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Ab initio melting curve of the fcc phase of aluminum
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The melting curve of the face-centered culficc) phase of aluminum has been determined from O to
~150 GPa using first-principles calculations of the free energies of both the solid and liquid. The calculations
are based on density functional theory within the generalized gradient approximation using ultrasoft Vanderbilt
pseudopotentials. The free energy of the harmonic solid has been calculated within the quasiharmonic approxi-
mation using the small-displacement method; the free energy of the liquid and the anharmonic correction to the
free energy of the solid have been calculated via thermodynamic integration from suitable reference systems,
with thermal averages calculated usialy initio molecular dynamics. The resulting melting curve is in good
agreement with both static compression measurements and shock data.
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[. INTRODUCTION used phase coexistence to determine the melting temperature
as a function of pressure, with results considerably lower
The determination of the melting curves of materials tothan previous theoretical and experimental estimates; they
very high pressures is of fundamental importance to our unebtained a zero-pressure melting temperature-G20 K.
derstanding of the properties of planetary interiors; howeverStraubet al*® used first-principles calculations to construct
obtaining such melting curves remains a major challenge tan optimal classical potential and used this potential to cal-
experimentalists and theorists alike. In particular, the meltingulate the free energies of the solid and liquid using molecu-
behavior of iron is of great interest to the Earth science comtar dynamics; they obtained a zero-pressure melting tempera-
munity, since knowledge of this melt transition would help tyre of 955 K.
constrain the temperature at the inner core boundaioput The first fully ab initio determination of aluminum melt-
1200 km from the center of the Eajtwhich is currently  jng behavior is that of de Wijet al.!® who obtained the
uncertain to within a few thousand degrees. Although severglerg-pressure melting point by calculating the free energy of
attempts have been made to obtain the melting curve of ironne soid and liquid entirely from first principles. Their cal-
experimentally and theoretically determined melting curves, jations were based on density functional the¢BFT)
vary widely with significant disagreement between static(Ref_ 20 using the local-density approximaticDA) for

. 5 . _
Ccr)irr?cri)r?esssgglcmaet?jr?@rirg ?;Ti;jhggﬁﬂ d"’;ﬁe’ trjgdna];zf; of the exchange-correlation energy. The free energy of the solid
Fhe mrt)eltin curve of ir(-)n remain(i in sc))/;ne dispute was obtained as the sum of the free energy of the harmonic

9 pute. solid, within the quasiharmonic approximation, and the full

In order to test the reliability of the theoretical techniques . o . .
used in our previous work on iron and to validate further thegnharmomc contribution, calculated using thermodynamic

reported melting curv&® we have calculated the melting integratiort” using the harmonic solid as the reference sys-
curve of aluminum, for which there is a plethora of ambient!€M- For the liquid they used thermodynamic integration
experimental datde.g., Ref. 11 and for which the experi- With @ Lennard-Jones fluid as the reference system. They
mental melting curve has recently been meastfelf. obtained a melting temperature of 890 K. More recently, Jes-
In the past, a number of theoretical approaches have be&@n and Maddéri used the orbital-fre¢OF) variant of ab
used to investigate the melting behavior of aluminum. Mori-initio molecular dynamics and thermodynamic integration to
arty et all® used the generalized pseudopotential theorycalculate the free energy of liquid and solid aluminum. They
(GPT) to calculate the free energy of both the solid and lig-found a melting temperature of 615 K, attributing the dis-
uid. They treated the solid harmonically within the quasihar-crepancy with the DFT-LDA value of de Wijst al*®to ei-
monic approximation and for the liquid they used fluid varia-ther the OF approximation or the pseudopotential used.
tional theory, where an upper bound for the free energy is In this paper we present the first fulpb initio calcula-
calculated from a reference system constructed within GPTions of the entire melting curve of aluminum from 0 to 150
They obtained a melting curve to 200 GPa in fair agreemen&Pa. Our calculations are similar in the general principles to
with more recently determined experimental d4ta* pre-  those of de Wijset al!®in the sense that we calculate thie
dicting a zero-pressure melting temperature of 1050 K cominitio free energies of both liquid and solid using thermody-
pared to the experimental value of 933'KMei and namic integration, although we use the generalized gradient
Davenport® used the embedded atom modEAM) based approximation(GGA) (Refs. 24 and 2bfor the exchange-
on an analytical potential fitted to the structural properties ofcorrelation energy. In addition to extending the calculations
aluminum. They calculated the free energies of the solid antb a wide range of pressures, we also present a more efficient
liquid and obtained a melting temperature at zero pressure @pproach to the thermodynamic integration scheme, in which
800 K. Morris et all” employed the same EAM but they additional intermediate steps are introduced in order to mini-
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mize the computational effort. Finally, we discuss some posangle, the difference in the slopes being the entropy change
sible limitations of the GGA. on melting. For aluminum this is about kg/atom at zero

Since the stable low-pressure phase of solid aluminum ipressure, which means that an error of 0.01 eV/atom in either
face centered cubi¢fcc) we have determined the melting G or G, results in an error 0580 K in the melting tem-
curve by comparing the gibbs free energies of liquid and fcqerature. Therefore, it is important to reduce noncanceling
aluminum. In the high-pressure—high-temperature region therrors between the liquid and solid to an absolute minimum.
stable solid phase may be differdmero-temperaturab ini-  In the next sections we give a detailed discussion of the
tio calculations suggest that aluminum undergoes two phasechniques that we have used to calculate the free energies of
transitions, one at 20 GPa where it becomes hexagonal closke liquid and solid, and report what tleentrollable errors
packed and a second at 40 GPa where it becomes body ceare: those due tk-point sampling, finite size, and statistical
tered cubi€®). The calculation of the high-pressure—high- sampling. We also try to give an estimate of what tineon-
temperature phase stability of solid aluminum goes beyondrollable errors due to the DFT-GGA may be.
the scope of this work, but if the high-T phase was not fcc,
this would only mean that our reported melting curve would
be a lower bound to the actual melting curve. Ill. FREE ENERGY OF THE LIQUID

The.p_a_per_ is org_anized as follows: in Sec. Il we describeé  The Helmholtz free energf of a classical system con-
the ab initio simulation techniques and the strategy to Calcu'taining N particles is
late the melting curve; in Secs. Ill and IV we describe the
calculations of the free energy of the liquid and solid, respec-
tively, and in Sec. V we present the melting properties of

aluminum. F:—kBTIn{ !

N!ASN

1)
II. Ab initio SIMULATION TECHNIQUES AND STRATEGY

FOR MELTING where A =h/(27MkgT) 2 is the thermal wavelength, with

In the present work, the aluminum system was repreM the nuclear masg) Planck’s constantkg the Boltzmann
sented by a collection of Al ions and N electrons, where constant, angB=1/kgT. The multidimensional integral ex-
N is the number of atoms. The ions were treated as classici#nds over the total volume of the systém
particles, and their motion was adiabatically decoupled from A direct calculation ofF using the equation above is im-
that of the electrons via the Born-Oppenheimer approximapossible, since it would involve knowledge of the potential
tion. For each position of the ions, the electronic problemenergyU(R,, ... ,Ry;T) for all possible positions of thil
was solved within the framework of DR(Ref. 20 using the atoms in the system. We have used instead the technique
GGA of Perdew and Wany:% Thermal electronic excita- known as thermodynamic integratiéhas developed in ear-
tions were included using the standard methods of finitelier papers®3#3®This is a general scheme to compute the
temperature DFT developed by Mernfift?® The present free energy differenc& —F, between two systems whose
calculations were performed with the codesp,®® which is  potential energies arel and Uy, respectively. In what fol-
exceptionally efficient for metals. The interaction betweenlows we will assume théf is the unknown free energy of the
electrons and nuclei was described with the ultrasoft pseudab initio system and-, is the known free energy of a refer-
potential(USPP method®! We used plane waves with a cut- ence system. The free energy differeffice F, is the revers-
off of 130 eV. The Brillouin zone was sampled using ible work done when the potential energy functithy is
Monkhorst-PackMP) special point¥ (the detailed form of  continuously and reversibly switchedtb To do this switch-
sampling will be noted where appropriat&he extrapolation ing, a continuously variable energy functidh, is defined
of the charge density from one step to the next in dire  such that foln=0, U,=U,, and forn=1, U,=U. We also
initio molecular dynamics(AIMD) simulations was per- requireU, to be differentiable with respect to for O\
formed using the technique described by Affevhich im-  <1. A convenient form is
proves the efficiency of the calculations by almost a factor of
2. The time step used in our simulations was 1 fs.

To calculate the melting temperature we calculated the
Gibbs free energy of both the solid and liquid as a function ) ) ) ) )
of pressure and temperatu@,(P,T) andG,(P,T), and at wherg f(\) is an arbitrary continuous and differentiable
each choserP obtained the melting temperatufle, from  function of A with the propertyf(0)=0 andf(1)=1. The
G(P,T,)=G,(P,T,). In fact, we calculated the Helmholtz Helmholtz free energy of thibybrid system is
free energyF(V,T) as a function of volume and temperature,
and the Gibbs free energy was obtained from the usual ex- 1
pressionG=F+ PV, whereP= —(JF/3V)+ is the pressure.  F, =—kgT In{ _f dR;- - -dRye AURL R
The main problem in determining melting curves with this NIASN v
technique is the high precision with which the free energies 3
need to be calculated. This is because the Gibbs free energy
curve of the liquid crosses that of the solid at a shallowDifferentiating this with respect ta gives

Uy=[1-f(N)]JUp+f(MU, 2

214105-2



AB INITIO MELTING CURVE OF THE fcc PHASE OF . .. PHSICAL REVIEW B 65 214105

AUy
—— | drR;- - -dRye AUrR1. .- Ry T)<_ _)
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SO0 two calculations was less than a few meV/atom. We return
later to estimate the errors in our calculations in Sec. Il E.
B [t U, As pointed out by Jesson and Madd@m possible prob-
AF=F—-Fo= o dx YN ) lem in the calculation of the thermodynamic integral is that

the systemlJ, may be in the solid region of the phase dia-

For our calculations we defindd, thus: gram, even though the two end membggsandU are in the
liquid region. If this happens, the system can freeze during
U,=(1-N)Up+rU. (6) the switching, and the integration path is not reversible, lead-

ing to an incorrect result. For small systems the situation is
DifferentiatingU, with respect to\ and substituting into Eq.  even more problematic, since the phase diagram is not de-
(5) yields fined by sharp boundaries, and the system can freeze even if
it is above the melting temperature of the corresponding sys-
AF= fldh _ tem in the thermodynamic limit. We have ourselves experi-
= (U=Ug)y- (7) : _ !
0 enced freezing of the system for some simulations at tem-
peratures very close to the melting point; in order to avoid
Under the ergodicity hypothesis, thermal averages arghcluding the results from these simulations, we carefully
equivalent to time averages, so we calculaeph using  monitored the mean-square displacement and the structure
AIMD, taking averages over time, with the evolution of the factor of the system, and included only those simulations in
system determined by the potential energy functign The  which these two quantities clearly indicated liquid behavior
temperature was controlled using a Nakermostat’+*® throughout the whole simulation.
To evaluate the integral in E§7) one can calculate the |t is important to stress that the choice of the reference
integrand(U —U,), at a sufficient number ok and calcu-  system does not affect the final answer faralthough it
late the integral numerically. does affect the efficiency of the calculations. The latter can
Alternatively, one can adopt the dynamical method de-he understood by analyzing the quanifty —U,), . If this
scribed by Watanabe and Reinhaftitn this approach the difference has large fluctuations, then one would need very
parameteln depends on time and is slowladiabatically  |ong simulations to calculate the average value to a sufficient
switched from 0 to 1 during a single simulation. The switch-statistical accuracy. Moreover, for an unwise choicelgf
ing rate has to be slow enough so that the system remains e quantity(U—U,), may strongly depend ok so that one
thermodynamic equilibrium and adiabatically transformswould need a large number of calculations at diffefestin
from the reference to thab initio system. The change in free order to compute the integral in E€f) with sufficient accu-
energy is then given by racy. It is crucial, therefore, to find a good reference system,
where “good” means a system for which the fluctuations of
U—U, are as small as possible. In fact, if the fluctuations are
small enough, we can simply write— Fy=(U —Ug)q, with
the average taken in the reference ensemble. If this is not
where Ty, is the total simulation time\(t) is an arbitrary  good enough, the next approximation is readily shown to be
function oft with the property of being continuous and dif-
ferentiable for Gst<1, A(0)=0, and\(T,)=1. 1
When using this second method, it is important to ensure £_g _/(j— e T U — ) — 2
that the switching is adiabatic, i.e., thai, is sufficiently F=Fo=(U=Uo)o~ g7 (LU~ Uo=(U=Uo)o 0.
large. This can be achieved by changidrom 0 to 1 in the C)
first half of the simulation and then from 1 back to O in the
second half of the simulation, evaluatidg= in each case; This form is particularly convenient since one only needs to
the average of the two values is then taken as the best essample the phase space with the reference system and per-
mate forAF, and the difference is a measure of the nonadiaform a number ofab initio calculations on statistically inde-
baticity. If this difference is less than the desired statisticapendent configurations extracted from a long classical simu-
uncertainty, one can be confident that the simulation time igation. We considered the second-order truncation to be
sufficiently long. sufficiently good where the second term on the right-hand
In our calculations we chose a total simulation time ofside of Eq.(9) was only of the order of a few melsee Sec.
sufficient length such that the difference Ak between the [IIC).

Tsim d)\
Asz dt——(U—-Uy), (8)
0 dt
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TABLE |. Components of the free energy of the liquitiF = F—F 5, whereF is the free energy of the
ab initio system calculated witR' point sampling and the adiabatic switching techniffgg. (8)]; the errors
are estimated from the difference between switching flom0—1 andA=1—0. Fs is the free energy of
the reference system. The last column contains the valued(Bfa)/2kgT given by Eq.(12) for B
=1.858 anda=6.7.

1
VA) T (K AF (V)  (UsggUpy At 10w UrmUa Ui g o iy

9.5 5000 —6.87706) 0.05716) 0.00081) 0.0266
9.5 5500 —6.890922) 0.05796) 0.001@1) 0.0282
9.5 6000 —6.907833)  0.0586) 0.00141) 0.0250
10.0 4500 —6.676856) 0.0124
10.0 5000 —6.688@34) 0.0089
10.0 5500 —6.70462) 0.05525) 0.00091) 0.0233
12.0 2700 -—6.078961) 0.0177
12.0 3000 —6.082727) 0.0174
12.0 3500 —6.088142) 0.04965) 0.00141) 0.0180
14.0 2000 —5.634731) 0.0132
14.0 2500 —5.639510) 0.04336) 0.002@3) 0.0170
16.5 1000 —5.16666) 0.0150
16.5 1400 —5.173210) 0.0128
16.5 1700 —5.177435) 0.03984) 0.00192) 0.0114
17.5 1300 —5.004911) 0.036512) 0.004417)

185 1200 —4.849330) 0.03731)) 0.003912)

195 800 —4.690@10)

19.5 1000 —4.69812) 0.037513) 0.006618)

19.5 1200 —4.703220)

A. Reference system formed the optimization at the three thermodynamic states of

We mentioned earlier that the efficiency of the calcula-the extremes of hige/T and low P/T, and also a point in
tions is entirely determined by the quality of the referenceP®tween; we found that the single choiceBot 1.85 A and
system, i.e., by the strength of the fluctuationsAdf = U a=6.7 was equ_ally good for all statg® support this state-
—U,. The key to the success of these simulations, thereford€nt we report in Table | the value d{B, a)/2kgT] and we
is being able to find a reference system such that the fluctudherefore used these two parameters for all our calculations.
tions inAU are as small as possible. Based on the experiendg®" lllustrative purposes, we also show in Fig. 1 the value of
of previous work on liquid A(Ref. 19 and liquid Fe(Refs. ~ the quantity in Eq(12) as a function of and « for the
6 and 8 we experimented with the Lennard-Jor(es) sys- thermodynamic stat¥=9.5 andT=5000 K. For this state
tem and an inverse power potentiH?). Analysis of the fluc-

5
tuations inAU indicated that the system which best repre- ' ' ' ' ' ' ' '
sented the liquid was the IP: - i
1 - {7
Up=5 2 #(IR =Ry, (10
i#J 5 i
where i 1 a
B\ |
(1) =4 7) , (11
4 11
wheree=1 eV. The potential parameteB® and a« were

chosen by minimizing the quantity 178 18 184 188 102

d(B,a)=([Ujp(B,a) ~U—(Up(B,a)—U)1?), (12 B (A)

with respect tB and«, where() means the thermal average  FiG. 1. Numerical value of the quantit B, «)/N as a function

in the ensemble generated by tale initio potential. To in-  of B and« for the thermodynamic staté=9.5 andT=5000. The
vestigate whether the optimum values for the potential panumber of atoms i&\=64. The distance between contour levels is
rameters depended strongly on thermodynamic state, we pes-005 e\’
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the valuesB=1.85 A anda=6.7 do not correspond to the at a finite distance we used the Ewald technique. Our results

actual minimum ofd(B, «), but the numerical distance from were fitted to a third order polynomial it
the minimum is very small. It is interesting to notice that this 3

guantity depends rather weakly on the exponentf the f(§)=2 o
inverse power potential, provided that also the valu® i e S
adjusted accordingly.

It may be surprising that such a simple inverse powerThe coefficients are: ¢,=2.4333, ¢;=27.805, c;
potential can reproduce the energetics of the liquid with suf=—5.0704, andc;=1.5177, and the fitting function repro-
ficient accuracy, since simple repulsive potentials cannot deduced the calculated data such that the errorg pwere
scribe metallic bonding. One may think that a more realisticgenerally less than 1 meV per atom.
potential such as those based on the EAREfs. 16 and As an additional check on the calculated free energy, we
40-42 would be more appropriate, since these potentialgepeated most of the simulations using the perfect gas as the
explicitly contain a repulsive and a bonding term. However,reference system, thereby avoiding the inclusion of any pos-
in our recent work on irohwe tested the use of an EAM sible errors that may exist in the free energy of the LJ system
potential as a reference system and found that the bondirigported in the literatur& For these calculations we used a
term is almost independent of the positions of the atomsdifferent form forU, : namely,
depending only on the volume and temperature of the sys-
tem, and the fluctuations of the energy are almost entirely Uy=\Up 17)

due to the repulsive term. Since the only relevance in thi . :
work is the strength of the fluctuation&q. (12)], little is ztgs e[;(;tienn:lha; $On ri:g{a(got?q?g)rfggtcg;zf zero, so does not
gained by using an EAM rather then a much simpler inverse '

power potential.

(16)

1
Fip—Fpc= f dN2M(Up)y - (18
B. Free energy of the reference system 0

Consider the excess free energy of the F=Fp The advantage of using this different functional form by
—Fpg, WhereFpg is the Helmholtz free energy of the per- is that the value of the integrand does not need to be com-
fect gas andF,p the total Helmholtz free energy of the |p Putéd fork =0, where the dynamics of the system is deter-
system. The very simple functional form &f , makes it mined by the perfect gas potential. In this case, since there

easy to show that the adimensional quanf§}/kgT can are no forces in the system there is nothing stopping the

only depend nontrivially on a single thermodynamic vari- atoms from overlap_pmg, a_nd the potential e_netgbs di-
able, rather then separately ¥rand T: verges. Not computing the integrandxat O partially solves
this problem, but for small values of where the forces on

FkgT=£({), (13)  the atoms are small, the atoms can come close together and
_ the potential energy fluctuates violently. However, we
with found that by performing long enough simulations, typically
£=BIV3K,T. (14) 1 ns, we could calculate the integral with an accuracy of

~1 meV/atom, and, within the statistical accuracy, we
The free energy of the IP has been studied extensively in thiound the same results as those obtained using the LJ refer-

6
U|_J=48

past?® but only for special values of the exponentwhich  ence system.
did not include our owrx=6.7. We have therefore explicitly
calculated the free energy of our inverse power potential us- C. Free energy of theab initio system
ing thermodynamic integration as before, but this time we I -
started from a system of known free energy, the Lennard- To calculate the fullab |n|'.[|o.free energy of t_he liquid,
Jones liquid, whose potential function is given by Fiq,» We used thermody_namlc integration, starting frqm the
IP system. The calculations were performed at 19 different
o\2 | thermodynamic states over a range of voluni@$-19.5
(? —(? (15  A%atom and temperatureé300—6000 K. To support the
quality of theab initio calculations, we show in Fig. 2 the
The free energy of the Lennard-Jones liquig, has been calculated radial distribution function for liquid Al compared
accurately tabulated by Johns@t al** To calculateF,,  with experimental dat® To address the issue d&-point
—F;=AF_;_p we used simulation cells containing 512 at- sampling and cell size errors in the free energy difference
oms with periodic boundary conditions and a simulation timeF;,—Fp, tests were carried out on cells containing up to
Tsm=200 ps. We performed the calculations foranging 512 atoms and a X44X4 k-point grid, atV=19.1 andT
from 2.5 to 6.25, with steps of 0.25. The calculations were=1023 K. The free energy differendg,—F was calcu-
done at a fixed volume of 143atom and varying tempera- lated using the perturbational approdéhy. (9)], with sets of
tures according to Eq.14). We carefully checked that the configurations generated using the IP potential. We found
results were converged to better than 1 meV/atom with rethat a 64-atom cell with a 83X 3 k-point grid was suffi-
spect to the size of the simulation cell and the length of thecient to get convergence to within 4 meV/atom. These results
simulations. To avoid truncating the inverse power potentiabre summarized in Fig. 3. However, we were reluctant to

214105-5



LIDUNKA VOC ADLO AND DARIO ALFE PHYSICAL REVIEW B 65 214105

3 r T T T T r T r T T T T T T T T T T T T T T T T T

2.5

o
o
b4
|

UL-U (V)
o L@
g8 - 8

o
%
&

T
N
o
S
T
|

n -
(=2
- 1
(=1
—_
>

S ; I3 4
r &) A
FIG. 2. Calculated radial distribution function for liquid Al at ~ F!G- 4. Ujp—U as a function of. The dashed line showsp
Vv=19.1 A® and T=1023 K (solid line compared with experi- —U obtained from Eq(8) over a total simulation time of 5 ps; the
mental dataRef. 45 (dashed ling solid circles show(U—U), calculated forn=0, 0.5, and 1
[Eq. (V)].

perform simulations using the desireck3x 3 k-point grid
[14 points in the Brillouin zondBZ)] since these calcula- this, we performed spot checks at two thermodynamic states,
tions are extremely expensive. We found it more efficient tovhere we calculated the full thermodynamic integFaks
add one further step to our thermodynamic integration—Fp using adiabatic switching with a switching time of
scheme: ~2 ps, and found the same results to within a few meV/
atom.

The free energy differencAFp_, r=Fr—F,p was ob-
tained by full thermodynamic integration between #teini-
tio and reference system using adiabatic switchigg. (8)]
whereU;z;andU - are theab initio total energies calculated with a switching time of 5 ps, which resulted in errors of 1
using the 33x3 k-point grid andI'-point sampling, re-  (4) meV/atom in the low(high) P/T region. To test this, we
spectively, and=333 andF- are the corresponding free ener- giso calculated this free energy difference at several state
gies. To evaluate the free energy different&r 333 We  points by numerical evaluation of the thermodynamic inte-
noticed that the Qiﬁerencég,sg— Uy did not.depend.signifi— gral [Eq. (5)], with A=0, 0.5, and 1; we found that this gave
cantly on the position of the atoms, so the integral NB§)  {he same numerical answer to within our statistical errors.
could be evaluated using the second-order forfiita (9)].  \we report in Table | the results of the various steps of ther-

Using a longl’-pointab initio simulation, we extracted up t0 4y namic integration together with the statistical errors. In
25 statistically independent configurations and calculated thgig 4 we show the value afo— U as a function of for an
: P

ab initio energies using the 383X 3 k-point grid. To test adiabatic switching simulation withV=95 and T

=5500 K. We also plot on the same figure the value of

0
AFr_333= F333_FF=L d\(Uzzz—Up),, (19

-4.66 T T T T
' ' ' ' U,p—U), for the three values cf=0.0, 0.5, 1.0. It is clear
s—a | k-point P A
PR T that the value of the integral calculated using the two meth-
po 9 g
sl haponiondl I ods is the same within the statistical accuracy and also
that the results correctly satisfy the Gibbs-Bogoliuttov
. inequality:

) (92F:’7<(U_U|P)>>\<O

i N an (20

472

474

: RN S S — In summary, the free energy of the liquid was obtained
0 100 200 300 400 500 600 . A . .
A from a series of thermodynamic integration calculations:
Number of atoms in supercell
FIG. 3. Free energy difference between the liquid and the in-
verse power potential as a function of cell size akgboint Fig=Fass=FutAF L ptAFp_ r +AFp_ 333
sampling. (21
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D. Representation of the free energy of the liquid 3 3 Vo a3 g Vo\?
The results of the calculations described in the previous ~ =(¥)=Eo™ EVOK[Z(“_Z&)(V) a E(V)
section were fitted to a suitable functionD&ndV. In order o3
to do that efficiently we expressed the free energy in the _ §(1+§) Vo +_(§+ §
following way: 2 V 2 2
F|iq:F|p+AF:F|p+AUS+(AF_AUS), (22) 3
£=7(4-K"). (26)

whereAUS=U®S—Uj},, with U® the zero-temperaturab ini-

tio (free) energy of the fcc ant}, the inverse power energy. The parameterg,, Vo, Ko, andK’ were fitted to a fourth-

US® can be calculated very accurately, details of which will begyger polynomial as function of temperature:

given below in Sec. IV AU}, has no errors. The remaining

quantity AF —AU?® is a weak function ol andT, and was 4 , 4 .

fitted to a polynomial inv andT: EO(T)=20 e T', Vo(T)=20 vo, T',
1= 1=

4

j 4
T @3 K0<T>=i220 koi T', K'<T>=i220ké,iT‘- (27)

1 3
AF_AUS:E( aijVi

j=0 \i=0
The fitting reproduced the calculated data to within

~2 meV/atom. The fitting reproduced the calculated energies to better than 1

meV/atom in the whold®/T range.

E. Error estimates for Fy
a B. Free energy of the harmonic crystal

The errors orFp andAUS are each less than 1 meV/atom
(see Sec. IV A beloy The part of the free energy that car-
ries the largest errors iSF— AUS®, which we estimate to be

The free energy of the harmonic crystal is given by

. 3kgT kgT
2 (5) meV/atom at lowmhigh) P/T. Fo (V.T)= _( B f (In B
narnd V) QgzN; ZI Bz\ [fiwgi(V,T)
IV. FREE ENERGY OF THE SOLID 1 [hwg(V,T)]2
. e +-~~)dq, (28
The free energy of the solid can be represented as the sum 24 kgT

of two contributions: the free energy of the perfect nonvi-
brating fcc crystal and that arising from atomic vibrations
above 0 K:

wherewg;(V,T) are the phonon frequencies of braricdnd
wave vectoq, {)g; is the volume of the Brillouin zoney; is
the total number of phonon branches, and the dependence on
Feo=F perrt Fuip (24) ~ temperature ofuq,.i is due to elgctronic excit_atiqns. We trun-
cate the summation after the first term, which is the classical
The contribution to the free energy due to the vibrations oflimit of the free energy:
the atoms may be written

. B 3kgT Ef | kgT q 29
Fib=Fharmt Fanharm (25 harm™ QBzNi i BZ nﬁwq,i o 29

whereF ,mis the free energy of the high-temperature crystalyhjs js a justifiable approximation to make for two reasons:
in the harmonic approximation arke,narmiS the anharmonic  (j) the error in making such a truncation is very small
contribution. (<1 meV/atom), and(ii) neglecting the higher-order

terms, i.e., the quantum corrections, is consistent with the

A. Free energy of the perfect crystal liquid calculations where the motions of the atoms were

The free energy of the perfect crystél,.;, was calcu- treatgd classically. . .
lated as a function of volume and tempe?ature. Calculations Itis usefu_l to express the harmonic free e”ergy n ter_ms of
were performed on a fcc cell at a series of volurf@®5—19.5  the geometric average of the phonon frequencies, defined
A3/atom representing compression up+td50 GPa) and @S
temperaturesup to 6000 K with a 24X 24X 24 k-point grid
[equivalent to 1300 points in the irreducible wedge of the nNo= 1 2 IN(wy) (30)
Brilloiun zone (IBZ)], which ensures convergence of the NgN; g7 ar
(free) energies to better than 1 meV/atom. At each different
temperature we calculated tteb initio (free) energy as a Where we have replaced the integral (&) [ szdq with the
function of volume and then performed a least-squares fit ofummation (INy)X,. This allows us to write
the results to a third-order Birch-Murnaghan equation of o
state?? Fharm=3KsT IN(Bhw). (31)
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To calculate the vibrational frequenci@%’i , we used our TABLE Ill. Harmonic free energy convergence with respect to
own implementatioff of the small-displacement methtl’  displacement, for the 64-atom cell at state poibt=16.5 A’ and

The central quantity in the calculation of the phonon fre-T=1000 K. The calculations have been done withk3goints.
quencies is the force-constant matdy, j; 5, since the fre-

guencies at wave vectgrare the eigenvalues of the dynami- x(A) F V)
cal matrixDs, 14, defined as 0.0081 —0.33897
0.0162 —0.33863
0.0343 —0.33797
D = Disa,j
Sa,t,B(Q) \/W Z isa,jtp 0.0687 —0.33479

xexdig-(R\+7—RP—79)], (32

0- . . ) .. they or z direction, and therefore only one displacement
whereR; is a vector of the lattice connecting different primi- along an arbitrary direction is needed. It is convenient to
tive cells., 75 IS the position of the atorsin the primitive cell, displace the atom along a direction of high symmetry, so that
and My its mass. If we have the complete force-constantne sypercell has the maximum possible number of symme-
matrix, thenDs, 45, and hence the frequencieg;, can be v operations. These can be used to reduce the number of
obtained at any. In principle, the elements oPis, 15 @€ points in the 1BZ, minimizing the computational effort. For
nonzero for arbitrarily large separatiof®+r—R{~ 7,  an fcc crystal this is achieved by displacing the atom along
but in practice they decay rapidly with separation, so a keythe diagonal of the cube.

issue in achieving our target precision is the cutoff distance Tests for cell size64—512 atomys displacement length
beyond which the elements can be neglected. (0.0687-0.0081 A and k-point grid (up to 13x< 13x 13)

In the harmonic approximation the Cartesian compo- were performed a¢=16.5 A% and 1000 K. Convergence of
nent of the force exerted on the atom at positRf+ 75 is  the free energy to within less than 1 meV/atom was achieved
given by using a 64-atom cell with a displacement of 0.016 A and a

9X9Xx9 k-point grid (equivalent to 85 points in the IBZ of
(33) the supercell The results from these tests are summarized in
Tables II, 1ll, and IV. Calculations were performed fof

=9.5-18.5 & and T=500-6000 K, and Inz) has been
fitted to the following polynomial iV andT:

Fisa= _% Qisajtp Ujtp,

whereu is the displacement of the atom Rf+ 7; along
the directiongB. The force constant matrix can be calculated

via 3 /3
In(w)= 2, (2 a;V'| T, (35)
Fisajtp =0 \i=0
Disq jtﬁ:_—'a (34
' Ujtg The fitting reproduced the calculated data witkirl meV/

where all the atoms of the lattice are displaced one at a tim8tom.

along the three Cartesian componentsiy, and the forces
Fisa,jtg induced on the atoms iR+ 7, are calculated. Since
the crystal is invariant under translations of any lattice vec- To obtain the anharmonic contribution to the free energy
tor, it is only necessary to displace the atoms in one primitiveof the solid we have again used thermodynamic integration.
cell and calculate the forces induced on all the other atoms dh this case a natural choice for the reference system could
the crystal, so that we can simply put0. The fcc crystal  be the harmonic solitf but unfortunately this does not re-
has only one atom in the primitive cell, so only three dis-produce theab initio anharmonic system with sufficient ac-
placements are needed. However, a displacement along thecuracy. A much better reference system is a linear combina-
direction is equivalent by symmetry to a displacement alongion of the harmoniab initio and the same IP used for the
liquid calculations"

TABLE II. Harmonic free energy convergence with respect to
cell size at the state point=16.5 A® and T=1000 K. Calcula- TABLE IV. Harmonic free energy convergence with respect to
tions have been done with a ¥22x 12 MP k-point grid on the  k-point sampling for the 64-atom cell at state point16.5 A
eight-atom cell. Equivalerit-point sampling has been used for the andT=1000 K. The calculations have been done with a displace-

C. Anharmonicity

other cell sizes. ment of 0.0162 A.

Cell size F(eV) No. k points F (eV)

8 —0.348 22 4 —-0.33541
27 -0.33910 32 —0.33863
64 —0.33863 44 —0.33860
216 —0.33864 85 —0.33752
512 —0.33881 231 —-0.33777
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TABLE V. Anharmonic contribution to the free energy of the " T
solid. Units are meV/atom. 5000
Vv (A3
4000
T(K) 9.5 12 14 18.5 g
1000 0(1) -3(3) -1(1) a1) 2 2000
2000 122) &
2700 -10(2) =
5000 —24(2) 2000
10008
Urer=aUjp+bUpam, (36) , . ‘ | .
. . . 0 50 100 150
where the harmonic potential energy is Prossure (GPa)
FIG. 5. Comparison of melting curve of Al from present calcu-
UharmziiSantﬁ Uisa®Pisa,jts Ujtg 37 lations with previous experimental results. Solid curve: present

work. Dotted curve: present work with pressure correctisae
and whereu; is the displacement of the atom Fh?+ T text). Diamqnds and triangles: DAC measurements of Refs. 12 and
along the directiong, and®;s, ;4 is the force-constant ma- 13, respectively. Square: shock experiments of Ref. 14.
trix. The parameters andb are determined by minimizing
the fluctuations in the energy differenddg,s— U on a set of dom in the choice of the inverse power parameters since we
statistically independent configurations generated With. found that this reference system already described the ener-
However, when we start our optimization procedure we dagetics of the solid very accurately.
not knowU,., SO we cannot use it to generate the configu- The calculation of the anharmonic part of the free energy
rations. We could use tha&b initio potential, but this would required, once more, two thermodynamic integration steps.
involve very expensive calculations. We used instead an itin the first step we calculated the free energy difference
erative procedure, like in our previous work on ifoWe  F,— F,m. These are cheap calculations since they involve
generated a set of configurations using the harmonic poteronly the classical potentiald ,p and U, the simulations
tial Upamand calculated thab initio energies. By minimiz-  were performed with cells containing 512 atoms for 10 ps,
ing the fluctuations otJ,,— U we found a first estimate for which ensured convergence of the free energy difference
a and b, and we constructed a first estimate Wf;. We  F o Fpam to within 1 meV/atom. In the second step we
generated a second set of configurations usinguhis cal-  calculatedF,;,— F s where, since the fluctuations in the en-
culated theab initio energies and minimized again the fluc- ergy differenced) — U o were very small, we were able to
tuations ofU,— U with respect toa andb. This procedure use the second order formyl&g. (9)].
could be continued until the values afand b no longer The problem in the calculation of thermal averages for a
changed, but in practice we stopped after the second step anéarly harmonic system is that of ergodicity. For an har-
found a=0.95 andb=0.12. We did not use the extra free- monic system different degrees of freedom do not exchange

15 T T I T I T T I T

||||||||.‘|.|

FIG. 6. Calculated pressure dependence of the

~ b
o I melting properties of Al:(a) volume change on
4 . melting, (b) entropy change on melting, arid)
] melting gradient. Solid curve: present work. Dot-
ted curve: present work with pressure correction
- T - I - (see text
% -
% ]
=) ]
= | . I :
100 125 150

Pressure (GPa)
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TABLE VI. Comparison ofab initio and experimental melting

. properties of Al at zero pressure. Values are given for the melting
i temperatureTl ,,, entropy of the solid phas&;q, entropy change

on melting,A S, volume of the solid phasé,,;4, volume change on
melting, AV, and melting gradienti T,,,/dP. The LDA results are
Tm = 4660 K N from Ref. 19; the experimental values foy,, AS, anddT,,/dP

T are from Refs. 11, 55, and 54, respectively, and the experimental
melting volume AV is calculated using the Clapeyron relation
AV=ASdT,/dP.

34

3.2

G (eV)

28—

w
T

GGA
Experiment  LDA GGA corrected

N T, (K) 933 890(20) 786(50) 912 (50)
4200 4400 4600 4800 5000 5200 Ssoiia (Kg) 5.2035 5.5535)
T(K) AS (kg) 1.38 1.36(4) 1.35(6) 1.37(6)

Voiiq (A%) 17.704) 17.394)

FIG. 7. Calculated Gibbs free energy as a function of tempera-, 3
ture at 125 GPa for both the solid and liquid. The linewidths indi- 2_}/ (léP) K GPart 1.24 1'56(1220) 1'51i10) 1'33(110)
cate the the size of the calculated errors. m (KGPa™) 65 67(12 8

energy, so in a system which is close to being harmonic the

exploration of phase space using molecular dynamics can be Tg-ehO\C\(larsllra?r:eelmvintrwnh :her explf[arlmgn:sbs riXtrreThelﬁ
a very slow process. We solved this problem following Ref 9000, NOWEVET, Ihe Tow-pressure results aitter by more tha

19 whereby the statistical sampling was performed usin 5% (at zero pressure, 786 K compared with the experimen-

Andersen molecular dynamié8jn which the atomic veloci- balt\\;lalue tohf 933| &.I I?ddeed,dat Zero pre?slure Ithe agrr]eement
ties are periodically randomized by drawing them from a etween the calculated and experimental volume change on

Maxwellian distribution. This type of simulation generates melting anddT,,/dP is not very good(see Table V). In

the canonical ensemble and overcomes the ergodicity prolﬁdd't'on' our calculations are not in very good agreement

lem with the previous calculations of de Wit al.l® although

All the calculations were performed on a 64-atom ceIII.hIS IS not r;)eces(,jsarllythsurlfjgzng,hﬁmce these EltterdcaICL:Iha-
with kpoints in a 7<7 X7 grid for the highP/T state points lons were based on the , Whi'€ ours aré based on Ine

: : - GGA. Nevertheless, one might expect the results from the
X - ) :
E)n?7a2%<r936§ gcr,li?]tgoirnt?ﬁel?év;/L:;aegi\?;g]ts equivalent LDA and GGA to be similar, since Al is a nearly free-
The anharmonic contributio;‘l to the free energy of theelectron-llke metal and therefore one would expect a very
solid turns out to be very small, being positive and equal tc9|°°d DFT de_zfrlptlon with thtt?] thg(lg_’li%and G?A' TJ). ?Xth
only a few meV/atom at low pressure and approximatively ploré a possible reason why the 0€s not predict the

—20 meV/atom at high pressure. These results are reporte[ elting properties of aIumlnum very accurately we can|der
in Table V. e zero-pressure crystal equilibrium volume. This is pre-

dicted by the GGA to be=2% larger than the experimental

value; this means that the calculated pressure for the experi-

mental zero-pressure volume 46+ 1.6 GPa. To see how
The errors inF e are less than 1 meV/atom, the errors in this error propagates in melting properties we may devise a

Frarm are ~3(4) meV/atom at low(high) P/T, and the er-  correction to the Helmholtz free energy such that the pres-

rors inF jpnarmare ~ 1 (3) meV/atom at low(high) P/T; the  sure is rectified:

total errors inF, are~3 (6) meV/atom at lowhigh) P/T.

D. Error estimates for F g

Feor=F+ 6PV, (38
V- RESULTS AND DISCUSSION with §P=1.6 GPa. Usind- ., in our calculations we found
We display in Fig. 5 our calculated melting curve com- the correctedmelting curve, represented by the dotted line in
pared with the experimental zero-pressure valughe Fig. 5, where we assumedP to be the same in the whole
diamond-anvil-cel(DAC) high-pressure result$;**and the ~ P/T range. The zero-pressure corrected melting temperature
high-pressure shock datuthWe also report in Fig. 6 the is 912 K, which is in very good agreement with the experi-
volume change on meltingyV, the entropy change on melt- mental value 933 K. The corrected volume change on melt-
ing, AS, and the melting gradiemtT,,/dP, respectively. The ing, entropy change on melting, amtrl,,/dP are also in
errors in the melting curve arise from the errors in the calimuch better agreement with the experimental numbers. The
culated free energies and are50 (100) K in the low- correction is less important at high pressure, whiEfg /d P
(high-) pressure part of the diagram, respectively. For illus-is smaller.
trative purposes we display in Fig. 7 the calculated free en- This point may be further illustrated by looking at the
ergies of both the solid and liquid as a function of temperazero-pressure phonon dispersion curves for Al. Since phonon
ture at 125 GPa. frequencies depend on the interatomic forces, their correct-
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300 —

FIG. 8. Comparison of the phonon dispersion
curve for Al from present calculations with pre-
vious experimental results. Solid curves: present
work with the GGA. Dotted curves: present work
with the GGA and with pressure correctigsee
text). Dashed curves: present work with the LDA.
Dot-dashed curves: present work with the LDA
and with pressure correctiofsee text Dia-
monds: experiments from Ref. 49.

n

=]

3
I

frequency (cm'1)

100 —

r X K r L

ness is surely important in the context of melting. In Fig. 8are corrected so as to match the experimental data, the pho-
we display the GGA calculated phonon dispersion curvesion dispersion and the melting properties come out in very
compared with experimental d&thOur calculations were good agreement with the experiments. These two behaviors
performed both at the GGA zero-pressure equilibrium vol-are internally consistent, but point to an intrinsic error due to
ume and the experimental volunfloth at 80 K. We notice the use of the GGA. Quantum Monte Carl@MC)

that the agreement is godgthough not perfegtif the calcu-  technique®' have been shown to predict the energetics with
lations are performed at the experimental volume and not smuch higher accuracy than DPTand calculations for sys-
good if the calculated zero-pressure GGA volume is usedems containing more than 100 atoms have already been
instead. This indicates that the GGA will probably yield bet-reportec?® We believe that in the near future it will be pos-
ter results if the GGA pressure is corrected in order to matclsible to use QMC techniques for more accurate calculations
the experimental data. of free energies.

In their work, de Wijset al!® found good agreement be-  To summarize, we have calculated the melting curve of
tween the LDA and experiments. In their casearected the fcc phase of aluminum entirely from first principles
LDA would lower the zero-pressure melting point below 800 within the DFT-GGA framework. Our work is based on the
K. In order to understand this apparent different behaviorcalculation of the Gibbs free energy of liquid and solid Al,
between the LDA and GGA we have also calculated theand for each fixed pressure the melting temperature is deter-
phonons using the LDA at the calculated equilibrium volumemined by the point at which the two free energies cross. Our
and also at the experimental volurffaoth at 80 K. These results are in good agreement with the available experimen-
are also reported in Fig. 8. In accord with previous LDAtal data, although they reveal an intrinsic DFT-GGA error
calculations® we found very good agreement with the ex- which is responsible for an error 150 K in the low-
periments when the phonons are calculated at the LDA zergpressure melting curve. This error is probably due to the
pressure volume, but the agreement becomes poor at the @reorrectly predicted pressure by the GGA, and it becomes
perimental volume, which is consistent with the result for theless important in the high-pressure region,dds,/dP be-
melting temperaturé’ comes smaller.

In conclusion, both the GGA and LDA predict an incor-
rect equilibrium volume at a fixed pressure, alth_ough _the ACKNOWLEDGMENTS
LDA yields very good results for both the phonon dispersion
curves and the zero-pressure melting propertigkich is We both acknowledge the support of the Royal Society;
probably accidental For the GGA the incorrect equilibrium we also thank Mike Gillan and John Brodholt for useful
volume propagates to an incorrect description of the phonodiscussions. L.V. thanks Humphrey \amtlo for his assis-
frequencies and the melting properties. If the GGA pressure@nce during the course of this research.
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