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Detrapping aspects of ripplonic polarons on a liquid helium film
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The problem of two-dimensional electron detrapping from the polaron to the quasifree state above a liquid
helium film is studied employing the actual dispersion form of media vibrations. In contrast with the frequently
used cutoff approximation, the actual form is shown to result in continuous and quite smooth changes of the
polaron energy and mass near the detrapping point. At the same time, the electron localizatiofljadius
found to increase rapidly, when the coupling constantd) approaches unityt«(acc—1)~ Y. In the
framework of the general stability analysis, this electron detrapping is explained to be a result of an interesting
relationship between the stability index aad for the media excitations involved in the polaron cloud.
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The problem of the electron self-trapping to the mediaThe critical valueag. separates the free-electroh - )
vibration cloud has been attracting broad interest for a longnd shrunk —0) states. In another analySisased on the

while.!~® The particularly intriguing question discussed in- symmetry arguments, a substantially different stability index

tensively is whether the electron self-trapping occurs con-

tinuously or discontinuously when varying the coupling con- D+2—-2\

stantacc, characterizing the strength of electron interaction o=, 2

with media vibrations. In other words, is there any critical

behavior of the major electron properties at a certain, finitevas introduced, and the ground state was shown to be delo-

value of the coupling constanf, which can be considered calized for arbitrary coupling strength ¢>2. The applica-

as a sort of phase transition? For the standardlfeto sys- tion of this criterion to the 2D electron SyStem formed on the

tem of the free optical polaron, in the framework of an ana-helium film yieldso=5>2, which precludes any “localiza-

lytical approach, it was shown that such phase transitiofion” transition.’

does not exist. For acoustical polarons, some localization ~ First, it should be noted that the abovementioned analysis

criteria were reported.’ These criteria were formulated in Of Refs. 6 and 7 does not really correspond to the model used

terms of the stability index, which is a combination of the by Jackson and Platzman in the full extent. The model em-

dimension indexD, the media dispersion index (wq=q"), ployed in t.he ripplonic polaron treatment is actu.ally a putpff

and the force range index (gq= /—ﬁlzﬂqquqxq*A’ here m_odel which assumes that the_re are no media excitations

V,, is the electron-media coupling, apg, is an inertia quan- With 4>d.= « (here« is the capillary constant for the sur-

tity of the media vibrations In this treatment, there is a face excitations of the helium f|_|)nWe shall see th_at this

marginal stability index value which separates self-trappedvave-number cutoff is the most important assumption of the

and free electron states. Because the stability index is usualffodel, which actually introduces the “localization” transi-

a fixed intrinsic property of a system or a theoretical modefflon for the acoustical polarons.-Brleﬂy., this conclugon fol-

(independent ofcg), the self-trappingor detrapping can- Iow_s from the fact thatx, _com_bmed with the_ localization

not appear as a result of varying the coupling consa, radius of the strong coupling limlt,, relates directly to the

with the exception of the marginal stability index case. ~ Polaron coupling constantcc= 2/x*L§ which we shall de-
When ana|yzing the po|ar0n prob|em in the framework offine later. Thus the cutoff dispersion model of the media

the Feynman path-integral method for surface electron¥ibrations involved in the polaron cloudj{,~1) becomes

formed on a liquid helium film, Jackson and Platzfhound ~ somewhat dependent on the coupling constant, which ap-

that the electron effective mass remarkably underwent afiears to be crucial for the self-trapping transition.

extremely rapid transition from the free-electron value to a Secondly, the cutoff model of the media vibrations does

much larger value, which was ascribed to the “localization” not really reflect the actual excitation spectrum of the liquid

transition. In the variational analysis of Ref. 6, this modelhelium film, which has no cutoff aj~ «

(D=2, v=1, and\ = —1/2) was shown to correspond to the

marginal value of the stability indef=D—v—2\A—2=0.

In this case, the kinetic and interaction terms of the polaron

energy have the same dependence on the electron localiza- ) . . )
tion radiusL, and the total energg,, as a function of the where « is the surface tensiom is the liquid helium mass

; ; % . density,d is the film thicknessxk=/pGy/« is the capillary
coupling constant, changes the signge= ace: constant,G4<d ™ # is the acceleration of fluid atoms due to
* the van der Waals forceg=q/«, andwy= Jad/px?. At q
o M (1) ~ k, the dispersion curve just bends and the dispersion index
L2 changes smoothly from=1 (q<k) to v=2 (g>«; we

@ 1/2 - _
wq= ;(q2+:<2)qtanr(qd) =woqV1+9% (3

&p
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considerqd<1). Ripplonic polarons with this form of the (shown below that for the cuttoff model, the conventional
media vibration spectrum were studied in the framework ofadiabatic polaron treatment reproduces the main results of
the path-integral method by Hipw, Farias, and Studart the path-integral method found in Ref. 8.

and, for the strong coupling regime, by SaitSfihe numeri- The ripplonic polaron consists of a self-trapped electron
cal graphs of the polaron mass, energy, and mobility vs th@nd a surface dimpl€(r). The latter serves as the media
film thicknessd presented in Refs. 9 and 11 show only con-€Xcitation cloud. The analysis of the numerical solution for
tinuous changes. Still, as noted by Jackson and Platzman, tifée €lectron wave function in the strong coupling limit
coupling constant for the ripplonic polaron on the typical(acc>1) indicates that it is quite close to a Gaussian form

helium film is practically independent df and therefore itis With the localization radius

difficult to reach the detrapping transition by varying the film 5
thickness. L=L / 4mah 4)
It is of obvious interest to investigate the behavior of the 0 m(eEj)Z

polaron radiud_, energy, and mass as functions af. for
the actual form of Eq(3). Is there any finite critical value of found by means of the variational metHE_J(ﬂherem is the
the coupling constant&->0, which can be considered as a free-electron mass, ari#l’ is the total holding electric field:
bound for the self-trapped states, or the polaron propertiehe external fieldE, plus the image field of the dielectric
vary smoothly down tarcc=07? If the detrapping transition SubstrateEq~d~2;** for thin films, Eq>E, ). Therefore it is
exists, how does it relate to the stability criteria found previ-réasonable to use a Gaussian trial wave function, which
ously in Refs. 6 and 772 In this paper we report the answers tgields the following form of the polaron energy:
these questions. We found that the polaron boufid=1 )
and detrapping transition exist for the actual ripplon spec- _ h? Va

e B E(L)= - e ate (5)
trum: in the vicinity ofacc=1, a small decrease of the cou- P omL2 9 2qu2
pling constant causes a huge increase of the electron local- g
ization radius, and.—« when acc—1. Nevertheless, the whereV =eE, and uq=p/qtanh@d). The first term of
polaron energy and mass are continuous and quite smootkq. (5) is the zero point kinetic energy of the electron, and
functions of the coupling constant. The sharpness or the stephe second term is the gain of the interaction energy.
like behavior of the polaron mass reported previotissy There is a certain freedom in definition of the polaron
shown to be a result of the cutoff approximation. The detrap€oupling constanticc. We define it from the condition that
ping transition appears because the dimensionless parametbe average phonon number of the polaron cloNi= ac

0= (a/«)?, entering Eq(3), depends on the coupling con- in the weak coupling regime. Then, the valugc=1 repre-
stant for the wave numbers~ \2/L giving the major con- sents the transition regime from weak to strong coupling.

tribution to the polaron propertiesq®~acc/I? (here | This condition yields
=L/L, is the normalized electron localization radiug/hen
the coupling constant passes through the regiga~1, the = = , (6)
dispersion index of the media vibrations transforms from 2 Ama p2? k23

to 1, affecting crucially the polaron stability index. _ . .
9 y P y fthe value which is exactly two times larger than the notation

It should be emphasized that the media excitation dispe X . . o
sion of Eq.(3) does not depend on the interaction and theused previousl§. The convenience of this choice is that the

. ) > P
coupling constant in the direct way. The indirect dependencd®lr@Pping transition occurs exactly @éc=acc=1.
on acc appears because the interaction with a localized elec- Before proceeding with the exact dispersion form we

tron selects the specific wave-numbers \2/L giving the would like to show that for the cutoff model, the method

major contribution to the polaron energy. Since the Iocaliza-er‘np!Oyed here reproduces the Qetrapping transitio_n found
eviously by means of the path-integral method. First, we

tion radius depends on the interaction strength, the dispersior?{ ! .
index of the excitations relevant becomes dependeiaton note that for the_ pure acoustical spectruigq without the
The actual dispersion form of EB) is more complicated cutoff, Eq. (5 3L|elds the result of Ref. 6: the normalized
than the acoustical cutoff model. Because the dispersioRolaron energye,=2mLjg, /2= (1~ acc)/1? changes its
form is crucial for the detrapping transition, we choose to us&ign when the coupling constaat.c passes unity, but there
the simple adiabatic polaron treatmésimilar to that of Ref. is no minimum to fix the normalized localization radius
6) with the exact dispersion rather than the more advanced L/Lo. The situation changes a great deal for the cutoff
and complicated method with an approximate dispersionmodel of Ref. 8 withg.= «. In this case, the summation over
The adiabatic method assumes that an electron is localized || < « yields a different polaron energy equation
the relative (electron-media excitation cloliccoordinates,
and the combined system can move freely with an effective
(polaron mass. In this framework, we can study the behavior
of the localization radiud as a function ofacc. If the
detrapping transition occurs, one may expect that the locaHere the term-exp(—1%acc), introduced by the cutoff, pre-
ization radiud.— o as the coupling constant decreases dowrvents the electron from shrinking to=0 at acc>1. For
to the critical value. Our choice is based also on the factvc>1, the polaron energy has a minimum at a finite

~ 1 2
= l1-acd1—e o], @
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FIG. 1. The normalized electron localization radigacc) (a) and polaron energﬁp(acc) (b) vs the coupling constant: the numerical

solution according to Eq8) (solid curve, the analytical approximation of EGL0) [short-dashed curvéa)], the strong coupling approxi-
mation[dashed curveb)].

while at acc<1 there is no minimum. The existence of the valid near the critical point folecc—1<1. This solution
detrapping transition of Jackson and Platzfhanthe con- indicates the existence of the detrapping transition with the
ventional adiabatic theoryfor the same dispersion model same value ok as that found for the cutoff model. The

and with the same value aff.) inspires us to apply this important difference is that the depender¢ecc)*(acc
method to the actual form of the ripplon dispersion.

—1) Y2 s substantially stronger than the logarithmical de-
Employing the actual ripplon dispersion of E@), the  pendence which can be found for the cutoff moded. (7)].
equation for the polaron radiu’,/JL =0 can be written in The numerical solutions of E@8) or Eq.(9) for the elec-
the following form:

tron localization radiud (acc) and the polaron energy are
shown in Fig. 1. The critical behavior 6facc) shown there
1 % X by the solid curvga) does not cause any sharp behavior of
I_szo me‘xdx. (8 the polaron energyb) which changes continuously and
cc smoothly to zero. In the vicinity of the regioicc=1, the
In the regionacc> 1, the solution of this equation coincides Normalized polaron energy behaves &s=—(acc—1)%/4
with that of the strong coupling regimle=1. This limitng ~ —0. Another consequence of the numerical graph of Fig.
case corresponds to the following stability indesass —2  1(b) is that the polaron enerdigolid curve is always nega-
<0 ando=2. In the opposite limitacc<1, there is no tive, which means that formation of polarons is favorable as
solution with any finitd. The respective stability indexes are S00N asacc>1.
different: =0 ando=5>2. Therefore for the actual dis-
persion, the marginal valug=0 discussed in Ref. 6 is
achieved only in the limiting cas&/acc>1. Thus for Eq.
(8), the stability index depends on the coupling constant and,
when acc decreases, it reaches the marginal value, which
causes the electron detrapping.
When analyzing Eq(8) in the regionacc~1, it is con-
venient to represent it as

|4 ) . |2
12=14+ —¢'7*cq —Ej| — —
acc acc

10

cutoff model

e
-~
.

™ actual dispesion
form

0.1

0.0l

, ©)

Normalized dimple mass

where Eif) is the exponential-integral function. Expecting a 0.001
strong increase df(@cc) when acc— agc, we can use the ! 10
asymptotical form Eitx)=—e X(1/x—1/x*+2/x%). Such
substitution yields the analytical solution

Coupling constant, o
FIG. 2. The normalized dimple ma#s,/M{” as a function of

the coupling constant: numerical evaluations of E44) and(12)
|(@ee)= / 2 (10) for the actual dispersion forigsolid curve and for the cutoff model
cc acc—1 discussed in the teXshort-dashed curye
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model in the framework of the adiabatic variational method
[Eq. (?)]. In this case, the localization radilisncreases as
acc— 1 only with the logarithmical rate. This means that the
dimple masvl4=M ("I -2 depends weakly on the difference
acc—1 as the coupling constant approaches its critical
value. Because the polaron energy has no minimumaat
<1, andM(acc) is nearly constant atcc>1 for the cutoff
model, the mass fall, shown in Fig. 2 by the short-dashed
curve, really looks similar to a step function. At large values
of acc, the cutoff model surprisingly gives a reasonable
result approaching the solid curve, though it deviates
strongly from the solid curve at the vicinity of the detrapping
point.

In conclusion, we have shown that the detrapping transi-
) o (0) 13 —pe tion of ripplonic polarons on the liquid helium filnjl
In the strong coupllng limitMy=accMy’.>> This result o \2/(@ee— 1)— = asacc— 1] originates from the unusual
was reproduced also in the framework of the Feynman pattyispersion form of the long-wavelength media vibrations,
integral method®“ Therefore it is reasonable to expect that yhich represents a very interesting case for the polaron prob-
Eq. (12) will give a quite accurate result in the regiancc  |em. The dispersion and stability indexes for the media vi-
~1 as well. Forl>1, one can find that the dimple mass prations involved in the polaron cloud become dependent on
vanishes smoothly aacc approaches unityMq=M{”1"?  the coupling constant, so that the stability index reaches the
=(acc— 1)MP2. marginal value whenvcc—1. Such situation was not dis-

The numerical graph oM y(acc) is shown in Fig. 2 by cussed previously in the general stability analysis of the po-
the solid curve. Fod=100A, we estimateM{?/m=1.35 laron problem. The cutoff model of the media excitation
% 10°. The polaron mass indeed changes rapidly from apectrum often used in theoretical stufisis shown to
value of the order of 10- 10° m to the free-electron value in  reflect somehow this feature of the ripplonic polaron, still, at
a qualitative accordance with the result of Jackson and Platzero temperature, it introduces the too sharp behavior of the
man. Still, in contrast with the sharp fall of the polaron masspolaron mass near the transition point. The actual form of the
found in Ref. 8, the solid curve of Fig. 2 is smooth. We ripplon dispersion is shown to result in large but smooth and
ascribe the sharpness of that fall to the cutoff approximationcontinuous changes of the polaron mass and energy, which

The polaron mass is the sukh,=m+My, whereMg is
the effective mass of the surface dimple

Md:g % (&5)%q coth(qd), (11)

Vv
§q=— _qz
Mq@q

and & is the Fourier transform of the polaron dimpdér).
In the limiting caseqd<1, straightforward evaluations yield

e—q2L2/4

s —X 2
Mg ZJ' e *dx ) hp 12

MO Jo (x+1%acg? ¢ 4mad’

This conclusion follows from the analysis of the cutoff agrees with the general analysis of Ref. 7.
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