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Quantum phase transitions are studied in the framework of the quantum digénetedel at zero and finite
temperatures by quantum Monte Carlo calculations and the simplest analytical approximations. Parameters of
the model(massm, temperature, and dimensionless parametgrallow us to go continuously from quantum
(t=0) to classical (h— +) phase transitions and from displaciva— +0) to order-disorder {— + =)
ones. Phase diagrandependencies of the critical mass on the critical tempergaéarseobtained for two- and
three-dimensional systems for various values of the paranaet&he quantum Monte Carlo results show
excellent agreement with previous studies of the disapétenodel in the various limits. The obtained quantum
Monte Carlo data are compared with results of the mean-field and independent-mode approaches. The mean-
field approximation is in qualitative agreement with quantum Monte Carlo results for a wide range of the
parameter of the model, while the independent-mode one is in quantitative agreement at small vatues of
The obtained results can be used for estimations of the behavior of real ferroelectrics.
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I. INTRODUCTION model shows a continuous crossover from displacive phase
transitions to the order-disorder ones. Quantum fluctuations
Two types of fluctuations are present in real systems ircan also be introduced into this model. Thus, this model can
the general case: thermal and quantum ones. Thermal flucover a wide class of materials that can reveal structural
tuations govern ordering in systems at high temperatureghase transitions with an influence of thermal and quantum
while quantum effects are constitutive in the physical pictureeffects. However, only limiting cases of this model were
at low temperatures or at small masses. The situation whestudied.
both types of fluctuations play an essential role is interesting. In this paper we study the general case of the quantum
Normally, quantum fluctuations suppress phase transitions aliscrete¢* model in the presence of quantum and thermal
low temperatures in various materials, leaving them in a disfluctuations. We consider a simple culjtbree-dimensional
ordered phase. Ferroelectrics are well-investigated material8D)] or squargtwo-dimensional2D)] lattice of particles of
showing this phenomenon. So-called quantum paraelectrijiassM. The displacements of particles from equilibrium
materials (SrTiQ, BaTiO;, KTaO;) are extensively studied positions are determined by a scalar functign. We sup-
both theoretically and experimentally. For example, the bipose that every atom is placed in a double-well potential
quadratic ferroelectric mode-coupling theory predicted an inwith harmonic coupling with nearest neighbors. The Hamil-
trinsic paraelectric quantum state of SribRecently, the tonian of the discretes model is as follows:
restoration of ferroelectricity in SrTipby changing oxygen

0'% to the heavier isotope ©was reported.This effect was 2
studied using a self-consistent phonon approximation in Ref. H=> -4V,
3 for SrTiO; and KTaQ (other approaches concerning these n 2M

materials are described in Ref).4BaTiO; as a high-
temperature ferroelectric shows also a strong influence of A B
quantum fluctuations as was shown in Ref. 5-7 by numerical V=— > > X2+ 7 > X
calculations, in the framework of the Ising model in a trans- n n
verse field and from first principles. The dielectric suscepti- C
bility in the frame of this approach as well as other properties +—=
were obtained in good agreement with experimental data for 2 o
various ferroelectric8-1°

Among structural phase transitions one may distinguistHere,o,,»=1 for nearest neighbors and vanishes elsewhere.
displacive and order-disorder types. Ferromagnetics usuallf second-order phase transition takes place for positive val-
reveal an order-disorder type of phase transition, while disues ofA,B, andC if the dimensionality of the syster is
placive transitions occur in ferroelectrics. However, there ardarger than 1. Previous studies of this model show a disor-
ferroelectrics that show order-disordeffor example, dered structure at high and an ordered structure at low
KH,POQ,) or neither displacive nor order-disorder behaviortemperature$® It is useful to rewrite the Hamiltoniaftl) in
(for example, SpP,Ss).1! A suitable and well-known micro- terms of new variables. Let us introduce new displacements
scopic model for this case is the discret® model’? This  x,=B/AX,, temperaturgenergy scalet=TB/AC, mass

(Xn_xn')zo'nn’ - (1)
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m=MCA?/%?B?, and a dimensionless parametes A/C The classical limit occurs fan— +cc. Then only thermal
(we will usek=1 and% =1 unity. Now, the Hamiltoniar{1) fluctuations are present at finite temperattirdhe kinetic
can be written as and potential terms of the partition function can be integrated
5 independently in this case and final results do not depend on
h— —E &ﬂ) the mass of particles. The discreté model in the classical
= 2m case has been widely studied by numerical methods and vari-

ous analytical approaches. The crossover between displacive
a a and order-disorder limits in the frame of this model was dis-
U=(2d—§)z X§+ZE Xp— 2 XoXn 0w . (20 cussed by Aubri? and later by Padlewskietal?? A
" " n.n’ molecular-dynamics study of structural phase transitions is
A second-order phase transition occurs at certain critical valpresented in Refs. 23 and 24. The phase diagram for a 2D
ues of temperature and mass,and m,, respectively. One lattice was obtained by Toral and Chakrab&tThe dynami-
can easily get all known limits of this model considering thecal character was studied by Flach and Mutsciikelode-
Hamiltonian in the forn(2). All four limits of the discretep*  coupling theory was developed for thg lattice model in
model have been extensively studied: order-disorder, displaRefs. 27 and 28. Recently we studied the discegtemodel
cive, classical, and quantum ones. We briefly review thesé a 3D classical systefhand the crossover between 2D and
cases here. A detailed consideration of all limits in the quan3D systems”
tum discrete¢* model is presented in Ref. 14. The pure quantum limit takes placetat 0 and the mag-
The parametea of the discretep*® model determines the nitude of the zero-quantum fluctuations is governed by the
type of phase transition in the system and gives two limitsinverse massn~ 1. The quantum fluctuation influence in the
displacive and order-disorder. An order-disorder phase trarframework of the discreteb* model is studied in the pure
sition takes place aa— +, while a displacive transition quantum limit ¢=0) for a wide range of transitions by nu-
occurs ata— +0. These limits correspond to physically dif- merical calculations and analytical approximatiéhZhe de-
ferent situations, which can be described by well-knownpendencies of the critical mass, on the parametea for 2D
models. and 3D cases are presented in Figs. 1 afat@ses and lines
The order-disorder limit §— +<) in the classical case are numerical and mean-field calculations, respectivélys
(m— +) corresponds to the usual Ising model, and to theexpected that a finite temperature will strongly affect the
Ising model in a transverse field in the quantum cése behavior of this system.
finite mas$. The order-disorder limit of the discrete* Summarizing, the discret¢* model has been well stud-
model corresponds to the situation whereby particles can oded in the four limits(displacive, order-disorder, classical, or
cupy only two positionsX,,~ *+1). This is the usual classi- quantum. However, to our knowledge the discreté model
cal Ising model in the classical limiinf— + ), which has in the presence of quantum and classical fluctuations has not
been widely investigated because it is a suitable descriptioheen studied for the general case and for finite temperatures.
of ferromagnetic systems. On the other hand, the system carhis work summarizes results of the study of the quantum
be imagined as a set of two-level systems with harmonidgliscrete¢* model in a wide rage of parameters of the model.
interaction in an external field in the presence of quantum The main aim of this paper is to obtain the quantitative
fluctuations due to strong anharmonicity of the double-wellphase diagrams of the quantum discig¢femodel for 2D and
potential. The magnitude of the transverse field implicitly 3D cases. The quantum Monte CafQMC) technique is
depends on the mass of partictesf the discretap* model.  used as a numerical method. The numerical results are com-
The transverse-field Ising model has been studied for zerpared with the mean-fieldMFA) and independent-mode
and finite temperatures by numerical and various analyticallMA ) approximations. In the discussion of the obtained re-
schemed®~Y/ sults, we put special attention on the crossover between
The displacive limit of the discret¢* model @— +0) is  quantum and classical phase transitions and between displa-
connected to a soft-mode type of phase transition. The sysive and order-disorder transitions.
tem can be presented as a set of uncoupled elementary exci-
tations (phonon vibrations since the double-well potential Il. ANALYTICAL APPROACHES
becomes almost harmonic. The independent-mode approxi-
mation is the convenient method of investigation in this case.
The Landau theory also can be used for the description of The MFA is widely used for the study of various phase
this limit. The displacive limit in classical and quantum casestransitions in ferroelectric and ferromagnetic materials. It is
has been studied in various applications for realknown that this approach describes qualitatively well a wide
material$~1° because simple experimental methods may reclass of microscopic models with second-order phase transi-
veal soft modes. We mention here two recent works closelyions. This is also true for the classical discrets
related to the considered probléfit°The displacive limitis model?*°Here, we present results for the quantum model.
also extensively studied in the framework of the continuum The interaction between particl@s, /X X,/ o s IS re-
¢* model, which is the continuum analog of the discreteplaced by an average field, =X/ Xy o s in the MFA.
one?’ Both displacive and order-disorder limits for the quan-This field does not depend an(E,=E) in the framework of
tum case are also considered in Ref. 21 in the mean-fielthe discretepp* model. The MFA for quantum systems uses
approximation. the energy levels of the system as data. Let us stress the

A. Mean-field approximation
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FIG. 1. Dependence of the critical masg on
025 parametera for the case ot=0 in two dimen-
g sions. Logarithmic scale is applied for both axes.
Crosses: QMC data, obtained by sche@2® and
(27). Solid line: the MFA result. Dashed line: the
IMA result.
0.125
a
features of the spectrum of the quantum discestenodel in 4dCy,=1, (4)
different limits. We consider the spectrum of the so-called ] o o )
on-site oscillator, where ;= d(x)/JE is the static linear susceptibility, which
is determined at a finite temperature by the standard
2 quantum-mechanical formula
Hozm + Vo, 2
2d” F - Ei
A B R
_ 2 4 . .
VO_(ZdC_ 7|X + 2% ©) Here,E;, dj; are the energy and dipole matrix elements of

the Hamiltonian(3), respectively, andr is the free energy.

There is no interaction between atoms in the HamiltoniariThe formula(5) passes intg;=3;2d2%/(E;— E,) for zero
(3). The spectrum of the Hamiltonia(3) is almost equidis- temperature. The energies and matrix elements in&are
tant ata— +0 (the system is almost a harmonic oscillator determined by numerical solution of the Sctlirmger equa-
However, doublets appear in the spectrum of the system dion of the on-site potentidB). The parameters of this prob-
a— +o due to the anharmonicity of the on-site potentigl  lem are the masm, the temperaturé the model parameter
(the spectrum looks like the spectrum of the transverse-fiel@, and the dimensionality. The details of these calculations
Ising system can be found in Ref. 14. The results of calculations in the

The average of the ground state is proportional to thdramework of the MFA are shown in Figs. 1-4. The depen-
average field in the MFA and goes to zero at the point of thedencies of the critical mass, on the critical temperaturg,
phase transition. The phase transition takes place at criticalre presented in Figs. 3 and 4 by solid lines for several val-
values of the mass and temperatung, @ndt,). It is conve-  ues of the parameter(a=4, a=16, anda=64). All curves
nient to rewrite the condition for the phase transition in thehave an asymptote for the quantum lintitx0; Fig. 1 and 2
MFA for the quantum case as follows: and for the classical limitrh— + ), which coincides with

025 _""""I LLEALLALLAE BN LALLM | """"I""""I""_

d=3

FIG. 2. Dependence of the critical masg on
parametei for the case of=0 in three dimen-
sions. Logarithmic scale is applied for both axes.
Crosses: QMC data, obtained by sche2® and
(27). Solid line: the MFA result. Dashed line: the
IMA result.

0.125
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10 T T . FIG. 3. Phase diagram of the quantum dis-
[ ] crete ¢* model for the 2D case: dependencies of
the critical massn; on the critical temperaturg
(the ordered phase is above and the disordered
phase is below )t Crosses: QMC data, solid
lines: MFA results, and dashed line: IMA limit in
two dimensions {=0, m;=0.4649). QMC and
MFA data are presented for three values of the
, ] parametera (from left to right: a=4,a=16a
. : =64). QMC data at finite temperatures are ob-
] tained by scheme€l6) and (17) and (16), (17),
e and (21); data for zero temperature are taken
from Fig. 1. Logarithmic scale is used for vertical
axis. Inset: the dependence of the “classical”
(DZ, filled circles and “quantum” (D3 , opened
0-10 y L L = circles contributions to fluctuations on the criti-
cal temperaturé, for a=16 in the 2D case. Lines
t are guide to the eye.

the results obtained in our previous work with pure quantunHere, Q(q) andP(q) are the Fourier transforms of the dis-
and classical discret¢* models?®~3! placements and momenta of particless a wave vector, and
(q) is the dispersion law. The dispersion law of the system

o can be expressed as
B. Independent-mode approximation

The IMA is one of the simplest analytical approaches, w?(q)=—1+4dF(q)+3(1 + 7%, (7)
used for description of the soft modes in ferroelectric g
materials'®1° This approximation is valid for the case af ~Where F(q)=1—(1/d)Z{_,cos@), | =(Q(q)Q(—a)), and
—+0 in the classical discrete* model!® We generalize 7 is the order parameter. The difference between the classi-
this method for the quantum case. The spectrum ofal and quantum cases is in different expressions of the
the Hamiltonian is almost equidistant and one may considegquare of the displacement average in the Fourier represen-
the system to be a set of the uncoupled harmonidation(all other necessary equations of the IMA are the same
oscillators. One can make a Fourier transfor@(q) as those for the classical CaééThe average in the classi-
=N"25 x € Then we put=Q(q)Q(d;)Q(q,)Q(ds) cal case can be written as
=32Q(0)Q(~a)=Q(a1)Q(—q;) (see Ref 1B The
Hamiltonian in the framework of the IMA becomes 2 t

= 7 0X(q)’ ®

P(a)P(—q) il | - i
HIMAZE 5 +02(@)QQ(—q)|. (®) \évzr;ne in the quantum case it should be rewrittensee Ref.

FIG. 4. Phase diagram of the quantum dis-
crete ¢* model for the 3D case: dependencies of
the critical massn, on the critical temperaturg
(the ordered phase is above and the disordered
phase is below jt Crosses: QMC data, solid
lines: MFA results, and dashed line: IMA result.
QMC and MFA data are presented for the same
values of the parameteras in Fig. 3. QMC data
at finite temperatures are obtained by schemes
(16) and (17) and (16), (17), and (21); data for
zero temperature are taken from Fig. 2. Logarith-
mic scale is used for vertical axis. The point for
SrTiO; on the phase diagram is placed under the
IMA curve, i.e., in the disordered phagsee text
for details of estimations
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-1

=2

q

M [dx\?
9) L(X(T)):—7(E_) —V(x(7)). (14)

w(q)
2w(q)ﬁtan»~( 2tﬁ)

The equation determining the phase transition is

Note that the negative sign before the kinetic term appears
because of the integration along the imaginary-time trajec-
3 _ _ tory X(7). Thus, one can conclude by comparison of Egs.
7+ (8= 1)7=0. (10 (12) and(13) that a quantum system of dimensionalityvith
Finally, one can obtain a equation for a critical lijme.(t.)] a partition function(13) can be replaced by a classical sys-
from Egs.(9), (7), and(10) as follows: tem of dimensionalityd+1 (the extra dimension is the
imaginary time at a temperature equal to (§ee details in
VdF(q) ! Ref. 33; classicatl + 1 systems al=0 andT+ 0 are differ-
mcdF(q)tan N~ (1D enp. The system is continuous in the extra-time direction,
teVMe but we need a discrete structure for realization of the Monte
The phase-transition line in the 3D case is a smooth curv

garlo simulations. Discretization of the time direction in the
with well-known asymptotes for the classicahs + o, t, Space of the Fourier images appears to be convenient for
=2.638) and quantumt&0, m.=0.2416) limits (Figs. 2

finite temperatures. However, it is suitable to realize Monte
and 4, dashed ling433 The phase diagram in the 2D case Carlo simulations at zero temperature in real space, since
has only one point at=0 (m;=0.4649; Figs. 1 and 3,

otherwise very long periods of time are needed for averag-
dashed linesdue to the divergence of the integral in Eq.

ing. The next two sections are devoted to obtaining the dis-
(11). It should be pointed out that the classical IMA works atcrete formulas, needed for realization of QMC calculations
d=3 .12 The existence of the solution of E€L1) in the 2D

and discussion of the obtained results for nonzero tempera-
case in a single point can be bound up with the physic

a}ure (first section and for the pure quantum limit, zero tem-
equivalence of thel-dimensional quantum system and the

perature(second section
(d+1)-dimensional classical one &t 033

4
32

A. Discrete scheme for nonzero temperature: Fourier space

IIl. QUANTUM MONTE CARLO TECHNIQUE FOR THE representation

QUANTUM DISCRETE ¢* MODEL We develop a discrete scheme for nonzero temperature,

i i i which can go into the usual classical Monte Carlo
The QMC technique is used for the numerical study ofsqpem@930in one of its limits. The main idea is to rewrite

phase transitions in Bose and Fermi many-body systems wit}, integral under the exponent in E43) in terms of Fou-
quantum fluctuation¥:**The quantum phase transitions are jo, images and make numerical calculations in Fourier
usually divided into transitions af=0 andT#0 due 10 gna0e This idea was used in Ref. 37 for a Fourier path-
different behavior and classical analogs of the systEriiée integral Monte Carlo method, which has a number of advan-
consider a quantum discree’ model at zero and finite tem- tageous features. The minor difference with our algorithm is
peratures(and for finite massgsand develop a numerical e way we take into account higher harmonics. A single
scheme for these cases. Thus, we present a study of the Pyt ssian random process was used in Ref. 37 for it, while
quantum limit and a study of the crossover between quantufje yndertake here the expansion of the Lagrangian in pow-
and classical limits. The QMC technique used here is baseg,q of higher harmonicésee below:
on the Feynman path-integral representation of the partition T trajectorie(7) in Eq. (13) are periodic with period
function® This representation allows to consider a system #. We make a Fourier transform according to
with quantum fluctuations by reducing to a classical systenﬁB '
with other characteristics depending on the Planck constant o
h. x(1)= 2 x(k)exp(2mik/ Bh),

The partition function of the quantum system in the gen- k=—o
eral case is expressed as

1 (Bhi2 ]
Z=Tr(exp(—H/KT)). (12 x(k)=3—ﬁfBhIZX(T)eXp(—kaT/Bh)dT, (15

In the Feynman path-integral representation the partition ) ) o )
function for finite temperature is written as follows: wherek is the number of the harmonic. The kinetic term is

transformed a$we use here again reduced urtifs), anda;
see the Introduction

+ oo

M [ BhiI2 _
where=1/KT (in the pure quantum limikT=0, the limits T= 7JBhlz(X’(T))zd’TZZ’]sztk;w k2x(k)x(k).
of integration are infinity, /[ Dx] is an integration over the (16)
set of all trajectoriex(7), andL(x(7)) is the Lagrangian
along the imaginary-time trajectos(7). The Lagrangian in  The potential energy of the discre#& model after Fourier
our case is transformation is

Z=f [Dx]exp(ﬁlfﬂm L(X(T))dr), (13
— BhI2
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1.0 e

08

FIG. 5. Dependencies of the square of the or-
der parameter? on the temperaturefor differ-

06 ent number of harmonicsl in the 2D system:
N QMC data obtained using discrete schefié)
s 04 and (17). Parameter of the model=4, mass of
’ particlesm=1, and number of harmonicH is
varied from 1 to 9 and shown by various sym-
bols. The cas&l=1 corresponds to the classical
02 system.
0.0
0.0 .
t
BhI2 The last term is a Fourier transform »fr) in X,y direc-
V= f_ﬁh/2V(X(T))dT tions for the 2D systen(in x,y,z directions for the 3D sys-
tem). It is introduced to reduce the finite-size effects in the
o calculation?® In the numerical calculations with a finite slab,
_ ( 2d— a l 2 X (k)x—(k) the phase transition is diffused because of strong fluctuations
2) t kS " in (x) near the transition point. It is natural to suppose that
the first and zeroth spatial harmonicsxdluctuate similarly.
a e Therefore, the subtraction ¢fN* ~12;x; ;(0)]?) should de-
I > Xn(K)Xn(K")Xn(K")Xn(K+K"—K") crease fluctuation. This makes curves more regular and sim-
kK’ k"= —cn plifies their analysis. At the same time, below the transition
Lt point the correction goes to zero and does not affect the
N — obtained result.
t k=7§;n,n’ XK (K)o @n Figure 5 shows that dependencies converge quickly with

_ _ _ the increase in the number of harmonids However,
The displacement(k) is related tox(—Kk), since the re-  one needs a large number of harmonics for the description
lation X(k) =x(—k) holds. Only a finite number of harmon- of the behavior of the system at low temperatures, while
ics is taken into account in the numerical calculations. Thusa few harmonics are sufficient at high temperatuties
we investigate the behavior of the system as a function of thexample, the curves in Fig. 5 witN=7 and N=9 har-
number of harmonicsN=1+2Kpax, Where knax is the  monics do not differ from each other at-0.5). Never-
maximum value ofk in the sums in Eqs(16) and (17).  theless, the presented curves allow us to determine a tem-
Obviously, this scheme goes into the classical Bifwhen  perature of the phase transition for a given number of har-
only one harmonic K,.x=0N=1) is taken into account. onics.
The othe_r harmonics lead to the appearance of the quantum \ye use the hypothesis of universality of the discrefe
features in th_e system. The real quantum system at_nc_mzemodel for the value of the critical indeg: g=1/8 for 2D
temperature is modeleq by Eq?fﬁ) and(1.7), when an infi- systems ang3~0.32 for 3D systems at any value of the
nite number of harmonickl—« is taken into account. . oo L
) . o ; parametem (there is the exclusion in the poiat=0: here
The typical size of the lattice in QMC calculations for 2D the Landau theory is valid and=1/2) 2* For example, we
systems is 15 15X N and 10< 10X 10X N for 3D systems, y . ' pie, v
present the dependence of thé(t) for a 2D system with

where N is the size of the extra direction. The periodic = ™ } : e .
boundary conditions in real space are taken into account ady =9 harmonicgFig. 6@)]. The solid line is the approxima-

tomatically in the Fourier transform in this scheme. Thelion by the linear dependence. The temperature of the phase
number of averages is approximately* j&r atom. The Me-  transitiont, obtained in this way does not change when in-
tropolis algorithm is used for Monte Carlo samplitfgThe creasing the size of the system. This method of determination
dependencies of the square of the order parameter on ti§é the temperature of the phase transition shows the same
temperature for a 2D quantum discreté model at certain temperature in the classical limiNE 1) as the one obtained
parametersg=4,m=1) for a different number of harmonics in Ref. 30 for classical systems in another way the point
(varied fromN=1 to N=9) are presented in Fig. 5. The of the minimum of the first derivatiye The temperature of
square of the order parameter is calculated &% the phase transitioty as a function of the number of har-
=([N* 12, (0)]>°—[N* ~1=;x; 1(0)]?) (N* is the total monicsN, extracted from data in Fig. 5, is represented in Fig.
number of particles 6(b) by the open symbols.
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X(r)=xo(r)+xf(r)=| > x(k)exp2mik7t)

=
—max

+ > x(k)exp2mikrt).

[KI>Kmax
(18

Next, one can make a Taylor expansionldi(7)) in Eq.

(13) in powers ofx(7) keeping the terms up to the(7).

One can check that the coefficients of this expansion are
adiabatically slowly varying functions. The patrtition function
after these transformations can be rewritten as

Z=J [on]exp(—fij(xo(T))dr)

XJ[Dxf]exp(— > (2mw2k2+V”)xf(k)>.

|k|>kmax

(19

One can integrate the fast part of the partition functibv®)
or use the method for calculation of this type of integral,
described in Ref. 36. This part turns out to be proportional to

1 V//
1 3 5 7 9 exp — = —
’{ 2 ‘k‘>2kmax 4mt27T2k2

. (20)

FIG. 6. Determination of the temperature of the phase transitioYVe Write a correction, with integrated harmonics, for the
in the quantum discrete* model from QMC data(a) Circles:  discrete schemél6) and(17) as a function of\:
dependence of the® on the temperaturefor the 2D system ai
=9, a=4, andm=1 [dependence;?(t) is shown in Fig. . The
power of the order parameter is taken from the value of the critical V"E(N)
indices of the mode(see text Solid line is a linear approximation
of the QMC data. Arrow shows critical temperatuge (b) Critical
temperaturd, as a function of the number of harmoniswith the  \yhere the numerical coefficients ail)=2;, &(3)=%
same parameters of the mode_l. Open symbols: result o_btaineql using 1/472, &(5)= ﬁ—S/lan, &(7)= 5_49/144”2, £(9)
discrete schemél6) and(17). Filled symbols: result obtained using 25_205/57&_2_ Thus, we take into account the effective

harmonios s taken i Acsount. S0l ines: uids 1 the eye. TheslUeNCe of high harmonics by their integration and by add-
curves converge to the regl (infinite N) of the model at given Ing a term(21) to the discrete formul16) and(17). At N

- =1 the formula(21) coincides with the quantum correction

parametersn,a (dashed ling obtained in Ref. 36.

Now we come to the finite temperature, obtained by
scheme(16) and (17) for N harmonics with correctioi(21)
for the influence of all other harmonics. First of all, we note

To develop a better accuracy for a small number of Fouthat the scheme does not work at low temperatures with a
rier CompOﬂentS a higher-order numerical scheme is needegma” number of harmonics due to divergency_ The depen-
Data presented in Fig. 5 are not sufficient for determinatiorjencies of the square of the order parameter on the tempera-
of the real temperature of the phase transition of the systemure form=2 and form=0.5 for variousN obtained using
since it is impossible to make numerical simulations with allscheme(16), (17), and(21) are presented in Figs. 7 and 8,
harmonics. To determine the sought temperature of the phasespectively. One can see from these dependencies that at
transition one can use the following method, which allows ushigh massegfor example,m=2, Fig. 7 even a single har-
to take into account the influence of all the other harmonicsmonic (N=1) is sufficient determine the temperature of the
Let us dividex(7) in Eqg. (15) into two partsxy(7) (slow) phase transition at a given mass. On the other hand, we need
and x¢(7) (fast, where the first one takes into accoudt more than one harmonic for low masses and temperatures for
harmonics(from —K . 10 K20 and the second one in- determining the transition temperatuor example, m
cludes all the other harmonics: =0.5, Fig. 8. Obviously, the real dependence of the square

" (21
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08 T T T T T T T T T
* N=I ]
0.7 - N=3 ]
06 N=5
FIG. 7. Dependencies of the square of the or-
0.5 der parameter? on the temperaturefor differ-
3 ent number of harmonicsl in the 2D system:
N 04F QMC data obtained using discrete sche(mé),
= - (17), and(21), which includes influence of higher
0.3 harmonics. Parameters of the modei=2, a
- =4. SmallN is sufficient for determination of the
02 t:(N), which is used for determination of the
[Fig. 6b)].
0.1
0.0 . . .
0.0 0.5 1.0 15

of the order parameter on the temperature at giweand  discrete step in the extra-time directiamn;can be considered
given N is placed between two curves: obtained by schemen analog ofN in finite-temperature calculationsNow, the
(16) and(17) and schem&16), (17), and(21). The real tran- formula (16) becomes

sition temperature is also between the two curves: tempera-

tures of the transition as a functidhobtained using schemes M (e

(16) and(17) are given by open symbols and f&6), (17), T= _f (x'(7))2d

and (21) by filled symbols[Fig. 6(b)]. Two curves in Fig. 2 )=

6(b) converge to the true transition temperature of the model.

127,
Normally, a number of harmonidd=5 is sufficient to de- :2772mf+1 Of(w)xg(w)dw, (22
termine the critical valuesn(.,t;) with accuracy about 2% ~1/27,
att>1.5.

where e(w) = w? is the dispersion law. Thus, we have after
inverse Fourier transforr{the discretization is carried out as
fdt—) Tozii)

We plot a phase diagram of the quantum discrefe
model determining the critical temperaturgsand masses
m. as shown in Fig. @) for certain parameters of the model.
The phase diagramglependencies ah, ont.) for 2D and
3D systems at various values of the parametéa=4, a
=16, anda=64) of the quantum discret¢* model are pre-
sented in Figs. 3 and 4. ThHd=7 or N=9 are used for
obtaining the critical valuesn{., t.). We estimate the accu- The dispersion law is transformed as
racy of the determination of the critical temperature to be
better than 1% fom>2 and about 2% for smaller masses. 1127, (—1)
Obviously, the accuracy can be increased by increasing the ¢( r)zf w’expi2ror)do= ——s
number of harmonic#l in QMC calculations. —1/2rg 2'277278

T=27’ms2 >, e(i 7o) Xo(] To)Xo(KTo).  (23)

ijkit]+k=0

B. Discrete scheme for the pure quantum limit:
real-space representation

The discrete scheme obtained in the previous section can- €(0)= 7=0.

3
not be used for the case of the pure quantum lirtit @), 1270
since one needs to take into account an infinite number ofinally, the discrete formula for the integral under the expo-
harmonics at=0. To avoid this kind of difficulty one can nent in Eq.(13) is as follows:
make the inverse Fourier transform of all formulas obtained
above and fulfill the Monte Carlo averaging in the real spacem (—1) 2m
of displacements. - B ; o 2,

The main difference with the case of finite temperatureo i j ki+j+k=0 2 Xo(] To)o(k7o) + 679 Z Xo(i70)

appears in the unlimited integration limits in E@3). To
obtain the discrete formula for this case one can take the )
following step. Let the valugs# go to infinity, taking into +702 V(Xg(i70))- (25
account a finite number of harmonics. Then, the series in Eq. '
(15 goes into an integral and the value=1/27; in the  To take into account higher harmonics we use the same
integral appears instead &f,,, in the sum(18) (7, is the  method as in the case of nonzero temperature. The sum in the
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030 d T T T T T d T
025 |
020 |k FIG. 8. Dependencies of the square of the or-
' der parameter;? on the temperaturefor differ-
ent number of harmonics! in the 2D system:
N 015F QMC data obtained using discrete sche(té),
= (17), and(21), which includes influence of higher
010 harmonics. Parameters of the model=0.5, a
a =4. One needs more harmonics at low masses
for determination of the temperature of the phase
005 | transition, than at higher massese Fig. 7.
0.00
0.0

fast part of the partition functiol9) goes into the integral obtained by QMC for three values of the paramed¢a
f|w‘>1,270dw. Now, the fast part of the partition function is =4,a=16a=64) of the considered model are shown in

proportional to Figs. 3 and 4 by crosses, respectively. The analytical study of
the finite-temperature case is presented by solid [{MFA)
To 4 (for the same three parametexy and dashed linedMA).

exp — EleM/%mdw : (260 Note that the IMA results do not depend on the value of the

parametera and correspond to the displacive lingt— +0
Therefore, one should add to the discrete form(@8 the (the IMA works in the 2D case only for zero temperature,
following correction, which includes the influence of the Figs. 1 and R All results(QMC, MFA, IMA in three dimen-
higher harmonics: sions and QMC, MFA in two dimensiopnshow in the clas-

sical limit m— + o quantitative agreement with our previous

2 studies of the classical mod&f® obtained by classical ana-
(2’ >V (%o(i 7). (270 logs of the same methods. For the purely quantum limit, the
2w m i results of finite-temperature calculations tend to the zero-

temperature ones. Thus, the finite-temperature scheme works

verges as2. Periodic boundary conditions should be appliedwe” for all points of the phase diagram. Note that to increase
in the extra-time dimension, since the Feynman trajectoriel® accuracy of the QMC results at low temperatures or to
are closed in real space. The typical size of the lattice in th@Ptaint=0 limits one should increase the number of har-
Monte Carlo simulations is #&< 100, at 18 averaging per Monics in the QMC scheme in Fourier spa¢tnite-
atom. The value of, is approximately equal to 0.1, which is temperature algorithm However, this demands large com-
sufficient for the determination of the critical massegwith ~ Puting resources. _

accuracy 2%. The dependencies of the square of the order The results for zero temperature in the 2D and 3D cases
parameter on the mass of atoms are obtained for variou@dtained by QMC for a wide range of the parameterf the
values of the parametex Critical values of massew, are ~ guantum discretes® model are shown in Figs. 1 and 2 by
extracted from these curves by linear approximation in apcrosses, respectively. The analytical study at zero tempera-
propriate coordinates. The results for 2D and 3D systems arélre is presented by solid line8MFA) and dashed lines
presented in Figs. 1 and 2 by crosses. We estimate the errdMA ). Note the IMA in the pure quantum limit works in

bar to be 2%. These data are also presented in Figs. 3 andP@th case$2D and 3D, but still only ina— +0. The QMC,
for a=4, a=16, anda=64. MFA, and IMA results att=0 can be used as asymptotes

(i.e., the pure quantum linjitfor the finite-temperature re-
sults at low temperatureizero-temperature results are also
presented in Figs. 3 and 4 fa=4,a=16a=064).

Let us analyze the results explained above. We have pre- The general analysis of the obtained results shows a good
sented phase diagrams for finite temperatliigs. 3 and #  qualitative agreement between the MFA and QMC results in
and for zero temperatur@igs. 1 and 2in 2D and 3D cases a wide range of parameters of the quantum discigfe
obtained by numerical methodMC) and by analytical model. This confirms that the MFA is a suitable approach for
approaches$MFA and IMA). The ordered phase is above the the study of the qualitative behavior of the systems not only
critical line [ m(t¢) in Figs. 3 and 4 om¢(a) in Figs. 1 and in the classical case but also in the presence of quantum
2], while the disordered one is below it. fluctuations. The MFA overestimates QMC finite-

The results for finite temperature in the 2D and 3D casesemperature results by 90% f@=4 and by 60% fora

The discrete schem@5) and(27) for zero temperature con-

IV. DISCUSSION
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=16,a=64 atm=1 in the 2D casé€Fig. 3). The error bar at real quantum paraelectrics. We present here an estimation for
m=1 becomes larger in the temperature scale. Overestim&rTiO;. We use the method described in Ref. 14. There is a
tion for the 3D finite-temperature cag€ig. 4) is smaller phase transition af~105 K, which is of the classical
than in the 2D case and comes to 40%der4 and less than type’® As is well known, Landau theory predicts another
30% for a=16, a=64 at m=0.5 (it becomes |arger at phase transition in SrTlghtTc~5O K, which does not exist
m=05). The MFA results underestimate QMC zero-because it is suppressed by quantum fluctuatidise as-
temperature ones by 50% for small values(d<8) and by ~ Sume that the oxygen atoms are plgced in double-wgll pgten—
less than 30% for large values af{a=8) in the 2D case tials, formed by the.rest of thg atomm!atch. The estimations
(Fig. 1). The error bar is decreased in the 3D céBig. 2): {I?Tr] iih(eaiaéagigﬁ%':: ttuaet Itl\r;llz g?:ﬁ?!:&rxgigfﬁicm
20% fora=<8 and less than 15% fa=8. e ’

The IMA approach can be used to study the displacivecurve found in this approximatiofFig. 4, dashed line We

limit, since QMC curves tend to IMA results & goes use the following relation for an estimation of the mass,

) ~MKT(AXx?)/h?\, where the constant\=kT.B/AC
to zero.-We believe QMC results Tep“’d“"e IMA ones at=2.64 defines the displacive limit and the va(uéx2> is the
a— +0 in the 2D case fot=0 and in the 3D case for all

square of half the distance between two minima of the
temperatures.

double-well potential(a recent estimation givegAx?)
The presented results demonstrate a crossover betweery g, 22 m3). Finally, we havem~0.15. This point {
the quantum =0) and classicalri— + <) limits. As was | ’ ’ o

discussed, the nature of fluctuations is different for the Mq?t')z?’emz%}es )dillseos;dbeerlé)(\j/v ptrT:sleM$hCi:ri\fi?%g?égriseﬁ?/vith

to fl_uctuations quantitat;vely. As a measure of thermal quc%hueariiijr;}ﬁg?unattizﬁts tgg gﬁ?:ﬁs tfrr%?sltg;)elfirs gﬁgle%?g_ by
tuations, the value oDZ=(N*"*Zi[x—x(0)]?) is used. Thys, the quantum discret* model qualitatively predicts
This is a dispersion of the zeroth imaginary-time Fourierihe pehavior of SITiQ However, the mass difference be-
harmonic. In the classical limit all other harmonics are ab-tyeen 3% and G8is not sufficient to shift the point from the
sent, and¢ determines the dispersion rfFor the quantum  disordered phase to the ordered one. Thus this model cannot
limit DZ vanishes. The quantum fluctuations are determine@xplain the results of the experimesee Ref. 2 The reason
from other harmonicsDéz(N**1Eiyk;k¢0[xi(k)]z>. The s that the discretep* model is too simple a model for
comparison of these two quantities allows us to make judgeSrTiO;. The models, used for the description of Srji@re
ments about the main type of fluctuations presented in thenuch more complicatél and include other couplings be-
system and in that way to describe the crossover betweemveen the various atoni$-*3 Nevertheless, we believe the
quantum and classical limits. For instance, the results for thquantum discretep* model can be used for a qualitative
2D case anc=16 are presented in the inset to Fig. 3. Fordescription of ferroelectric materials also for low tempera-
each value of temperature, the corresponding critical value dlures and it gives qualitative agreement with experimental
the mass is used, so that all points in this inset are calculatesbservations?
for the critical line in the phase diagram. This inset shows
that at low temperature the influence of the therifcédssi-
cal) fluctuations is decreased, while the influence of the
guantum fluctuations is increased. The situation at higher In conclusion, we have studied phase diagrams of the
temperature is the inverse. We estimate that the quantumuantum discreteb* model in 2D and 3D cases. Two cross-
limit occurs att<<0.25, while the classical one takes place atovers can be observed in this model: from a displacive to an
t>2.25. Both types of fluctuations have an influence on theorder-disorder phase transition and from a classical to a
behavior of the system, when the temperature is betweeguantum phase transition. The first crossover is governed by
these two values. the parameten, while the second one is governed by two
We also would like to stress that the presented resultparametersm andt (reduced mass and temperature, respec-
show a crossover between displacive and order-disorder lintively). The dependencies of the order paramejéa, m,t)
its. Displacive behavior is found fa<<1 as follows from and the phase diagram.(a,t;) may be used for the descrip-
previous studieé’! As for the order-disorder limit, the tion of some real ferroelectric materials with phase transition
value of the paramete, at which this limit occurs can be of various types, including quantum and thermal fluctuations.
estimated, for example, in the framework of the MFA, by We use the QMC technique for the study of phase dia-
comparing the spectrum of thg* model with the spectrum grams in the frame of the quantum discret® model. For
of the transverse-field Ising modé&ee details in Ref. 24  given parametera,m or a,t we can determine temperature
Order-disorder behavior is found fa>60 at moderate t. or massm, of the phase transition, respectively. These
masses as seen from MFA calculations. Thus, obtained reshow crossovers from the displacive to the order-disorder
sults cover a wide range of phase transitions in the quantudimit and from quantum to classical behavior.
discrete¢* model: from displacive to order-disorder types. We have obtained two discrete schemes for performing
The quantum discretep* model is certainly one of the QMC calculations: one in Fourier spatier t>0) and an-
simplest models for the description of materials and does natther in real spacéor t=0). These schemes have been used
take into account the complicated structure of real systemdor obtaining dependencies of the square of the order param-
However, it can be used for qualitative estimations of someeter 52 in a wide range of the parameteasandm. Critical

V. CONCLUSIONS
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valuest. and m. are extracted from these dependenciesquantum phase transition. The appearance of the order-

Phase diagrampm,(t;)] at various values of parametar disorder limit depends on the mass It takes place at

show good agreement with classical limits taken from our>60 at m~1, while the displacive limit occurs a<<1.

previous studies of this model. Results obtained by FourieQuantum fluctuations start to play an essential role<at

space algorithm tend to results obtained by real-space algalepending on the parameters of the model. The temperature

rithm ast goes to zero. We estimate the accuracy of QMCof the phase transition does not differ strongly from the clas-

calculations to be less than 1%rat-1 and a few percent in sical one aim=2 for 2D and 3D systems.

the quantum areanf<1). SrTiO; has been considered in the framework of the quan-
The analytical MFA and IMA have been generalized fortum discrete¢* model. The estimation for SrTiOshows a

the case of two types of fluctuations: quantum and thermadlisordered phase of this crystalle&=50 K, which coincides

ones. The phase diagrams have been also obtained in tidgth experimental data.

framework of the MFA and shown qualitative agreement

with QMC calculations for various values of parameters of
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