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Quantum discrete f4 model at finite temperatures
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Quantum phase transitions are studied in the framework of the quantum discretef4 model at zero and finite
temperatures by quantum Monte Carlo calculations and the simplest analytical approximations. Parameters of
the model~massm, temperaturet, and dimensionless parametera) allow us to go continuously from quantum
(t50) to classical (m→1`) phase transitions and from displacive (a→10) to order-disorder (a→1`)
ones. Phase diagrams~dependencies of the critical mass on the critical temperature! are obtained for two- and
three-dimensional systems for various values of the parametera. The quantum Monte Carlo results show
excellent agreement with previous studies of the discretef4 model in the various limits. The obtained quantum
Monte Carlo data are compared with results of the mean-field and independent-mode approaches. The mean-
field approximation is in qualitative agreement with quantum Monte Carlo results for a wide range of the
parametera of the model, while the independent-mode one is in quantitative agreement at small values ofa.
The obtained results can be used for estimations of the behavior of real ferroelectrics.
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I. INTRODUCTION

Two types of fluctuations are present in real systems
the general case: thermal and quantum ones. Thermal
tuations govern ordering in systems at high temperatu
while quantum effects are constitutive in the physical pict
at low temperatures or at small masses. The situation w
both types of fluctuations play an essential role is interest
Normally, quantum fluctuations suppress phase transition
low temperatures in various materials, leaving them in a d
ordered phase. Ferroelectrics are well-investigated mate
showing this phenomenon. So-called quantum paraele
materials (SrTiO3 , BaTiO3 , KTaO3) are extensively studied
both theoretically and experimentally. For example, the
quadratic ferroelectric mode-coupling theory predicted an
trinsic paraelectric quantum state of SrTiO3.1 Recently, the
restoration of ferroelectricity in SrTiO3 by changing oxygen
O16 to the heavier isotope O18 was reported.2 This effect was
studied using a self-consistent phonon approximation in R
3 for SrTiO3 and KTaO3 ~other approaches concerning the
materials are described in Ref. 4!. BaTiO3 as a high-
temperature ferroelectric shows also a strong influence
quantum fluctuations as was shown in Ref. 5–7 by numer
calculations, in the framework of the Ising model in a tran
verse field and from first principles. The dielectric suscep
bility in the frame of this approach as well as other propert
were obtained in good agreement with experimental data
various ferroelectrics.8–10

Among structural phase transitions one may distingu
displacive and order-disorder types. Ferromagnetics usu
reveal an order-disorder type of phase transition, while d
placive transitions occur in ferroelectrics. However, there
ferroelectrics that show order-disorder~for example,
KH2PO4) or neither displacive nor order-disorder behav
~for example, Sn2P2S6).11 A suitable and well-known micro-
scopic model for this case is the discretef4 model.12 This
0163-1829/2002/65~21!/214103~12!/$20.00 65 2141
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model shows a continuous crossover from displacive ph
transitions to the order-disorder ones. Quantum fluctuati
can also be introduced into this model. Thus, this model
cover a wide class of materials that can reveal structu
phase transitions with an influence of thermal and quan
effects. However, only limiting cases of this model we
studied.

In this paper we study the general case of the quan
discretef4 model in the presence of quantum and therm
fluctuations. We consider a simple cubic@three-dimensional
~3D!# or square@two-dimensional~2D!# lattice of particles of
massM. The displacements of particles from equilibriu
positions are determined by a scalar functionXn . We sup-
pose that every atom is placed in a double-well poten
with harmonic coupling with nearest neighbors. The Ham
tonian of the discretef4 model is as follows:

H5(
n

Pn
2

2M
1V,

V52
A

2 (
n

Xn
21

B

4 (
n

Xn
4

1
C

2 (
n,n8

~Xn2Xn8!
2snn8 . ~1!

Here,snn851 for nearest neighbors and vanishes elsewh
A second-order phase transition takes place for positive
ues ofA,B, andC if the dimensionality of the systemd is
larger than 1. Previous studies of this model show a dis
dered structure at high and an ordered structure at
temperatures.13 It is useful to rewrite the Hamiltonian~1! in
terms of new variables. Let us introduce new displaceme
xn5AB/AXn , temperature~energy scale! t5TB/AC, mass
©2002 The American Physical Society03-1
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m5MCA2/\2B2, and a dimensionless parametera5A/C
~we will usek51 and\51 units!. Now, the Hamiltonian~1!
can be written as

h52(
n

¹n
2

2m
1v,

v5S 2d2
a

2D(
n

xn
21

a

4 (
n

xn
42 (

n,n8
xnxn8snn8 . ~2!

A second-order phase transition occurs at certain critical
ues of temperature and mass,tc and mc , respectively. One
can easily get all known limits of this model considering t
Hamiltonian in the form~2!. All four limits of the discretef4

model have been extensively studied: order-disorder, dis
cive, classical, and quantum ones. We briefly review th
cases here. A detailed consideration of all limits in the qu
tum discretef4 model is presented in Ref. 14.

The parametera of the discretef4 model determines the
type of phase transition in the system and gives two lim
displacive and order-disorder. An order-disorder phase t
sition takes place ata→1`, while a displacive transition
occurs ata→10. These limits correspond to physically di
ferent situations, which can be described by well-kno
models.

The order-disorder limit (a→1`) in the classical case
(m→1`) corresponds to the usual Ising model, and to
Ising model in a transverse field in the quantum case~at
finite mass!. The order-disorder limit of the discretef4

model corresponds to the situation whereby particles can
cupy only two positions (xn'61). This is the usual classi
cal Ising model in the classical limit (m→1`), which has
been widely investigated because it is a suitable descrip
of ferromagnetic systems. On the other hand, the system
be imagined as a set of two-level systems with harmo
interaction in an external field in the presence of quant
fluctuations due to strong anharmonicity of the double-w
potential. The magnitude of the transverse field implici
depends on the mass of particlesm of the discretef4 model.
The transverse-field Ising model has been studied for z
and finite temperatures by numerical and various analyt
schemes.15–17

The displacive limit of the discretef4 model (a→10) is
connected to a soft-mode type of phase transition. The
tem can be presented as a set of uncoupled elementary
tations ~phonon vibrations!, since the double-well potentia
becomes almost harmonic. The independent-mode app
mation is the convenient method of investigation in this ca
The Landau theory also can be used for the description
this limit. The displacive limit in classical and quantum cas
has been studied in various applications for r
materials,8–10 because simple experimental methods may
veal soft modes. We mention here two recent works clos
related to the considered problem.18,19The displacive limit is
also extensively studied in the framework of the continu
f4 model, which is the continuum analog of the discre
one.20 Both displacive and order-disorder limits for the qua
tum case are also considered in Ref. 21 in the mean-fi
approximation.
21410
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The classical limit occurs form→1`. Then only thermal
fluctuations are present at finite temperaturet. The kinetic
and potential terms of the partition function can be integra
independently in this case and final results do not depend
the mass of particles. The discretef4 model in the classica
case has been widely studied by numerical methods and
ous analytical approaches. The crossover between displa
and order-disorder limits in the frame of this model was d
cussed by Aubry12 and later by Padlewskiet al.22 A
molecular-dynamics study of structural phase transitions
presented in Refs. 23 and 24. The phase diagram for a
lattice was obtained by Toral and Chakrabarti.25 The dynami-
cal character was studied by Flach and Mutschke.26 Mode-
coupling theory was developed for thef4 lattice model in
Refs. 27 and 28. Recently we studied the discretef4 model
in a 3D classical system29 and the crossover between 2D an
3D systems.30

The pure quantum limit takes place att50 and the mag-
nitude of the zero-quantum fluctuations is governed by
inverse massm21. The quantum fluctuation influence in th
framework of the discretef4 model is studied in the pure
quantum limit (t50) for a wide range of transitions by nu
merical calculations and analytical approximations.31 The de-
pendencies of the critical massmc on the parametera for 2D
and 3D cases are presented in Figs. 1 and 2~crosses and lines
are numerical and mean-field calculations, respectively!. It is
expected that a finite temperature will strongly affect t
behavior of this system.

Summarizing, the discretef4 model has been well stud
ied in the four limits~displacive, order-disorder, classical, o
quantum!. However, to our knowledge the discretef4 model
in the presence of quantum and classical fluctuations has
been studied for the general case and for finite temperatu
This work summarizes results of the study of the quant
discretef4 model in a wide rage of parameters of the mod

The main aim of this paper is to obtain the quantitati
phase diagrams of the quantum discretef4 model for 2D and
3D cases. The quantum Monte Carlo~QMC! technique is
used as a numerical method. The numerical results are c
pared with the mean-field~MFA! and independent-mod
~IMA ! approximations. In the discussion of the obtained
sults, we put special attention on the crossover betw
quantum and classical phase transitions and between di
cive and order-disorder transitions.

II. ANALYTICAL APPROACHES

A. Mean-field approximation

The MFA is widely used for the study of various pha
transitions in ferroelectric and ferromagnetic materials. It
known that this approach describes qualitatively well a w
class of microscopic models with second-order phase tra
tions. This is also true for the classical discretef4

model.29,30 Here, we present results for the quantum mod
The interaction between particles(n,n8xnxn8sn,n8 is re-

placed by an average fieldEn5(n8xn8sn,n8 in the MFA.
This field does not depend onn (En5E) in the framework of
the discretef4 model. The MFA for quantum systems us
the energy levels of the system as data. Let us stress
3-2
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FIG. 1. Dependence of the critical massmc on
parametera for the case oft50 in two dimen-
sions. Logarithmic scale is applied for both axe
Crosses: QMC data, obtained by scheme~25! and
~27!. Solid line: the MFA result. Dashed line: th
IMA result.
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features of the spectrum of the quantum discretef4 model in
different limits. We consider the spectrum of the so-cal
on-site oscillator,

H05
P2

2M
1V0 ,

V05S 2dC2
A

2 D x21
B

4
x4. ~3!

There is no interaction between atoms in the Hamilton
~3!. The spectrum of the Hamiltonian~3! is almost equidis-
tant ata→10 ~the system is almost a harmonic oscillato!.
However, doublets appear in the spectrum of the system
a→1` due to the anharmonicity of the on-site potentialV0
~the spectrum looks like the spectrum of the transverse-fi
Ising system!.

The average of the ground state is proportional to
average field in the MFA and goes to zero at the point of
phase transition. The phase transition takes place at cri
values of the mass and temperature (mc andtc). It is conve-
nient to rewrite the condition for the phase transition in t
MFA for the quantum case as follows:
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wherex15]^x&/]E is the static linear susceptibility, which
is determined at a finite temperature by the stand
quantum-mechanical formula

x15(
i j

2di j
2

Ei2Ej
exp

F2Ei

T
. ~5!

Here,Ei , di j are the energy and dipole matrix elements
the Hamiltonian~3!, respectively, andF is the free energy.
The formula~5! passes intox15( i2di0

2 /(Ei2E0) for zero
temperature. The energies and matrix elements in Eq.~5! are
determined by numerical solution of the Schro¨dinger equa-
tion of the on-site potential~3!. The parameters of this prob
lem are the massm, the temperaturet, the model paramete
a, and the dimensionalityd. The details of these calculation
can be found in Ref. 14. The results of calculations in
framework of the MFA are shown in Figs. 1–4. The depe
dencies of the critical massmc on the critical temperaturetc
are presented in Figs. 3 and 4 by solid lines for several v
ues of the parametera (a54, a516, anda564). All curves
have an asymptote for the quantum limit (t50; Fig. 1 and 2!
and for the classical limit (m→1`), which coincides with
s.

e

FIG. 2. Dependence of the critical massmc on
parametera for the case oft50 in three dimen-
sions. Logarithmic scale is applied for both axe
Crosses: QMC data, obtained by scheme~25! and
~27!. Solid line: the MFA result. Dashed line: th
IMA result.
3-3
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V. V. SAVKIN, A. N. RUBTSOV, AND T. JANSSEN PHYSICAL REVIEW B65 214103
FIG. 3. Phase diagram of the quantum d
cretef4 model for the 2D case: dependencies
the critical massmc on the critical temperaturetc

~the ordered phase is above and the disorde
phase is below it!. Crosses: QMC data, solid
lines: MFA results, and dashed line: IMA limit in
two dimensions (t50, mc50.4649). QMC and
MFA data are presented for three values of t
parametera ~from left to right: a54,a516,a
564). QMC data at finite temperatures are o
tained by schemes~16! and ~17! and ~16!, ~17!,
and ~21!; data for zero temperature are take
from Fig. 1. Logarithmic scale is used for vertica
axis. Inset: the dependence of the ‘‘classica
(DC

2 , filled circles! and ‘‘quantum’’ (DQ
2 , opened

circles! contributions to fluctuations on the criti
cal temperaturetc for a516 in the 2D case. Lines
are guide to the eye.
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the results obtained in our previous work with pure quant
and classical discretef4 models.29–31

B. Independent-mode approximation

The IMA is one of the simplest analytical approache
used for description of the soft modes in ferroelect
materials.18,19 This approximation is valid for the case ofa
→10 in the classical discretef4 model.13 We generalize
this method for the quantum case. The spectrum
the Hamiltonian is almost equidistant and one may cons
the system to be a set of the uncoupled harmo
oscillators. One can make a Fourier transformQ(q)
5N21/2(nxneiqn. Then we put(Q(q)Q(q1)Q(q2)Q(q3)
53(Q(q)Q(2q)(Q(q1)Q(2q1) ~see Ref. 13!. The
Hamiltonian in the framework of the IMA becomes

HIMA5(
q

S P~q!P~2q!

2m
1v2~q!Q~q!Q~2q! D . ~6!
21410
,
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Here,Q(q) and P(q) are the Fourier transforms of the dis
placements and momenta of particles,q is a wave vector, and
v(q) is the dispersion law. The dispersion law of the syst
can be expressed as

v2~q!52114dF~q!13~ I 1h2!, ~7!

where F(q)512(1/d)( i 51
d cos(qi), I 5^Q(q)Q(2q)&, and

h is the order parameter. The difference between the cla
cal and quantum cases is in different expressions of
square of the displacement average in the Fourier repre
tation ~all other necessary equations of the IMA are the sa
as those for the classical case!.13 The averageI in the classi-
cal case can be written as

I 5(
q

t

v2~q!
, ~8!

while in the quantum case it should be rewritten as~see Ref.
32!
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FIG. 4. Phase diagram of the quantum d
cretef4 model for the 3D case: dependencies
the critical massmc on the critical temperaturetc

~the ordered phase is above and the disorde
phase is below it!. Crosses: QMC data, solid
lines: MFA results, and dashed line: IMA resul
QMC and MFA data are presented for the sam
values of the parametera as in Fig. 3. QMC data
at finite temperatures are obtained by schem
~16! and ~17! and ~16!, ~17!, and ~21!; data for
zero temperature are taken from Fig. 2. Logarit
mic scale is used for vertical axis. The point fo
SrTiO3 on the phase diagram is placed under t
IMA curve, i.e., in the disordered phase~see text
for details of estimations!.
3-4
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QUANTUM DISCRETEf4 MODEL AT FINITE TEMPERATURES PHYSICAL REVIEW B 65 214103
I 5(
q

F2v~q!AmtanhS v~q!

2tAm
D G21

. ~9!

The equation determining the phase transition is

h31~3I 21!h50. ~10!

Finally, one can obtain a equation for a critical line@mc(tc)#
from Eqs.~9!, ~7!, and~10! as follows:

4

3
5(

q
FAmcdF~q!tanhS AdF~q!

tcAmc
D G21

. ~11!

The phase-transition line in the 3D case is a smooth cu
with well-known asymptotes for the classical (m→1`, tc
52.638) and quantum (t50, mc50.2416) limits ~Figs. 2
and 4, dashed lines!.13,31 The phase diagram in the 2D ca
has only one point att50 (mc50.4649; Figs. 1 and 3
dashed lines! due to the divergence of the integral in E
~11!. It should be pointed out that the classical IMA works
d>3.13 The existence of the solution of Eq.~11! in the 2D
case in a single point can be bound up with the phys
equivalence of thed-dimensional quantum system and t
(d11)-dimensional classical one att50.33

III. QUANTUM MONTE CARLO TECHNIQUE FOR THE
QUANTUM DISCRETE f4 MODEL

The QMC technique is used for the numerical study
phase transitions in Bose and Fermi many-body systems
quantum fluctuations.34,35 The quantum phase transitions a
usually divided into transitions atT50 and TÞ0 due to
different behavior and classical analogs of the systems.33 We
consider a quantum discretef4 model at zero and finite tem
peratures~and for finite masses! and develop a numerica
scheme for these cases. Thus, we present a study of the
quantum limit and a study of the crossover between quan
and classical limits. The QMC technique used here is ba
on the Feynman path-integral representation of the parti
function.36 This representation allows to consider a syst
with quantum fluctuations by reducing to a classical syst
with other characteristics depending on the Planck cons
\.

The partition function of the quantum system in the ge
eral case is expressed as

Z5Tr~exp~2H/kT!!. ~12!

In the Feynman path-integral representation the parti
function for finite temperature is written as follows:36

Z5E @Dx#expS \21E
2b\/2

b\/2

L~x~t!!dt D , ~13!

whereb51/kT ~in the pure quantum limitkT50, the limits
of integration are infinity!, *@Dx# is an integration over the
set of all trajectoriesx(t), and L(x(t)) is the Lagrangian
along the imaginary-time trajectoryx(t). The Lagrangian in
our case is
21410
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L~x~t!!52
M

2 S dx

dt D 2

2V~x~t!!. ~14!

Note that the negative sign before the kinetic term appe
because of the integration along the imaginary-time traj
tory x(t). Thus, one can conclude by comparison of E
~12! and~13! that a quantum system of dimensionalityd with
a partition function~13! can be replaced by a classical sy
tem of dimensionalityd11 ~the extra dimension is the
imaginary time! at a temperature equal to 1~see details in
Ref. 33; classicald11 systems atT50 andTÞ0 are differ-
ent!. The system is continuous in the extra-time directio
but we need a discrete structure for realization of the Mo
Carlo simulations. Discretization of the time direction in th
space of the Fourier images appears to be convenient
finite temperatures. However, it is suitable to realize Mo
Carlo simulations at zero temperature in real space, s
otherwise very long periods of time are needed for aver
ing. The next two sections are devoted to obtaining the d
crete formulas, needed for realization of QMC calculatio
and discussion of the obtained results for nonzero temp
ture ~first section! and for the pure quantum limit, zero tem
perature~second section!.

A. Discrete scheme for nonzero temperature: Fourier space
representation

We develop a discrete scheme for nonzero temperat
which can go into the usual classical Monte Ca
scheme29,30 in one of its limits. The main idea is to rewrit
the integral under the exponent in Eq.~13! in terms of Fou-
rier images and make numerical calculations in Four
space. This idea was used in Ref. 37 for a Fourier pa
integral Monte Carlo method, which has a number of adv
tageous features. The minor difference with our algorithm
the way we take into account higher harmonics. A sin
Gaussian random process was used in Ref. 37 for it, w
we undertake here the expansion of the Lagrangian in p
ers of higher harmonics~see below!.

The trajectoriesx(t) in Eq. ~13! are periodic with period
b\. We make a Fourier transform according to

x~t!5 (
k52`

1`

x~k!exp~2p ikt/b\!,

x~k!5
1

b\E2b\/2

b\/2

x~t!exp~22p ikt/b\!dt, ~15!

wherek is the number of the harmonic. The kinetic term
transformed as~we use here again reduced unitst,m, anda;
see the Introduction!

T5
M

2 E2b\/2

b\/2

~x8~t!!2dt52p2mt (
k52`

1`

k2x~k!x̄~k!.

~16!

The potential energy of the discretef4 model after Fourier
transformation is
3-5
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FIG. 5. Dependencies of the square of the o
der parameterh2 on the temperaturet for differ-
ent number of harmonicsN in the 2D system:
QMC data obtained using discrete scheme~16!
and ~17!. Parameter of the modela54, mass of
particlesm51, and number of harmonicsN is
varied from 1 to 9 and shown by various sym
bols. The caseN51 corresponds to the classica
system.
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V5E
2b\/2

b\/2

V~x~t!!dt

5S 2d2
a

2D 1

t (
k52`;n

1`

xn~k!xn̄~k!

1
a

4t (
k,k8,k952`;n

1`

xn~k!xn~k8!xn̄~k9!xn̄~k1k82k9!

2
1

t (
k52`;n,n8

1`

xn~k!xn8~̄k!snn8 . ~17!

The displacementx(k) is related tox(2k), since the re-
lation x(k)5 x̄(2k) holds. Only a finite number of harmon
ics is taken into account in the numerical calculations. Th
we investigate the behavior of the system as a function of
number of harmonicsN5112kmax, where kmax is the
maximum value ofk in the sums in Eqs.~16! and ~17!.
Obviously, this scheme goes into the classical one,29,30 when
only one harmonic (kmax50,N51) is taken into account
The other harmonics lead to the appearance of the quan
features in the system. The real quantum system at non
temperature is modeled by Eqs.~16! and~17!, when an infi-
nite number of harmonicsN→` is taken into account.

The typical size of the lattice in QMC calculations for 2
systems is 153153N and 103103103N for 3D systems,
where N is the size of the extra direction. The period
boundary conditions in real space are taken into account
tomatically in the Fourier transform in this scheme. T
number of averages is approximately 104 per atom. The Me-
tropolis algorithm is used for Monte Carlo sampling.38 The
dependencies of the square of the order parameter on
temperature for a 2D quantum discretef4 model at certain
parameters (a54,m51) for a different number of harmonic
~varied from N51 to N59) are presented in Fig. 5. Th
square of the order parameter is calculated ash2

5^@N* 21( ixi(0)#22@N* 21( ixi ,1(0)#2& (N* is the total
number of particles!.
21410
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The last term is a Fourier transform ofx(t) in x,y direc-
tions for the 2D system~in x,y,z directions for the 3D sys-
tem!. It is introduced to reduce the finite-size effects in t
calculation.29 In the numerical calculations with a finite slab
the phase transition is diffused because of strong fluctuat
in ^x& near the transition point. It is natural to suppose th
the first and zeroth spatial harmonics ofx fluctuate similarly.
Therefore, the subtraction of^@N* 21( ixi ,1(0)#2& should de-
crease fluctuation. This makes curves more regular and
plifies their analysis. At the same time, below the transit
point the correction goes to zero and does not affect
obtained result.

Figure 5 shows that dependencies converge quickly w
the increase in the number of harmonicsN. However,
one needs a large number of harmonics for the descrip
of the behavior of the system at low temperatures, wh
a few harmonics are sufficient at high temperatures~for
example, the curves in Fig. 5 withN57 and N59 har-
monics do not differ from each other att.0.5). Never-
theless, the presented curves allow us to determine a
perature of the phase transition for a given number of h
monics.

We use the hypothesis of universality of the discretef4

model for the value of the critical indexb: b51/8 for 2D
systems andb'0.32 for 3D systems at any value of th
parametera ~there is the exclusion in the pointa50: here
the Landau theory is valid andb51/2).13 For example, we
present the dependence of theh8(t) for a 2D system with
N59 harmonics@Fig. 6~a!#. The solid line is the approxima
tion by the linear dependence. The temperature of the ph
transitiontc obtained in this way does not change when
creasing the size of the system. This method of determina
of the temperature of the phase transition shows the s
temperature in the classical limit (N51) as the one obtained
in Ref. 30 for classical systems in another way~at the point
of the minimum of the first derivative!. The temperature of
the phase transitiontc as a function of the number of har
monicsN, extracted from data in Fig. 5, is represented in F
6~b! by the open symbols.
3-6
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QUANTUM DISCRETEf4 MODEL AT FINITE TEMPERATURES PHYSICAL REVIEW B 65 214103
To develop a better accuracy for a small number of F
rier components a higher-order numerical scheme is nee
Data presented in Fig. 5 are not sufficient for determinat
of the real temperature of the phase transition of the syst
since it is impossible to make numerical simulations with
harmonics. To determine the sought temperature of the p
transition one can use the following method, which allows
to take into account the influence of all the other harmon
Let us dividex(t) in Eq. ~15! into two partsx0(t) ~slow!
and xf(t) ~fast!, where the first one takes into accountN
harmonics~from 2kmax to kmax) and the second one in
cludes all the other harmonics:

FIG. 6. Determination of the temperature of the phase transi
in the quantum discretef4 model from QMC data.~a! Circles:
dependence of theh8 on the temperaturet for the 2D system atN
59, a54, andm51 @dependenceh2(t) is shown in Fig. 5#. The
power of the order parameter is taken from the value of the crit
indices of the model~see text!. Solid line is a linear approximation
of the QMC data. Arrow shows critical temperaturetc . ~b! Critical
temperaturetc as a function of the number of harmonicsN with the
same parameters of the model. Open symbols: result obtained u
discrete scheme~16! and~17!. Filled symbols: result obtained usin
discrete scheme~16!, ~17!, and~21!, where the influence of highe
harmonics is taken into account. Solid lines: guide to the eye. Th
curves converge to the realtc ~infinite N) of the model at given
parametersm,a ~dashed line!.
21410
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x~t!5x0~t!1xf~t!5 (
uku<kmax

x~k!exp~2p iktt !

1 (
uku.kmax

x~k!exp~2p iktt !.

~18!

Next, one can make a Taylor expansion ofL(x(t)) in Eq.
~13! in powers ofxf(t) keeping the terms up to thexf

2(t).
One can check that the coefficients of this expansion
adiabatically slowly varying functions. The partition functio
after these transformations can be rewritten as

Z5E @Dx0#expS 2E
2`

1`

L~x0~t!!dt D
3E @Dxf #expS 2 (

uku.kmax

~2mp2k21V9!xf
2~k! D .

~19!

One can integrate the fast part of the partition function~19!
or use the method for calculation of this type of integr
described in Ref. 36. This part turns out to be proportiona

expS 2
1

2 (
uku.kmax

V9

4mt2p2k2D . ~20!

We write a correction, with integrated harmonics, for t
discrete scheme~16! and ~17! as a function ofN:

V9j~N!

mt2
, ~21!

where the numerical coefficients arej(1)5 1
24 , j(3)5 1

24

21/4p2, j(5)5 1
24 25/16p2, j(7)5 1

24 249/144p2, j(9)
5 1

24 2205/576p2. Thus, we take into account the effectiv
influence of high harmonics by their integration and by ad
ing a term~21! to the discrete formula~16! and ~17!. At N
51 the formula~21! coincides with the quantum correctio
obtained in Ref. 36.

Now we come to the finite temperature, obtained
scheme~16! and ~17! for N harmonics with correction~21!
for the influence of all other harmonics. First of all, we no
that the scheme does not work at low temperatures wit
small number of harmonics due to divergency. The dep
dencies of the square of the order parameter on the temp
ture for m52 and form50.5 for variousN obtained using
scheme~16!, ~17!, and ~21! are presented in Figs. 7 and
respectively. One can see from these dependencies th
high masses~for example,m52, Fig. 7! even a single har-
monic (N51) is sufficient determine the temperature of t
phase transition at a given mass. On the other hand, we
more than one harmonic for low masses and temperature
determining the transition temperature~for example, m
50.5, Fig. 8!. Obviously, the real dependence of the squ

n

l

ing

se
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FIG. 7. Dependencies of the square of the o
der parameterh2 on the temperaturet for differ-
ent number of harmonicsN in the 2D system:
QMC data obtained using discrete scheme~16!,
~17!, and~21!, which includes influence of highe
harmonics. Parameters of the model:m52, a
54. SmallN is sufficient for determination of the
tc(N), which is used for determination of thetc

@Fig. 6~b!#.
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of the order parameter on the temperature at givenm and
given N is placed between two curves: obtained by sche
~16! and~17! and scheme~16!, ~17!, and~21!. The real tran-
sition temperature is also between the two curves: temp
tures of the transition as a functionN obtained using scheme
~16! and ~17! are given by open symbols and for~16!, ~17!,
and ~21! by filled symbols@Fig. 6~b!#. Two curves in Fig.
6~b! converge to the true transition temperature of the mo
Normally, a number of harmonicsN55 is sufficient to de-
termine the critical values (mc ,tc) with accuracy about 2%
at t.1.5.

We plot a phase diagram of the quantum discretef4

model determining the critical temperaturestc and masses
mc as shown in Fig. 6~b! for certain parameters of the mode
The phase diagrams~dependencies ofmc on tc) for 2D and
3D systems at various values of the parametera (a54, a
516, anda564) of the quantum discretef4 model are pre-
sented in Figs. 3 and 4. TheN57 or N59 are used for
obtaining the critical values (mc , tc!. We estimate the accu
racy of the determination of the critical temperature to
better than 1% form.2 and about 2% for smaller masse
Obviously, the accuracy can be increased by increasing
number of harmonicsN in QMC calculations.

B. Discrete scheme for the pure quantum limit:
real-space representation

The discrete scheme obtained in the previous section
not be used for the case of the pure quantum limit (t50),
since one needs to take into account an infinite numbe
harmonics att50. To avoid this kind of difficulty one can
make the inverse Fourier transform of all formulas obtain
above and fulfill the Monte Carlo averaging in the real spa
of displacements.

The main difference with the case of finite temperatu
appears in the unlimited integration limits in Eq.~13!. To
obtain the discrete formula for this case one can take
following step. Let the valueb\ go to infinity, taking into
account a finite number of harmonics. Then, the series in
~15! goes into an integral and the valuev51/2t0 in the
integral appears instead ofkmax in the sum~18! (t0 is the
21410
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discrete step in the extra-time direction;t0 can be considered
an analog ofN in finite-temperature calculations!. Now, the
formula ~16! becomes

T5
M

2 E2`

1`

~x8~t!!2dt

52p2mE
21/2t0

11/2t0
e~v!x0

2~v!dv, ~22!

wheree(v)5v2 is the dispersion law. Thus, we have aft
inverse Fourier transform~the discretization is carried out a
*dt→t0( i i )

T52p2mt0
2 (

i , j ,k; i 1 j 1k50
e~ i t0!x0~ j t0!x0~kt0!. ~23!

The dispersion law is transformed as

e~t!5E
21/2t0

1/2t0
v2exp~ i2pvt!dv5

~21! i

2i 2p2t0
3

tÞ0,

~24!

e~0!5
1

12t0
3

t50.

Finally, the discrete formula for the integral under the exp
nent in Eq.~13! is as follows:

m

t0
(

i , j ,k; i 1 j 1k50

~21! i

i 2
x0~ j t0!x0~kt0!1

p2m

6t0
(

i
x0

2~ i t0!

1t0(
i

V~x0~ i t0!!. ~25!

To take into account higher harmonics we use the sa
method as in the case of nonzero temperature. The sum in
3-8
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FIG. 8. Dependencies of the square of the o
der parameterh2 on the temperaturet for differ-
ent number of harmonicsN in the 2D system:
QMC data obtained using discrete scheme~16!,
~17!, and~21!, which includes influence of highe
harmonics. Parameters of the model:m50.5, a
54. One needs more harmonics at low mass
for determination of the temperature of the pha
transition, than at higher masses~see Fig. 7!.
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fast part of the partition function~19! goes into the integra
* uvu.1/2t0

dv. Now, the fast part of the partition function i
proportional to

expS 2
t0

2 Euvu.1/2t0

V9

4mp2v2
dv D . ~26!

Therefore, one should add to the discrete formula~25! the
following correction, which includes the influence of th
higher harmonics:

t0
2

2p2m
(

i
V9~x0~ i t0!!. ~27!

The discrete scheme~25! and~27! for zero temperature con
verges ast0

2. Periodic boundary conditions should be appli
in the extra-time dimension, since the Feynman trajecto
are closed in real space. The typical size of the lattice in
Monte Carlo simulations is 10d3100, at 104 averaging per
atom. The value oft0 is approximately equal to 0.1, which i
sufficient for the determination of the critical massesmc with
accuracy 2%. The dependencies of the square of the o
parameter on the mass of atoms are obtained for var
values of the parametera. Critical values of massesmc are
extracted from these curves by linear approximation in
propriate coordinates. The results for 2D and 3D systems
presented in Figs. 1 and 2 by crosses. We estimate the
bar to be 2%. These data are also presented in Figs. 3 a
for a54, a516, anda564.

IV. DISCUSSION

Let us analyze the results explained above. We have
sented phase diagrams for finite temperature~Figs. 3 and 4!
and for zero temperature~Figs. 1 and 2! in 2D and 3D cases
obtained by numerical methods~QMC! and by analytical
approaches~MFA and IMA!. The ordered phase is above th
critical line @mc(tc) in Figs. 3 and 4 ormc(a) in Figs. 1 and
2#, while the disordered one is below it.

The results for finite temperature in the 2D and 3D ca
21410
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obtained by QMC for three values of the parametera(a
54,a516,a564) of the considered model are shown
Figs. 3 and 4 by crosses, respectively. The analytical stud
the finite-temperature case is presented by solid lines~MFA!
~for the same three parametersa) and dashed lines~IMA !.
Note that the IMA results do not depend on the value of
parametera and correspond to the displacive limita→10
~the IMA works in the 2D case only for zero temperatur
Figs. 1 and 3!. All results~QMC, MFA, IMA in three dimen-
sions and QMC, MFA in two dimensions! show in the clas-
sical limit m→1` quantitative agreement with our previou
studies of the classical model29,30 obtained by classical ana
logs of the same methods. For the purely quantum limit,
results of finite-temperature calculations tend to the ze
temperature ones. Thus, the finite-temperature scheme w
well for all points of the phase diagram. Note that to increa
the accuracy of the QMC results at low temperatures o
obtain t50 limits one should increase the number of ha
monics in the QMC scheme in Fourier space~finite-
temperature algorithm!. However, this demands large com
puting resources.

The results for zero temperature in the 2D and 3D ca
obtained by QMC for a wide range of the parametera of the
quantum discretef4 model are shown in Figs. 1 and 2 b
crosses, respectively. The analytical study at zero temp
ture is presented by solid lines~MFA! and dashed lines
~IMA !. Note the IMA in the pure quantum limit works in
both cases~2D and 3D!, but still only in a→10. The QMC,
MFA, and IMA results att50 can be used as asymptot
~i.e., the pure quantum limit! for the finite-temperature re
sults at low temperatures~zero-temperature results are al
presented in Figs. 3 and 4 fora54,a516,a564).

The general analysis of the obtained results shows a g
qualitative agreement between the MFA and QMC results
a wide range of parameters of the quantum discretef4

model. This confirms that the MFA is a suitable approach
the study of the qualitative behavior of the systems not o
in the classical case but also in the presence of quan
fluctuations. The MFA overestimates QMC finite
temperature results by 90% fora54 and by 60% fora
3-9
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516, a564 atm*1 in the 2D case~Fig. 3!. The error bar at
m&1 becomes larger in the temperature scale. Overest
tion for the 3D finite-temperature case~Fig. 4! is smaller
than in the 2D case and comes to 40% fora54 and less than
30% for a516, a564 at m*0.5 ~it becomes larger a
m&0.5). The MFA results underestimate QMC zer
temperature ones by 50% for small values ofa(a&8) and by
less than 30% for large values ofa(a*8) in the 2D case
~Fig. 1!. The error bar is decreased in the 3D case~Fig. 2!:
20% for a&8 and less than 15% fora*8.

The IMA approach can be used to study the displac
limit, since QMC curves tend to IMA results asa goes
to zero. We believe QMC results reproduce IMA ones
a→10 in the 2D case fort50 and in the 3D case for al
temperatures.

The presented results demonstrate a crossover betw
the quantum (t50) and classical (m→1`) limits. As was
discussed, the nature of fluctuations is different for the t
limits. Here we estimate quantum and thermal contributio
to fluctuations quantitatively. As a measure of thermal flu
tuations, the value ofDC

2 5^N* 21( i@ x̄2xi(0)#2& is used.
This is a dispersion of the zeroth imaginary-time Four
harmonic. In the classical limit all other harmonics are a
sent, andDC

2 determines the dispersion ofx. For the quantum
limit DC

2 vanishes. The quantum fluctuations are determi
from other harmonics:DQ

2 5^N* 21( i ,k;kÞ0@xi(k)#2&. The
comparison of these two quantities allows us to make jud
ments about the main type of fluctuations presented in
system and in that way to describe the crossover betw
quantum and classical limits. For instance, the results for
2D case anda516 are presented in the inset to Fig. 3. F
each value of temperature, the corresponding critical valu
the mass is used, so that all points in this inset are calcul
for the critical line in the phase diagram. This inset sho
that at low temperature the influence of the thermal~classi-
cal! fluctuations is decreased, while the influence of
quantum fluctuations is increased. The situation at hig
temperature is the inverse. We estimate that the quan
limit occurs att,0.25, while the classical one takes place
t.2.25. Both types of fluctuations have an influence on
behavior of the system, when the temperature is betw
these two values.

We also would like to stress that the presented res
show a crossover between displacive and order-disorder
its. Displacive behavior is found fora,1 as follows from
previous studies.29,31 As for the order-disorder limit, the
value of the parametera, at which this limit occurs can be
estimated, for example, in the framework of the MFA,
comparing the spectrum of thef4 model with the spectrum
of the transverse-field Ising model~see details in Ref. 14!.
Order-disorder behavior is found fora.60 at moderate
masses as seen from MFA calculations. Thus, obtained
sults cover a wide range of phase transitions in the quan
discretef4 model: from displacive to order-disorder types

The quantum discretef4 model is certainly one of the
simplest models for the description of materials and does
take into account the complicated structure of real syste
However, it can be used for qualitative estimations of so
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real quantum paraelectrics. We present here an estimatio
SrTiO3. We use the method described in Ref. 14. There i
phase transition atT'105 K, which is of the classica
type.13 As is well known, Landau theory predicts anoth
phase transition in SrTiO3 at Tc'50 K, which does not exist
because it is suppressed by quantum fluctuations.39 We as-
sume that the oxygen atoms are placed in double-well po
tials, formed by the rest of the atomic lattice. The estimatio
for the parametera give that this material is in the displaciv
limit ( a'0.17).14 Thus, the IMA is valid and we can use th
curve found in this approximation~Fig. 4, dashed line!. We
use the following relation for an estimation of the mass,m
'MkTc^nx2&/\2l, where the constantl5kTcB/AC
52.64 defines the displacive limit and the value^nx2& is the
square of half the distance between two minima of
double-well potential ~a recent estimation giveŝnx2&
'0.9310222 m3). Finally, we havem'0.15. This point (t
'1.25, m'0.15) lies below the IMA curve~Fig. 4, dashed
line!, i.e., in the disordered phase. This is in agreement w
the assumption that the phase transition is suppresse
quantum fluctuations as follows from experimental data39

Thus, the quantum discretef4 model qualitatively predicts
the behavior of SrTiO3. However, the mass difference be
tween O16 and O18 is not sufficient to shift the point from the
disordered phase to the ordered one. Thus this model ca
explain the results of the experiment~see Ref. 2!. The reason
is that the discretef4 model is too simple a model fo
SrTiO3. The models, used for the description of SrTiO3, are
much more complicated40 and include other couplings be
tween the various atoms.41–43 Nevertheless, we believe th
quantum discretef4 model can be used for a qualitativ
description of ferroelectric materials also for low tempe
tures and it gives qualitative agreement with experimen
observations.14

V. CONCLUSIONS

In conclusion, we have studied phase diagrams of
quantum discretef4 model in 2D and 3D cases. Two cros
overs can be observed in this model: from a displacive to
order-disorder phase transition and from a classical t
quantum phase transition. The first crossover is governed
the parametera, while the second one is governed by tw
parameters,m and t ~reduced mass and temperature, resp
tively!. The dependencies of the order parameterh(a,m,t)
and the phase diagrammc(a,tc) may be used for the descrip
tion of some real ferroelectric materials with phase transit
of various types, including quantum and thermal fluctuatio

We use the QMC technique for the study of phase d
grams in the frame of the quantum discretef4 model. For
given parametersa,m or a,t we can determine temperatur
tc or massmc of the phase transition, respectively. The
show crossovers from the displacive to the order-disor
limit and from quantum to classical behavior.

We have obtained two discrete schemes for perform
QMC calculations: one in Fourier space~for t.0) and an-
other in real space~for t50). These schemes have been us
for obtaining dependencies of the square of the order par
eterh2 in a wide range of the parametersa andm. Critical
3-10
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QUANTUM DISCRETEf4 MODEL AT FINITE TEMPERATURES PHYSICAL REVIEW B 65 214103
values tc and mc are extracted from these dependenci
Phase diagrams@mc(tc)# at various values of parametera
show good agreement with classical limits taken from o
previous studies of this model. Results obtained by Fou
space algorithm tend to results obtained by real-space a
rithm as t goes to zero. We estimate the accuracy of QM
calculations to be less than 1% atm.1 and a few percent in
the quantum area (m,1).

The analytical MFA and IMA have been generalized f
the case of two types of fluctuations: quantum and ther
ones. The phase diagrams have been also obtained in
framework of the MFA and shown qualitative agreeme
with QMC calculations for various values of parameters
the quantum discretef4 model. Overestimations or undere
timations of the QMC results are varied from tens to hu
dreds of percent depending on the parameters of the mo
IMA results demonstrate quantitative agreement with QM
results for the 3D case and for the 2D case att50 at small
values ofa.

Presented data show crossovers from a displacive to
order-disorder phase transition and from a classical t
T
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quantum phase transition. The appearance of the or
disorder limit depends on the massm. It takes place ata
.60 at m;1, while the displacive limit occurs ata,1.
Quantum fluctuations start to play an essential role att&1
depending on the parameters of the model. The tempera
of the phase transition does not differ strongly from the cl
sical one atm*2 for 2D and 3D systems.

SrTiO3 has been considered in the framework of the qu
tum discretef4 model. The estimation for SrTiO3 shows a
disordered phase of this crystal atT'50 K, which coincides
with experimental data.
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