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Finite size and temperature effects in theJ;-J, model on a strip
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Within Takahashi's spin-wave theory we study finite size and temperature effects near the quantum critical
point in theJ;-J, Heisenberg antiferromagnet defined on a sttip<e). In the continuum limit, the theory
predicts universal finite size and temperature corrections and describes the dimensional crossover in magnetic
properties from 21 to 1+1 space-time dimensions.
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Takahashi's spin-wave theory is a useful tool for qualita- dk.dk 1
. . . . . . 1Y R2
tive study of thermodynamic properties in low-dimensional f f 2
spin system$.For instance, the theory is capable to repro- —m)—m(2m)? 1 77k7k

duce the universal low-temperature behavior in two-
dimensional (2D) Heisenberg antiferromagnétsHAFM)
originally predicted on the basis of thet2 nonlinearo
modef in the limit ps<T (ps is the spin-wave stiffness con-
stan). Near the quantum critical point 2D HAFM is expected
to possess universal magnetic properties for arbitidiys
providedps,T<J, J being a characteristic exchange enetgy.
Finite size and temperature effects in 2D HAFM in the limit
ps<;l' have previously been analyzed in the geomdiry
XL.

In the present work we apply Takahashi’'s approach to
frustrated J;-J, Heisenberg antiferromagnet defined on a
strip with linear dimensiond X . In this geometry the
coupled self-consistent equations for the spectral fyafhe

current field g=—<agb£>, and the density field f

up to the quantum critical point.. Recent studies predict
that the system is magnetically disordered frap+ 0.38 up

to a~0.6, and support the hypothesis that is a second-
order phase-transition point described by @) nonlinear

o model! Equations(1) are supposed to describe the mag-
netically disordered phase at finite temperatures both in the
infinite o X % and in the stripL X« geometries. In addition,
the theory can also be applied to the magnetically disordered
ground state of the strip system. In both cases the excitation
gapA#O appears as a result of the constraint that implies
zero total staggered magnetizatidhe first of Eqs(1)], and

the theory is restricted to strip systems with integer rung
spins (LS). An equivalent spin-wave description of the
ground state of finite size systems has originally been pro-
posed by Hirsch and Tarfg

=(ajax.y) can be represented in the fotm Leading corrections iff and 1L near the quantum critical
point (T,«)=(0,a.) can be obtained in the low-energy long-
1 1 7 dk, 1 €K wavelength limit of the theory when the magnon dispersion
Sts=50 % - mc‘)t relation takes the form
m k Yk

€=CVM?+Kk. 3

Here c¢=4J,98 is the spin-wave velocity £
=\1/2— af/g) and M=2u/B is the magnon “mass,”
which is connected to the spectral gap by the relation
1 1 dkz 1—ky =cM. In the framework of the discussed theory, the spin-
f s m cot 2-|- (1) wave stiffness constant is defined by the relatipg
=2J,08°m,. In the long-wavelength limit, Eq$1) are sim-
wheree,= 43,97 *\1— 7297 is the magnon dispersion re- Plified to
lation [ 7, *=1—(af/g)(1— k) + 1, kx=COSK; cOsky, vy
= (cosk;+cosk,)/2], a=J,/J; is the frustration parameter, S+ E_f+g: EW(L T)
andSis the value of the lattice spin. The components of the 2 B
wave vectork=k,x+k,y take the valuek,;=2mn,/L [n,
=0,+1,...,=2(L—1)/2] andk,e[—m, 7], whereL is an
odd integer. We use a system of units whgrekg=a=1, a
is the lattice spacing. The chemical poteniials connected
to the spectral gap by the relatidn=4J,g2 . 1 1
At T=0 and in an infinite geometrL(=) the system is S+ > —f=5Z 28 57 U(LT), 4
in the magnetic Nel state, characterized by the on-site mag-
netization where

1 = dk, 1—
g=S+ E 2 7k77k Gk)

1
2 ) 2 ™

28%+1 B
a5 U(L,T)+§M2W(L,T),

S ! =
+§—g—
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- = dk, 1
~72T w2/c?+ M2+ k2

>

Ky

W(L,T)= oL &,

o

2T = dk, k2
U(L,T — -
D=5 ,2. kzl LWZW w?lc?+M2+k?

In the last equation®,=27nT andk= \/k21+ k22.

©)

Finite size effects atT=0

In the ground state, the function®/,(L)=W(L,0) and
Uo(L)=U(L,0) take the forms

mdkp 1
Woll)= E w27 M2 K2
and
dk2 I
Uo(L)=T E \/M +kZ—M2W,(L).

To extract the finite size corrections we follow the method
suggested in Ref. gsee also Ref. )0 Using integral repre-
sentations for the integrandsee Ref. 11 the above two
equations are, respectively, transformed to

2
woL)= [ & et mbau

and

y (L)—M+fw dt e M erf(q-r\/_)Q ©

0 02\/; 32 Vaart -

—M?Wq(L),

where erfg) is the error function and Q,(t)
=(1L)sL2 Ve exd —(2mn/L)A]. Note that

lim_ _..Qy (t) =erf(m\t)/ J4mt.

The finite size contributions in Wy(L)=Wg()
+ 6Wp(L) and Uy(L)=Uy()+ 8Uq(L) can be separated
by using the asymptotic formulaL&1) (see Ref. 10,
p. 1482

o0

erf(mt¥)+2>, exp(—12L2/4t)|.
=1

Q)= (6)

1
Vart

The result reads

M < (=dt
_ Rl V7]
SWo(L) G;l fozwt
12L2Mm2 fwﬁ
Xexp —t— It er vEk
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dUo(L)=—

512
\/_2 471't
12L2M?2 t
Xexp{—t— Tt )erf(wM\/_)—Mzﬁwo(L).

For M<1 the error function in the above equations can be
replaced by unity and after some algebra one gets

1
BW(L) = —Lis(e™t™) @

and

1
5U0(L)=—EF(LM). (8)

Here Li(z) =X/ _,2"/n® is the polylogarithmic function o$
kind and

F(y)=y?Liy(e” (€)

Using Eg. (2), near the quantum critical pointT(«)
=(0,a.), the first of Eqs(4) takes the form

2c 1 p( L)
exp — )

cM= —arcsin+—

Y)+yLiy(e Y)+Liz(e™Y).

2mps
Cc

3 5 (10

Finally, a subtraction of thé =o0 contributions in the last
two of Egs.(4) leads to the expressions

(2B2+1) 1 (2 Bc 1)
0=0ct—F—5— 4 7. L3 M)— 4 C O(oo)(ﬁ Bc)
%M SUq(L) (11)
and
1 1 Ug()
f=f.+ 278, L S FIM)+——=(B-Bc). (12

Hereg., f., and 8. are the values of the respective func-
tions at the quantum critical point. The above expressions are
valid near the quantum critical point.

Equation(10) exactly reproduces the saddle-point equa-
tion (with an appropriate regularizatipin the 1N expan-
sion of the O(N) nonlinear o model in 2+1 space-time
dimensions3 As can be expected from the relativistic dis-
persion relation(3), the ratioc/L plays the role of an effec-
tive temperature. It is well known that the gap equatib®)
describes three different regimes, i.6), the renormalized
classical,(ii) the quantum critical, andii) the quantum dis-
ordered regimessee, e.g., Ref. 10

(i) For psL/c>1 (large linear-size behavipthe approxi-
mate solution reada\=Mc=(c/L)exp(-—2mpL/c). Using
the mentioned symmetry and the refined reéutir the cor-
relation length¢ at low temperatures, the expression for
can be improved to

L
)

A(L) ;{ 27ps
exp —

[

4ap L (13
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whereA is some dimensionless parameter. The last equation 20(3)T3 44(2)T
may be interpreted as the spectral gap of a 1D HAFM de- SU(L,Tpm=0= 3 5
fined on a ladder characterized by the integral “rung” spin mC mcL

Seff:Psl-/C-15
(i) Exactly at the quantum critical point, E(LO) gives

o

16T2 | (27T|mLT> 18
2 imtam ¢ )
A=yor- (14

[K,(x) is the McDonald functiohwhich yields the follow-

wherey,=2 In(1/2+/5/2) is a universal constant. ing expression for the internal energy per spin:

Equations(11) and (12) lead to the universal finite size

contribution for the internal energy per spine(L)= e(L,T)=e,(,0)+ 25(3){1+O[(TL/C)fg/zefzﬁ(Tuc)]}
—23;(g%-af?)], ' o mc?

c - 4(2
e(L)=eq(*) - —=F(LM), (15 cro 221 19
L mL?
whereF (y)=F(y)— (y*/2)Liy(e™). In the considered long-wavelength approximation the expan-

It can be shown that for <« and in the limitLM <1 the Sion p_arameter'l(L/c)‘1 gives exponfan.tially small cpntribu-
function F(LM) reduces td=={(3), whereas exactly at the E'Or;s In th(IaT3 prefgctor. Ir;]the bulk “Z“t th€3bterm in Eﬁ-
- . =_ 3/ .. , 19) exactly reproduces the expected contribution to the in-
gzi:iilezotlant lﬁ?nhas\/:(::h di\glgsgi)c;i:t)(logfz ' fgel_lésrz r(?)s(;JIit;s ternal energy of the 2D HAFM from the Goldstone modes at
. y 9 . tref. 16. ¢ k=(0,0) andk=(m,7) (see, e.g., Ref.)5
the Riemann zeta function.

(iii) Finally, in the quantum disordered regime> a.) Eq(lz)lg)] :E: ;ex%rnefls—srf“‘ itis convenientto use instead of

we get
cM? 20(3)  4L(2)T?
e(L)=ex(*) ~ 5—-exp(—LM). (16) SU(L Ty o= & )+ £(2)
L3 mc?L
The exponential form of the finite size corrections reflects 16T 2 | 2mlme
the existence of an excitation gap in the quantum disordered - 1( = ) (20)
phase. Notice, however, that in this regime the system is cL®im=1Mm

known to possess gapped triplet excitatidnshereas Taka-
hashi’s theory is entirely based on transverse spin-wave exvhich leads to the formula

citations.
2¢c{(3)
_ n + 3/2,—2m(c/TL)
Finite size effects at low temperatures e(L.T)=ec(.0) T {1 OL(TL/e) e ]}
Using the Jacobi identity 1 4{(2)
F clL @1

o0 7T o0
> exp(—umz)z\ﬁ > exp(—
m= —o u m=—o
In conclusion, based on Takahashi's spin-wave theory we

and the Poisson summation formula, one can transform Eqgbave obtained expressions for the spectral gap and the inter-
(5) into the forms W(L,T)=W(«,0)+5W(L,T) and nal energy per spin of a frustrated Heisenberg antiferromag-
U(L, T)=U(%,0)+ sU(L,T). In what follows we will con- net defined on a strip. The expressions are valid in the con-
sider only finite size and temperature corrections to the intinuum limit and close to the quantum critical point and have
ternal energy. Since at low temperatures the magnon Mass a universal form depending only on the macroscopic mag-
is exponentially small, it is enough to calculate the functionnetic parameterpg andc.

SU(L,T) for M=0. The result reads
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