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Detrapping aspects of ripplonic polarons on a liquid helium film
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The problem of two-dimensional electron detrapping from the polaron to the quasifree state above a liquid
helium film is studied employing the actual dispersion form of media vibrations. In contrast with the frequently
used cutoff approximation, the actual form is shown to result in continuous and quite smooth changes of the
polaron energy and mass near the detrapping point. At the same time, the electron localization radius~L! is
found to increase rapidly, when the coupling constant (aCC) approaches unity:L}(aCC21)21/2→`. In the
framework of the general stability analysis, this electron detrapping is explained to be a result of an interesting
relationship between the stability index andaCC for the media excitations involved in the polaron cloud.
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The problem of the electron self-trapping to the me
vibration cloud has been attracting broad interest for a lo
while.1–3 The particularly intriguing question discussed i
tensively is whether the electron self-trapping occurs c
tinuously or discontinuously when varying the coupling co
stantaCC, characterizing the strength of electron interacti
with media vibrations. In other words, is there any critic
behavior of the major electron properties at a certain, fin
value of the coupling constantaCC* , which can be considere
as a sort of phase transition? For the standard Fro¨hlich sys-
tem of the free optical polaron, in the framework of an an
lytical approach, it was shown that such phase transi
does not exist.4 For acoustical polarons, some localizatio
criteria were reported.5–7 These criteria were formulated i
terms of the stability index, which is a combination of th
dimension indexD, the media dispersion indexn (vq}qn),
and the force range indexl (gq5A\/2mqvqVq}q2l, here
Vq is the electron-media coupling, andmq is an inertia quan-
tity of the media vibrations!. In this treatment, there is
marginal stability index value which separates self-trapp
and free electron states. Because the stability index is usu
a fixed intrinsic property of a system or a theoretical mo
~independent ofaCC), the self-trapping~or detrapping! can-
not appear as a result of varying the coupling constantaCC,
with the exception of the marginal stability index case.

When analyzing the polaron problem in the framework
the Feynman path-integral method for surface electr
formed on a liquid helium film, Jackson and Platzman8 found
that the electron effective mass remarkably underwent
extremely rapid transition from the free-electron value to
much larger value, which was ascribed to the ‘‘localizatio
transition. In the variational analysis of Ref. 6, this mod
(D52, n51, andl521/2) was shown to correspond to th
marginal value of the stability indexd5D2n22l2250.
In this case, the kinetic and interaction terms of the pola
energy have the same dependence on the electron loca
tion radiusL, and the total energyEp , as a function of the
coupling constant, changes the sign ataCC5aCC* :

Ep}
~aCC* 2aCC!

L2
. ~1!
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The critical valueaCC* separates the free-electron (L→`)
and shrunk (L→0) states. In another analysis7 based on the
symmetry arguments, a substantially different stability ind

s5
D1222l

n
~2!

was introduced, and the ground state was shown to be d
calized for arbitrary coupling strength ifs.2. The applica-
tion of this criterion to the 2D electron system formed on t
helium film yieldss55.2, which precludes any ‘‘localiza-
tion’’ transition.7

First, it should be noted that the abovementioned anal
of Refs. 6 and 7 does not really correspond to the model u
by Jackson and Platzman in the full extent. The model e
ployed in the ripplonic polaron treatment is actually a cut
model which assumes that there are no media excitat
with q.qc5k ~herek is the capillary constant for the sur
face excitations of the helium film!. We shall see that this
wave-number cutoff is the most important assumption of
model, which actually introduces the ‘‘localization’’ trans
tion for the acoustical polarons. Briefly, this conclusion fo
lows from the fact thatk, combined with the localization
radius of the strong coupling limitL0, relates directly to the
polaron coupling constantaCC52/k2L0

2 which we shall de-
fine later. Thus the cutoff dispersion model of the med
vibrations involved in the polaron cloud (qL0;1) becomes
somewhat dependent on the coupling constant, which
pears to be crucial for the self-trapping transition.

Secondly, the cutoff model of the media vibrations do
not really reflect the actual excitation spectrum of the liqu
helium film, which has no cutoff atq;k

vq5Far ~q21k2!q tanh~qd!G1/2

.v0q̃A11q̃2, ~3!

wherea is the surface tension,r is the liquid helium mass
density,d is the film thickness,k5ArGd /a is the capillary
constant,Gd}d24 is the acceleration of fluid atoms due
the van der Waals forces,q̃5q/k, andv05Aad/rk2. At q
;k, the dispersion curve just bends and the dispersion in
changes smoothly fromn51 (q!k) to n52 (q@k; we
©2002 The American Physical Society07-1
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considerqd!1). Ripplonic polarons with this form of the
media vibration spectrum were studied in the framework
the path-integral method by Hipo´lito, Farias, and Studart9

and, for the strong coupling regime, by Saitoh.10 The numeri-
cal graphs of the polaron mass, energy, and mobility vs
film thicknessd presented in Refs. 9 and 11 show only co
tinuous changes. Still, as noted by Jackson and Platzman
coupling constant for the ripplonic polaron on the typic
helium film is practically independent ofd, and therefore it is
difficult to reach the detrapping transition by varying the fi
thickness.

It is of obvious interest to investigate the behavior of t
polaron radiusL, energy, and mass as functions ofaCC for
the actual form of Eq.~3!. Is there any finite critical value o
the coupling constantaCC* .0, which can be considered as
bound for the self-trapped states, or the polaron proper
vary smoothly down toaCC50? If the detrapping transition
exists, how does it relate to the stability criteria found pre
ously in Refs. 6 and 7? In this paper we report the answer
these questions. We found that the polaron boundaCC* 51
and detrapping transition exist for the actual ripplon sp
trum: in the vicinity ofaCC51, a small decrease of the cou
pling constant causes a huge increase of the electron lo
ization radius, andL→` when aCC→1. Nevertheless, the
polaron energy and mass are continuous and quite sm
functions of the coupling constant. The sharpness or the s
like behavior of the polaron mass reported previously8 is
shown to be a result of the cutoff approximation. The detr
ping transition appears because the dimensionless param
q̃25(q/k)2, entering Eq.~3!, depends on the coupling con
stant for the wave numbersq;A2/L giving the major con-
tribution to the polaron properties:q̃2;aCC/ l 2 ~here l
5L/L0 is the normalized electron localization radius!. When
the coupling constant passes through the regionaCC;1, the
dispersion indexn of the media vibrations transforms from
to 1, affecting crucially the polaron stability index.

It should be emphasized that the media excitation disp
sion of Eq.~3! does not depend on the interaction and
coupling constant in the direct way. The indirect depende
on aCC appears because the interaction with a localized e
tron selects the specific wave-numbersq;A2/L giving the
major contribution to the polaron energy. Since the locali
tion radius depends on the interaction strength, the disper
index of the excitations relevant becomes dependent onaCC.

The actual dispersion form of Eq.~3! is more complicated
than the acoustical cutoff model. Because the dispers
form is crucial for the detrapping transition, we choose to u
the simple adiabatic polaron treatment~similar to that of Ref.
6! with the exact dispersion rather than the more advan
and complicated method with an approximate dispers
The adiabatic method assumes that an electron is localize
the relative ~electron-media excitation cloud! coordinates,
and the combined system can move freely with an effec
~polaron! mass. In this framework, we can study the behav
of the localization radiusL as a function ofaCC. If the
detrapping transition occurs, one may expect that the lo
ization radiusL→` as the coupling constant decreases do
to the critical value. Our choice is based also on the f
21250
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~shown below! that for the cuttoff model, the conventiona
adiabatic polaron treatment reproduces the main result
the path-integral method found in Ref. 8.

The ripplonic polaron consists of a self-trapped electr
and a surface dimplej(r ). The latter serves as the med
excitation cloud. The analysis of the numerical solution
the electron wave function in the strong coupling lim
(aCC@1)11 indicates that it is quite close to a Gaussian fo
with the localization radius

L5L0[A 4pa\2

m~eE'
* !2

~4!

found by means of the variational method12 ~herem is the
free-electron mass, andE'

* is the total holding electric field:
the external fieldE' plus the image field of the dielectri
substrateEd;d22;13 for thin films, Ed@E'). Therefore it is
reasonable to use a Gaussian trial wave function, wh
yields the following form of the polaron energy:

Ep~L !5
\2

2mL2
2(

q

Vq
2

2mqvq
2

e2q2L2/2, ~5!

where Vq.eE'
* , and mq5r/q tanh(qd). The first term of

Eq. ~5! is the zero point kinetic energy of the electron, a
the second term is the gain of the interaction energy.

There is a certain freedom in definition of the polar
coupling constantaCC. We define it from the condition tha
the average phonon number of the polaron cloud^N&5aCC
in the weak coupling regime. Then, the valueaCC51 repre-
sents the transition regime from weak to strong coupli
This condition yields

aCC5
~eE'!2

4pa

2m

\2k2
[

2

k2L0
2

, ~6!

the value which is exactly two times larger than the notat
used previously.8 The convenience of this choice is that th
detrapping transition occurs exactly ataCC5aCC* 51.

Before proceeding with the exact dispersion form w
would like to show that for the cutoff model, the metho
employed here reproduces the detrapping transition fo
previously by means of the path-integral method. First,
note that for the pure acoustical spectrumvq}q without the
cutoff, Eq. ~5! yields the result of Ref. 6: the normalize
polaron energyẼp52mL0

2Ep /\25(12aCC)/ l 2 changes its
sign when the coupling constantaCC passes unity, but there
is no minimum to fix the normalized localization radiusl
5L/L0. The situation changes a great deal for the cut
model of Ref. 8 withqc5k. In this case, the summation ove
uqu,k yields a different polaron energy equation

Ẽp5
1

l 2
@12aCC~12e2 l 2/aCC!#. ~7!

Here the term2exp(2l2/aCC), introduced by the cutoff, pre
vents the electron from shrinking tol 50 at aCC.1. For
aCC.1, the polaron energy has a minimum at a finitel,
7-2
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FIG. 1. The normalized electron localization radiusl (aCC) ~a! and polaron energyẼp(aCC) ~b! vs the coupling constant: the numeric
solution according to Eq.~8! ~solid curve!, the analytical approximation of Eq.~10! @short-dashed curve,~a!#, the strong coupling approxi-
mation @dashed curve,~b!#.
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while at aCC,1 there is no minimum. The existence of th
detrapping transition of Jackson and Platzman8 in the con-
ventional adiabatic theory~for the same dispersion mode
and with the same value ofaCC* ) inspires us to apply this
method to the actual form of the ripplon dispersion.

Employing the actual ripplon dispersion of Eq.~3!, the
equation for the polaron radius]Ep /]L50 can be written in
the following form:

1

l 2
5E

0

` x

x1 l 2/aCC

e2xdx. ~8!

In the regionaCC@1, the solution of this equation coincide
with that of the strong coupling regimel 51. This limiting
case corresponds to the following stability indexesd522
,0 and s52. In the opposite limitaCC!1, there is no
solution with any finitel. The respective stability indexes a
different: d50 ands55.2. Therefore for the actual dis
persion, the marginal valued50 discussed in Ref. 6 is
achieved only in the limiting casel 2/aCC@1. Thus for Eq.
~8!, the stability index depends on the coupling constant a
when aCC decreases, it reaches the marginal value, wh
causes the electron detrapping.

When analyzing Eq.~8! in the regionaCC;1, it is con-
venient to represent it as

l 2511
l 4

aCC
el 2/aCCF2EiS 2

l 2

aCC
D G , ~9!

where Ei(x) is the exponential-integral function. Expecting
strong increase ofl (aCC) whenaCC→aCC* , we can use the
asymptotical form Ei(2x).2e2x(1/x21/x212/x3). Such
substitution yields the analytical solution

l ~aCC!.A 2

aCC21
~10!
21250
d,
h

valid near the critical point foraCC21!1. This solution
indicates the existence of the detrapping transition with
same value ofaCC* as that found for the cutoff model. Th
important difference is that the dependencel (aCC)}(aCC

21)21/2 is substantially stronger than the logarithmical d
pendence which can be found for the cutoff model@Eq. ~7!#.

The numerical solutions of Eq.~8! or Eq.~9! for the elec-
tron localization radiusl (aCC) and the polaron energy ar
shown in Fig. 1. The critical behavior ofl (aCC) shown there
by the solid curve~a! does not cause any sharp behavior
the polaron energy~b! which changes continuously an
smoothly to zero. In the vicinity of the regionaCC51, the
normalized polaron energy behaves asẼp52(aCC21)2/4
→0. Another consequence of the numerical graph of F
1~b! is that the polaron energy~solid curve! is always nega-
tive, which means that formation of polarons is favorable
soon asaCC.1.

FIG. 2. The normalized dimple massMd /Md
(0) as a function of

the coupling constant: numerical evaluations of Eqs.~11! and ~12!
for the actual dispersion form~solid curve! and for the cutoff model
discussed in the text~short-dashed curve!.
7-3
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The polaron mass is the sumM p5m1Md , whereMd is
the effective mass of the surface dimple13

Md5
r

2 (
q

~jq!2q coth~qd!, ~11!

jq52
Vq

mqvq
2

e2q2L2/4,

andjq is the Fourier transform of the polaron dimplej(r ).
In the limiting caseqd!1, straightforward evaluations yiel

Md

Md
(0)

5 l 2E
0

` e2xdx

~x1 l 2/aCC!2
, Md

(0)5
\2r

4mad
. ~12!

In the strong coupling limit,Md.aCCMd
(0) .13 This result

was reproduced also in the framework of the Feynman p
integral method.10,14Therefore it is reasonable to expect th
Eq. ~12! will give a quite accurate result in the regionaCC
;1 as well. Forl @1, one can find that the dimple mas
vanishes smoothly asaCC approaches unity:Md.Md

(0)l 22

5(aCC21)Md
(0)/2.

The numerical graph ofMd(aCC) is shown in Fig. 2 by
the solid curve. Ford5100 Å, we estimateMd

(0)/m.1.35
3105. The polaron mass indeed changes rapidly from
value of the order of 1052106 m to the free-electron value in
a qualitative accordance with the result of Jackson and P
man. Still, in contrast with the sharp fall of the polaron ma
found in Ref. 8, the solid curve of Fig. 2 is smooth. W
ascribe the sharpness of that fall to the cutoff approximat
This conclusion follows from the analysis of the cuto
21250
h-
t

a

z-
s

n.

model in the framework of the adiabatic variational meth
@Eq. ~7!#. In this case, the localization radiusl increases as
aCC→1 only with the logarithmical rate. This means that t
dimple massMd.Md

(0)l 22 depends weakly on the differenc
aCC21 as the coupling constant approaches its criti
value. Because the polaron energy has no minimum ataCC

,1, andMd(aCC) is nearly constant ataCC.1 for the cutoff
model, the mass fall, shown in Fig. 2 by the short-dash
curve, really looks similar to a step function. At large valu
of aCC, the cutoff model surprisingly gives a reasonab
result approaching the solid curve, though it devia
strongly from the solid curve at the vicinity of the detrappin
point.

In conclusion, we have shown that the detrapping tran
tion of ripplonic polarons on the liquid helium film@ l
}A2/(aCC21)→` asaCC→1# originates from the unusua
dispersion form of the long-wavelength media vibration
which represents a very interesting case for the polaron p
lem. The dispersion and stability indexes for the media
brations involved in the polaron cloud become dependen
the coupling constant, so that the stability index reaches
marginal value whenaCC→1. Such situation was not dis
cussed previously in the general stability analysis of the
laron problem. The cutoff model of the media excitatio
spectrum often used in theoretical studies8,14 is shown to
reflect somehow this feature of the ripplonic polaron, still,
zero temperature, it introduces the too sharp behavior of
polaron mass near the transition point. The actual form of
ripplon dispersion is shown to result in large but smooth a
continuous changes of the polaron mass and energy, w
agrees with the general analysis of Ref. 7.
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