, the contribution to TrG(e,e;z) is just
2z2L. Thus the mean Tr̂G(e,e;z) is given by the average
of this quantity over the ensemble of loops corresponding
the decomposition ofG. This completes the proof of theorem
1.

So far we have considered unitary evolution on a clo
system. However, since the proof is constructed to work
arbitrary values of the parameters$ze%, it generalizes
straightforwardly to an open system where probability is
conserved at the nodes which are connected to external le
For example, if in Fig. 1, edges (1,3) correspond to exter
leads which carry no current, then we should consider o
those Feynman paths throughn which pass directly from 4
→2, with amplitude cosun . In the above argument, this ma
be taken into account by regarding this node as a single e
carrying an Sp~2! matrix U4U2, and with fugacity
z2z4cosun . With this modification, the proof of theorem
goes through as before.

Now consider conductance measurements on an o
graphG, with external contacts$ein% and$eout%, as described
in Sec. II. Consider the graphG8 formed fromG by joining
particular outgoing and incoming external edgeseout andein
to create a new internal edgee. Observe that, in calculating
^G(e,e;z)&, the edgee is always traversed exactly twice
Therefore,

^G~eout,ein ;z!2&G5^G~e,e;z!&G8uze51 ~43!

SinceG(eout,ein) is given by a sum over Sp~2! matrices, by
lemmas 1 and 2,^G(eout,ein ;z)2&52 1

2 ^uG(eout,ein)u2&.
Now apply theorem 1: it follows that̂ uG(eout,ein)u2& is
twice the probability thatein andeout are connected by a pat
in the decomposition ofG. Summing over all the edgesein
andeout as required by Landauer formula~5! then gives the
result stated in theorem 2.

E. General N

Our approach to the Sp(N) model with evenN.2 is
based on the fact that a general Sp(N) rotation can be written
as a product of rotations derived from a limited number
generators. Moreover, under rather weak conditions,
probability distribution of such a product containing rando
factors will converge as the number of factors increase
the Haar measure on Sp(N): the requirement is simply tha
no subspace is left invariant by the ensemble of rotation

We therefore build the Sp(N) model onG by takingN/2
copies of the Sp~2! model, each individually defined onG,
and coupling the copies together. This coupling takes
form of a product of many noncommuting matrices. Succ
21430
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sive factors in the product are of two kinds. One kind
block diagonal, withN/2 random Sp~2! blocks, resulting in
intracopy scattering; the other kind must produce interco
scattering and may be chosen to be nonrandom. It is con
nient to restrict the intercopy scattering to be between co
sponding links in each copy. For example, in the case
Sp~4! each pair of corresponding links is coupled as sho
in Fig. 2. The evolution matrix for this pair of links consis
of a productSof a large number of factors, each of the for

1

A2
S U1 0

0 U2
D S 1 1

21 1D , ~44!

whereU1 and U2 are random Sp~2! matrices, chosen inde
pendently for each term in the matrix product.

The advantage of this choice is that we may immediat
apply our main theorem to show that, after averaging o
the random Sp~2! matrices, the mean density of states a
mean conductance are given in terms of a decompositio
each node as before, and a decomposition of each lin
shown in Fig. 2, with equal probabilities for each term. Th
construction may be generalized to Sp(N) for arbitrary even
N: the result is that, in the classical system, theN/2 exit
trajectories are a random permutation of the incident on
with all permutations having equal weight, independently
each edge.

IV. APPLICATIONS OF GENERAL RESULTS

There are three obvious classes of behavior possible in
classical scattering problem which we have arrived at, co
sponding to loops, or closed classical walks, that are lo
ized, extended or critical.

By localizedclassical walks, we mean that only a vanis
ing fraction of walks have infinite length, and that the num
ber of walks longer than a characteristic sizej decreases
rapidly with j. One might have, for example,P(L)
;exp(2L/j) for L@j. Then the fraction of loops longer tha
L, given by

f ~L !512(
l 51

L

P~ l !, ~45!

approaches zero asL→`. As a consequence,r(e)→0 ase
→0. Introducing the mean-square length of loops,

^L2&5 (
L.0

P~L !L2, ~46!

FIG. 2. Implementation of a link in the Sp~4! model. It consists
of pairs of incoming and outgoing Sp~2! links, connected through a
randomS matrix which mixes the two channels. After averagin
this is equivalent to the decomposition shown on the right-ha
side, equally weighted.
1-6
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provided^L2& is finite, r(e) vanishes quadratically, varyin
as

r~e!5~p!21^L2&e21O~e4!. ~47!

This is the behavior expected in the localized phase of
quantum problem. Moreover, if classical walks have a ch
acteristic sizej and if G is embedded in Euclidean spac
then we expect the conductance to decrease rapidly with
creasing contact separation, for separations larger thanj.

Alternatively, classical walks areextendedif a finite frac-
tion has infinite length, so that limL→` f (L).0. In this case,
r(0)5(2p)21f (`) is nonzero, which we expect in the ex
tended phase of the quantum problem. Clearly, the form
r(e) at smalle is determined by that off (L) at largeL: if
f (L)2 f (`);L2x with 0,x,2 then r(e)2r(0)}ueux,
while if f (L)2 f (`) falls faster thanL22 at largeL, then
r(e)2r(0);e2. It is an interesting consequence of Eq.~12!
that r(e) is bounded, and so a divergence in the density
states, as occurs for example in class D localization pr
lems, is excluded in class C network models, whatever
choice for G. In the extended phase for a system
d-dimensional Euclidean space, Ohm’s law dictates that
two-terminal conductance should vary with the separati
l i , between terminals and their cross-sectional area,l' as
l'
d21/ l i for large l i ,l' ; this places strong constraints on th

behavior in the corresponding ensemble of classical wa
suggesting that, on large distance scales, they should be
like free random walks.

Classical walks that arecritical have no characteristic
loop size, and a vanishing fraction that are of infinite leng
Then f (`)50, and a possible behavior forP(L) is P(L)
;L2y at largeL, with y.1. The resulting quantum densit
of states has the critical behaviorr(e);ueuy21 for small e.
The conductance of such a system is expected to depen
the geometry of sample and contacts, but to be unchan
under a rescaling of all spatial dimensions.

The task that remains, given a particular model for qu
tum localization, specified by the graphG and values for the
node probabilitiespn , is to determine the behavior of th
corresponding classical walks. In general, this remain
challenging open problem with connections to previou
studied random-walk problems which we summarize in S
V. In particular instances, however, relevant properties of
classical walks can be calculated; we describe three
amples in the remainder of this section.

A. Spin quantum Hall effect

A two-dimensional model exhibiting the spin quantu
Hall effect is obtained by takingG to be theL lattice, illus-
trated in Fig. 3. As GLR have shown, the two possible cl
sical decompositions of a node may be associated with
presence or absence of a bond, with probabilitiesp and 1
2p, between neighboring sites on an associated square
tice. This associated lattice is rotated by 45° relative to thL
lattice, and has a larger lattice spacing by a factorA2. In this
way, closed loops of the classical problem form interior
exterior hulls of bond percolation clusters on the larger
tice. It is known that such loops are finite with characteris
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size j except at the critical point,p5pc , which for bond
percolation on the square lattice occurs atpc51/2. On ap-
proaching the critical point,j diverges asj;up2pcu2n with
n54/3, while at the critical point the distribution of hu
lengths isP(L);L2y at largeL, with y58/7. In this way
one finds that the quantum localization length diverges w
the same exponent value,n54/3, as the plateau transition i
approached, and that the density of statesr(e) varies for
small e as r(e);e2 in the localized phase, and asr(e)
;ueu1/7 at the critical point.

B. Random matrix theory

The simplest application of our discussion of Sp(N) mod-
els with generalN is to random matrix theory. To this end
we takeG to consist of a single edge closed on itself. Th
the evolution operatorU is a random Sp(N) matrix, chosen
with the Haar measure. In this case the density of statesr(e)
is the eigenphase density for the Sp(N) random-matrix en-
semble, which has been determined previously
Zirnbauer10 using supersymmetry methods.

Applying to this problem the approach we have describ
in Sec. III E, we must considerN/2 copies of an edge, which
are closed by connecting outgoing ends to a permutatio
ingoing ends. For example, the caseN54 corresponds to
joining opposite ends of the two possibilities shown in F
2, thus producing with equal probability either two loop
each of length 1, or a single loop of length 2. For generalN,
all possible lengthsL up to N/2 are possible, with equa
probability. ThusP(L)52/N for 1<L<N/2, andP(L)50
otherwise. Using Eq.~12! we thus find

r~e!5
N11

2pN F12
sin~N11!e

~N11!sineG , ~48!

in agreement with Ref. 10.

FIG. 3. The network model for the spin quantum Hall effe
defined using theL lattice. Scattering amplitudes of6cosun and
6sinun are indicated by6c and6s.
1-7
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C. Cayley tree

A solvable model which illustrates each of the types
behavior—localized, extended, and critical—for classi
loops is based on the geometry of the Cayley tree. Spe
cally, we takeG to be a graph of the type illustrated in Fig.
the U~1! network model on such a tree has been stud
previously in Ref. 20. We restrict attention toN52 and con-
sider first coordination numberq53. As previously, we de-
fine P(e;L) to be the probability that the edgee of the root,
far from the surface of the tree, lies on a given closed loop
lengthL. Then

P~e;3L !5p2dL,112p~12p!P~e;3L23!

1~12p!2 (
m51

L22

P~e;3m!P~e;3L23m23!.

~49!

FIG. 4. The graphG for a network model based on a roote
Cayley tree. An example with coordination numberq53 and four
generations is shown; the system size is increased by increasin
number of generations.S-matrix amplitudes at nodes are cosu to
remain at the same generation, and6sinu to change generations.
21430
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This can be solved by using the generating functionG(z)
5( r>1zr P(e;3r ): we obtain

G~z!5zp212zp~12p!G~z!1~12p!2zG~z!2. ~50!

We take the branch ofG(z) such thatG(0)50; thus

G~z!5
1

2z~12p!2
@122zp~12p!2A124zp~12p!#.

~51!

When z51, A124zp(12p) is equal to 122p for p,1/2
and 2p21 for p.1/2. Therefore, forp.1/2, G(1)51, so
that all walks are localized. The characteristic loop size
given by

^L&53
]G

]z U
z51

5
3

2p21
. ~52!

However, whenp,1/2, G(1)5@p/(12p)#2,1. Thus in
this case a proportion 12G(1) of the walks do not close
they are extended. For such walks, Eq.~49! is invalid since it
describes only closed walks of a finite length. Forp51/2 and
large LPZ, we find the critical behaviorP(e;3L);L23/2.
The corresponding density of states in the quantum sys
~defined locally on an edge far from the surface, to av
surface effects! has the behavior

r~e!}5
e2, p.

1

2

ueu1/2, p5
1

2

const p,
1

2

~53!

We can extend this analysis to consider coordination nu
ber q.3; then

G~z!5z@p1~12p!G~z!#q21. ~54!

Thus zb5(12p)21(q21)12q@(q22)/p#q22 locates the
unique branch point ofG(z). The complex roots of the two
branches ofG(z) corresponding toG(1)51 ~all paths of
finite length! andG(1)5W ~whereW is the fraction of paths
which are infinite!, coincide atp5(q22)/(q21). We con-
clude that for p.(q22)/(q21) all walks are localized,
whereas forp,(q22)/(q21) there exists a fractionW of
extended walks. In addition, we find that the critical behav
P(e;qL);L23/2 holds for all q>3. In the localized phase
the typical loop length is given by

^L&5
q

p2~12p!~q22!
. ~55!

Thus, with the critical valuepc51/2 replaced bypc5(q
22)/(q21), the behavior of the density of states is the sa
as in theq53 case. The critical exponents are therefore u
versal and independent ofq. In fact, we note that there is
one-to-one correspondence between walks on the Ca
cactus and percolation clusters on the Cayley tree; there
the critical exponents are related to those of percolation.

the
1-8
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V. DISCUSSION

In this section we outline directions for future wor
These are of two kinds. First, one can imagine a variety
models which are likely to exhibit phenomena not shown
the examples treated in Sec. IV. Second, one can hop
make use of connections between the classical random w
that arise in our approach and statistical problems stud
previously. Further work on both these aspects is
progress.21,22 In general, the equivalent classical problem
correspond to self-attractive random walks of various kin
They are attractive because the weight for passing throu
given node twice isp, rather thanp2. However, the actua
behavior is expected to depend very much on the individ
lattice. Many of these problems correspond to the class
scattering of light by random arrays of mirrors: for examp
in each decomposition of Fig. 1, a two-sided mirror can
placed so that the classical trajectory reflects off it. Su
problems have been studied extensively.23–26They may also
be realized in terms ofhistory-dependent kineticrandom
walks, in the sense that the walker may be thought of
placing a mirror at random the first time it reaches a node
it revisits the node, however, the mirror is already in pla
This puts such models in the class of so-called ‘‘true’’ se
avoiding walks, which have been studied using fie
theoretic renormalization-group methods in the limit of we
scattering.27 Interestingly, such studies indicate a critical d
mension of two, just as for Anderson localization.

A two-dimensional model with behavior which we expe
to contrast with that found in the spin quantum Hall effe
can be obtained by takingG to be the Manhattan lattice
illustrated in Fig. 5, in place of theL lattice. The crucial
distinction is that, for the network model on theL lattice, two

FIG. 5. The Manhattan lattice. In the network model,S-matrix
elements of cosu and6sinu are associated, respectively, with 90
turns at nodes and with propagation in a straight line.
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distinct phases can be identified from the different nature
edge states in the limitsp→0 andp→1, while for the Man-
hattan lattice there are no edge states in either limit. Equ
lently, the Hall conductance of the model on theL lattice
may be nonzero, being determined at short distances by
value of p, but quantized at large distances, while on t
Manhattan lattice the Hall conductance always has an a
age value zero. Consequently, one expects from the sca
flow diagram for quantum Hall systems28 and the
renormalization-group calculations for the class C nonlin
sigma model at weak coupling12 that states of the Manhatta
model should be localized for allp.0. Since classical tra-
jectories on the Manhattan lattice cross at nodes with pr
ability p, they are not the hulls of percolation clusters. Ne
ertheless, it is straightforward to use bond percolation o
lattice which has a lattice spacing larger by a factorA2 and is
rotated by 45° relative to the Manhattan lattice to set
upper bound on loop sizes: this is sufficient to prove loc
ization for p.1/2, and forp51 classical loops are simply
the elementary plaquettes ofG. Conversely, atp50 classical
trajectories are simply straight lines, and so one expects
localization length to diverge asp→0.

A second variant on the spin quantum Hall effect can
constructed by considering the Sp(N) model on theL lattice,
but with N.2. It is natural to anticipate from the scalin
flow diagram proposed for quantum Hall systems28 that this
model should haveN/2 delocalization transitions as the nod
parameterp increases fromp50 to 1. Between transitions
states are localized and the Hall conductance is quantized
a transition is approached, the localization length diverg
and on passing through a transition, the number of e
states and the quantized value of the Hall conductance
change by two. It remains a challenge to understand how
whether such a behavior arises in the language of class
walks, and might be interesting to relate the large-N limit of
the lattice problem to the field theory discussed in Ref. 1

A third direction is to consider models defined on grap
in three or more dimensions. A three-dimensional version
the U~1! network model has been studied previously usin
layered system29 and models with cubic symmetry may als
be constructed. For systems in three and higher dimensi
one expects that both localized and metallic phases shoul
possible, each existing over a range of values for node
rameter,p, with a transition between the two at a critic
value p5pc . Since in two dimensions it is known that th
theta-point transition between collapsed and swollen pha
of a self-attracting polymer chain has the same exponent
those of percolation hulls,30 it is tempting to suggest that in
higher dimensions this delocalization transition might also
in the theta-point universality class. If so, we would expec
mean-field behavior, with logarithmic corrections ford53.

ACKNOWLEDGMENTS

We thank M. Bocquet for a careful reading of the man
script, and M. R. Zirnbauer for valuable correspondence. T
work was supported in part by the EPSRC under Grant
GR/J78327.
1-9



s.

ue

ev
n

s.

E. J. BEAMOND, JOHN CARDY, AND J. T. CHALKER PHYSICAL REVIEW B65 214301
1A. Altland and M.R. Zirnbauer, Phys. Rev. B55, 1142 ~1997!;
M.R. Zirnbauer, J. Math. Phys.37, 4986~1996!.

2J.T. Chalker and P.D. Coddington, J. Phys. C21, 2665~1988!.
3V. Kagalovsky, B. Horovitz, and Y. Avishai, Phys. Rev. B55,

7761 ~1997!.
4V. Kagalovsky, B. Horovitz, Y. Avishai, and J. T. Chalker, Phy

Rev. Lett.82, 3516~1999!.
5I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Phys. Rev. Lett.82,

4524 ~1999!.
6T. Senthil, J.B. Marston, and M.P.A. Fisher, Phys. Rev. B60,

4245 ~1999!.
7J. Cardy, Phys. Rev. Lett.84, 3507~2000!.
8V. Gurarie and A. Zee, Int. J. Mod. Phys. B15, 1225~2001!.
9J. E. Moore, Phys. Rev. B65, 035307~2002!.

10M. R. Zirnbauer, J. Phys. A29, 7113~1996!, in which results are
presented for Sp(N) random matrix ensembles in the large-N
limit. The same methods also yield results at finiteN ~private
communication!.

11R. Bundschuh, C. Casanello, D. Serban, and M. R. Zirnba
Nucl. Phys. B532, 689 ~1998!.

12T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak, Phys. R
Lett. 81, 4704~1998!; R. Bundschuh, C. Cassanello, D. Serba
and M. R. Zirnbauer, Phys. Rev. B59, 4382~1999!; A. Altland,
B. D. Simons, and M. R. Zirnbauer, Phys. Rep.359, 283~2002!.

13T. Senthil and M. P. A. Fisher, Phys. Rev. B60, 6893~1999!.
21430
r,

.
,

14P. W. Brouwer, A. Furusaki, I. A. Gruzberg, and C. Mudry, Phy
Rev. Lett.85, 1064 ~2000!; M. Titov, P. W. Brouwer, A. Furu-
saki, and C. Mudry, Phys. Rev. B63, 235318~2001!.

15D. Bernard and A. LeClair, Phys. Rev. B64, 045306~2001!.
16D. Bernard, N. Regnault, and D. Serban, Nucl. Phys. B612, 291

~2001!.
17R. Klesse and M. Metzler, Europhys. Lett.32, 229 ~1995!.
18C.-M. Ho and J.T. Chalker, Phys. Rev. B54, 8708~1996!.
19At this point we should restrict thezj all to be real for lemma 2 to

be applicable. This does not affect the argument.
20J. T. Chalker and S. Siak, J. Phys.: Condens. Matter2, 2671

~1990!.
21E. Beamond, J. L. Cardy, and A. Owczarek~unpublished!.
22E. Beamond, J. L. Cardy, and J. T. Chalker~unpublished!.
23J. M. F. Gunn and M. Ortuno, J. Phys. A18, 1095 ~1985!; M.

Ortuno, J. Ruiz, and J. M. F. Gunn, J. Stat. Phys.65, 453~1991!.
24R. M. Ziff, X. P. Kong, and E. G. D. Cohen, Phys. Rev. A44,

2410 ~1991!.
25M. S. Cao and E. G. D. Cohen, J. Stat. Phys.87, 147 ~1997!.
26E. G. D. Cohen and F. Wang, J. Stat. Phys.81, 445 ~1995!.
27S. P. Obukhov and L. Peliti, J. Phys. A16, L147 ~1983!.
28D. E. Khmel’nitskii, Pis’ma Zh. E´ksp. Teor. Fiz.82, 454 ~1983!

@JETP Lett.38, 552 ~1983!#.
29J. T. Chalker and A. Dohmen, Phys. Rev. Lett.75, 4496~1995!.
30B. Duplantier and H. Saleur, Phys. Rev. Lett.59, 539 ~1987!.
1-10


