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Finite size and temperature effects in theJ1-J2 model on a strip
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Within Takahashi’s spin-wave theory we study finite size and temperature effects near the quantum critical
point in theJ1-J2 Heisenberg antiferromagnet defined on a strip (L3`). In the continuum limit, the theory
predicts universal finite size and temperature corrections and describes the dimensional crossover in magnetic
properties from 211 to 111 space-time dimensions.
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Takahashi’s spin-wave theory is a useful tool for quali
tive study of thermodynamic properties in low-dimension
spin systems.1 For instance, the theory is capable to rep
duce the universal low-temperature behavior in tw
dimensional ~2D! Heisenberg antiferromagnets2 ~HAFM!
originally predicted on the basis of the 211 nonlinears
model3 in the limit rs!T (rs is the spin-wave stiffness con
stant!. Near the quantum critical point 2D HAFM is expecte
to possess universal magnetic properties for arbitraryT/rs
providedrs ,T!J, J being a characteristic exchange energ4

Finite size and temperature effects in 2D HAFM in the lim
rs!T have previously been analyzed in the geometryL
3L.5

In the present work we apply Takahashi’s approach t
frustrated J1-J2 Heisenberg antiferromagnet defined on
strip with linear dimensionsL3` . In this geometry the
coupled self-consistent equations for the spectral gapD, the
current field g52^a0

†bx̂
†
&, and the density field f

5^a0
†ax̂1 ŷ& can be represented in the form6
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whereek54J1ghk
21A12hk

2gk
2 is the magnon dispersion re

lation @hk
21512(a f /g)(12kk)1m, kk5cosk1 cosk2, gk

5(cosk11cosk2)/2], a5J2 /J1 is the frustration paramete
andS is the value of the lattice spin. The components of
wave vectork5k1x̂1k2ŷ take the valuesk152pn1 /L @n1
50,61, . . . ,6(L21)/2# and k2P@2p,p#, whereL is an
odd integer. We use a system of units where\5kB5a51, a
is the lattice spacing. The chemical potentialm is connected
to the spectral gap by the relationD54J1gA2m.

At T50 and in an infinite geometry (L5`) the system is
in the magnetic Ne´el state, characterized by the on-site ma
netization
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up to the quantum critical pointac . Recent studies predic
that the system is magnetically disordered fromac50.38 up
to a'0.6, and support the hypothesis thatac is a second-
order phase-transition point described by theO(3) nonlinear
s model.7 Equations~1! are supposed to describe the ma
netically disordered phase at finite temperatures both in
infinite `3` and in the stripL3` geometries. In addition
the theory can also be applied to the magnetically disorde
ground state of the strip system. In both cases the excita
gap DÞ0 appears as a result of the constraint that imp
zero total staggered magnetization@the first of Eqs.~1!#, and
the theory is restricted to strip systems with integer ru
spins ~LS!. An equivalent spin-wave description of th
ground state of finite size systems has originally been p
posed by Hirsch and Tang.8

Leading corrections inT and 1/L near the quantum critica
point (T,a)5(0,ac) can be obtained in the low-energy long
wavelength limit of the theory when the magnon dispers
relation takes the form

ek5cAM21k2. ~3!

Here c54J1gb is the spin-wave velocity (b
5A1/22a f /g) and M5A2m/b is the magnon ‘‘mass,’’
which is connected to the spectral gap by the relationD
5cM. In the framework of the discussed theory, the sp
wave stiffness constant is defined by the relationrs
52J1gb2m0. In the long-wavelength limit, Eqs.~1! are sim-
plified to
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In the last equationsvn52pnT andk5Ak1
21k2

2.

Finite size effects atTÄ0

In the ground state, the functionsW0(L)[W(L,0) and
U0(L)[U(L,0) take the forms
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To extract the finite size corrections we follow the meth
suggested in Ref. 9~see also Ref. 10!. Using integral repre-
sentations for the integrands~see Ref. 11!, the above two
equations are, respectively, transformed to

W0~L !5E
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2p

e2M2t

t
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0
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where erf(z) is the error function and QL(t)
5(1/L)(n52L/211/2

L/221/2 exp@2(2pn/L)2t#. Note that
limL→`QL(t)5erf(pAt)/A4pt.

The finite size contributions in W0(L)5W0(`)
1dW0(L) and U0(L)5U0(`)1dU0(L) can be separate
by using the asymptotic formula (L@1) ~see Ref. 10,
p. 148!12
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The result reads
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For M!1 the error function in the above equations can
replaced by unity and after some algebra one gets

dW0~L !5
1

pL
Li1~e2LM ! ~7!

and

dU0~L !52
1

pL3
F~LM !. ~8!

Here Lis(z)5(n51
` zn/ns is the polylogarithmic function ofs

kind and

F~y![y2Li 1~e2y!1yLi2~e2y!1Li3~e2y!. ~9!

Using Eq. ~2!, near the quantum critical point (T,a)
5(0,ac), the first of Eqs.~4! takes the form

cM5
2c
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2
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c D G . ~10!

Finally, a subtraction of theL5` contributions in the last
two of Eqs.~4! leads to the expressions
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Here gc , f c , andbc are the values of the respective fun
tions at the quantum critical point. The above expressions
valid near the quantum critical point.

Equation~10! exactly reproduces the saddle-point equ
tion ~with an appropriate regularization! in the 1/N expan-
sion of the O(N) nonlinear s model in 211 space-time
dimensions.13 As can be expected from the relativistic di
persion relation~3!, the ratioc/L plays the role of an effec-
tive temperature. It is well known that the gap equation~10!
describes three different regimes, i.e.,~i! the renormalized
classical,~ii ! the quantum critical, and~iii ! the quantum dis-
ordered regimes~see, e.g., Ref. 10!.

~i! For rsL/c@1 ~large linear-size behavior! the approxi-
mate solution readsD[Mc5(c/L)exp(22prsL/c). Using
the mentioned symmetry and the refined result14 for the cor-
relation lengthj at low temperatures, the expression forD
can be improved to

D~L !

c
5A expS 2

2prsL

c D S 12
c

4prsL
D , ~13!
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whereA is some dimensionless parameter. The last equa
may be interpreted as the spectral gap of a 1D HAFM
fined on a ladder characterized by the integral ‘‘rung’’ sp
Se f f5rsL/c.15

~ii ! Exactly at the quantum critical point, Eq.~10! gives

D5y0

c

L
, ~14!

wherey052 ln(1/21A5/2) is a universal constant.
Equations~11! and ~12! lead to the universal finite siz

contribution for the internal energy per spin@e(L)5
22J1(g22a f 2)#,

e~L !5ec~`!2
c

pL3
F̃~LM !, ~15!

whereF̃(y)5F(y)2(y2/2)Li1(e2y).

It can be shown that fora,ac and in the limitLM!1 the
function F̃(LM ) reduces toF̃5z(3), whereas exactly at the
critical point we haveF̃54z(3)/51y0

3/12: the last result is
obtained by using Sachdev’s identity~Ref. 16!. Herez(x) is
the Riemann zeta function.

~iii ! Finally, in the quantum disordered regime (a.ac)
we get

e~L !5ec~`!2
cM2

2pL
exp~2LM !. ~16!

The exponential form of the finite size corrections refle
the existence of an excitation gap in the quantum disorde
phase. Notice, however, that in this regime the system
known to possess gapped triplet excitations,3 whereas Taka-
hashi’s theory is entirely based on transverse spin-wave
citations.

Finite size effects at low temperatures

Using the Jacobi identity

(
m52`

`

exp~2um2!5Ap

u (
m52`

`

expS 2
p2m2

u D
and the Poisson summation formula, one can transform
~5! into the forms W(L,T)5W(`,0)1dW(L,T) and
U(L,T)5U(`,0)1dU(L,T). In what follows we will con-
sider only finite size and temperature corrections to the
ternal energy. Since at low temperatures the magnon maM
is exponentially small, it is enough to calculate the functi
dU(L,T) for M50. The result reads

dU~L,T!M505
2G~3/2!

p3/2c3
T3 (

m,n52`

`

~m21n2L2T2/c2!23/2,

~17!

where the termm5n50 must be omitted.
~i! In the regimeT@c/L it is convenient to transform Eq

~17! to the form
21240
n
-

s
d

is

x-

s.

-
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1
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`
l

m
K1S 2p lmLT

c D , ~18!

@K1(x) is the McDonald function# which yields the follow-
ing expression for the internal energy per spin:

e~L,T!5ec~`,0!1
2z~3!

pc2
$11O@~TL/c!23/2e22p(TL/c)#%

3T31
4z~2!

pL2
T. ~19!

In the considered long-wavelength approximation the exp
sion parameter (TL/c)21 gives exponentially small contribu
tions in theT3 prefactor. In the bulk limit theT3 term in Eq.
~19! exactly reproduces the expected contribution to the
ternal energy of the 2D HAFM from the Goldstone modes
k5(0,0) andk5(p,p) ~see, e.g., Ref. 5!.

~ii ! In the regimeT!c/L it is convenient to use instead o
Eq. ~18! the expression

dU~L,T!M505
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pL3
1
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1
16T

cL2 (
l ,m51

`
l

m
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LT D , ~20!

which leads to the formula

e~L,T!5ec~`,0!1
2cz~3!

p
$11O@~TL/c!3/2e22p(c/TL)#%

3
1

L3
1

4z~2!

pcL
T2. ~21!

In conclusion, based on Takahashi’s spin-wave theory
have obtained expressions for the spectral gap and the i
nal energy per spin of a frustrated Heisenberg antiferrom
net defined on a strip. The expressions are valid in the c
tinuum limit and close to the quantum critical point and ha
a universal form depending only on the macroscopic m
netic parametersrs andc.
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