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Nonlinear dielectric response of relaxor ferroelectrics
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The behavior of the third-order nonlinear dynamic dielectric susceptihilify) in relaxor ferroelectrics is
investigated in the framework of the spherical random-bond—random-field model. It is shown that there are two
distinct contributions toys(w): The first oneys(w)', which has been studied earlier, is due to the intrinsic
nonlinearity of the rigid spherical model; the second contribufigfw)'" arises from the field modulation of
the average coupling between polar clusters. The frequency and temperature depenggted''ofs calcu-
lated and compared withs(w)'. In the static limit, the results fopz(w)" are in qualitative agreement with the
measured field-cooled static nonlinear dielectric permittivity in Rba,(Zr,Ti; ), 4O3 ceramics.
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[. INTRODUCTION the rigid SRBRF model. A possible alternative mechanism,
characteristic of the generalized SRBRF model and explored
Relaxor ferroelectrics are structurally disordered polain the present work, is based on the fact that polar clusters
materials, which are characterized by the occurrence ofan be displaced from their equilibrium positions by the ap-
nanosized polar clusters of various sizes below a certain tenilied electric field; this then leads to the field modulation of
perature, typically in the range of several hundred®c- the int-ercluster cpuplin@mecha_nism . A similar idea was
cording to the recently proposed spherical random-bond-Used in connection with the field-temperatuée, T) phase
random-field (SRBRA modeP~° the dipole moments of diagram of PLZT:? and was found to lead to the correct
polar clusters interact via a spin-glass-type random exchaanéwcnpt'or_1 of the observed phase boundary between the
coupling, and are also subject to random local electric fieldsi€"o€lectric and glassy phases. Here we will consider both
In the dynamic SRBRF mod&lone assumes that polar clus- the static and dynamic nonlinear responses resulting from the

ters reorient by means of stochastic figescribed by the above mechanism, and compare it with the effects of the

relaxation timer. Empirically. the temperature de endenceimrinSiC nonlinearity of the rigid spherical model. The crite-
7. EmMp Y, by penc tria for the mechanism to be dominant will generally depend
of 7 can be determined from the positions of the maxima o

. . ) I ) on the parameters of the system, such as the average dipole
the linear Q|electr|c susceptibility, () at different frequen- moment and volume of the cluster and the critical electric
cies, and is thus found to obey the Vogel-FulchéF) law |4 E_| which is required to transform the relaxor into an

7= 19eXU/(T—Tp)], where the VF temperaturg, is com- inhomogeneous ferroelectric.

monly taken as a measure of the freezing temperafyre In Sec. Il of this paper we discuss the microscopic origin
The behavior of the third-order nonlinear dielectric sus-of field variation of intercluster coupling, and derive its con-

ceptibility x3(w) of relaxors has been attracting considerabletribution to the static nonlinear response, which is compared

attention during the past few yedrs. The crucial quantity, with experiments. In Sec. IIl we study the dynamic nonlinear

which is capable of discriminating between the static behavresponse, and in Sec. IV we summarize our conclusions.

ior of normal ferroelectrics and relaxors, is the dielectric

nonlinearity CoeffiCieth a3:X3/Xi. In I’e|aX0rS, SUCh as Il. MECHANISMS OF NONLINEAR RESPONSE
Pb(MgysNb,5) O3 (PMN) and Ph_,La(ZryTi; )1 %403 ) o _ ]
(PLZT) ceramics, a; was found to exhibit a crossover from A. Field variation of intercluster coupling

a paraelectriclike behavior at high temperatures to a dipolar- For simplicity, we consider the uniaxial SRBRF model

glass-like behavior on approachifig. The original SRBRF  \yith a scalar order parameter fieldy/N< S < N satisfying
modeP can qualitatively describe such a crossover behaviokhe spherical condition

however, it also predicts that in the quasistatic lirai
should have a peak near=T;. So far, this peak could not N
be observed in any system. Moreover, in a recent experiment 2 SIZZ N, (1)
carried out under true static conditions both in PMN and i=1
PLZT the peak aff; has not been fountt. This fact neces-
sitates a search for alternative mechanisms of nonlinear re=""
sponse not studied so far, and calls for a refinement anfPnian has the usual form
generalization of the static and dynamic SRBRF model. 1

The mechanism of nonlinear response originally proposed _ T ca o
within the SRBRF model in Ref. %o referred to here as H= 2 ; i SiS; Z hiS (PQEZ Sis 2
mechanism )l has been derived under the assumption that
polar clusters are embedded in a rigid lattice; the nonlinearityvhere the random bonds; and random field$; are speci-
effects are thus entirely due to the intrinsic nonlinearity offied by the random cumulant averages

WwhereN is the number of polar clusters. The model Hamil-
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[3ij]av="J0/N, [Jﬁ]gU:JZ/N (3) This can be formally rewritten by introducing a field-
dependent susceptibility(E) as
and
P=xs(E)E, 9

leading to the following relation for the third order static
Also, E is the applied electric fieldp the local-field factor, nonlinear susceptibility:
andg the average dipole moment of a polar cluster. It should

[hi]law=0, [hihj]ay =245 . (4)

be noted that in this paper we consider only the ckgeJ. 1 x(E) 10
We now introduce a new concept into the above model, X3s™ 7 5 T g2 (10

namely, we assume that the couplifig depends on the dis- E=0

placements of clusters from their equilibrium positions. This  Now y(E) can be calculated from the solutioBgt) of
could be rigorously formulated by introducing a couplihg  the Langevin equations of motion discussed in detail in Ref.
between a set of lattice displacementsand the order pa- 5. Equation(16) of Ref. 5 in the static case=0 yields
rameter fieldS;. After integrating out these additional de-

grees of freedom in the long-wavelength limit one would 90_92 z—r—BJp

obtain an effective coupling;; = J;;(u,,,), which depends on Xs(B)= ve BIP+ID =232’ 1D
the lattice strainau,,. These can be generally written as ]
functions of the stress tensor,, and electric fielcE,, wherev, is the average volume of a polar cluster and

= /Z2— g2J2. The parameter is a Lagrange multiplier en-
forcing spherical condition(1). It is determined by the

U'u,,:% (_SMVK)\U-K)\+ L,LLVK)\EKE)\)’ (5) equatiOﬁ
wheres, ., andL,,,, are components of the elastic com- . B*A z (BIQ)°E?*  [z—r

. - : . -+
pliance and electrostriction tensor, respectively. Assuming 2 r 2(J2+J§—2J02/3)[ r

the existence of a hydrostatic pressprand a fieldE along

one of the principal axes in a cubic system, one obtains the 2Jo(z=1r=BJo) |, 24 A/ 12
simple relationu;;=u=—p/B+LE?, whereB is the bulk C B(IZ+13) -2z =p (AR, (12
modulus and. =L 1117+ 2L112.

Turning now to the couplingj;, we consider the varia- Since bothz and J, are functions ofE?, from Egs.(10)

tion of the parameter§, andJ with pressurep and fieldE. and (11) we obtain the general relation
SinceJ measures the fluctuations &f , the effects ofp and

E on it are expected to be much smaller than the variationof |, 1[dxs(E) 8°z  dxs(E) #*Jg
its averagel,. To lowest nontrivial order the latter can be X3s=Xast Xas= ~ 5|~ g2 9d, JEZ)_
expressed ady(u)=Jy(0)+ (dJg/du)u+ - - -, and the pres- E_(()lg)

sure and field dependence thus becomes

wherey s, and x4 refer to the first and second terms, respec-

tively, of the last expression. Note thggs is the part of the

static nonlinear response, which was calculated in Ref. 5,

and agrees with the result of replica theory derived in Ref. 3.
The effects of pressure aly and on the phase diagram of Here we will focus on the second tem{fs. Combining Egs.

PLZT were already discussed in Ref. 13, whereas the effectd.3), (10), and(7), we find

of E on the phase diagram in PMN and PLZT were described

p
—§+LE2] (6)

30(D.E) = Jo(0) + 20
o(p,E)=Jq( )+E

in Ref. 12. We will consider the case of atmospheric pressure |, _J1<png B (z—=r—BJy)(BIy—2)
(p=0) and write the remaining field dependence in the X3s— E2v, lIB(J2+Jg)_2JOZ+ [B(32+32)—2342)7 |
form'? (14)
E\? The static dielectric nonlinearity (:0e1‘ficierz|t3s=)(35/)(‘1‘S

Jo(E)=Joct+J1 E. -1 (7)  can also be written as a sum of two terms
Here J,. is the value of], at the critical fieldE., which | | Xbs  X5s
corresponds to the onset of long-range order, ahd Ags=agstazgs=— + 7 (15
=(33o/Ju)LEZ. Xis  Xis

whereal, was calculated in Ref. 3.
B. Static nonlinear response It should be noted that the sign gfy—and hence of

The linear and nonlinear static susceptibilities are defined@ss—iS Negative in a broad temperature range, in contrast to
in terms of the expansion of the dielectric polarizatigni.e.,  x3s andag, which were found to be positive quantities. The
relative size ofl x5 versusyss is measured by the ratio of
P=x1E— x3sE3+ - . (8)  the second derivatives afandJ, appearing in Eq(13). It is
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possible to derive analytical expressions |f}p§s| and X;,'S at
T=0. From Eq.(27) of Ref. 5, we have

[
ve | (I—Jg)*

whereas from Eq(14) above, in the limitT—0, we find

| 1
Xss(0)= 5 90, (16

<P92 Jg

ve E23-30)%

Thus we may introduce the dimensionless amplitude ratio

X35(0)=— 17)

X3(0)| _ (3119)(3-3p)?
Xa(0)]  “evclegPu)EL

(18)

If A<1, then x5 will be larger than|ys. On the other
hand, ifA>1 one can expect thakss > x3s., i-€., the main

contribution to the nonlinear response will be due to mecha

nism I, i.e., the field variation of the average coupling
strengthJ,.

For 9/65/35 PLZT ceramics we have the following pa-
rameter values estimated from thg,T) phase diagram:
JIk=261 K, Jo/k=214 K, J;=0.04), A/J?>=0.01, and
E.=4.8 kV/cm, and the static dielectric constant at low
temperatures ise;=5.7x10*. The value of the quantity
©g°/v, can be estimated from tHE=0 static linear dielec-
tric susceptibility[Eq. (13) ]; for A<J? one hasz~BJ, and
thus

¢g?

Uc

X1s=——(3=Jo) . (19
Sincey 5= €g(€s— 1)~ g€, Whereeg is the permittivity of
the vacuum, from Eq.19) we find ¢g%/v,=4x10 28
CcZml

From Eq.(17) we can now calculate th€=0 nonlinear
static susceptibility due to mechanism NQS(O), and the
corresponding nonlinearity coefficielaﬂ's,,'s. The results are
X4(0)=—-9.6x10"1° CmV~3 and aje=—1.5
X 10" Vm°C ™3,

To determiney’, and the ratioA, however, we must also
know the values of the parametars and ¢. According to
the Onsager reaction field thedtyhe value ofe lies in the
range 1.5 ¢<(n?+2)/3, wheren? is the “internal refrac-
tion index.” For PLZT one can estimate’~30 from the

high-frequency dielectric data at low temperatures, and thus‘g
1.5< ¢=11. Assuming that the average cluster is a sphere of’g 10’

radiusR=15 nm—or a cylinder of the same volume—and
choosing the average valuge~6.5, from Eq.(18) we find
that in PLZT the raticA is of the orderA=200. This implies
that mechanism Il is much stronger than mechanismT at

=0—and possibly at other temperatures as well—and thus

| X35> X5s -

In fact, we can now calculate the temperature dependenc

of X'g's and)('3S from Eq.(14) and the corresponding expres-

sion from Ref. 5, respectively. The result is plotted in Fig. 1.

In contrast toyss, which shows a peak nedi~J, the ab-
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FIG. 1. Calculated temperature dependence of the static field-
cooled third order nonlinear response due to the intrinsic nonlinear-
ity of the rigid spherical mode(mechanism )l (lower curve and
field modulation of intercluster couplingmechanism I (upper
curve, plotted on a logarithmic vertical scale. Parameter values

appropriate to PLZT ceramics were used, as explained in the text.

sponse| x4 increases monotonically with decreasing tem-
perature and levels off gradually on approachifig0. A
similar situation occurs in the case of the dielectric nonlin-
earity coefficientsj, anday,, which are displayed in Fig. 2.
Here a'35 also has a pronounced peak nd@ar=J, whereas
—aj, decreases monotonically with decreasing temperature.
It should be stressed thaty, and aj, both have negative
signs in the entire temperature range. This is possible in a
thermodynamic sense provided that the signs of higher order
coefficients in expansion (8) are such that stability of the
free energyF(P) is not violated.

C. Comparison with experiments

The nonlinear static dielectric response has been investi-
gated experimentally in PLZT ceramics by using the same
charge accumulation technique as previously applied to the
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FIG. 2. Calculated temperature dependence of the static dielec-
tric nonlinearity coefficienfizs= ng/)(‘l‘s plotted on a semilogarith-

solute value of the contribution to the static nonlinear re-mic scale, using the same parameters as in Fig. 1.
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T(K) I1l. DYNAMIC NONLINEAR RESPONSE
100 150 200 250 300 350 . .
7 R e e e The time dependence of the order parameter f&(t) is
w; 5 9/65/35 PLZT  (a) governed by the Langevin equations of motion
£ )
5 s ISt ABH)
2 ® = — — " + &
I — oz UR (UL IO
NS ®
2 8 .'.. where 7 is the relaxation time, assumed for simplicity to be
X2 ".,. independent of the site indéxandz(t) the Lagrange mul-
1 "O-.,. tiplier enforcing spherical condition (1) at all times. The
0 ensemble averages of the stochastic Langevin foép@3
—~ 100 (b) satisfy the Einstein relation
@)
g " (&(DE(U)a=278;8(t—1"), (20)
°’9 1 thus ensuring the proper equilibrium limit of correlation
= o1 ..d' functions. As discussed in detail in Ref. 5, Eg0) can be
lmm ' ..o’. decoupled by introducing a set of normal mo&s where
~0.01 ** \ labels the eigenvalues, of the random bond matrig;; .
P T I S S The resulting equations of motion f@&,(t) can be solved
100 150 200 250 300 330 exactly in the asymptotic limit=>27JT/A. The dynamic di-
T(K) electric polarization of the system under the influence of an

oscillating external fieldE(t) = Eycost) can be expressed
FIG. 3. (a) Field-cooled static nonlinear respongg, of PLZT as

9/65/35 ceramics measured by the charge accumulation technique

by cooling slowly (-1 K/min) in a fieldE=0.3 kV/cm. (b) Ex- 0BE, [tdt;
perimental nonlinearity coefficieratzs in PLZT plotted on a semi- t)= 20 f
logarithmic scale. ¢

«eﬁJA(t—tl)/T»e— Zﬁldt’z(t’)/refiwtl_'_ c.C.

0T
(22)
PMN relaxor system®!! The PLZT system was cooled Here z(t") represents the solution of the equation for the
slowly (- 1 K/min) in an applied d.c. electric fielE<E, time-dependent spherical condition in the presence of the
—4.4 kV/cm and the effective field-cooled@C) dielectric ~ applied fieldE(t). The symbol((- - -)) denotes the average

susceptibility yorr= Pec(E, T)/E was determined from the OVver the appropriate Wigner density of states, i.e.,
observed dielectric polarizatioR:(E,T). The correspond-

ing polarization charge was measured by the Keithley 617 (3 )>)=J+2JdJ NZREENK £(3). (23
programmable electrometer. The nonlinear field-cooled di- A —20 M 2m(B24+2-3)

electric susceptibility ;S was then obtained by means of the

relation x5S =[ xe11(0)— xer1(E)J/E2. In Fig. 3a) the mea- In Ref. 5, the nonlinear response due to the modulation of

sured values of- x5, and in Fig. 8b) the dielectric non-  z(t) by the oscillating fieldE(t) was calculated; in the
linearity coefficienass =|x3s|/ Xis in 9/65/35 PLZT ceram- present study we will focus on on the effects of the modula-
ics, are shown as functions of temperature. At lowtion of Jo=Jo[E(t)]. The respons®(t) in the asymptotic
temperatures we find the following limiting valuegss = regimet/7>1 can in general be written as a sum of first,
—6.4x10°* cmV 2 and|a5S|=10" VmSC 2. These re- third, etc., harmonic responses, i.e.,

sults are close to the estimated valuex§f(0) andaz(0) P()~[P,e 1+ Py,e 304 ... J4cc, (24
given above, suggesting that mechanism Il is dominant in
PLZT. Actually, the theoretical estimates can be broughtwvhere the amplitudeB,, P3,, etc. are expanded in powers
much closer to the experimental values if the valugpfs  of Eg:

slightly readjusted toJy/k=224 K, yielding a corrected

value pg?/v.=2.64<10 % C’m~1. From this we can now Eo Eo|®
also esgmatce the value of the average cluster dipole moment, Pw:)(l’(’(“’)(? +X1'1(“’)(7) e (29
i.e.,g=2.2x10"%% Cm=1500 D.
It should be stressed that the measured temperature de- o3 Eo\®
pendences of5S anda5S agree qualitatively with the cor- P3w:X3,O(w)(? +X3,1(w)(7) +eoen (20

responding theoretical results for mechanism II, which ap-

pears to be stronger than mechanism | at all temperature$he third order nonlinear susceptibilitieg; (») and
Since the weak anomaly due to mechanism | could not bazo(w) can be calculated by expandiift) in Eq. (24) in
observed in the experiment, we conclude that its contributiopowers ofEq, and comparing the corresponding terms. Since
must be about two orders of magnitude smaller, and henckothz(t) andJy(t) are quadratic irEy, it is obvious that we
below the present experimental resolution. can write theES terms in Eq.(24) as a sum
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P3(t)=P3(t)'+ P3(t)"!, (27)

where in analogy to Eq913) and (15) the first and third

terms represent the contributions ztt) and Jo[E(t)], re-
spectively. Equatiori27) implies that we can also write

x11(®)=x11(0) + x11(@)", (28

x30 @)= x3d )+ x30 )" (29

The nonlinear respons@,yo(w)' was calculated in Ref. 5. To

determiney; ()" we now set(t')=z= const in Eq(22),
and write

P3(t)”=%[X(w,E)”e*i‘”‘+c.c.], (30

where in analogy with Eq9) we define

2
¢g° (tdt B B i
X(w'E)Hz'B_vC Jo Tl«e(ﬁJA 22)(t tl)/f»e oty
(3D

PHYSICAL REVIEW 65 214101

so thaty;(0) agrees withyss from Eq. (8).
The partial derivative in Eq(36) is calculated from Eq.
(33), and the final result fofz(w)'" is

Jl‘sz[ B
EZv. | B(I2+35)—23pz(w)

L 2@ ~1(0) - BI][Blo—2(w)]
[B(3?+35) —23pz( )]

Xs(w)”:

(38)
For w=0 this reduces to the static nonlinear response

[Eg. (14)]. The total static nonlinear response can be ob-
tained from Eqs(24)—(26) in the form

1
X3s= ~ 21x11(0)" + x5, 0)'"]. (39

By settingw=0 in Egs.(35) and(36) and comparing with
Eg. (37) in the static limit, we have

and it is understood that the average needs to be evaluated

only up toO[E(t)?]. We can then expand

dx(w,E)

JE ()

E=0

x(0,E)"'=x(w,0)+

1 #*x(w,E)
ts——
2 JE

E(t)°+---. (32
E=0

The zeroth-order term is given by
0g? 2(w)=1(w)= B
ve BIP+IH)—2J0z(w)’

with z(w)=z—iwt2, r(w)=yz(w)?—B%? and J,
=Jo(0). Sincex(w,E)" depends orE only via Jo(E), it is

X(0,00=x1(w)= (33

1 :_E ‘]1 Qa)(l(w) +§X1(w)*
X3s™ T 4 EZ YT 43, 330

c

=X3s, (40)
w=0

i.e., the nonlinear susceptibility;(w=0)"" determines the
total static response.

To evaluateys(w)' from Eq.(38) one needs to know the
temperature dependence of the relaxation tima constant
7 cannot reproduce even qualitatively the observed behavior
of either the linear respongg (w) or the nonlinear response.
If the empirical VF relationr= roexdU/(T—Tg)] at T>T, is
employed, therny;(w) agrees qualitatively with experiments
in the high-temperature regiom>T,, but cannot be ex-
tended into the region near and beldw. Formally 7 di-
verges asl — T, and thusy,(w)—0, contrary to observa-

easy to see that the second term on the right—hand side of Eflon. This prob]em cannot be removed by performing an
(32 vanishes, while the second derivative in the last tern‘average over the barrier he|g|’m§ however, as argued in

becomes

&zx(w,E)‘

_ 19)(((,0,0) Jl
JE? B

3y 2EZ

| (34)
E=0
The last two expressions are then inserted into(Bg). Col-
lecting all theE3 terms which oscillate as™ ', e %!, etc.,
returning to Eq.(30) and comparing it with Eq927)—(29),

we finally obtain the two third-order nonlinear susceptibili-

ties:

(w)”:‘]l Zaxl(w)LaXl(w)*
X121 B2 a3, | 93, |

C

(39

J; Ix1(w)

n_ "~

(36)

It is convenient to define the third-order susceptibijty w)
with an opposite sign,

Xs(w):_X3,o(w):X3(w)l+X3(w)”, (37

Ref. 5 a reasonable description is obtained if one averages
x1(w) over a distributionw(T,) of VF temperaturesT,,.
Physically this would correspond to the assumption that each
cluster relaxes with its own relaxation timg in analogy
with the concept of dynamic heterogeneity in relaxre
Unfortunately, nothing is known abouf, neither can the
coupled equations of motigi20) be solved for even a simple
functional dependence = 7;(S;). On the other hand, in ana-
lyzing the experimental data in relaxors and other polydis-
persive systems it is common to introduce a probability dis-
tribution of relaxation timeg(In 7), of whichw(T) is just a
special case.

A reasonably good description of the average response
can be achieved by choosing a linear distributiorT gfi.e.,
W(To)=(20%)(To—J) for 0<To<J and w(Ty)=0
otherwise>!® The resulting averaged complex response is
written as

_ J
Xn(®w)= fo dTow(To) xn(@), (41)

214101-5



R. PIRC, R. BLINC, AND Z. KUTNJAK PHYSICAL REVIEW B65 214101

2

1 8 \8 T “
. (.‘,;‘ 6 b
1.6 5 ] 12

T 14 £ 4 ] 10" ¢ ]

z = 2 — or,=10"

S 1-? E%, 01 N corz = 10_;0 = 10°

§ Y S ot, =10 -

° o8 o0 Ci5 <10 -5 o] ——— ot =107 g

= 06 log,q(o1,) ] o

g o4 ] .

22 o2k ] 10 |

1 —

or ey 1 = ,
0.2 ‘ ‘ g \ 10 T
-8 8 _4 ) 0 2 e \ 05 07 09 1.1 13 15
Iogm((’ﬂo) - \ TN
FIG. 4. Calculated frequency dependence of the real part of the 10" |

third-order nonlinear susceptibility due to field modulation of inter-
cluster couplingmechanism I, averaged over a linear distribution
of Ty and using the same parameters as in Figs. 1 and 2. Inset
Same, but for a wider frequency range. Top to bott6a x
=-10):T/J=0.7,0.9,05, 1.1, 1.3, 1.5, 1.7, and 1.9.
wheren=1 or 3 for the linear and third-order nonlinear re- 1090 5 o7 09 1 13 15
sponses, respectively. The calculated frequency dependenc T/

of the real part ofyz(w,T)" is shown in Fig. 4 in the region _
of strongest frequency dispersion for a number of tempera- FIQ. 6. quculated tempe.rature dependenpe of.the dynamic non-
tures, as indicated. The inset shows the behavior ameanty function for mechanism I[az(w, T)"| (in units ViPC™),

— 0 , . , . at various frequencies as indicated. Inset: same, but for mech-
x3(w,T)" in a wider frequency range. In Fig. 5, the imagi-

a anism |I.
nary part of ys(w,T)"" is plotted on a double-logarithmic
scale. At small frequencies it shows a power-law behavior

x3(0, )"~ (wr)?, where v varies betweenv=0.125 at
T/J=0.5 andv=1 at high temperatures.
This behavior is similar to that of¢s(w,T)' studied

earlier; however, there are some important differences. T . / ; ] ;
see more clearly the difference between the two contribt?pther definitions 05}3(9’”. haye beerj n L.jgé;’ however, in
. : o . . the low-frequency limit which is of prime interest to us, they
tions to the nonlinear response it is instructive to consider the L . , T

o . ; ; . . all lead to similar results. In Fig. 6a3(w,T)"| is plotted for
dynamic dielectric nonlinearity function, defined for conve- . ; L
nience as several frequencies using a double logarithmic scale. In the

temperature interval displayed}(w,T)"" is negative and
reaches extremely large values at lower temperatures in view
of the smallness of the terp, (w)* in the denominator. The
behavior of|aj(w,T)"| is qualitatively similar to that of a
related quantityl 8| determined experimentally in PM{?
For comparison, the inset of Fig. 6 shows the behavior of the
dielectric nonlinearity functior}(w,T)' defined in terms of
mechanism |, which is due to the intrinsic nonlinearity of the
rigid spherical modet.In contrast to|aj(w,T)"|, this con-
tribution shows a peak nedr=J, which could not be con-
firmed experimentall§. This is not surprising, since the con-
tribution of the mechanism is at least one order of magnitude
larger in the peak region and even larger at other tempera-
tures.

The above behavior depends on the type of average over
Ty as defined in Eq(41). At small values ofw the dynamic

<’:lé(w,T)”=;é(w)II

A 42)
xi(w)* (

|°910|Xa”((01T)"\

6 14 2 -0 8 6 -4 -2 o nonlinearityal(w,T)" differs significantly from the static

log,,(wt,)

field-cooled valueai given by Eq.(15), which is displayed

FIG. 5. Calculated frequency dependence of the imaginary parf Fig. 2. This happens even in the linaitro<1. The reason
of the third-order nonlinear susceptibilignechanism N plotted on i that the average ovéff, contains values of which can
a double-logarithmic scaleyg in units CmV 3). Top to bottom become extremely large, and thws>1 in spite of the fact
(left side: T/J=0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, and 1.9. that wrg<1. Therefore, in the limitwry<<1, the dynamic
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nonlinearity functionaj(w,T)" corresponds to the zero- and PLZT ceramics. Also, the sign gf(w)"" turns out to be
field-cooled quasistatic value of the dielectric nonlinearityopposite to the sign ofs(w)'. In the static limitw=0, the

coefficienta! ©.

By contrast, the analogous quantiy(w,T)" calculated

corresponding result fop;(0)'" agrees qualitatively with the
experimental value for the third-order field-cooled static di-

in Ref. 5 as the contribution of mechanism | has a peak neatlectric susceptibility in PLZT ceramics. The zero-field-
T~J, and at small values of frequency approaches the stati¢ooled quasistatic nonlinearity functia(w,T)", which is
limit al, i.e., there is no difference between the field-cooledobtained in the low-frequency limit»7o<1, differs from
and zero-field-cooled dynamic dielectric nonlinearity func-as(w,T)". In particular,az(w,T)" shows a peak near the

tions in that case.

IV. CONCLUSIONS

freezing temperature, whilej(w,T)" has a broad minimum
in the same temperature range, in qualitative agreement with
the observed behavior in PMN.

It has been shown in the framework of the generalized

SRBRF model that there are two main mechanisms of non-
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