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We consider network models for localization problems belonging to symmetry class C. This symmetry class
arises in a description of the dynamics of quasiparticles for disordered spin-singlet superconductors which have
a Bogoliubov—de Gennes Hamiltonian that is invariant under spin rotations but not under time reversal. Our
models include but also generalize the one studied previously in the context of the spin quantum Hall effect.
For these systems we express the disorder-averaged conductance and density of states in terms of sums over
certain classical random walks, which are self-avoiding and have attractive interactions. A transition between
localized and extended phases of the quantum system maps in this way to a similar transition for the classical
walks. In the case of the spin quantum Hall effect, the classical walks are the hulls of percolation clusters, and
our approach provides an alternative derivation of a mapping first established by Gruzberg, Ludwig, and Read
[Phys. Rev. Lett82, 4524(1999].
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[. INTRODUCTION their symmetry class. They are obtained as generalizations of
the network model originally introduced to describe localiza-
Localization of a particle moving in a random environ- tion in the context of the integer quantum Hall plateau
ment may occur both quantum mechanically and with clastransition? Thus they are formulated in the language of scat-
sical dynamics, but the phenomenon is very different in theéering theory and represent quantum particles, in general
two cases. In this paper we discuss a class of quantunwith N-component wave functions, propagating on the di-
mechanical localization problems for which some physicalrected links, or edges, of a lattice and scattering between
quantities can be expressed exactly in terms of averagdiks at nodes. The symmetry of class C restrigtto even
taken in a classical counterpart. The equivalence holds desalues, while our approach requires that all nodes of the
spite the fact that interference effects dominate the behavidattice have two ingoing and two outgoing links. For these
of the quantum systems. models, we are concerned with the density of states, obtained
Disordered gquantum systems can in general be classifiefilom the time-evolution operator, and with the disorder-
according to their symmetries under time reversal and spiaveraged conductance of a finite sample, calculated from the
rotation. Three such symmetry classes are represented by thandauer formula. In both cases, our starting point is an
Wigner-Dyson random-matrix ensembles, while an addi-expansion for the Green function as a sum over Feynman
tional seven have been identified more recently. The modelgaths. Our central result is that the terms in this sum which
we study here belong to one of these additional classesurvive after disorder averaging can be interpreted as self-
termed class C by Altland and Zirnbade®ne feature which  avoiding classical random walks with attractive, short-range
distinguishes systems belonging to each of the additionahteractions.
symmetry classes from those in the Wigner-Dyson classes is A particular network model from class C, in two dimen-
that they have a special energy in their spectrum, with eigersions and withN=2, has been studied previously. It
states occurring in pairs either side of this energy. Some o$hows the so-called spin quantum Hall effect, having two
the additional classes have realizations as Bogoliubov—dimsulating phases, with quantized values of the Hall conduc-
Gennes Hamiltonians for quasiparticles in disordered supetance differing by an integer, separated in the phase diagram
conductors, where pairing interactions are treated at thby a delocalization transition which is analogous to the quan-
mean-field level. Here the special energy is the chemicaium Hall plateau transition. In a remarkable paper, using su-
potential in the superconductor and eigenstates are related jpersymmetry to perform disorder averages, Gruzberg, Lud-
pairs by a particle-hole transformation. In particular, class Gwvig, and Reatl(GLR) showed that many physical quantities
arises for quasiparticles in a spin-singlet superconductor inf interest in this model can be determined from the proper-
which time-reversal symmetry is broken for orbital motion ties of the perimeters, or hulls, of classical percolation clus-
but Zeeman splitting is negligibfe.Since quasiparticle ters in two dimensions. The approach we describe here pro-
charge is not conserved in a superconductor, experiments tades an alternative derivation of their results, using more
investigate quasiparticle dynamics in these systems musiementary, nonsupersymmetric methods, as well as an ex-
probe thermal or spin transport. Moreover, as the charactetension to other lattices, including ones in more than two
istic features of the symmetry class appear only close to thdimensions and irregular lattices for which transfer matrix
chemical potential, it is particularly gapless superconductorsnethods are inappropriate. It also extends to any even inte-
that are interesting: cuprate superconductors in the mixeder N. Our expressions give disorder-averaged physical
state constitute a conspicuous example. quantities for the quantum system in terms of averages over
The models we study are especially simple realizations o€lassical random walks on the same lattice. In the case
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treated by GLR these walks are simply percolation hulls, forductancg for open systems, but initially we restrict defini-
which many analytical results are available. By contrast, irtions to closed systems. Consider a graplonsisting of

the general case the properties of the classical walks are ndirected edges connecting nodes, each of degree 4, with
known. Nevertheless, the classical problem is much simpleghe restriction that at each node two directed edges enter and
than the original quantum problem, and we are able to contwo leave. AnN-component wave function propagates on
struct further examples for which it is tractable. We remarkggch edge. This propagation may be described by a unitary
that a different type of connection between quantum Halleyoytion operatot/, which evolves the wave function one

plateau transitions and percolation, based on the classicghit forward in time as the particle moves from a given edge

limit, was discussed recently in Refs. 8 and 9. to a neighboring one. The evolution operator plays the same
There are some important qualitative differences betwee le in defining the network model as does the Hamiltonian

the properties of systems from Wigner-Dyson classes an the case, for example, of a tight-binding model. This was

those from the additional symmetry classes. In particular,,. .
while single-particle quantities such as the density of stateg'scussed for theJ(1) network model in Refs. 17 and 18. In

are smooth functions of energy in the former case, in thé;eneral, it i; constrgcted from' two ingredie!’nts. First,. with
latter case they may have singularities at the special energy@ch edgee is associated a unitaf XN matrix Ue. This
which we take to be zero in the following. This is illustrated Matrix specifies thégeneralizefiphase acquired on travers-
by previous results on the behavior of models from class cing the link. Second, with each nodeis associated a$
obtained using a variety of techniqué®s® Random-matrix ~matrix of the form

ensembles with this symmetry, representing the zero- i
dimensional limit appropriate for quantum dots, have a den- _ cosf, sinb,
sity of states that vanishes quadratically in energy at energies Sh=le —sing, cosé,)’
much smaller than the mean level spacif§A similar be-

havior is expected for finite-dimensional systems if states arhere 1 is the NXN unit matrix. ThisS matrix describes
Anderson localized, on the grounds that random-matrixscattering at the node from the incoming edges to the outgo-
theory should describe states within a localization voldne. ing ones. IfG hasE edges(and thereforéE/2 nodes, thenl/
Calculations for one-dimensional systems from class C, usis an A’X N matrix, with A’=EN. It consists of£/2 blocks,

ing either supersymmetty'® or the Dorokhov-Mello- each associated with a particular node and of sixe<2N.

(1)

Pereyra-KumafDMPK) equation** confirm this idea. The block at the noda has the form
Existing information on localization in class C systems is
also provided in part by renormalization-group treatménts ui? o uiz o
of the appropriate nonlinear sigma model at weak coupling, 0 ule Sh 0 ul 2

corresponding to weak disorder. These calculations identify
two as the lower critical dimension. Thus, as in the Wigner-where(1,2) and(3,4) label the edges which are, respectively,

Dyson symmetry classes, it is only in more than two dimen+incoming and outgoing at this node.

sions that a transition occurs between localized and metallic So far, the symmetry class of the network model has not
phases as a function of disorder strength, while in one dibeen fixed, except that propagation along directed links
mension even weak disorder is sufficient to localize a||breaks time-reversal symmetry. To identify network models
states. In addition, for two-dimensional systems with brokerfrom class C, one staftsrom the defining property of a

time-reversal symmetry, including both ones from theHamiltonian{ with this symmetry, which s
Wigner-Dyson unitary class and ones from class C, a delo-

calization transition of the quantum Hall type is possible, and H*=—-o,Hoy, 3
it is this transition that has been the focus of past work on ) _ ) )
class C network modefs” where o, denotes the conventional Pauli matrix acting on

Many of these aspects, including the form of the densitySPin variables and{* is the complsx conjugate df. Ap-
of states in a localized phase and the possibility of a quanturRYing this toZ/, interpreted as{=e'"", the number of wave-
Hall plateau transition, emerge naturally from the approacffunction component& must be even, so that the space of
we describe here, which is presented as follows. In Sec. Il w&tates on each link may be viewed as consistinyA two-
introduce in detail the models that we are concerned with. Iffomponent subspaces, within whioly operates. Then Eq.
Sec. Ill we set out our general results, relating the density of3) becomes
states and average conductance for a network model to av-
erages over certain classical random walks, and present U=al oy, (4)

proofs of these results. We describe applications of thesgng from this an equivalent restriction follows on the edge
general results to the spin quantum Hall effect, to randombhasesu —o,U*o,, which are therefore unitary SNj
matrix theory, and to localization on a Cayley tree, in Sec, ices eequi(/afen)tl foN=2 to SU2) matrices

IV. Open questions and future prospects are discussed in Sec. Randomness is introduced into these models via the edge

V. phases. We take them to be independent random variables
drawn from a distribution which is uniform on the invariant
(Haap measure of Sp{). The quenched average of a given
We shall be concerned with models both for closed sysquantity in the network model, denoted by: - ), is the mean
tems andin connection with the Landauer formula for con- with respect to this measure.

Il. MODELS
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An open system is constructed from a closed system of 3
this type by “cutting open” a number of edges. The two
halves of each edge cut into two in this way constitute one
new edge directed into the system and one new edge directe;

= +
P Ip

out of the system. We may consider a conductance experi f T

ment between two “contacts” by grouping a subset of these 4

of the incoming edge&e;,} to form one contact and another

subset of the outgoing edgés,,; to form the other. The

FIG. 1. Decomposition of a given node. In the network model,

. ; : Smatrix elements cog, and = sin 6, are associated with the tran-
transmission matrix between these two contacts is a rectan-~"_. - n -,
sitions (1,2)~(3,4) as indicated on the left. Each decomposition of

. _ 71 .
gular matrix whose elements ated(1—) *|ey). The e node is then weighted with factors,=cog6, and 1-p,

spin conductance measured between the two contacts in units i -
PYI =sinré,, as indicated.
of (A/2)</h is

g=Trt't. 5 Tr(G(e,e;z))=2—L20 P(e;L)Z%. (8)

from the multichannel Landauer formula.

Clearly, a great variety of specific models can be con
structed within this framework, by making different choices
for the graphgG and for the number of channels We defer T(G(ee;z))= >, P(e;L)z 2. 9
discussion of particular examples to Sec. IV. L>0

For |z|>1, it is given instead by

Ill. GENERAL RESULTS B. Density of states

In this section we state and prove our results for a general The eigenvalues of the evolution operatofor a closed

graphg. We consider first the particular case Mt 2, and grgph lie on the_ unit c.ircle i_n the complex plane and may be
discuss the extension to genehin Sec. Il E. written as expi), with eigenphases-w<e<m for |
=1...N. These eigenphases are analogous for the network

model to the energy eigenvalues of a system specified by its

A. Green function, Feynman path expansion and classical Hamiltonian. We define the density of states to be
walks
The Green function for propagation from edg/eto edge — i Sle— e 10
eis (with N=2) a 2x2 matrix p(e) /\/Z (o(e=ep). (10
Glee';z)=(e|(1-z0)~Ye'), 6) il;:(oiwiiquence of the symmetry of E@) is that p(e)

where |e) is a state in the two-component space of wave De€finingP(L), the edge average &i(e;L), by
functions for a particle located on the edgé-or|z|<1, Eq.

(6).may bg expanded as a sum over Feynman pathg on P(L)= 1 > P(e:L), (12)
which begin one’ and end ore: each path gives an ordered E <2

product of factorszU; along edges traversed by the path,.
weighted by appropriate factors of césand +sing, for It follows from Egs.(8) and(9) that
each node through which it passes. Alternatively, we may

rewrite Eq.(6) as p(e):% 1— 20 P(L)cog2Le€)|. (12
L>

G(ee’;2)=—(e|lz UT(1—z"u" e, (7)
L . ] . C. Conductance

obtaining instead a series convergent|fr> 1, involving an , _ _ ,
ordered product of factors~*UT and an overall negative The classical scattering problem introduced in Sec. Il A
sign for each Feynman path J may also be considered for an open system. For an open

Our central result is an. expression for the disorder-3YStem withM cut "n.ks’ each decomposit!on prea@s'nto
averaged, S) trace of the Green function, T6(e,e,2)), M dwepted paths which eag:h run from an ingoing edge to an
in terms of classical paths. To state this result, we define ofutgoing one, togeth(::‘r with a numb_@POSSIbW zerd of
the same graply a classical scatteringporoblem as follows. closed Iopps..LeP(e,e ) be the pmb"?‘b"'ty that a path runs
Each node may be decomposed into two disconnected piecggfphthe 'ng%'f‘r% et(:ljge dto the outgomfgtre]dge. duct d
in two ways, viz. (13,24) or (14,23), as illustrated in Fig. 1. fined ?r?rgm(S) 'se ) |:grber average ot the conductance de-

Theorem 1The average Green function is given fat ! N EG-)IS giv y
<1 by the generating function for the probabil@®(e;L) in
the classical problem that the edgéelongs to a loop of a (g)=2 E P(e,e’), (13
given lengthL. Explicitly, ecle €2
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where sets 1 and 2 denote, respectively, the edges incident on A(e,e)=|A(e e)|"A(e e) (17)
the first contact fromg, and those incident og from the ’ ’ T

second contact. where |A(e,e)| is real andA(e,e) e Sp(2). Defining U},

D. Proofs =U.A(e,e), Eq.(16) may be written
For a closed system it is useful to introduce the resolvent 29Tr U9 Ace,e) |, (18)
R(z)EE TrG(e,e;z) (14 The invariant integration ovad, is equivalent to that over
e

Ug, so that, by lemma 1, the result will vanish unless0

[where Tr again indicates an & tracd and to generalize or q=2. Since(R({z})) is a multinomial expression in the
this to the case where the parametetakes independent parameter$z}, the argument may be applied to each edge in
valuesz, on each edge. The expansion oR({z}) as a sum turn to show that the only allowed powers of anyentering
over paths then yields a multinomial expression in allzhe  this expression are 0 or 2. This establishes the first part of the
We now require two lemmas about @p matrices. proof.

Lemma 11f U e Sp(2),then its meamth moment(U%), For paths in which each node is visited only O or 2 times,
is zero unles§j=0 or q=2, in which case it takes the value the main result follows immediately. For such a path must
1 or — 31, respectively. This can be shown using the repretraverse a closed loop in the decompositionexactly

sentationU = exp(an- o), wheren is a unit real 3 vector and Wice. At each node there will be factors of éas or

the o’s are the Pauli matrices, so that (+siné6,)?, giving precisely the correct weighting for this
loop to appear in the decomposition. The product of25p
U9=cosqal+i sinqaﬁ. o. (15) matrices along the loop will have the form

The result now follows from the observation that the invari-

. . Tr{(UU,...)(UU,... 19
ant measure for $g) is the uniform measure on the group (LU )(UiU, ) 19

H — .~ 1lrm
manifold S;, and therefore has the forfidU=7""/g(1  Thys definingu|=U,U, ..., this is equivalent to averag-
—cos )dafdn. . o ing U2, which gives— by Lemma 1. Finally, the trace
Lemma 21f G is a real linear combination of &) ma- gives a factor of 2.

trices, it is itself proportional to an &) matrix, with a real Further effort is required to treat paths which visit some
scalar constant of proportionality. This follows directly from nodes more than twice. A little thought shows that such a
the above representation for each matrix. node must be visited exactly four times, entering and leaving

The main argument in the proof of theorem 1 now pro-exactly twice along each directed edge, if the contribution to
ceeds as follows. As discussed above, for each realization qlf(z) is not to vanish on averaging. Consider such a node
the randomnesﬁ({z}) is a sum over closed directed paths 5nd |abel the incoming and outgoing edges(3%), (3,4
on g. For a particular path, each link or node may be tra-rgspectively(see Fig. 1 We show that the sum over all paths
versed an arbitrary number of times. We first show that it isjsiting this node four times may be written in terms of the
sufficient, in calculating the meafR({z})), to restrict this  two ways of decomposing this node, with precisely the cor-
sum to those paths which traverse each edge exactly twice @gct weights. LefA(i,}) be the sum over all paths from edge
not at all. Let us consider the sum of all paths in which aj ¢ (3,4) to edgé e (1,2), which do not use any of these four
particular edgee is traversed exactly times. This has the edges. The sum over paths visiting the node four times may
form be decomposed into eighteen different contributions, depend-

ing on the order in which the edges are visited. Each contains
zeTrUeA(e.0) | (16 a product of four factoré\(i,j) as well as S(2) matricesU;
whereA(e,e) denotes the sum ovetl weighted paths which andU;. There are in fact two types of contribution: in the
begin and end ore, but do not themselves traverse By  first type, two of theA(i,j) appear twice and the others not
lemma 2, this is proportional to an & matrix.° so it may  at all; while in the second type all fouk(i,j) appear once

be written as each. There are six of the first type and they have the forms
|
TrU;A(1,3)U3U,A(2,49U,4UA(1,3) UzU,A(2,4 U 8%, (20)
TrU;A(1,3)U3U;A(1,3U3ULA(2,4U4U,A(2,4U ,c%(—s?), (21)
TrU;A(1,3U3U,A(2,4U,4U,A(2,4U,U;A(1,3)Uzc?(—S?) (22)
and
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TrU;A(1,4 U ,U,A(2,3)U3U A(1,4U,4U,A(2,3)Usc?, (23
TrU,;A(1,4U,U;A(1,4U,U,A(2,3U3U,A(2,3)Usc?(—s?), (24)
TrU;A(1,49U,4U,A(2,3)U3U,A(2,3)U3U A(1,4 U ,c%(—S?), (25)

|
where we have introduced the shorthasesing, and c —|A(1,3)|2|A(2,4)|[s*+2(— 3)c?(—s?)]
=cos#¥,. [Note that Eqs(21) and(22) give separate contri- 5 )
butions toR({z}); the case is similar for Eq24) and (25)]. =—|A(L,3[?|A(2,9|%sirP 6, . (26)

As before, we writeA(i,j) =|A(i,j)|A(i,}) and note that, by Similarly, Eqs.(23—(25) sum up to
a change of integration variable, E@O) is, on averaging,

equivalent to the average of? (that is, — 3), multiplied by —|A(1,9)]%|A(2,3)|%cog b, . (27
|A(1,3)]?|A(2,4)|?s*. By a similar argument, Eq$21) and
(22) are equal to the average B£U5 [that is, (— 3)?], mul- Now consider the other twelve contributions, in which
tiplied by |A(1,3)?|A(2,4)>c?(—s?). The total of Egs. A(1,3), A(2,4), A(1,4), andA(2,3) each appear exactly
(20)—(22) is therefore once. Six of these are
|
TrUlA(1,3)U3U1A(1,4)U4U2A(2,4)U4U2A(2,3)U3C4, (28
TrU1A(1,3)U3U2A(2,3)U3U2A(2,4)U4U1A(l,4)U4S4, (29
TrU,A(1,3U3UA(1,4 U 4U,A(2,3)U3ULA(2,4U,c%(—s?), (30)
TrU;A(1,3)U3U,A(2,3)U3U A(1,4U 4 ULA(2,4U ,¢%(—s?), (31
TrU;A(1,3U3U,A(2,4U,4U;A(1,49U,U,A(2,3)Usc?(—s?), (32
TrU;A(1,3)U3U,A(2,4U,4U,A(2,3U3U A(1,4 U ,c%(—S?). (33

In addition, there are six equal contributions in which the(—1)?Tr(BC), while Egs. (36)—(39) give (—%)Tr(BC).
factors are cyclically permuted so that each beginsThe sum of all 12 such contributions is therefore
U,A(1,4).... Each term is proportional to
|A(1,3)||A(2,4)||A(1,4)||A(2,3)|. The remainder of the ex-
pressions may be simplified, for example, by redefining
U,A(1,3)=U; andU,A(2,4)=U,. This reduces Eq$28)—

1
X=5Tr(BO)|ALI||A2.4[|ALA[|A23)

33 to X (c*+s*+2¢%s?)
1
TrU;U5U;BU,ULU,U,CU5CH, (34 =5Tr A(1,3TA(1,HA(2,9 A(2,3). (40)
TrUjUzU,CU3ULU U BU,s?, (35  The important feature of this result is that itislependent of
0, . It may be written, trivially, as
TrU;jU3U1BU,ULCUZULU 4c%(—s?), 36
1U3U;1BULU,CU3U,U 4c%(—5%) (36) X pX+ (1= po)X, 1)
TrU;U3U,CU3U BULULU 4c%(—S?), (37 while the first six contributions have the forfas given in
Egs.(26) and(27)]
TrU;U,ULU,4UBU,USCU,C?(—s?) (39
peemem e ~Pal ALY A2,3]2~ (1-pp) | A(LI 2| A2,4) 2.
TrUUsULU,ULCUSULBUCH(— %),  (39) (42)

_ 5 5 _ Therefore we can obtain the same total result, after averaging
where B=A(1,3) *A(1,4) and C=A(2,4) *A(2,3). By overU, ... U,, if we decompose the nodein each of the
making suitable changes of integration variables, as beforawo possible ways, and weight the two decompositions with
we find that Egs. (34) and (35 give factors of probabilitiesp, and 1-p, respectively(see Fig. 1 For in
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the first casé€13,24 we find — |A(1,4)|%|A(2,3)|?+ X, while —-
in the second case of (14,23) we obtain — —|— X
—|A(1,3)][A(2,4) >+ X. —

Now we may simply go througky, decomposing it node
by node. The result is thdR({z})) is given by the weighted

sum over the same quantity calculated on graphs arisin ndomS matrix which mixes the two channels. After averaging,

from all pOSSIble decompos!tlpns 6f such graphs consist of this is equivalent to the decomposition shown on the right-hand
closed loops with no remaining nodes. In each decomposi:

Side, equally weighted.
tion, a given edge belongs to just one loop, and, for that qually weig

li)(;lzjﬁ o_:‘_fl]ir;g:rr]wé ;?é;heé?gtg.bzg“gn E\(;eTr(]EE)e’?r;é) ;/ (J;rj:te sive factors in the product are of two kinds. One kind is
) ¥ ' 9 y 9€  block diagonal, withN/2 random Sf2) blocks, resulting in

(fntracopy scattering; the other kind must produce intercopy
scattering and may be chosen to be nonrandom. It is conve-

' . . . nien restrict the inter rin ween corre-
So far we have considered unitary evolution on a close% ent to restrict the intercopy scattering to be between corre

. . ponding links in each copy. For example, in the case of
sys_tem. However, since the proof is constr_ucted to vx_/ork forSp(4) each pair of corresponding links is coupled as shown
arbmary values of the parametergz}, it generahz_es in Fig. 2. The evolution matrix for this pair of links consists
straightforwardly to an open system where probability is nog)f a productS of a large number of factors, each of the form
conserved at the nodes which are connected to external leads.

For example, if in Fig. 1, edges (1,3) correspond to external

leads which carry no current, then we should consider only i( U 0 )( 1 1) (44)

those Feynman paths throughwhich pass directly from 4 Y210 Uy/i-1 1)

— 2, with amplitude co#,. In the above argument, this may

be taken into account by regarding this node as a single edgethereU,; andU, are random S{2) matrices, chosen inde-

carrying an Sf2) matrix U,U,, and with fugacity pendently for each term in the matrix product.

7,7,c0s6,. With this modification, the proof of theorem 1 The advantage of this choice is that we may immediately

goes through as before. apply our main theorem to show that, after averaging over
Now consider conductance measurements on an opehe random S{2) matrices, the mean density of states and

graphg, with external contactée;,} and{e,,¢, as described mean conductance are given in terms of a decomposition of

in Sec. Il. Consider the grapfi’ formed fromg by joining  each node as before, and a decomposition of each link as

particular outgoing and incoming external edggg ande;,  shown in Fig. 2, with equal probabilities for each term. This

to create a new internal edge Observe that, in calculating construction may be generalized to Sp(for arbitrary even

(G(e,e;2)), the edgee is always traversed exactly twice. N: the result is that, in the classical system, tH& exit

FIG. 2. Implementation of a link in the $) model. It consists
f pairs of incoming and outgoing &) links, connected through a

the decomposition of. This completes the proof of theorem
1

Therefore, trajectories are a random permutation of the incident ones,
with all permutations having equal weight, independently for
<G(eout-ein ;Z)2>g:<G(e,e;Z)>gr|ze:1 (43) each edge'
SinceG(eou,€in) is given by a sum over $p) matrices, by IV. APPLICATIONS OF GENERAL RESULTS
lemmas 1 and 2(G(eu€in;2)%)=—3(|G(eou ). _ _ o
Now apply theorem 1: it follows thaf|G(eyy.ein)|?) is There are three obvious classes of behavior possible in the

twice the probability thag;, ande,, are connected by a path Classical scattering problem which we have arrived at, corre-
in the decomposition of. Summing over all the edges,  SPonding to loops, or closed classical walks, that are local-

and e, as required by Landauer formuig) then gives the 1z€d, extended or critical. .
result stated in theorem 2. By localizedclassical walks, we mean that only a vanish-

ing fraction of walks have infinite length, and that the num-

ber of walks longer than a characteristic sigedecreases

rapidly with ¢&. One might have, for exampleP(L)
Our approach to the SN) model with evenN>2 is  ~exp(—L/§) for L>¢. Then the fraction of loops longer than

based on the fact that a general Bp(otation can be written L, given by

as a product of rotations derived from a limited number of

generators. Moreover, under rather weak conditions, the L

probability distribution of such a product containing random f(L)=1—E P(), (45)

factors will converge as the number of factors increases to =1

the Haar measure on 9y): the requirement is simply that

no subspace is left invariant by the ensemble of rotations.
We therefore build the Sp{) model ong by takingN/2

copies of the S{2) model, each individually defined o,

and coupling the copies together. This coupling takes the <|_2>: E P(L)L2, (46)

form of a product of many noncommuting matrices. Succes- =0

E. General N

approaches zero ds—«. As a consequence(e)—0 ase
—0. Introducing the mean-square length of loops,
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provided(L?) is finite, p(€) vanishes quadratically, varying
as

p(E):(’]T)71<L2>62+O(64). (47) - -

This is the behavior expected in the localized phase of the c s s c c s
guantum problem. Moreover, if classical walks have a char- Y
acteristic size¢ and if G is embedded in Euclidean space,
then we expect the conductance to decrease rapidly with in A A
creasing contact separation, for separations larger ghan

Alternatively, classical walks arextendedf a finite frac-
tion has infinite length, so that lim,..f(L)>0. In this case, -4 -
p(0)=(27) () is nonzero, which we expect in the ex- Ky IS C s Ky C
tended phase of the quantum problem. Clearly, the form of ' '
p(e) at smalle is determined by that of(L) at largeL: if
f(L)—f(e)~L™* with 0<x<2 then p(e)—p(0)x|el*, A
while if f(L)—f(c) falls faster thanL 2 at largeL, then
p(€)— p(0)~ €. Itis an interesting consequence of EiR)
that p(€) is bounded, and so a divergence in the density of > -
states, as occurs for example in class D localization prob- C Ky Ky C C S
lems, is excluded in class C network models, whatever the
choice for G. In the extended phase for a system in
d-dimensional Euclidean space, Ohm’s law dictates that the .
two-terminal conductance should vary with the separation, FIG: 3. The network model for the spin quantum Hall effect,
|”’ between terminals and their cross-sectional areaas defl_ned usmg t_heL lattice. Scattering amplitudes of cosé, and
] L . *sin g, are indicated byt c and £s.
|7/l for largel,l, ; this places strong constraints on the
behavior in the corresponding ensemble of classical walkssize £ except at the critical pointp=p., which for bond
suggesting that, on large distance scales, they should behagercolation on the square lattice occurspat 1/2. On ap-
like free random walks. proaching the critical point diverges ag~|p—p¢| ~” with

Classical walks that areritical have no characteristic v=4/3, while at the critical point the distribution of hull
loop size, and a vanishing fraction that are of infinite lengthlengths isP(L)~L ™Y at largeL, with y==8/7. In this way
Then f()=0, and a possible behavior f&(L) is P(L)  one finds that the quantum localization length diverges with
~L 7Y at largeL, with y>1. The resulting quantum density the same exponent valug=4/3, as the plateau transition is
of states has the critical behavip(e)~|e[Y ! for smalle. ~ approached, and that the density of stai¢s) varies for
The conductance of such a system is expected to depend §ma|{/7€ as p(e)~¢€” in the localized phase, and gge)
the geometry of sample and contacts, but to be unchangeﬁ|6| at the critical point.
under a rescaling of all spatial dimensions.

The task that remains, given a particular model for quan-
tum localization, specified by the graghand values for the The simplest application of our discussion of Sp(mod-
node probabilitiesp,,, is to determine the behavior of the els with generaN is to random matrix theory. To this end,
corresponding classical walks. In general, this remains &€ takeg to consist of a single edge closed on itself. Then
challenging open problem with connections to previouslythe evolution operata/ is a random Sp{) matrix, chosen
studied random-walk problems which we summarize in SecWith the Haar measure. In this case the density of siate}

V. In particular instances, however, relevant properties of théS the eigenphase density for the Sp(random-matrix en-
classical walks can be calculated; we describe three ex@@mble, which has been determined previously by

amples in the remainder of this section. Zimbauet® using supersymmetry methods. _
Applying to this problem the approach we have described

in Sec. lll E, we must consided/2 copies of an edge, which
are closed by connecting outgoing ends to a permutation of
A two-dimensional model exhibiting the spin quantum ingoing ends. For example, the calse=4 corresponds to
Hall effect is obtained by taking to be theL lattice, illus-  joining opposite ends of the two possibilities shown in Fig.
trated in Fig. 3. As GLR have shown, the two possible clas2, thus producing with equal probability either two loops,
sical decompositions of a node may be associated with theach of length 1, or a single loop of length 2. For gendkal
presence or absence of a bond, with probabilifesnd 1 all possible lengthd. up to N/2 are possible, with equal
—p, between neighboring sites on an associated square Id@robability. ThusP(L)=2/N for 1<L<N/2, andP(L)=0
tice. This associated lattice is rotated by 45° relative toLthe Otherwise. Using Eq(12) we thus find
lattice, and has a larger lattice s_pacing by a fa@/@r_ln th_is N+ 1 sin(N+1)e
way, closed loops of the classical problem form interior or ple)= 1- -
exterior hulls of bond percolation clusters on the larger lat- 2aN (N+1)sine
tice. It is known that such loops are finite with characteristicin agreement with Ref. 10.

B. Random matrix theory

A. Spin quantum Hall effect

, (48)
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This can be solved by using the generating functi®{e)
=X,-,Z'P(e;3r): we obtain

G(z)=zp*+2zp(1-p)G(2)+(1—-p)?zG(2)%. (50
We take the branch d&(z) such thatG(0)=0; thus

[1-2zp(1—-p)—V1-4zp(1—p)].
(5

Whenz=1, y1—4zp(1l—p) is equal to -2p for p<1/2
and 20— 1 for p>1/2. Therefore, fop>1/2, G(1)=1, so
that all walks are localized. The characteristic loop size is
given by

S i)

G 3

(L)=3 =5
iz|, , 2p—1

(52)
However, whenp<1/2, G(1)=[p/(1—p)]?><1. Thus in
this case a proportion-1G(1) of the walks do not close;
they are extended. For such walks, E&p) is invalid since it
describes only closed walks of a finite length. per 1/2 and
large L e Z, we find the critical behavioP(e;3L)~L 32

The corresponding density of states in the quantum system
(defined locally on an edge far from the surface, to avoid
surface effectshas the behavior

( 1
62, p>§
1/2 1
p(e e p=3 59
t <1
cons =
\ p 2

FIG. 4. The graphg for a network model based on a rooted  \We can extend this analysis to consider coordination num-
Cayley tree. An example with coordination numlogr 3 and four berq>3; then

generations is shown; the system size is increased by increasing the
number of generationsSmatrix amplitudes at nodes are ab$o G(2)=7p+(1—p)G(z)]9 L. (54

remain at the same generation, ahdin 6 to change generations. Thus zy=(1—p) X(q—1)* 9[(q—2)/p]® 2 locates the

unigue branch point o6(z). The complex roots of the two
branches ofG(z) corresponding toG(1)=1 (all paths of

A solvable model which illustrates each of the types offinite length andG(1)=W (whereW s the fraction of paths
behavior—localized, extended, and critical—for classicalwhich are infinitg, coincide atp=(q—2)/(q—1). We con-
loops is based on the geometry of the Cayley tree. Specificlude that forp>(q—2)/(q—1) all walks are localized,
cally, we takeg to be a graph of the type illustrated in Fig. 4; whereas forp<(gq—2)/(q—1) there exists a fractiolV of
the W(1) network model on such a tree has been studiegxtended walks. In addition, we find that the critical behavior
previously in Ref. 20. We restrict attentionkb=2 and con-  P(e;qL)~L %2 holds for allg=3. In the localized phase,
sider first coordination number=3. As previously, we de- the typical loop length is given by
fine P(e;L) to be the probability that the edgeof the root,

C. Cayley tree

far from the surface of the tree, lies on a given closed loop of (Ly= q _ (55)
lengthL. Then pP—(1-p)(q—2)
Thus, with the critical valugp,=1/2 replaced byp.=(q
P(e:3L)= DZ5L,1+ 2p(1-p)P(e;3L—3) —2)/(g—1), the behavior of the density of states is the same

as in theq= 3 case. The critical exponents are therefore uni-
versal and independent of In fact, we note that there is a
+(1—p)22_ P(e;3m)P(e;3L—3m—3). one-to-one correspondence between walks on the Cayley
m=1 cactus and percolation clusters on the Cayley tree; therefore
(49  the critical exponents are related to those of percolation.

L-2
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distinct phases can be identified from the different natures of
edge states in the limigs— 0 andp— 1, while for the Man-
- - - hattan lattice there are no edge states in either limit. Equiva-
lently, the Hall conductance of the model on thdattice
' ' may be nonzero, being determined at short distances by the
value of p, but quantized at large distances, while on the
A A Manhattan lattice the Hall conductance always has an aver-
age value zero. Consequently, one expects from the scaling
flow diagram for quantum Hall systefis and the
' ' renormalization-group calculations for the class C nonlinear
sigma model at weak coupliffgthat states of the Manhattan
A A model should be localized for afi>0. Since classical tra-
jectories on the Manhattan lattice cross at nodes with prob-
- - - ability p, they are not the hulls of percolation clusters. Nev-
V ' ertheless, it is straightforward to use bond percolation on a
lattice which has a lattice spacing larger by a fagf@rand is

A A rotated by 45° relative to the Manhattan lattice to set an
upper bound on loop sizes: this is sufficient to prove local-
-4 -4 - ization for p>1/2, and forp=1 classical loops are simply
the elementary plaquettes @f Conversely, ap=0 classical
trajectories are simply straight lines, and so one expects the
) ) localization length to diverge gs— 0.

FIG. 5. The Manhatt_an lattice. In Fhe network moo&‘»ma}tnx A second variant on the spin quantum Hall effect can be
elements of cog and:_rsma are as_soc_lated, re_spec_tlvely, with 90° ~onstructed by considering the $f)(model on thel lattice,
turns at nodes and with propagation in a straight line. but with N>2. It is natural to anticipate from the scaling
flow diagram proposed for quantum Hall systéfrthat this
model should havl/2 delocalization transitions as the node

In this section we outline directions for future work. parametemp increases fronp=0 to 1. Between transitions,
These are of two kinds. First, one can imagine a variety obtates are localized and the Hall conductance is quantized. As
models which are likely to exhibit phenomena not shown ina transition is approached, the localization length diverges,
the examples treated in Sec. IV. Second, one can hope ®1d on passing through a transition, the number of edge
make use of connections between the classical random wallgates and the quantized value of the Hall conductance both
that arise in our approach and statistical problems studiedhange by two. It remains a challenge to understand how or
previously. Further work on both these aspects is inwhether such a behavior arises in the language of classical
progres$>?? In general, the equivalent classical problemswalks, and might be interesting to relate the lahyéimit of
correspond to self-attractive random walks of various kindsthe lattice problem to the field theory discussed in Ref. 16
They are attractive because the weight for passing through a A third direction is to consider models defined on graphs
given node twice ig, rather thanp?. However, the actual in three or more dimensions. A three-dimensional version of
behavior is expected to depend very much on the individualhe U1) network model has been studied previously using a
lattice. Many of these problems correspond to the classicdiyered systef? and models with cubic symmetry may also
scattering of light by random arrays of mirrors: for example,be constructed. For systems in three and higher dimensions,
in each decomposition of Fig. 1, a two-sided mirror can beone expects that both localized and metallic phases should be
placed so that the classical trajectory reflects off it. Suchpossible, each existing over a range of values for node pa-
problems have been studied extensiély° They may also rameter,p, with a transition between the two at a critical
be realized in terms ohistory-dependent kineticandom value p=p.. Since in two dimensions it is known that the
walks, in the sense that the walker may be thought of agheta-point transition between collapsed and swollen phases
placing a mirror at random the first time it reaches a node: iof a self-attracting polymer chain has the same exponents as
it revisits the node, however, the mirror is already in placethose of percolation hulf€ it is tempting to suggest that in
This puts such models in the class of so-called “true” self- higher dimensions this delocalization transition might also be
avoiding walks, which have been studied using field-in the theta-point universality class. If so, we would expect a
theoretic renormalization-group methods in the limit of weakmean-field behavior, with logarithmic corrections fib+ 3.
scattering’ Interestingly, such studies indicate a critical di-
mension olf two,.just as for Anderson Io.caliza'tion. ACKNOWLEDGMENTS
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