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Nonlinear dielectric response of relaxor ferroelectrics
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The behavior of the third-order nonlinear dynamic dielectric susceptibilityx3(v) in relaxor ferroelectrics is
investigated in the framework of the spherical random-bond–random-field model. It is shown that there are two
distinct contributions tox3(v): The first onex3(v) I , which has been studied earlier, is due to the intrinsic
nonlinearity of the rigid spherical model; the second contributionx3(v) II arises from the field modulation of
the average coupling between polar clusters. The frequency and temperature dependence ofx3(v) II is calcu-
lated and compared withx3(v) I . In the static limit, the results forx3(v) II are in qualitative agreement with the
measured field-cooled static nonlinear dielectric permittivity in Pb12xLax(ZryTi12y)12x/4O3 ceramics.
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I. INTRODUCTION

Relaxor ferroelectrics are structurally disordered po
materials, which are characterized by the occurrence
nanosized polar clusters of various sizes below a certain t
perature, typically in the range of several hundred K.1,2 Ac-
cording to the recently proposed spherical random-bon
random-field ~SRBRF! model3–5 the dipole moments o
polar clusters interact via a spin-glass-type random excha
coupling, and are also subject to random local electric fie
In the dynamic SRBRF model,5 one assumes that polar clu
ters reorient by means of stochastic flips6 described by the
relaxation timet. Empirically, the temperature dependen
of t can be determined from the positions of the maxima
the linear dielectric susceptibilityx1(v) at different frequen-
cies, and is thus found to obey the Vogel-Fulcher~VF! law
t5t0exp@U/(T2T0)#, where the VF temperatureT0 is com-
monly taken as a measure of the freezing temperatureTf .

The behavior of the third-order nonlinear dielectric su
ceptibility x3(v) of relaxors has been attracting considera
attention during the past few years.7–9 The crucial quantity,
which is capable of discriminating between the static beh
ior of normal ferroelectrics and relaxors, is the dielect
nonlinearity coefficient7 a35x3 /x1

4. In relaxors, such as
Pb(Mg1/3Nb2/3)O3 ~PMN! and Pb12xLax(ZryTi12y)12x/4O3
~PLZT! ceramics,9 a3 was found to exhibit a crossover from
a paraelectriclike behavior at high temperatures to a dipo
glass-like behavior on approachingTf . The original SRBRF
model5 can qualitatively describe such a crossover behav
however, it also predicts that in the quasistatic limita3
should have a peak nearT'Tf . So far, this peak could no
be observed in any system. Moreover, in a recent experim
carried out under true static conditions both in PMN a
PLZT the peak atTf has not been found.11 This fact neces-
sitates a search for alternative mechanisms of nonlinea
sponse not studied so far, and calls for a refinement
generalization of the static and dynamic SRBRF model.

The mechanism of nonlinear response originally propo
within the SRBRF model in Ref. 5~to referred to here as
mechanism I! has been derived under the assumption t
polar clusters are embedded in a rigid lattice; the nonlinea
effects are thus entirely due to the intrinsic nonlinearity
0163-1829/2002/65~21!/214101~7!/$20.00 65 2141
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the rigid SRBRF model. A possible alternative mechanis
characteristic of the generalized SRBRF model and explo
in the present work, is based on the fact that polar clus
can be displaced from their equilibrium positions by the a
plied electric field; this then leads to the field modulation
the intercluster coupling~mechanism II!. A similar idea was
used in connection with the field-temperature (E,T) phase
diagram of PLZT,12 and was found to lead to the corre
description of the observed phase boundary between
ferroelectric and glassy phases. Here we will consider b
the static and dynamic nonlinear responses resulting from
above mechanism, and compare it with the effects of
intrinsic nonlinearity of the rigid spherical model. The crit
ria for the mechanism to be dominant will generally depe
on the parameters of the system, such as the average d
moment and volume of the cluster and the critical elec
field Ec , which is required to transform the relaxor into a
inhomogeneous ferroelectric.

In Sec. II of this paper we discuss the microscopic orig
of field variation of intercluster coupling, and derive its co
tribution to the static nonlinear response, which is compa
with experiments. In Sec. III we study the dynamic nonline
response, and in Sec. IV we summarize our conclusions

II. MECHANISMS OF NONLINEAR RESPONSE

A. Field variation of intercluster coupling

For simplicity, we consider the uniaxial SRBRF mod
with a scalar order parameter field2AN,Si,AN satisfying
the spherical condition

(
i 51

N

Si
25N, ~1!

whereN is the number of polar clusters. The model Ham
tonian has the usual form5

H52
1

2 (
i j

Ji j SiSj2(
i

hiSi2wgE(
i

Si , ~2!

where the random bondsJi j and random fieldshi are speci-
fied by the random cumulant averages
©2002 The American Physical Society01-1
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@Ji j #av5J0 /N, @Ji j
2 #av

c 5J2/N ~3!

and

@hi #av50, @hihj #av5Dd i j . ~4!

Also, E is the applied electric field,w the local-field factor,
andg the average dipole moment of a polar cluster. It sho
be noted that in this paper we consider only the caseJ0,J.

We now introduce a new concept into the above mod
namely, we assume that the couplingJi j depends on the dis
placements of clusters from their equilibrium positions. T
could be rigorously formulated by introducing a coupling13

between a set of lattice displacementsuW i and the order pa-
rameter fieldSi . After integrating out these additional de
grees of freedom in the long-wavelength limit one wou
obtain an effective couplingJi j 5Ji j (umn), which depends on
the lattice strainsumn . These can be generally written a
functions of the stress tensorskl and electric fieldEk ,

umn5(
kl

~2smnklskl1LmnklEkEl!, ~5!

wheresmnkl andLmnkl are components of the elastic com
pliance and electrostriction tensor, respectively. Assum
the existence of a hydrostatic pressurep and a fieldE along
one of the principal axes in a cubic system, one obtains
simple relationu11[u52p/B1LE2, whereB is the bulk
modulus andL5L111112L1122.

Turning now to the couplingJi j , we consider the varia
tion of the parametersJ0 andJ with pressurep and fieldE.
SinceJ measures the fluctuations ofJi j , the effects ofp and
E on it are expected to be much smaller than the variation
its averageJ0. To lowest nontrivial order the latter can b
expressed asJ0(u)5J0(0)1(]J0 /]u)u1•••, and the pres-
sure and field dependence thus becomes

J0~p,E!5J0~0!1
]J0

]u F2
p

B
1LE2G . ~6!

The effects of pressure onJ0 and on the phase diagram o
PLZT were already discussed in Ref. 13, whereas the eff
of E on the phase diagram in PMN and PLZT were describ
in Ref. 12. We will consider the case of atmospheric press
(p50) and write the remaining field dependence in t
form12

J0~E!5J0c1J1F S E

Ec
D 2

21G . ~7!

Here J0c is the value ofJ0 at the critical fieldEc , which
corresponds to the onset of long-range order, andJ1

5(]J0 /]u)LEc
2 .

B. Static nonlinear response

The linear and nonlinear static susceptibilities are defi
in terms of the expansion of the dielectric polarizationP, i.e.,

P5x1sE2x3sE
31•••. ~8!
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This can be formally rewritten by introducing a field
dependent susceptibilityxs(E) as

P5xs~E!E, ~9!

leading to the following relation for the third order stat
nonlinear susceptibility:

x3s52
1

2

]2xs~E!

]E2 U
E50

. ~10!

Now xs(E) can be calculated from the solutionsSi(t) of
the Langevin equations of motion discussed in detail in R
5. Equation~16! of Ref. 5 in the static casev50 yields

xs~E!5
wg2

vc

z2r 2bJ0

b~J21J0
2!22J0z

, ~11!

where vc is the average volume of a polar cluster andr
[Az22b2J2. The parameterz is a Lagrange multiplier en-
forcing spherical condition~1!. It is determined by the
equation5

z2r 1
b2D

2

z

r
1

~bJwg!2E2

2~J21J0
222J0z/b!Fz2r

r

2
2J0~z2r 2bJ0!

b~J21J0
2!22J0zG5b2~J21D/2!. ~12!

Since bothz and J0 are functions ofE2, from Eqs.~10!
and ~11! we obtain the general relation

x3s[x3s
I 1x3s

II 52
1

2 S ]xs~E!

]z

]2z

]E21
]xs~E!

]J0

]2J0

]E2 D
E50

,

~13!

wherex3s
I andx3s

II refer to the first and second terms, respe
tively, of the last expression. Note thatx3s

I is the part of the
static nonlinear response, which was calculated in Ref
and agrees with the result of replica theory derived in Ref
Here we will focus on the second termx3s

II . Combining Eqs.
~13!, ~10!, and~7!, we find

x3s
II 5

J1wg2

Ec
2vc

H b

b~J21J0
2!22J0z

12
~z2r 2bJ0!~bJ02z!

@b~J21J0
2!22J0z#2 J .

~14!

The static dielectric nonlinearity coefficienta3s5x3s /x1s
4

can also be written as a sum of two terms

a3s[a3s
I 1a3s

II 5
x3s

I

x1s
4

1
x3s

II

x1s
4

, ~15!

wherea3s
I was calculated in Ref. 3.

It should be noted that the sign ofx3s
II —and hence of

a3s
II —is negative in a broad temperature range, in contras

x3s
I anda3s

I which were found to be positive quantities. Th
relative size ofux3s

II u versusx3s
I is measured by the ratio o

the second derivatives ofz andJ0 appearing in Eq.~13!. It is
1-2
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possible to derive analytical expressions forux3s
I u andx3s

II at
T50. From Eq.~27! of Ref. 5, we have

x3s
I ~0!5

1

2
wvcS wg2

vc
D 2 J

~J2J0!4 , ~16!

whereas from Eq.~14! above, in the limitT→0, we find

x3s
II ~0!52

wg2

vc

J1

Ec
2~J2J0!2 . ~17!

Thus we may introduce the dimensionless amplitude rati

A5Ux3s
II ~0!

x3s
I ~0!

U52
~J1 /J!~J2J0!2

wvc~wg2/vc!Ec
2 . ~18!

If A,1, then x3s
I will be larger thanux3s

II u. On the other
hand, ifA.1 one can expect thatux3s

II u.x3s
I , i.e., the main

contribution to the nonlinear response will be due to mec
nism II, i.e., the field variation of the average couplin
strengthJ0.

For 9/65/35 PLZT ceramics we have the following p
rameter values estimated from the (E,T) phase diagram12:
J/k5261 K, J0 /k.214 K, J150.04J, D/J250.01, and
Ec54.8 kV/cm, and the static dielectric constant at lo
temperatures ises.5.73104. The value of the quantity
wg2/vc can be estimated from theT50 static linear dielec-
tric susceptibility@Eq. ~13! #; for D!J2 one hasz'bJ, and
thus

x1s5
wg2

vc
~J2J0!21. ~19!

Sincex1s5e0(es21)'e0es , wheree0 is the permittivity of
the vacuum, from Eq.~19! we find wg2/vc.4310228

C2 m21.
From Eq.~17! we can now calculate theT50 nonlinear

static susceptibility due to mechanism II,x3s
II (0), and the

corresponding nonlinearity coefficienta3s
II . The results are

x3s
II (0)529.6310219 Cm V23 and a3s

II 521.5
3107 V m5C23.

To determinex3s
I and the ratioA, however, we must also

know the values of the parametersvc and w. According to
the Onsager reaction field theory14 the value ofw lies in the
range 1.5,w,(n212)/3, wheren2 is the ‘‘internal refrac-
tion index.’’ For PLZT one can estimaten2;30 from the
high-frequency dielectric data at low temperatures, and t
1.5,w&11. Assuming that the average cluster is a spher
radiusR.15 nm—or a cylinder of the same volume—an
choosing the average valuew;6.5, from Eq.~18! we find
that in PLZT the ratioA is of the orderA.200. This implies
that mechanism II is much stronger than mechanism I aT
50—and possibly at other temperatures as well—and t
ux3s

II u@x3s
I .

In fact, we can now calculate the temperature depende
of x3s

II andx3s
I from Eq. ~14! and the corresponding expre

sion from Ref. 5, respectively. The result is plotted in Fig.
In contrast tox3s

I , which shows a peak nearTf'J, the ab-
solute value of the contribution to the static nonlinear
21410
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sponseux3s
II u increases monotonically with decreasing te

perature and levels off gradually on approachingT50. A
similar situation occurs in the case of the dielectric nonl
earity coefficientsa3s

I anda3s
II , which are displayed in Fig. 2

Here a3s
I also has a pronounced peak nearTf'J, whereas

2a3s
II decreases monotonically with decreasing temperat

It should be stressed thatx3s
II and a3s

II both have negative
signs in the entire temperature range. This is possible
thermodynamic sense provided that the signs of higher o
coefficients in expansion (8) are such that stability of t
free energyF(P) is not violated.

C. Comparison with experiments

The nonlinear static dielectric response has been inve
gated experimentally in PLZT ceramics by using the sa
charge accumulation technique as previously applied to

FIG. 1. Calculated temperature dependence of the static fi
cooled third order nonlinear response due to the intrinsic nonlin
ity of the rigid spherical model~mechanism I! ~lower curve! and
field modulation of intercluster coupling~mechanism II! ~upper
curve!, plotted on a logarithmic vertical scale. Parameter valu
appropriate to PLZT ceramics were used, as explained in the t

FIG. 2. Calculated temperature dependence of the static die
tric nonlinearity coefficienta3s5x3s /x1s

4 plotted on a semilogarith-
mic scale, using the same parameters as in Fig. 1.
1-3
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PMN relaxor system.10,11 The PLZT system was coole
slowly ~- 1 K/min! in an applied d.c. electric fieldE,Ec
54.4 kV/cm and the effective field-cooled~FC! dielectric
susceptibilityxe f f5PFC(E,T)/E was determined from the
observed dielectric polarizationPFC(E,T). The correspond-
ing polarization charge was measured by the Keithley 6
programmable electrometer. The nonlinear field-cooled
electric susceptibilityx3s

FC was then obtained by means of th
relationx3s

FC5@xe f f(0)2xe f f(E)#/E2. In Fig. 3~a! the mea-
sured values of2x3s

FC , and in Fig. 3~b! the dielectric non-
linearity coefficientua3su5ux3su/x1s

4 in 9/65/35 PLZT ceram-
ics, are shown as functions of temperature. At lo
temperatures we find the following limiting values:x3s

FC.
26.4310219 Cm V23 and ua3s

FCu.107 Vm5C23. These re-
sults are close to the estimated values ofx3s

II (0) anda3s
II (0)

given above, suggesting that mechanism II is dominan
PLZT. Actually, the theoretical estimates can be brou
much closer to the experimental values if the value ofJ0 is
slightly readjusted toJ0 /k.224 K, yielding a corrected
valuewg2/vc52.64310228 C2m21. From this we can now
also estimate the value of the average cluster dipole mom
i.e., g.2.2310226 Cm.1500 D.

It should be stressed that the measured temperature
pendences ofx3s

FC anda3s
FC agree qualitatively with the cor

responding theoretical results for mechanism II, which
pears to be stronger than mechanism I at all temperatu
Since the weak anomaly due to mechanism I could not
observed in the experiment, we conclude that its contribu
must be about two orders of magnitude smaller, and he
below the present experimental resolution.

FIG. 3. ~a! Field-cooled static nonlinear responsex3s of PLZT
9/65/35 ceramics measured by the charge accumulation techn
by cooling slowly (;1 K/min) in a fieldE50.3 kV/cm. ~b! Ex-
perimental nonlinearity coefficienta3s in PLZT plotted on a semi-
logarithmic scale.
21410
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III. DYNAMIC NONLINEAR RESPONSE

The time dependence of the order parameter fieldSi(t) is
governed by the Langevin equations of motion5

t
]Si~ t !

]t
52

]~bH!

]Si
22z~ t !Si~ t !1j i~ t !, ~20!

wheret is the relaxation time, assumed for simplicity to b
independent of the site indexi, andz(t) the Lagrange mul-
tiplier enforcing spherical condition (1) at all times. Th
ensemble averages of the stochastic Langevin forcesj i(t)
satisfy the Einstein relation

^j i~ t !j j~ t8!&av52td i j d~ t2t8!, ~21!

thus ensuring the proper equilibrium limit of correlatio
functions. As discussed in detail in Ref. 5, Eq.~20! can be
decoupled by introducing a set of normal modesSl , where
l labels the eigenvaluesJl of the random bond matrixJi j .
The resulting equations of motion forSl(t) can be solved
exactly in the asymptotic limitt@2tJT/D. The dynamic di-
electric polarization of the system under the influence of
oscillating external fieldE(t)5E0cos(vt) can be expressed
as5

P~ t !5
gbE0

2vc
E

0

tdt1
t

Š^ebJl(t2t1)/t&‹e22* t1

t dt8z(t8)/te2 ivt11c.c.

~22!

Here z(t8) represents the solution of the equation for t
time-dependent spherical condition in the presence of
applied fieldE(t). The symbol^̂ •••&& denotes the averag
over the appropriate Wigner density of states, i.e.,

^̂ f ~Jl!&&5E
22J

12J

dJl

A4J22Jl
2

2p~J21J0
22J0Jl!

f ~Jl!. ~23!

In Ref. 5, the nonlinear response due to the modulation
z(t) by the oscillating fieldE(t) was calculated; in the
present study we will focus on on the effects of the modu
tion of J05J0@E(t)#. The responseP(t) in the asymptotic
regime t/t@1 can in general be written as a sum of firs
third, etc., harmonic responses, i.e.,

P~ t !;@Pve2 ivt1P3ve23ivt1•••#1c.c., ~24!

where the amplitudesPv , P3v , etc. are expanded in power
of E0:

Pv5x1,0~v!S E0

2 D1x1,1~v!S E0

2 D 3

1•••, ~25!

P3v5x3,0~v!S E0

2 D 3

1x3,1~v!S E0

2 D 5

1•••. ~26!

The third order nonlinear susceptibilitiesx1,1(v) and
x3,0(v) can be calculated by expandingP(t) in Eq. ~24! in
powers ofE0 and comparing the corresponding terms. Sin
bothz(t) andJ0(t) are quadratic inE0, it is obvious that we
can write theE0

3 terms in Eq.~24! as a sum

ue
1-4
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P3~ t !5P3~ t ! I1P3~ t ! II , ~27!

where in analogy to Eqs.~13! and ~15! the first and third
terms represent the contributions ofz(t) and J0@E(t)#, re-
spectively. Equation~27! implies that we can also write

x1,1~v!5x1,1~v! I1x1,1~v! II , ~28!

x3,0~v!5x3,0~v! I1x3,0~v! II . ~29!

The nonlinear responsex3,0(v) I was calculated in Ref. 5. To
determinex3,0(v) II we now setz(t8)5z5 const in Eq.~22!,
and write

P3~ t ! II 5
E0

2
@x~v,E! II e2 ivt1c.c.#, ~30!

where in analogy with Eq.~9! we define

x~v,E! II 5b
wg2

vc
E

0

tdt1
t

Š^e(bJl22z)(t2t1)/t&‹e2 ivt1,

~31!

and it is understood that the average needs to be evalu
only up toO@E(t)2#. We can then expand

x~v,E! II 5x~v,0!1
]x~v,E!

]E U
E50

E~ t !

1
1

2

]2x~v,E!

]E2 U
E50

E~ t !21•••. ~32!

The zeroth-order term is given by5

x~v,0!5x1~v!5
wg2

vc

z~v!2r ~v!2bJ0

b~J21J0
2!22J0z~v!

, ~33!

with z(v)[z2 ivt/2, r (v)[Az(v)22b2J2 and J0
5J0(0). Sincex(v,E) II depends onE only via J0(E), it is
easy to see that the second term on the right-hand side o
~32! vanishes, while the second derivative in the last te
becomes

]2x~v,E!

]E2 U
E50

5
]x~v,0!

]J0

J1

2Ec
2 . ~34!

The last two expressions are then inserted into Eq.~32!. Col-
lecting all theE0

3 terms which oscillate ase2 ivt, e23ivt, etc.,
returning to Eq.~30! and comparing it with Eqs.~27!–~29!,
we finally obtain the two third-order nonlinear susceptib
ties:

x1,1~v! II 5
J1

Ec
2F2

]x1~v!

]J0
1

]x1~v!*

]J0
G , ~35!

x3,0~v! II 5
J1

Ec
2

]x1~v!

]J0
. ~36!

It is convenient to define the third-order susceptibilityx3(v)
with an opposite sign,

x3~v!52x3,0~v!5x3~v! I1x3~v! II , ~37!
21410
ted

q.

so thatx3(0) agrees withx3s from Eq. ~8!.
The partial derivative in Eq.~36! is calculated from Eq.

~33!, and the final result forx3(v) II is

x3~v! II 5
J1wg2

Ec
2vc

H b

b~J21J0
2!22J0z~v!

12
@z~v!2r ~v!2bJ0#@bJ02z~v!#

@b~J21J0
2!22J0z~v!#2 J .

~38!

For v50 this reduces to the static nonlinear respon
@Eq. ~14!#. The total static nonlinear response can be o
tained from Eqs.~24!–~26! in the form

x3s
II 52

1

4
@x1,1~0! II 1x3,0~0! II #. ~39!

By settingv50 in Eqs.~35! and ~36! and comparing with
Eq. ~37! in the static limit, we have

x3s
II 52

1

4

J1

Ec
2F3

]x1~v!

]J0
1

]x1~v!*

]J0
G

v50

5x3s , ~40!

i.e., the nonlinear susceptibilityx3(v50)II determines the
total static response.

To evaluatex3(v) II from Eq.~38! one needs to know the
temperature dependence of the relaxation timet. A constant
t cannot reproduce even qualitatively the observed beha
of either the linear responsex1(v) or the nonlinear response
If the empirical VF relationt5t0exp@U/(T2T0)# at T.T0 is
employed, thenx1(v) agrees qualitatively with experiment
in the high-temperature regionT@T0, but cannot be ex-
tended into the region near and belowT0. Formally t di-
verges asT→T0 and thusx1(v)→0, contrary to observa-
tion. This problem cannot be removed by performing
average over the barrier heightsU; however, as argued in
Ref. 5 a reasonable description is obtained if one avera
x1(v) over a distributionw(T0) of VF temperaturesT0.
Physically this would correspond to the assumption that e
cluster relaxes with its own relaxation timet i in analogy
with the concept of dynamic heterogeneity in relaxors.15,16

Unfortunately, nothing is known aboutt i , neither can the
coupled equations of motion~20! be solved for even a simple
functional dependencet i5t i(Si). On the other hand, in ana
lyzing the experimental data in relaxors and other polyd
persive systems it is common to introduce a probability d
tribution of relaxation timesg(ln t), of whichw(T0) is just a
special case.

A reasonably good description of the average respo
can be achieved by choosing a linear distribution ofT0, i.e.,
w(T0)5(2/J2)(T02J) for 0<T0<J and w(T0)50
otherwise.5,13 The resulting averaged complex response
written as

x̄n~v!5E
0

J

dT0w~T0!xn~v!, ~41!
1-5
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wheren51 or 3 for the linear and third-order nonlinear r
sponses, respectively. The calculated frequency depend
of the real part ofx̄3(v,T) II is shown in Fig. 4 in the region
of strongest frequency dispersion for a number of tempe
tures, as indicated. The inset shows the behavior
x̄38(v,T) II in a wider frequency range. In Fig. 5, the imag

nary part of x̄3(v,T) II is plotted on a double-logarithmi
scale. At small frequencies it shows a power-law behav
x̄3(v,T) II ;(vt0)n, where n varies betweenn.0.125 at
T/J50.5 andn51 at high temperatures.

This behavior is similar to that ofx̄38(v,T) I studied
earlier,5 however, there are some important differences.
see more clearly the difference between the two contri
tions to the nonlinear response it is instructive to consider
dynamic dielectric nonlinearity function, defined for conv
nience as

FIG. 4. Calculated frequency dependence of the real part of
third-order nonlinear susceptibility due to field modulation of inte
cluster coupling~mechanism II!, averaged over a linear distributio
of T0 and using the same parameters as in Figs. 1 and 2. In
Same, but for a wider frequency range. Top to bottom~at x
5210): T/J50.7, 0.9, 0.5, 1.1, 1.3, 1.5, 1.7, and 1.9.

FIG. 5. Calculated frequency dependence of the imaginary
of the third-order nonlinear susceptibility~mechanism II! plotted on
a double-logarithmic scale (x3 in units Cm V23). Top to bottom
~left side!: T/J50.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, and 1.9.
21410
nce
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a38~v,T! II 5
x̄38~v! II

x̄18~v!4
. ~42!

Other definitions ofa38(v,T) have been in use8,5; however, in
the low-frequency limit which is of prime interest to us, the
all lead to similar results. In Fig. 6,ua38(v,T) II u is plotted for
several frequencies using a double logarithmic scale. In
temperature interval displayed,a38(v,T) II is negative and
reaches extremely large values at lower temperatures in v
of the smallness of the termx̄18(v)4 in the denominator. The
behavior ofua38(v,T) II u is qualitatively similar to that of a
related quantityubu determined experimentally in PMN.8,9

For comparison, the inset of Fig. 6 shows the behavior of
dielectric nonlinearity functiona38(v,T) I defined in terms of
mechanism I, which is due to the intrinsic nonlinearity of t
rigid spherical model.5 In contrast toua38(v,T) II u, this con-
tribution shows a peak nearT'J, which could not be con-
firmed experimentally.8 This is not surprising, since the con
tribution of the mechanism is at least one order of magnitu
larger in the peak region and even larger at other temp
tures.

The above behavior depends on the type of average
T0 as defined in Eq.~41!. At small values ofv the dynamic
nonlinearity a38(v,T) II differs significantly from the static
field-cooled valuea3s

FC given by Eq.~15!, which is displayed
in Fig. 2. This happens even in the limitvt0!1. The reason
is that the average overT0 contains values oft which can
become extremely large, and thusvt@1 in spite of the fact
that vt0!1. Therefore, in the limitvt0!1, the dynamic

e

et:

rt

FIG. 6. Calculated temperature dependence of the dynamic
linearity function for mechanism II,ua38(v,T) II u ~in units Vm5C23),
at various frequencies as indicated. Inset: same, but for m
anism I.
1-6
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nonlinearity functiona38(v,T) II corresponds to the zero
field-cooled quasistatic value of the dielectric nonlinear
coefficienta3s

ZFC .
By contrast, the analogous quantitya38(v,T) I calculated

in Ref. 5 as the contribution of mechanism I has a peak n
T'J, and at small values of frequency approaches the s
limit a3s

I , i.e., there is no difference between the field-coo
and zero-field-cooled dynamic dielectric nonlinearity fun
tions in that case.

IV. CONCLUSIONS

It has been shown in the framework of the generaliz
SRBRF model that there are two main mechanisms of n
linear response in relaxor ferroelectrics: Mechanism I is d
to the intrinsic nonlinearity of the rigid spherical model, a
mechanism II to the field modulation of the intercluster co
pling. The main result of the present study is that the con
bution of mechanism II to the third-order nonlinear dielect
susceptibilityx3(v) is more than one order of magnitud
stronger than that of mechanism I in systems such as P
21410
ar
tic
d
-

d
n-
e

-
i-

N

and PLZT ceramics. Also, the sign ofx3(v) II turns out to be
opposite to the sign ofx3(v) I . In the static limitv50, the
corresponding result forx3(0)II agrees qualitatively with the
experimental value for the third-order field-cooled static
electric susceptibility in PLZT ceramics. The zero-fiel
cooled quasistatic nonlinearity functiona38(v,T) II , which is
obtained in the low-frequency limitvt0!1, differs from
a38(v,T) I . In particular, a38(v,T) I shows a peak near th
freezing temperature, whilea38(v,T) II has a broad minimum
in the same temperature range, in qualitative agreement
the observed behavior in PMN.
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4R. Blinc, J. Dolinšek, A. Gregorovicˇ, B. Zalar, C. Filipič, Z. Kut-
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